1
|
Di Biase E, Connolly KJ, Crumpton I, Cooper O, Hallett PJ, Isacson O. ApoE4 requires lipidation enhancement to resolve cellular lipid and protein abnormalities following NPC1 inhibition. Sci Rep 2025; 15:15051. [PMID: 40301465 PMCID: PMC12041514 DOI: 10.1038/s41598-025-96531-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 03/28/2025] [Indexed: 05/01/2025] Open
Abstract
Apolipoprotein E (ApoE) variants are central to Alzheimer's disease (AD), Lewy body dementia (LBD) and Niemann-Pick disease type C (NPC). The ApoE4 variant elevates AD risk by 3-15-fold. ApoE's normal function in lipid transport is known. The question remains how different ApoE isoforms cause cellular pathogenesis. We determined the effects of ApoE isoforms on lipid accumulation induced by inhibiting the endo-lysosomal cholesterol transporter NPC1. In human fibroblasts and astrocytes, NPC1 inhibition caused a 4-fold cholesterol accumulation and mis-localization with altered cholesterol sensing and increased synthesis of cholesterol and triglycerides. Total APP, APP C-terminal fragments (CTF) and BACE1 levels increased 3-fold. Remarkably, the intracellular neutral lipids co-localized with APP and APP C-terminal fragments. ApoE2 and ApoE3, but not ApoE4, reduced intracellular cholesterol levels by 67% and 62%, respectively, normalized APP, BACE, CTF, and improved cell survival. ApoE4 combined with a synthetic lipopeptide, which increased the proportion of large lipidated ApoE4 particles, corrected these abnormalities. This highlights ApoE in lipid pathogenesis and targeting ApoE4 lipidation to restore ApoE4 function.
Collapse
Affiliation(s)
- Erika Di Biase
- Neuroregeneration Institute, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA
| | - Kyle J Connolly
- Neuroregeneration Institute, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA
| | - Ingrid Crumpton
- Neuroregeneration Institute, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA
| | - Oliver Cooper
- Neuroregeneration Institute, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA
| | - Penelope J Hallett
- Neuroregeneration Institute, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA.
| | - Ole Isacson
- Neuroregeneration Institute, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA.
| |
Collapse
|
2
|
Volynsky PE, Urban AS, Pavlov KV, Bershatsky YV, Bocharova OV, Kryuchkova AK, Zlobina VV, Gavrilenkova AA, Dolotova SM, Kamynina AV, Zangieva OT, Taldaev A, Batishchev OV, Okhrimenko IS, Rakitina TV, Efremov RG, Bocharov EV. Diverse Interactions of Sterols with Amyloid Precursor Protein Transmembrane Domain Can Shift Distribution Between Alternative Amyloid-β Production Cascades in Manner Dependent on Local Lipid Environment. Int J Mol Sci 2025; 26:553. [PMID: 39859269 PMCID: PMC11764862 DOI: 10.3390/ijms26020553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/29/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Alzheimer's disease (AD) pathogenesis is correlated with the membrane content of various lipid species, including cholesterol, whose interactions with amyloid precursor protein (APP) have been extensively explored. Amyloid-β peptides triggering AD are products of APP cleavage by secretases, which differ depending on the APP and secretase location relative to ordered or disordered membrane microdomains. We used high-resolution NMR to probe the interactions of the cholesterol analog with APP transmembrane domain in two membrane-mimicking systems resembling ordered or perturbed lipid environments (bicelles/micelles). In bicelles, spin-labeled sterol interacted with the peptide near the amphiphilic juxtamembrane region and N-terminal part of APP transmembrane helix, as described earlier for cholesterol. Upon transition into micellar environment, another interaction site appeared where sterol polar head was buried in the hydrophobic core near the hinge region. In MD simulations, sterol moved between three interaction sites, sliding along the polar groove formed by glycine residues composing the dimerization interfaces and flexible hinge of the APP transmembrane domain. Because the lipid environment modulates interactions, the role of lipids in the AD pathogenesis is defined by the state of the entire lipid subsystem rather than the effects of individual lipid species. Cholesterol can interplay with other lipids (polyunsaturated, gangliosides, etc.), determining the outcome of amyloid-β production cascades.
Collapse
Affiliation(s)
- Pavel E. Volynsky
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (P.E.V.); (A.S.U.); (Y.V.B.); (O.V.B.); (V.V.Z.); (A.A.G.); (S.M.D.); (A.V.K.); (R.G.E.)
| | - Anatoly S. Urban
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (P.E.V.); (A.S.U.); (Y.V.B.); (O.V.B.); (V.V.Z.); (A.A.G.); (S.M.D.); (A.V.K.); (R.G.E.)
| | - Konstantin V. Pavlov
- Moscow Center of Advanced Studies, 123592 Moscow, Russia; (K.V.P.); (A.K.K.); (A.T.); (I.S.O.)
| | - Yaroslav V. Bershatsky
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (P.E.V.); (A.S.U.); (Y.V.B.); (O.V.B.); (V.V.Z.); (A.A.G.); (S.M.D.); (A.V.K.); (R.G.E.)
| | - Olga V. Bocharova
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (P.E.V.); (A.S.U.); (Y.V.B.); (O.V.B.); (V.V.Z.); (A.A.G.); (S.M.D.); (A.V.K.); (R.G.E.)
| | - Anastasia K. Kryuchkova
- Moscow Center of Advanced Studies, 123592 Moscow, Russia; (K.V.P.); (A.K.K.); (A.T.); (I.S.O.)
| | - Veronika V. Zlobina
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (P.E.V.); (A.S.U.); (Y.V.B.); (O.V.B.); (V.V.Z.); (A.A.G.); (S.M.D.); (A.V.K.); (R.G.E.)
- Moscow Center of Advanced Studies, 123592 Moscow, Russia; (K.V.P.); (A.K.K.); (A.T.); (I.S.O.)
| | - Alina A. Gavrilenkova
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (P.E.V.); (A.S.U.); (Y.V.B.); (O.V.B.); (V.V.Z.); (A.A.G.); (S.M.D.); (A.V.K.); (R.G.E.)
