1
|
Cheng Y, Guan J, Zhang Z, Li R, Yao Y, Sun X, Liu Q, Chen X. In Situ SERS Monitoring and Heterogeneous Catalysis Verification of Pd-Catalyzed Suzuki-Miyaura Reaction via Bifunctional "Black Raspberry-like" Plasmonic Nanoreactors. Anal Chem 2025; 97:5445-5453. [PMID: 40032529 DOI: 10.1021/acs.analchem.4c03670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Constructing materials that possess both catalytic properties and surface plasmonic active structures presents an essential requirement in the field of in situ surface-enhanced Raman spectroscopy (SERS) monitoring. In this work, we developed a novel black raspberry-like bifunctional nanoreactor platform (HPRS@Au-Pd) with enhanced surface-enhanced Raman spectroscopy (SERS) activity (EF = 3.11 × 109) and excellent catalytic performance (e.g., |K| = 1.72 × 10-2 s-1 for 4-BTP). This platform enables sensitive and real-time monitoring of Suzuki reactions, providing an efficient and stable system for mechanistic investigations. By fitting a first-order kinetic model, we quantitatively analyzed the reaction kinetics of haloarenes on Pd NPs, revealing the direct involvement of surface-bound Pd NPs in the catalytic process. Furthermore, 4MPBA-blocking experiments using haloarenes devoid of functional groups demonstrated the absence of catalytic activity from dissolved Pd species, conclusively supporting the heterogeneous nature of the reaction. This work extends the applicability of the conclusion regarding heterogeneous catalysis to a broader range of substrates, offering valuable insights into the design and optimization of dual-functional nanoreactors. Beyond the Suzuki reactions, the versatility of this platform opens avenues for applications in other catalytic reactions, showcasing its potential in advanced catalytic studies and real-time monitoring.
Collapse
Affiliation(s)
- Yujun Cheng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Jianping Guan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Zhipeng Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Ruili Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Yao Yao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Xiaotong Sun
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Qi Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Xiaoqing Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
- Xiangjiang Laboratory, Changsha 410083, Hunan, China
| |
Collapse
|
2
|
Chen J, Li M, Wang X, Liu H, Jiang W, Zhao B, Song W. Putting Charge Transfer Degree as a Bridge Connecting Surface-Enhanced Raman Spectroscopy and Photocatalysis. Angew Chem Int Ed Engl 2025; 64:e202424986. [PMID: 39878324 DOI: 10.1002/anie.202424986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 01/31/2025]
Abstract
To date, few systematic approach has been established for predicting catalytic performance by analyzing the spectral information of molecules adsorbed on photocatalyst surfaces. Effective charge transfer (CT) between the semiconductor photocatalysts and surface-absorbed molecules is essential for enhancing catalytic activity and optimizing light energy utilization. This study aimed to validate the surface-enhanced Raman spectroscopy (SERS) based on the CT enhancement mechanism in investigating the CT process during semiconductor photocatalytic C-C coupling model reactions. A copper ion doping strategy was employed to simultaneously enhance the SERS effect and catalytic activity of zinc oxide (ZnO) derived from metal-organic framework (MOF). By analyzing molecular fingerprint SERS spectra, we calculated the degree of CT (ρCT), revealing that SERS enhancement is attributed to the CT mechanism. In situ SERS spectra confirmed a high correlation between the catalytic activity and ρCT of ZnO with varying copper ion doping levels. A range of photoelectric and spectroscopic tests validated the effectiveness of SERS in linking CT to photocatalytic performance, consistent with first-principles density functional theory (DFT) simulations. This finding is also validated in other semiconductor materials and catalytic reactions, demonstrating the broad applicability of ρCT for predicting and evaluating SERS and catalytic activity.