- Moscow Center of Advanced Studies, 123592 Moscow, Russia; (K.V.P.); (A.K.K.); (A.T.); (I.S.O.)
| | - Sofya M. Dolotova
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (P.E.V.); (A.S.U.); (Y.V.B.); (O.V.B.); (V.V.Z.); (A.A.G.); (S.M.D.); (A.V.K.); (R.G.E.)
- Moscow Center of Advanced Studies, 123592 Moscow, Russia; (K.V.P.); (A.K.K.); (A.T.); (I.S.O.)
| | - Anna V. Kamynina
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (P.E.V.); (A.S.U.); (Y.V.B.); (O.V.B.); (V.V.Z.); (A.A.G.); (S.M.D.); (A.V.K.); (R.G.E.)
- Moscow Center of Advanced Studies, 123592 Moscow, Russia; (K.V.P.); (A.K.K.); (A.T.); (I.S.O.)
| | - Olga T. Zangieva
- Pirogov National Medical and Surgical Center, 105203 Moscow, Russia;
| | - Amir Taldaev
- Moscow Center of Advanced Studies, 123592 Moscow, Russia; (K.V.P.); (A.K.K.); (A.T.); (I.S.O.)
- Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Oleg V. Batishchev
- Frumkin Institute of Physical Chemistry and Electrochemistry RAS, 119071 Moscow, Russia;
| | - Ivan S. Okhrimenko
- Moscow Center of Advanced Studies, 123592 Moscow, Russia; (K.V.P.); (A.K.K.); (A.T.); (I.S.O.)
| | - Tatiana V. Rakitina
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (P.E.V.); (A.S.U.); (Y.V.B.); (O.V.B.); (V.V.Z.); (A.A.G.); (S.M.D.); (A.V.K.); (R.G.E.)
| | - Roman G. Efremov
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (P.E.V.); (A.S.U.); (Y.V.B.); (O.V.B.); (V.V.Z.); (A.A.G.); (S.M.D.); (A.V.K.); (R.G.E.)
- Department of Applied Mathematics, National Research University Higher School of Economics, 101000 Moscow, Russia
| | - Eduard V. Bocharov
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (P.E.V.); (A.S.U.); (Y.V.B.); (O.V.B.); (V.V.Z.); (A.A.G.); (S.M.D.); (A.V.K.); (R.G.E.)
- Moscow Center of Advanced Studies, 123592 Moscow, Russia; (K.V.P.); (A.K.K.); (A.T.); (I.S.O.)
| |
Collapse
|
3
|
Rudajev V, Novotny J. Cholesterol-dependent amyloid β production: space for multifarious interactions between amyloid precursor protein, secretases, and cholesterol. Cell Biosci 2023; 13:171. [PMID: 37705117 PMCID: PMC10500844 DOI: 10.1186/s13578-023-01127-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023] Open
Abstract
Amyloid β is considered a key player in the development and progression of Alzheimer's disease (AD). Many studies investigating the effect of statins on lowering cholesterol suggest that there may be a link between cholesterol levels and AD pathology. Since cholesterol is one of the most abundant lipid molecules, especially in brain tissue, it affects most membrane-related processes, including the formation of the most dangerous form of amyloid β, Aβ42. The entire Aβ production system, which includes the amyloid precursor protein (APP), β-secretase, and the complex of γ-secretase, is highly dependent on membrane cholesterol content. Moreover, cholesterol can affect amyloidogenesis in many ways. Cholesterol influences the stability and activity of secretases, but also dictates their partitioning into specific cellular compartments and cholesterol-enriched lipid rafts, where the amyloidogenic machinery is predominantly localized. The most complicated relationships have been found in the interaction between cholesterol and APP, where cholesterol affects not only APP localization but also the precise character of APP dimerization and APP processing by γ-secretase, which is important for the production of Aβ of different lengths. In this review, we describe the intricate web of interdependence between cellular cholesterol levels, cholesterol membrane distribution, and cholesterol-dependent production of Aβ, the major player in AD.
Collapse
Affiliation(s)
- Vladimir Rudajev
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jiri Novotny
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
4
|
Marlow B, Kuenze G, Meiler J, Koehler Leman J. Docking cholesterol to integral membrane proteins with Rosetta. PLoS Comput Biol 2023; 19:e1010947. [PMID: 36972273 PMCID: PMC10042369 DOI: 10.1371/journal.pcbi.1010947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/14/2023] [Indexed: 03/29/2023] Open
Abstract
Lipid molecules such as cholesterol interact with the surface of integral membrane proteins (IMP) in a mode different from drug-like molecules in a protein binding pocket. These differences are due to the lipid molecule's shape, the membrane's hydrophobic environment, and the lipid's orientation in the membrane. We can use the recent increase in experimental structures in complex with cholesterol to understand protein-cholesterol interactions. We developed the RosettaCholesterol protocol consisting of (1) a prediction phase using an energy grid to sample and score native-like binding poses and (2) a specificity filter to calculate the likelihood that a cholesterol interaction site may be specific. We used a multi-pronged benchmark (self-dock, flip-dock, cross-dock, and global-dock) of protein-cholesterol complexes to validate our method. RosettaCholesterol improved sampling and scoring of native poses over the standard RosettaLigand baseline method in 91% of cases and performs better regardless of benchmark complexity. On the β2AR, our method found one likely-specific site, which is described in the literature. The RosettaCholesterol protocol quantifies cholesterol binding site specificity. Our approach provides a starting point for high-throughput modeling and prediction of cholesterol binding sites for further experimental validation.
Collapse
Affiliation(s)
- Brennica Marlow
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- Chemical and Physical Biology Program, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Georg Kuenze
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
- Institute for Drug Discovery, Leipzig University Medical School, Leipzig, Germany
| | - Jens Meiler
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- Chemical and Physical Biology Program, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
- Institute for Drug Discovery, Leipzig University Medical School, Leipzig, Germany
| | - Julia Koehler Leman
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, New York, United States of America
| |
Collapse
|
5
|
Hanbouch L, Schaack B, Kasri A, Fontaine G, Gkanatsiou E, Brinkmalm G, Camporesi E, Portelius E, Blennow K, Mourier G, Gilles N, Millan MJ, Marquer C, Zetterberg H, Boussicault L, Potier MC. Specific Mutations in the Cholesterol-Binding Site of APP Alter Its Processing and Favor the Production of Shorter, Less Toxic Aβ Peptides. Mol Neurobiol 2022; 59:7056-7073. [PMID: 36076005 PMCID: PMC9525381 DOI: 10.1007/s12035-022-03025-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/31/2022] [Indexed: 12/05/2022]
Abstract
Excess brain cholesterol is strongly implicated in the pathogenesis of Alzheimer's disease (AD). Here we evaluated how the presence of a cholesterol-binding site (CBS) in the transmembrane and juxtamembrane regions of the amyloid precursor protein (APP) regulates its processing. We generated nine point mutations in the APP gene, changing the charge and/or hydrophobicity of the amino-acids which were previously shown as part of the CBS. Most mutations triggered a reduction of amyloid-β peptides Aβ40 and Aβ42 secretion from transiently transfected HEK293T cells. Only the mutations at position 28 of Aβ in the APP sequence resulted in a concomitant significant increase in the production of shorter Aβ peptides. Mass spectrometry (MS) confirmed the predominance of Aβx-33 and Aβx-34 with the APPK28A mutant. The enzymatic activity of α-, β-, and γ-secretases remained unchanged in cells expressing all mutants. Similarly, subcellular localization of the mutants in early endosomes did not differ from the APPWT protein. A transient increase of plasma membrane cholesterol enhanced the production of Aβ40 and Aβ42 by APPWT, an effect absent in APPK28A mutant. Finally, WT but not CBS mutant Aβ derived peptides bound to cholesterol-rich exosomes. Collectively, the present data revealed a major role of juxtamembrane amino acids of the APP CBS in modulating the production of toxic Aβ species. More generally, they underpin the role of cholesterol in the pathophysiology of AD.
Collapse
Affiliation(s)
- Linda Hanbouch
- Paris Brain Institute, ICM, CNRS UMR7225-INSERM U1127-Sorbonne University Hôpital de La Pitié-Salpêtrière, 47 Bd de l'Hôpital, 75013, Paris, France
| | - Béatrice Schaack
- Univ. Grenoble Alpes, CNRS, INP, TheRex Team, TIMC-IMAG, 38700, La Tronche, France
- Univ. Grenoble Alpes, CEA, CNRS, IBS, 38044, Grenoble, France
| | - Amal Kasri
- Paris Brain Institute, ICM, CNRS UMR7225-INSERM U1127-Sorbonne University Hôpital de La Pitié-Salpêtrière, 47 Bd de l'Hôpital, 75013, Paris, France
| | - Gaëlle Fontaine
- Paris Brain Institute, ICM, CNRS UMR7225-INSERM U1127-Sorbonne University Hôpital de La Pitié-Salpêtrière, 47 Bd de l'Hôpital, 75013, Paris, France
| | - Eleni Gkanatsiou
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, S-431 80, Sweden
| | - Gunnar Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, S-431 80, Sweden
| | - Elena Camporesi
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, S-431 80, Sweden
| | - Erik Portelius
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, S-431 80, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-431 80, Mölndal, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, S-431 80, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-431 80, Mölndal, Sweden
| | - Gilles Mourier
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-431 80, Mölndal, Sweden
- Département Médicaments Et Technologies Pour La Santé (DMTS), Université Paris Saclay, CEA, INRAE, SIMoS, 91191, Gif-sur-Yvette, France
| | - Nicolas Gilles
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-431 80, Mölndal, Sweden
- Département Médicaments Et Technologies Pour La Santé (DMTS), Université Paris Saclay, CEA, INRAE, SIMoS, 91191, Gif-sur-Yvette, France
| | - Mark J Millan
- Neuroscience Inflammation Thérapeutic Area, IDR Servier, 125 Chemin de Ronde, 78290, Croissy-sur-Seine, France
- Institute of Neuroscience and Psychology, College of Medicine, Vet and Life Sciences, Glasgow University, 62 Hillhead Street, Glasgow, G12 8QB, Scotland
| | - Catherine Marquer
- Paris Brain Institute, ICM, CNRS UMR7225-INSERM U1127-Sorbonne University Hôpital de La Pitié-Salpêtrière, 47 Bd de l'Hôpital, 75013, Paris, France
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, S-431 80, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-431 80, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, WC1N 3BG, UK
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
| | - Lydie Boussicault
- Paris Brain Institute, ICM, CNRS UMR7225-INSERM U1127-Sorbonne University Hôpital de La Pitié-Salpêtrière, 47 Bd de l'Hôpital, 75013, Paris, France
| | - Marie-Claude Potier
- Paris Brain Institute, ICM, CNRS UMR7225-INSERM U1127-Sorbonne University Hôpital de La Pitié-Salpêtrière, 47 Bd de l'Hôpital, 75013, Paris, France.
| |
Collapse
|
6
|
Dutta S, Rahman S, Ahmad R, Kumar T, Dutta G, Banerjee S, Abubakar AR, Rowaiye AB, Dhingra S, Ravichandiran V, Kumar S, Sharma P, Haque M, Charan J. An evidence-based review of neuronal cholesterol role in dementia and statins as a pharmacotherapy in reducing risk of dementia. Expert Rev Neurother 2021; 21:1455-1472. [PMID: 34756134 DOI: 10.1080/14737175.2021.2003705] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Dementia is a progressive neurodegenerative disorder impairing memory and cognition. Alzheimer's Disease, followed by vascular dementia - the most typical form. Risk factors for vascular dementia include diabetes, cardiovascular disease, hyperlipidemia. Lipids' levels are significantly associated with vascular changes in the brain. AREAS COVERED The present article reviews the cholesterol metabolism in the brain, which includes: the synthesis, transport, storage, and elimination process. Additionally, it reviews the role of cholesterol in the pathogenesis of dementia and statin as a therapeutic intervention in dementia. In addition to the above, it further reviews evidence in support of as well as against statin therapy in dementia, recent updates of statin pharmacology, and demerits of use of statin pharmacotherapy. EXPERT OPINION Amyloid-β peptides and intraneuronal neurofibrillary tangles are markers of Alzheimer's disease. Evidence shows cholesterol modulates the functioning of enzymes associated with Amyloid-β peptide processing and synthesis. Lowering cholesterol using statin may help prevent or delay the progression of dementia. This paper reviews the role of statin in dementia and recommends extensive future studies, including genetic research, to obtain a precise medication approach for patients with dementia.