Collapse
Affiliation(s)
- Junjie Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry Jilin University, Changchun, 130012, P. R. China
- State Grid Sichuan Electric Power Research Institute, Chengdu, 610041, PR China
| | - Mengyuan Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry Jilin University, Changchun, 130012, P. R. China
| | - Xinmeng Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry Jilin University, Changchun, 130012, P. R. China
| | - Hongye Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry Jilin University, Changchun, 130012, P. R. China
| | - Wenji Jiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry Jilin University, Changchun, 130012, P. R. China
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry Jilin University, Changchun, 130012, P. R. China
| | - Wei Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
3
|
Farag JW, Khalil R, Avila E, Shon YS. Catalytic Activity of Water-Soluble Palladium Nanoparticles with Anionic and Cationic Capping Ligands for Reduction, Oxidation, and C-C Coupling Reactions in Water. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:405. [PMID: 40072208 PMCID: PMC11901881 DOI: 10.3390/nano15050405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 02/25/2025] [Accepted: 03/05/2025] [Indexed: 03/14/2025]
Abstract
The availability of water-soluble nanoparticles allows catalytic reactions to occur in highly desirable green environments. The catalytic activity and selectivity of water-soluble palladium nanoparticles capped with 6-(carboxylate)hexanethiolate (C6-PdNP) and 5-(trimethylammonio)pentanethiolate (C5-PdNP) were investigated for the reduction of 4-nitrophenol, the oxidation of α,β-conjugated aldehydes, and the C-C coupling of phenylboronic acid. The study showed that between the two PdNPs, C6-PdNP exhibits better catalytic activity for the reduction of 4-nitrophenol to 4-aminophenol in the presence of sodium borohydride and the selective oxidation of conjugated aldehydes to conjugated carboxylic acids. For the latter reaction, molecular hydrogen (H2) and H2O act as oxidants for the surface palladium atoms on PdNPs and conjugated aldehyde substrates, respectively. The results indicated that the competing addition activities of Pd-H and H2O toward the π-bond of different unsaturated substrates promote either reduction or oxidation reactions under mild conditions in organic solvent-free environments. In comparison, C5-PdNP exhibited higher catalytic activity for the C-C coupling of phenylboronic acid. Gas chromatography-mass spectrometry (GC-MS) was mainly used as an analytical technique to examine the products of catalytic reactions.
Collapse
Affiliation(s)
| | | | | | - Young-Seok Shon
- Department of Chemistry and Biochemistry, California State University Long Beach, 1250 Bellflower Blvd., Long Beach, CA 90840, USA
| |
Collapse
|
4
|
Stefancu A, Aizpurua J, Alessandri I, Bald I, Baumberg JJ, Besteiro LV, Christopher P, Correa-Duarte M, de Nijs B, Demetriadou A, Frontiera RR, Fukushima T, Halas NJ, Jain PK, Kim ZH, Kurouski D, Lange H, Li JF, Liz-Marzán LM, Lucas IT, Meixner AJ, Murakoshi K, Nordlander P, Peveler WJ, Quesada-Cabrera R, Ringe E, Schatz GC, Schlücker S, Schultz ZD, Tan EX, Tian ZQ, Wang L, Weckhuysen BM, Xie W, Ling XY, Zhang J, Zhao Z, Zhou RY, Cortés E. Impact of Surface Enhanced Raman Spectroscopy in Catalysis. ACS NANO 2024; 18:29337-29379. [PMID: 39401392 PMCID: PMC11526435 DOI: 10.1021/acsnano.4c06192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/30/2024]
Abstract
Catalysis stands as an indispensable cornerstone of modern society, underpinning the production of over 80% of manufactured goods and driving over 90% of industrial chemical processes. As the demand for more efficient and sustainable processes grows, better catalysts are needed. Understanding the working principles of catalysts is key, and over the last 50 years, surface-enhanced Raman Spectroscopy (SERS) has become essential. Discovered in 1974, SERS has evolved into a mature and powerful analytical tool, transforming the way in which we detect molecules across disciplines. In catalysis, SERS has enabled insights into dynamic surface phenomena, facilitating the monitoring of the catalyst structure, adsorbate interactions, and reaction kinetics at very high spatial and temporal resolutions. This review explores the achievements as well as the future potential of SERS in the field of catalysis and energy conversion, thereby highlighting its role in advancing these critical areas of research.