Collapse
Affiliation(s)
- Siddhartha Dutta
- Department of Pharmacology, All India Institute of Medical Sciences, Rajkot, Gujrat, India
| | - Sayeeda Rahman
- School of Medicine, American University of Integrative Sciences, Bridgetown, Barbados
| | - Rahnuma Ahmad
- Department of Physiology, Medical College for Women and Hospital, Dhaka, Bangladesh
| | - Tarun Kumar
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), Jodhpur, Rajasthan, India
| | - Gitashree Dutta
- Department of Community Medicine, Neigrihms, Shillong, India
| | | | - Abdullahi Rabiu Abubakar
- Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Bayero University, Kano, Nigeria
| | - Adekunle Babajide Rowaiye
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka, Nigeria
| | - Sameer Dhingra
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, India
| | - Velayutham Ravichandiran
- Department of Natural Products, National Institute of Pharmaceutical Education and Research-Kolkata, Kolkata, India
| | - Santosh Kumar
- Department of Periodontology and Implantology, Karnavati University, Gandhinagar, India
| | - Paras Sharma
- Department of Pharmacognosy, BVM College of Pharmacy, Gwalior, India
| | - Mainul Haque
- Unit of Pharmacology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Kem Perdana Sungai Besi, Kuala Lumpur, Malaysia
| | - Jaykaran Charan
- Department of Pharmacology, All India Institute of Medical Sciences, Rajkot, Gujrat, India
| |
Collapse
|
7
|
Nierzwicki Ł, Olewniczak M, Chodnicki P, Czub J. Role of cholesterol in substrate recognition by [Formula: see text]-secretase. Sci Rep 2021; 11:15213. [PMID: 34312439 PMCID: PMC8313713 DOI: 10.1038/s41598-021-94618-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/13/2021] [Indexed: 12/14/2022] Open
Abstract
[Formula: see text]-Secretase is an enzyme known to cleave multiple substrates within their transmembrane domains, with the amyloid precursor protein of Alzheimer's Disease among the most prominent examples. The activity of [Formula: see text]-secretase strictly depends on the membrane cholesterol content, yet the mechanistic role of cholesterol in the substrate binding and cleavage remains unclear. In this work, we used all-atom molecular dynamics simulations to examine the role of cholesterol in the initial binding of a direct precursor of [Formula: see text]-amyloid polypeptides by [Formula: see text]-secretase. We showed that in cholesterol-rich membranes, both the substrate and the enzyme region proximal to the active site induce a local membrane thinning. With the free energy methods we found that in the presence of cholesterol the substrate binds favorably to the identified exosite, while cholesterol depletion completely abolishes the binding. To explain these findings, we directly examined the role of hydrophobic mismatch in the substrate binding to [Formula: see text]-secretase, showing that increased membrane thickness results in higher propensity of the enzyme to bind substrates. Therefore, we propose that cholesterol promotes substrate binding to [Formula: see text]-secretase by increasing the membrane thickness, which leads to the negative hydrophobic mismatch between the membrane and binding partners.
Collapse
Affiliation(s)
- Łukasz Nierzwicki
- Department of Physical Chemistry, Gdansk University of Technology, Gdansk, 80-233 Poland
| | - Michał Olewniczak
- Department of Physical Chemistry, Gdansk University of Technology, Gdansk, 80-233 Poland
| | - Paweł Chodnicki
- Department of Physical Chemistry, Gdansk University of Technology, Gdansk, 80-233 Poland
| | - Jacek Czub
- Department of Physical Chemistry, Gdansk University of Technology, Gdansk, 80-233 Poland
| |
Collapse
|
8
|
Feringa FM, van der Kant R. Cholesterol and Alzheimer's Disease; From Risk Genes to Pathological Effects. Front Aging Neurosci 2021; 13:690372. [PMID: 34248607 PMCID: PMC8264368 DOI: 10.3389/fnagi.2021.690372] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/28/2021] [Indexed: 12/22/2022] Open
Abstract
While the central nervous system compromises 2% of our body weight, it harbors up to 25% of the body's cholesterol. Cholesterol levels in the brain are tightly regulated for physiological brain function, but mounting evidence indicates that excessive cholesterol accumulates in Alzheimer's disease (AD), where it may drive AD-associated pathological changes. This seems especially relevant for late-onset AD, as several of the major genetic risk factors are functionally associated with cholesterol metabolism. In this review we discuss the different systems that maintain brain cholesterol metabolism in the healthy brain, and how dysregulation of these processes can lead, or contribute to, Alzheimer's disease. We will also discuss how AD-risk genes might impact cholesterol metabolism and downstream AD pathology. Finally, we will address the major outstanding questions in the field and how recent technical advances in CRISPR/Cas9-gene editing and induced pluripotent stem cell (iPSC)-technology can aid to study these problems.
Collapse
Affiliation(s)
- Femke M. Feringa
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam University Medical Center, Amsterdam, Netherlands
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam, Amsterdam, Netherlands
| | - Rik van der Kant
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam, Amsterdam, Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Center, Amsterdam, Netherlands
| |
Collapse
|
9
|
Capone R, Tiwari A, Hadziselimovic A, Peskova Y, Hutchison JM, Sanders CR, Kenworthy AK. The C99 domain of the amyloid precursor protein resides in the disordered membrane phase. J Biol Chem 2021; 296:100652. [PMID: 33839158 PMCID: PMC8113881 DOI: 10.1016/j.jbc.2021.100652] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 12/11/2022] Open
Abstract
Processing of the amyloid precursor protein (APP) via the amyloidogenic pathway is associated with the etiology of Alzheimer's disease. The cleavage of APP by β-secretase to generate the transmembrane 99-residue C-terminal fragment (C99) and subsequent processing of C99 by γ-secretase to yield amyloid-β (Aβ) peptides are essential steps in this pathway. Biochemical evidence suggests that amyloidogenic processing of C99 occurs in cholesterol- and sphingolipid-enriched liquid-ordered phase membrane rafts. However, direct evidence that C99 preferentially associates with these rafts has remained elusive. Here, we tested this by quantifying the affinity of C99-GFP for raft domains in cell-derived giant plasma membrane vesicles (GPMVs). We found that C99 was essentially excluded from ordered domains in vesicles from HeLa cells, undifferentiated SH-SY5Y cells, or SH-SY5Y-derived neurons; instead, ∼90% of C99 partitioned into disordered domains. The strong association of C99 with disordered domains occurred independently of its cholesterol-binding activity or homodimerization, or of the presence of the familial Alzheimer disease Arctic mutation (APP E693G). Finally, through biochemical studies we confirmed previous results, which showed that C99 is processed in the plasma membrane by α-secretase, in addition to the well-known γ-secretase. These findings suggest that C99 itself lacks an intrinsic affinity for raft domains, implying that either i) amyloidogenic processing of the protein occurs in disordered regions of the membrane, ii) processing involves a marginal subpopulation of C99 found in rafts, or iii) as-yet-unidentified protein-protein interactions with C99 in living cells drive this protein into membrane rafts to promote its cleavage therein.
Collapse
Affiliation(s)
- Ricardo Capone
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Ajit Tiwari
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | | | - Yelena Peskova
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia, USA
| | - James M Hutchison
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Charles R Sanders
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA; Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Anne K Kenworthy
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA.
| |
Collapse
|
10
|
Langness VF, van der Kant R, Das U, Wang L, Chaves RDS, Goldstein LSB. Cholesterol-lowering drugs reduce APP processing to Aβ by inducing APP dimerization. Mol Biol Cell 2020; 32:247-259. [PMID: 33296223 PMCID: PMC8098827 DOI: 10.1091/mbc.e20-05-0345] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Amyloid beta (Aβ) is a major component of amyloid plaques, which are a key pathological hallmark found in the brains of Alzheimer’s disease (AD) patients. We show that statins are effective at reducing Aβ in human neurons from nondemented control subjects, as well as subjects with familial AD and sporadic AD. Aβ is derived from amyloid precursor protein (APP) through sequential proteolytic cleavage by BACE1 and γ-secretase. While previous studies have shown that cholesterol metabolism regulates APP processing to Aβ, the mechanism is not well understood. We used iPSC-derived neurons and bimolecular fluorescence complementation assays in transfected cells to elucidate how altering cholesterol metabolism influences APP processing. Altering cholesterol metabolism using statins decreased the generation of sAPPβ and increased levels of full-length APP (flAPP), indicative of reduced processing of APP by BACE1. We further show that statins decrease flAPP interaction with BACE1 and enhance APP dimerization. Additionally, statin-induced changes in APP dimerization and APP-BACE1 are dependent on cholesterol binding to APP. Our data indicate that statins reduce Aβ production by decreasing BACE1 interaction with flAPP and suggest that this process may be regulated through competition between APP dimerization and APP cholesterol binding.
Collapse
Affiliation(s)
- Vanessa F Langness
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093.,Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92037
| | - Rik van der Kant
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University, Amsterdam de Boelelaan 1087, 1081 HV Amsterdam, The Netherlands.,Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, De Boelelaan 1118, 1081 HZ Amsterdam, The Netherlands
| | - Utpal Das
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093.,Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92037
| | - Louie Wang
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093.,Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92037
| | - Rodrigo Dos Santos Chaves
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093.,Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92037
| | - Lawrence S B Goldstein
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093.,Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093.,Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92037
| |
Collapse
|
11
|
Pantelopulos GA, Panahi A, Straub JE. Impact of Cholesterol Concentration and Lipid Phase on Structure and Fluctuation of Amyloid Precursor Protein. J Phys Chem B 2020; 124:10173-10185. [PMID: 33135883 PMCID: PMC7958706 DOI: 10.1021/acs.jpcb.0c07615] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Elevated levels of cellular cholesterol have been identified as one factor contributing to the onset of Alzheimer's disease (AD). Specific interaction between cholesterol and the amyloid precursor protein (APP), investigated via NMR experiments and computational studies, has been proposed to play a critical role in the processing of APP by secretases and the biogenesis of amyloid-β (Aβ) protein. We present all-atom molecular dynamics simulations of the 40-residue congener of the C-terminal domain of APP, C9916-55 (C99), in cholesterol-enriched DMPC lipid bilayers. We investigated the effect of cholesterol concentration on the conformational ensemble of wild-type C99 and C99-cholesterol associations at the low pH of endosomal environments, at which residues E22 and D23 are neutral. C99 was also characterized in liquid ordered domains for Dutch (E22Q) and Iowa (D23N) Familial AD mutants at low pH and for the wild-type sequence using protonation states characteristic of neutral pH. Our results reproduce the equilibrium constant of past NMR characterizations of the C99-cholesterol interaction but are not consistent with the C99-cholesterol binding hypothesis. We find that the lifetimes of both DMPC and cholesterol complexed with C99 display a power-law distribution of residence lifetimes. Longer-lived C99-DMPC and C99-cholesterol complexes are primarily stabilized by salt bridges and hydrogen bonds of lysine amines to phosphate and hydroxyl groups. Nevertheless, specific interfaces for C99-cholesterol association which are not present for DMPC can be identified. Changes to C99-cholesterol interfaces are found to depend on C99 tilt angle and orientation of the juxtamembrane domain of C99 containing residues E22 and D23. These observations support a more nuanced view of the C99-cholesterol interaction than has previously been suggested. We propose that cholesterol modulates the conformation and activity of C99 and other small transmembrane proteins indirectly through induction of the liquid ordered phase and directly through hydrogen bonding. This suggests a critical role for membrane heterogeneity introduced by cholesterol in modulating the structural ensemble of C99 and the production of Aβ.