Collapse
Affiliation(s)
- Andrei Stefancu
- Nanoinstitute
Munich, Faculty of Physics, Ludwig-Maximilians-Universität
München, 80539 Munich, Germany
| | - Javier Aizpurua
- IKERBASQUE,
Basque Foundation for Science, 48011 Bilbao, Basque Country Spain
- Donostia
International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 San Sebastián-Donostia, Basque Country Spain
- Department
of Electricity and Electronics, University
of the Basque Country, 20018 San Sebastián-Donostia, Basque Country Spain
| | - Ivano Alessandri
- INSTM,
UdR Brescia, Via Branze
38, Brescia 25123, Italy
- Department
of Information Engineering (DII), University
of Brescia, Via Branze
38, Brescia 25123, Italy
- INO−CNR, Via Branze 38, Brescia 25123, Italy
| | - Ilko Bald
- Institute
of Chemistry, University of Potsdam, Karl-Liebknecht-Strasse 24−25, D-14476 Potsdam, Germany
| | - Jeremy J. Baumberg
- Nanophotonics
Centre, Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, England U.K.
| | | | - Phillip Christopher
- Department
of Chemical Engineering, University of California
Santa Barbara, Santa
Barbara, California 93106, United States
| | - Miguel Correa-Duarte
- CINBIO,
Universidade de Vigo, Vigo 36310, Spain
- Biomedical
Research Networking Center for Mental Health (CIBERSAM), Southern Galicia Institute of Health Research (IISGS), Vigo 36310, Spain
| | - Bart de Nijs
- Nanophotonics
Centre, Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, England U.K.
| | - Angela Demetriadou
- School
of Physics and Astronomy, University of
Birmingham, Edgbaston, Birmingham, B15 2TT, U.K.
| | - Renee R. Frontiera
- Department
of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Tomohiro Fukushima
- Department
of Chemistry, Faculty of Science, Hokkaido
University, Sapporo 060-0810, Japan
- JST-PRESTO, Tokyo, 332-0012, Japan
| | - Naomi J. Halas
- Department
of Chemistry, Rice University, Houston, Texas 77005, United States
- Department
of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Department
of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
- Technical
University of Munich (TUM) and Institute for Advanced Study (IAS), Lichtenbergstrasse 2 a, D-85748, Garching, Germany
| | - Prashant K. Jain
- Department
of Chemistry, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
- Materials
Research Laboratory, University of Illinois
Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Zee Hwan Kim
- Department
of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Dmitry Kurouski
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843, United States
| | - Holger Lange
- Institut
für Physik und Astronomie, Universität
Potsdam, 14476 Potsdam, Germany
- The Hamburg
Centre for Ultrafast Imaging, 22761 Hamburg, Germany
| | - Jian-Feng Li
- State
Key
Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College
of Chemistry and Chemical Engineering, College of Energy, College
of Materials, Xiamen University, Xiamen 361005, China
| | - Luis M. Liz-Marzán
- IKERBASQUE,
Basque Foundation for Science, 48011 Bilbao, Basque Country Spain
- CINBIO,
Universidade de Vigo, Vigo 36310, Spain
- CIC biomaGUNE,
Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
- Centro
de Investigación Biomédica en Red, Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN), Donostia-San Sebastián 20014, Spain
| | - Ivan T. Lucas
- Nantes
Université, CNRS, IMN, F-44322 Nantes, France
| | - Alfred J. Meixner
- Institute
of Physical and Theoretical Chemistry, University
of Tubingen, 72076 Tubingen, Germany
| | - Kei Murakoshi
- Department
of Chemistry, Faculty of Science, Hokkaido
University, Sapporo 060-0810, Japan
| | - Peter Nordlander
- Department
of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Department
of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
- Technical
University of Munich (TUM) and Institute for Advanced Study (IAS), Lichtenbergstrasse 2 a, D-85748, Garching, Germany
| | - William J. Peveler
- School of
Chemistry, Joseph Black Building, University
of Glasgow, Glasgow, G12 8QQ U.K.