Collapse
Affiliation(s)
- George A Pantelopulos
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Afra Panahi
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - John E Straub
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| |
Collapse
|
12
|
Hutchison JM, Shih KC, Scheidt HA, Fantin SM, Parson KF, Pantelopulos GA, Harrington HR, Mittendorf KF, Qian S, Stein RA, Collier SE, Chambers MG, Katsaras J, Voehler MW, Ruotolo BT, Huster D, McFeeters RL, Straub JE, Nieh MP, Sanders CR. Bicelles Rich in both Sphingolipids and Cholesterol and Their Use in Studies of Membrane Proteins. J Am Chem Soc 2020; 142:12715-12729. [PMID: 32575981 DOI: 10.1021/jacs.0c04669] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
How the distinctive lipid composition of mammalian plasma membranes impacts membrane protein structure is largely unexplored, partly because of the dearth of isotropic model membrane systems that contain abundant sphingolipids and cholesterol. This gap is addressed by showing that sphingomyelin and cholesterol-rich (SCOR) lipid mixtures with phosphatidylcholine can be cosolubilized by n-dodecyl-β-melibioside to form bicelles. Small-angle X-ray and neutron scattering, as well as cryo-electron microscopy, demonstrate that these assemblies are stable over a wide range of conditions and exhibit the bilayered-disc morphology of ideal bicelles even at low lipid-to-detergent mole ratios. SCOR bicelles are shown to be compatible with a wide array of experimental techniques, as applied to the transmembrane human amyloid precursor C99 protein in this medium. These studies reveal an equilibrium between low-order oligomer structures that differ significantly from previous experimental structures of C99, providing an example of how ordered membranes alter membrane protein structure.
Collapse
Affiliation(s)
- James M Hutchison
- Chemical and Physical Biology Graduate Program and Center for Structural Biology, Vanderbilt University, Nashville 37240, Tennessee, United States
| | - Kuo-Chih Shih
- Polymer Program, Department of Chemical & Biomolecular Engineering, and Department of Biomedical Engineering, University of Connecticut, Storrs 06269, Connecticut, United States
| | - Holger A Scheidt
- Institute for Medical Physics and Biophysics, Leipzig University, Leipzig 16-18, 04107, Germany
| | - Sarah M Fantin
- Department of Chemistry, University of Michigan, Ann Arbor 48109, Michigan, United States
| | - Kristine F Parson
- Department of Chemistry, University of Michigan, Ann Arbor 48109, Michigan, United States
| | - George A Pantelopulos
- Department of Chemistry, Boston University, Boston 02215, Massachusetts, United States
| | - Haley R Harrington
- Center for Structural Biology and Department of Biochemistry, Vanderbilt University School of Medicine Basic Sciences, Nashville 37240, Tennessee, United States
| | - Kathleen F Mittendorf
- Center for Health Research, Kaiser Permanente, Portland 97227, Oregon, United States
| | - Shuo Qian
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge 37831, Tennessee, United States
| | - Richard A Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville37240, Tennessee, United States
| | - Scott E Collier
- Department of Translational and Applied Genomics, Center for Health Research, Kaiser Permanente Northwest, Portland 97227, Oregon, United States
| | - Melissa G Chambers
- Center for Structural Biology, Vanderbilt University, Nashville 37240, Tennessee, United States
| | - John Katsaras
- Neutron Scattering Division and Shull Wollan Center, Oak Ridge National Laboratory, Oak Ridge 37831, Tennessee, United States
| | - Markus W Voehler
- Center for Structural Biology and Department of Chemistry, Vanderbilt University, Nashville 37240, Tennessee, United States
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor 48109, Michigan, United States
| | - Daniel Huster
- Institute for Medical Physics and Biophysics, Leipzig University, Leipzig 16-18, 04107, Germany
| | - Robert L McFeeters
- Department of Chemistry, University of Alabama, Huntsville 35899, Alabama, United States
| | - John E Straub
- Department of Chemistry, Boston University, Boston 02215, Massachusetts, United States
| | - Mu-Ping Nieh
- Polymer Program, Department of Chemical & Biomolecular Engineering, and Department of Biomedical Engineering, University of Connecticut, Storrs 06269, Connecticut, United States
| | - Charles R Sanders
- Center for Structural Biology, Department of Biochemistry, and Department of Medicine, Vanderbilt University School of Medicine, Nashville 37240, Tennessee, United States
| |
Collapse
|
13
|
Corradi V, Sejdiu BI, Mesa-Galloso H, Abdizadeh H, Noskov SY, Marrink SJ, Tieleman DP. Emerging Diversity in Lipid-Protein Interactions. Chem Rev 2019; 119:5775-5848. [PMID: 30758191 PMCID: PMC6509647 DOI: 10.1021/acs.chemrev.8b00451] [Citation(s) in RCA: 312] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Indexed: 02/07/2023]
Abstract
Membrane lipids interact with proteins in a variety of ways, ranging from providing a stable membrane environment for proteins to being embedded in to detailed roles in complicated and well-regulated protein functions. Experimental and computational advances are converging in a rapidly expanding research area of lipid-protein interactions. Experimentally, the database of high-resolution membrane protein structures is growing, as are capabilities to identify the complex lipid composition of different membranes, to probe the challenging time and length scales of lipid-protein interactions, and to link lipid-protein interactions to protein function in a variety of proteins. Computationally, more accurate membrane models and more powerful computers now enable a detailed look at lipid-protein interactions and increasing overlap with experimental observations for validation and joint interpretation of simulation and experiment. Here we review papers that use computational approaches to study detailed lipid-protein interactions, together with brief experimental and physiological contexts, aiming at comprehensive coverage of simulation papers in the last five years. Overall, a complex picture of lipid-protein interactions emerges, through a range of mechanisms including modulation of the physical properties of the lipid environment, detailed chemical interactions between lipids and proteins, and key functional roles of very specific lipids binding to well-defined binding sites on proteins. Computationally, despite important limitations, molecular dynamics simulations with current computer power and theoretical models are now in an excellent position to answer detailed questions about lipid-protein interactions.
Collapse
Affiliation(s)
- Valentina Corradi
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Besian I. Sejdiu
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Haydee Mesa-Galloso
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Haleh Abdizadeh
- Groningen
Biomolecular Sciences and Biotechnology Institute and Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Sergei Yu. Noskov
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Siewert J. Marrink
- Groningen
Biomolecular Sciences and Biotechnology Institute and Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - D. Peter Tieleman
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
14
|
Elevated cellular cholesterol in Familial Alzheimer's presenilin 1 mutation is associated with lipid raft localization of β-amyloid precursor protein. PLoS One 2019; 14:e0210535. [PMID: 30682043 PMCID: PMC6347419 DOI: 10.1371/journal.pone.0210535] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 12/26/2018] [Indexed: 11/30/2022] Open
Abstract
Familial Alzheimer’s disease (FAD)-associated presenilin 1 (PS1) serves as a catalytic subunit of γ-secretase complex, which mediates the proteolytic liberation of β-amyloid (Aβ) from β-amyloid precursor protein (APP). In addition to its proteolytic role, PS1 is involved in non-proteolytic functions such as protein trafficking and ion channel regulation. Furthermore, postmortem AD brains as well as AD patients showed dysregulation of cholesterol metabolism. Since cholesterol has been implicated in regulating Aβ production, we investigated whether the FAD PS1-associated cholesterol elevation could influence APP processing. We found that in CHO cells stably expressing FAD-associated PS1 ΔE9, total cholesterol levels are elevated compared to cells expressing wild-type PS1. We also found that localization of APP in cholesterol-enriched lipid rafts is substantially increased in the mutant cells. Reducing the cholesterol levels by either methyl-β-cyclodextrin or an inhibitor of CYP51, an enzyme mediating the elevated cholesterol in PS1 ΔE9-expressing cells, significantly reduced lipid raft-associated APP. In contrast, exogenous cholesterol increased lipid raft-associated APP. These data suggest that in the FAD PS1 ΔE9 cells, the elevated cellular cholesterol level contributes to the altered APP processing by increasing APP localized in lipid rafts.
Collapse
|
15
|
Dursun E, Gezen-Ak D. Vitamin D receptor is present on the neuronal plasma membrane and is co-localized with amyloid precursor protein, ADAM10 or Nicastrin. PLoS One 2017; 12:e0188605. [PMID: 29176823 PMCID: PMC5703467 DOI: 10.1371/journal.pone.0188605] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/09/2017] [Indexed: 12/14/2022] Open
Abstract
Our recent study indicated that vitamin D and its receptors are important parts of the amyloid processing pathway in neurons. Yet the role of vitamin D receptor (VDR) in amyloid pathogenesis is complex and all regulations over the production of amyloid beta cannot be explained solely with the transcriptional regulatory properties of VDR. Given that we hypothesized that VDR might exist on the neuronal plasma membrane in close proximity with amyloid precursor protein (APP) and secretase complexes. The present study primarily focused on the localization of VDR in neurons and its interaction with amyloid pathology-related proteins. The localization of VDR on neuronal membranes and its co-localization with target proteins were investigated with cell surface staining followed by immunofluorescence labelling. The FpClass was used for protein-protein interaction prediction. Our results demonstrated the localization of VDR on the neuronal plasma membrane and the co-localization of VDR and APP or ADAM10 or Nicastrin and limited co-localization of VDR and PS1. E-cadherin interaction with APP or the γ-secretase complex may involve NOTCH1, NUMB, or FHL2, according to FpClass. This suggested complex might also include VDR, which greatly contributes to Ca+2 hemostasis with its ligand vitamin D. Consequently, we suggested that VDR might be a member of this complex also with its own non-genomic action and that it can regulate the APP processing pathway in this way in neurons.
Collapse
Affiliation(s)
- Erdinç Dursun
- Brain and Neurodegenerative Disorders Research Laboratory, Department of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Duygu Gezen-Ak
- Brain and Neurodegenerative Disorders Research Laboratory, Department of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University, Istanbul, Turkey
- * E-mail:
| |
Collapse
|
16
|
Sun F, Chen L, Wei P, Chai M, Ding X, Xu L, Luo SZ. Dimerization and Structural Stability of Amyloid Precursor Proteins Affected by the Membrane Microenvironments. J Chem Inf Model 2017; 57:1375-1387. [DOI: 10.1021/acs.jcim.7b00196] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fude Sun
- Beijing Key Laboratory of
Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Long Chen
- Beijing Key Laboratory of
Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Peng Wei
- Beijing Key Laboratory of
Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mengya Chai
- Beijing Key Laboratory of
Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiufang Ding
- Beijing Key Laboratory of
Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lida Xu
- Beijing Key Laboratory of
Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shi-Zhong Luo
- Beijing Key Laboratory of
Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
17
|
Wong KY, Xu Y, Xu L. Pitfall in Free-Energy Simulations on Simplest Systems. ChemistrySelect 2017. [DOI: 10.1002/slct.201601160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kin-Yiu Wong
- Department of Physics; High Performance Cluster Computing Centre; Institute of Computational and Theoretical Studies; Hong Kong Baptist University; 224 Waterloo Road Kowloon Tong Hong Kong
- Institute of Research and Continuing Education; Hong Kong Baptist University (Shenzhen); Shenzhen China
| | - Yuqing Xu
- Department of Physics; High Performance Cluster Computing Centre; Institute of Computational and Theoretical Studies; Hong Kong Baptist University; 224 Waterloo Road Kowloon Tong Hong Kong
- Institute of Research and Continuing Education; Hong Kong Baptist University (Shenzhen); Shenzhen China
| | - Liang Xu
- Department of Physics; High Performance Cluster Computing Centre; Institute of Computational and Theoretical Studies; Hong Kong Baptist University; 224 Waterloo Road Kowloon Tong Hong Kong
| |
Collapse
|
18
|
Deatherage CL, Lu Z, Kroncke BM, Ma S, Smith JA, Voehler MW, McFeeters RL, Sanders CR. Structural and biochemical differences between the Notch and the amyloid precursor protein transmembrane domains. SCIENCE ADVANCES 2017; 3:e1602794. [PMID: 28439555 PMCID: PMC5389784 DOI: 10.1126/sciadv.1602794] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/13/2017] [Indexed: 05/11/2023]
Abstract
γ-Secretase cleavage of the Notch receptor transmembrane domain is a critical signaling event for various cellular processes. Efforts to develop inhibitors of γ-secretase cleavage of the amyloid-β precursor C99 protein as potential Alzheimer's disease therapeutics have been confounded by toxicity resulting from the inhibition of normal cleavage of Notch. We present biochemical and structural data for the combined transmembrane and juxtamembrane Notch domains (Notch-TMD) that illuminate Notch signaling and that can be compared and contrasted with the corresponding traits of C99. The Notch-TMD and C99 have very different conformations, adapt differently to changes in model membrane hydrophobic span, and exhibit different cholesterol-binding properties. These differences may be exploited in the design of agents that inhibit cleavage of C99 while allowing Notch cleavage.