| | - Raul Quesada-Cabrera
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
- Department
of Chemistry, Institute of Environmental Studies and Natural Resources
(i-UNAT), Universidad de Las Palmas de Gran
Canaria, Campus de Tafira, Las Palmas de GC 35017, Spain
| | - Emilie Ringe
- Department
of Materials Science and Metallurgy and Department of Earth Sciences, University of Cambridge, Cambridge CB3 0FS, United Kingdom
| | - George C. Schatz
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Sebastian Schlücker
- Physical
Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), Universität Duisburg-Essen, 45141 Essen, Germany
| | - Zachary D. Schultz
- Department
of Chemistry and Biochemistry, The Ohio
State University, Columbus, Ohio 43210, United States
| | - Emily Xi Tan
- School of
Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Nanyang, 637371, Singapore
| | - Zhong-Qun Tian
- State
Key
Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College
of Chemistry and Chemical Engineering, College of Energy, College
of Materials, Xiamen University, Xiamen 361005, China
| | - Lingzhi Wang
- Shanghai
Engineering Research Center for Multi-media Environmental Catalysis
and Resource Utilization, East China University
of Science and Technology, 130 Meilong Road, Shanghai, 200237 P. R. China
- Key
Laboratory
for Advanced Materials and Joint International Research Laboratory
of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize
Scientist Joint Research Center, School of Chemistry and Molecular
Engineering, East China University of Science
and Technology, 130 Meilong Road, Shanghai, 200237 P. R. China
| | - Bert M. Weckhuysen
- Debye Institute
for Nanomaterials Science and Institute for Sustainable and Circular
Chemistry, Department of Chemistry, Utrecht
University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Wei Xie
- Key Laboratory
of Advanced Energy Materials Chemistry (Ministry of Education), Renewable
Energy Conversion and Storage Center, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin 300071, China
| | - Xing Yi Ling
- School of
Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Nanyang, 637371, Singapore
- School
of
Chemical and Material Engineering, Jiangnan
University, Wuxi, 214122, People’s Republic
of China
- Lee Kong
Chian School of Medicine, Nanyang Technological
University, 59 Nanyang Drive, Singapore, 636921, Singapore
- Institute
for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Jinlong Zhang
- Shanghai
Engineering Research Center for Multi-media Environmental Catalysis
and Resource Utilization, East China University
of Science and Technology, 130 Meilong Road, Shanghai, 200237 P. R. China
- Key
Laboratory
for Advanced Materials and Joint International Research Laboratory
of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize
Scientist Joint Research Center, School of Chemistry and Molecular
Engineering, East China University of Science
and Technology, 130 Meilong Road, Shanghai, 200237 P. R. China
| | - Zhigang Zhao
- Key
Lab
of Nanodevices and Applications, Suzhou Institute of Nano-Tech and
Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- Nano Science
and Technology Institute, University of
Science and Technology of China (USTC), Suzhou 215123, China
| | - Ru-Yu Zhou
- State
Key
Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College
of Chemistry and Chemical Engineering, College of Energy, College
of Materials, Xiamen University, Xiamen 361005, China
| | - Emiliano Cortés
- Nanoinstitute
Munich, Faculty of Physics, Ludwig-Maximilians-Universität
München, 80539 Munich, Germany
| |
Collapse
|
5
|
Kang G, Hu S, Guo C, Arul R, Sibug-Torres SM, Baumberg JJ. Design rules for catalysis in single-particle plasmonic nanogap reactors with precisely aligned molecular monolayers. Nat Commun 2024; 15:9220. [PMID: 39455561 PMCID: PMC11511967 DOI: 10.1038/s41467-024-53544-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Plasmonic nanostructures can both drive and interrogate light-driven catalytic reactions. Sensitive detection of reaction pathways is achieved by confining optical fields near the active surface. However, effective control of the reaction kinetics remains a challenge to utilize nanostructure constructs as efficient chemical reactors. Here we present a nanoreactor construct exhibiting high catalytic and optical efficiencies, based on a nanoparticle-on-mirror (NPoM) platform. We observe and track pathways of the Pd-catalysed C-C coupling reaction of molecules within a set of nanogaps presenting different chemical surfaces. Atomic monolayer coatings of Pd on the different Au facets enable tuning of the reaction kinetics of surface-bound molecules. Systematic analysis shows the catalytic efficiency of NPoM-based nanoreactors greatly improves on platforms based on aggregated nanoparticles. More importantly, we show Pd monolayers on the nanoparticle or on the mirror play significantly different roles in the surface reaction kinetics. Our data provides clear evidence for catalytic dependencies on molecular configuration in well-defined nanostructures. Such nanoreactor constructs therefore yield clearer design rules for plasmonic catalysis.