Collapse
Affiliation(s)
- Catherine L. Deatherage
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
- Center for Structural Biology and Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Zhenwei Lu
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
- Center for Structural Biology and Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Brett M. Kroncke
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
- Center for Structural Biology and Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Sirui Ma
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
- Center for Structural Biology and Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Jarrod A. Smith
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
- Center for Structural Biology and Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Markus W. Voehler
- Center for Structural Biology and Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Robert L. McFeeters
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| | - Charles R. Sanders
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
- Center for Structural Biology and Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Corresponding author.
| |
Collapse
|
19
|
Li CD, Xu Q, Gu RX, Qu J, Wei DQ. The dynamic binding of cholesterol to the multiple sites of C99: as revealed by coarse-grained and all-atom simulations. Phys Chem Chem Phys 2017; 19:3845-3856. [DOI: 10.1039/c6cp07873g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The multi-site cholesterol binding model of C99.
Collapse
Affiliation(s)
- Cheng-Dong Li
- State Key Laboratory of Microbial Metabolism and College of Life Sciences and Biotechnology
- Shanghai Jiao Tong University
- Shanghai 200240
- China
- Beijing Key Laboratory of Bioprocess
| | - Qin Xu
- State Key Laboratory of Microbial Metabolism and College of Life Sciences and Biotechnology
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Ruo-Xu Gu
- Centre for Molecular Simulation and Department of Biological Sciences
- University of Calgary
- Calgary
- Canada
| | - Jing Qu
- Beijing Key Laboratory of Bioprocess
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing
- P. R. China
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism and College of Life Sciences and Biotechnology
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| |
Collapse
|
20
|
Panahi A, Bandara A, Pantelopulos GA, Dominguez L, Straub JE. Specific Binding of Cholesterol to C99 Domain of Amyloid Precursor Protein Depends Critically on Charge State of Protein. J Phys Chem Lett 2016; 7:3535-41. [PMID: 27525349 PMCID: PMC5293176 DOI: 10.1021/acs.jpclett.6b01624] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Recent NMR chemical shift measurements of the 99 residue C-terminal fragment of amyloid precursor protein (APP-C99) in the presence of cholesterol provide evidence of binary complex formation between C99 and cholesterol in membrane mimetic environments. It has also been observed that the production of Aβ protein is enhanced under conditions of high cholesterol concentration. In this study, we investigated the impact of the charge state of C99 on the structure and stability of the C99-cholesterol complex. We observed that the binding of C99 to cholesterol depends critically on the charge state of Glu 693 (E22) and Asp 694 (D23). Evaluation of the pKa values of the Asp and Glu side chains suggests that these residues may be predominantly neutral in existing experimental observations of a stable C99-cholesterol complex at lower pH (characteristic of the endosomal environment), while binding is destabilized near neutral pH (characteristic of the cytoplasm). These observations suggest that specific binding of cholesterol to C99 is a sensitive function of the pH encountered in vivo, with key E22 and D23 residues serving as a "pH switch" controlling C99-cholesterol binding.
Collapse
Affiliation(s)
- Afra Panahi
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts, 02215
| | - Asanga Bandara
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts, 02215
| | - George A. Pantelopulos
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts, 02215
| | - Laura Dominguez
- Biophysical Chemistry Laboratory, Physical Chemistry Department, School of Chemistry, National Autonomous University of Mexico, Mexico City, Mexico
| | - John E. Straub
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts, 02215
- Corresponding Author:
| |
Collapse
|
21
|
Audagnotto M, Lemmin T, Barducci A, Dal Peraro M. Effect of the Synaptic Plasma Membrane on the Stability of the Amyloid Precursor Protein Homodimer. J Phys Chem Lett 2016; 7:3572-3578. [PMID: 27518597 DOI: 10.1021/acs.jpclett.6b01721] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The proteolytic cleavage of the transmembrane (TM) domain of the amyloid precursor protein (APP) releases amyloid-β (Aβ) peptides, which accumulation in the brain tissue is an early indicator of Alzheimer's disease. We used multiscale molecular dynamics simulations to investigate the stability of APP-TM dimer in realistic models of the synaptic plasma membrane (SPM). Between the two possible dimerization motifs proposed by NMR and EPR, namely G709XXXA713 and G700XXXG704XXXG708, our study revealed that the dimer promoted by the G709XXXA713 motif is not stable in the SPM due to the competition with highly unsaturated lipids that constitute the SPM. Under the same conditions, the dimer promoted by the G700XXXG704XXXG708 motif is instead the most stable species and likely the most biologically relevant. Independently of the dimerization state, both these motifs can be involved in the recruitment of cholesterol molecules.
Collapse
Affiliation(s)
- Martina Audagnotto
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL) , Lausanne 1015, Switzerland
- Swiss Institute of Bioinformatics (SIB) , Lausanne 1015, Switzerland
| | - Thomas Lemmin
- Department of Pharmaceutical Chemistry, University of California-San Francisco , San Francisco, California 94143, United States
| | - Alessandro Barducci
- Inserm, U1054 Montpellier, France
- Université de Montpellier, CNRS, UMR 5048 , Centre de Biochimie Structurale, U1054 Montpellier, France
| | - Matteo Dal Peraro
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL) , Lausanne 1015, Switzerland
- Swiss Institute of Bioinformatics (SIB) , Lausanne 1015, Switzerland
| |
Collapse
|