Collapse
Affiliation(s)
- Gyeongwon Kang
- Department of Physics, Cavendish Laboratory, Nanophotonics Centre, University of Cambridge, Cambridge, CB3 0HE, UK
- Department of Chemistry, Kangwon National University, Chuncheon, 24341, South Korea
| | - Shu Hu
- Department of Physics, Cavendish Laboratory, Nanophotonics Centre, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Chenyang Guo
- Department of Physics, Cavendish Laboratory, Nanophotonics Centre, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Rakesh Arul
- Department of Physics, Cavendish Laboratory, Nanophotonics Centre, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Sarah M Sibug-Torres
- Department of Physics, Cavendish Laboratory, Nanophotonics Centre, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Jeremy J Baumberg
- Department of Physics, Cavendish Laboratory, Nanophotonics Centre, University of Cambridge, Cambridge, CB3 0HE, UK.
| |
Collapse
|
6
|
Kozisek J, Hrncirova J, Slouf M, Sloufova I. Plasmon-driven substitution of 4-mercaptophenylboronic acid to 4-nitrothiophenol monitored by surface-enhanced Raman spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 319:124523. [PMID: 38820811 DOI: 10.1016/j.saa.2024.124523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/02/2024] [Accepted: 05/23/2024] [Indexed: 06/02/2024]
Abstract
Plasmon-driven reactions on plasmonic nanoparticles (NPs) occur under significantly different conditions from those of classical organic synthesis and provide a promising pathway for enhancing the efficiency of various chemical processes. However, these reactions can also have undesirable effects, such as 4-mercaptophenylboronic acid (MPBA) deboronation. MPBA chemisorbs well to Ag NPs through its thiol group and can subsequently bind to diols, enabling the detection of various biological structures by surface-enhanced Raman scattering (SERS), but not upon its deboronation. To avoid this reaction, we investigated the experimental conditions of MPBA deboronation on Ag NPs by SERS. Our results showed that the level of deboronation strongly depends on both the morphology of the system and the excitation laser wavelength and power. In addition, we detected not only the expected products, namely thiophenol and biphenyl-4,4-dithiol, but also 4-nitrothiophenol (NTP). The crucial reagent for NTP formation was an oxidation product of hydroxylamine hydrochloride, the reduction agent used in Ag NP synthesis. Ultimately, this reaction was replicated by adding NaNO2 to the system, and its progress was monitored as a function of the laser power, thereby identifying a new reaction of plasmon-driven -B(OH)2 substitution for -NO2.
Collapse
Affiliation(s)
- Jan Kozisek
- Charles University, Faculty of Science, Department of Physical and Macromolecular Chemistry, Hlavova 2030, 128 40 Prague 2, Czech Republic
| | - Jana Hrncirova
- Charles University, Faculty of Science, Department of Physical and Macromolecular Chemistry, Hlavova 2030, 128 40 Prague 2, Czech Republic
| | - Miroslav Slouf
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovskeho nam. 2, 162 06 Prague 6, Czech Republic
| | - Ivana Sloufova
- Charles University, Faculty of Science, Department of Physical and Macromolecular Chemistry, Hlavova 2030, 128 40 Prague 2, Czech Republic.
| |
Collapse
|
7
|
Polynski MV, Vlasova YS, Solovev YV, Kozlov SM, Ananikov VP. Computational analysis of R-X oxidative addition to Pd nanoparticles. Chem Sci 2024; 15:9977-9986. [PMID: 38966374 PMCID: PMC11220582 DOI: 10.1039/d4sc00628c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/11/2024] [Indexed: 07/06/2024] Open
Abstract
Oxidative addition (OA) is a necessary step in mechanisms of widely used synthetic methodologies such as the Heck reaction, cross-coupling reactions, and the Buchwald-Hartwig amination. This study pioneers the exploration of OA of aryl halide to palladium nanoparticles (NPs), a process previously unaddressed in contrast to the activity of well-studied Pd(0) complexes. Employing DFT modeling and semi-empirical metadynamics simulations, the oxidative addition of phenyl bromide to Pd nanoparticles was investigated in detail. Energy profiles of oxidative addition to Pd NPs were analyzed and compared to those involving Pd(0) complexes forming under both ligand-stabilized (phosphines) and ligandless (amine base) conditions. Metadynamics simulations highlighted the edges of the (1 1 1) facets of Pd NPs as the key element of oxidative addition activity. We demonstrate that OA to Pd NPs is not only kinetically facile at ambient temperatures but also thermodynamically favorable. This finding accentuates the necessity of incorporating OA to Pd NPs in future investigations, thus providing a more realistic view of the involved catalytic mechanisms. These results enhance the understanding of aryl halide (cross-)coupling reactions, reinforcing the concept of a catalytic "cocktail". This concept posits dynamic interconversions between diverse active and inactive centers, collectively affecting the outcome of the reaction. High activity of Pd NPs in direct C-X activation paves the way for novel approaches in catalysis, potentially enhancing the field and offering new catalytic pathways to consider.
Collapse
Affiliation(s)
- Mikhail V Polynski
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Yulia S Vlasova
- Faculty of Chemistry, Moscow State University Leninskiye Gory 1-3 Moscow 119991 Russia
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences Leninsky Prospect 47 Moscow 119991 Russia
| | - Yaroslav V Solovev
- M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences Miklukho-Maklaya 16/10 Moscow 117997 Russia
| | - Sergey M Kozlov
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Valentine P Ananikov
- Faculty of Chemistry, Moscow State University Leninskiye Gory 1-3 Moscow 119991 Russia
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences Leninsky Prospect 47 Moscow 119991 Russia
| |
Collapse
|
8
|
Kohila Rani K, Xiao YH, Devasenathipathy R, Gao K, Wang J, Kang X, Zhu C, Chen H, Jiang L, Liu Q, Qiao F, Li Z, Wu DY, Lu G. Raman Monitoring of the Electro-Optical Synergy-Induced Enhancements in Carbon-Bromine Bond Cleavage, Reaction Rate, and Product Selectivity of p-Bromothiophenol. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27831-27840. [PMID: 38757708 DOI: 10.1021/acsami.4c01259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Electro-optical synergy has recently been targeted to improve the separation of hot carriers and thereby further improve the efficiency of plasmon-mediated chemical reactions (PMCRs). However, the electro-optical synergy in PMCRs needs to be more deeply understood, and its contribution to bond dissociation and product selectivity needs to be clarified. Herein, the electro-optical synergy in plasmon-mediated reduction of p-bromothiophenol (PBTP) was studied on a plasmonic nanostructured silver electrode using in situ Raman spectroscopy and theoretical calculations. It was found that the electro-optical synergy-induced enhancements in the cleavage of carbon-bromine bonds, reaction rate, and product selectivity (4,4'-biphenyl dithiol vs thiophenol) were largely affected by the applied bias, laser wavelength, and laser power. The theoretical simulation further clarified that the strong electro-optical synergy is attributed to the matching of energy band diagrams of the plasmonic silver with those of the adsorbed PBTP molecules. A deep understanding of the electro-optical synergy in PBTP reduction and the clarification of the mechanism will be highly beneficial for the development of other highly efficient PMCRs.
Collapse
Affiliation(s)
- Karuppasamy Kohila Rani
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Yuan-Hui Xiao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, PR China
| | - Rajkumar Devasenathipathy
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Kun Gao
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Jiazheng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, PR China
| | - Xing Kang
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Chengcheng Zhu
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Haonan Chen
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Lu Jiang
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Qinghua Liu
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Furong Qiao
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Zhuoyao Li
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - De-Yin Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, PR China
| | - Gang Lu
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| |
Collapse
|
9
|
Huang WF, Xu HB, Zhu SC, He Y, Chen HY, Li DW. Core-Shell Gold Nanoparticles@Pd-Loaded Covalent Organic Framework for In Situ Surface-Enhanced Raman Spectroscopy Monitoring of Catalytic Reactions. ACS Sens 2024; 9:2421-2428. [PMID: 38644577 DOI: 10.1021/acssensors.4c00103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
A core-shell nanostructure of gold nanoparticles@covalent organic framework (COF) loaded with palladium nanoparticles (AuNPs@COF-PdNPs) was designed for the rapid monitoring of catalytic reactions with surface-enhanced Raman spectroscopy (SERS). The nanostructure was prepared by coating the COF layer on AuNPs and then in situ synthesizing PdNPs within the COF shell. With the respective SERS activity and catalytic performance of the AuNP core and COF-PdNPs shell, the nanostructure can be directly used in the SERS study of the catalytic reaction processes. It was shown that the confinement effect of COF resulted in the high dispersity of PdNPs and outstanding catalytic activity of AuNPs@COF-PdNPs, thus improving the reaction rate constant of the AuNPs@COF-PdNPs-catalyzed hydrogenation reduction by 10 times higher than that obtained with Au/Pd NPs. In addition, the COF layer can serve as a protective shell to make AuNPs@COF-PdNPs possess excellent reusability. Moreover, the loading of PdNPs within the COF layer was found to be in favor of avoiding intermediate products to achieve a high total conversion rate. AuNPs@COF-PdNPs also showed great catalytic activities toward the Suzuki-Miyaura coupling reaction. Taken together, the proposed core-shell nanostructure has great potential in monitoring and exploring catalytic processes and interfacial reactions.
Collapse
Affiliation(s)
- Wen-Fei Huang
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Han-Bin Xu
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Shi-Cheng Zhu
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yue He
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Hua-Ying Chen
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, P. R. China
| | - Da-Wei Li
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
10
|
Chen J, Li M, Yang Y, Liu H, Zhao B, Ozaki Y, Song W. In-situ surface enhanced Raman spectroscopy revealing the role of metal-organic frameworks on photocatalytic reaction selectivity on highly sensitive and durable Cu-CuBr substrate. J Colloid Interface Sci 2024; 660:669-680. [PMID: 38271803 DOI: 10.1016/j.jcis.2024.01.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/27/2024]
Abstract
Photocatalytic reactions using copper-based nanomaterials have emerged as a new paradigm in green technology. Selective photocatalysis is very important for improving energy utilization efficiency, and in order to directional improve catalytic selectivity, it is necessary to understand the mechanism of interfacial reactions at the molecular level. Therefore, a unique bifunctional Cu-CuBr substrate is first fabricated via an electrochemical method, which overcomes the instability of traditional copper-based materials and endows high surface-enhanced Raman spectroscopy (SERS) sensitivity and photocatalytic performance and can be stored stably for more than a year. Further modification of the surface with Metal-Organic Frameworks (MOFs) containing carboxyl functional groups can significantly tune the surface properties of the substrate. This increases the adsorption of cationic dyes to improve the SERS effect, and 10-10 M methylene blue can easily be detected with this substrate. Surprisingly, in-situ SERS monitoring of the interfacial photocatalytic dehalogenation reaction of aromatic halides through its intrinsic SERS effect reveal two competing selective reaction pathways, self-coupling and hydrogenation. Typically, the SERS spectra reveal that the latter's selectivity was greatly enhanced after MOFs modification, and the yield rate of the hydrogenated product increased from 27.6 % to 46.9 % (selectivity increased from 32.7 % to 51.5 %). This proves that the surface properties of catalysts, especially the affinity for reaction intermediates, can effectively regulate catalytic selectivity.
Collapse
Affiliation(s)
- Junjie Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Mengyuan Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Yumei Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Hao Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Yukihiro Ozaki
- School of Biological and Environmatal Sciences, Kwansei Gakuin University, 1-Gakuen-Uegahara, Sanda, Hyogo 669-1330, Japan
| | - Wei Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
11
|
Kyriakakis G, Kidonakis M, Louka A, Stratakis M. Pd Nanoparticle-Catalyzed Stereospecific Mizoroki-Heck Arylation of cis-1,2-Disilylarylethylenes. J Org Chem 2024; 89:1980-1988. [PMID: 38215468 DOI: 10.1021/acs.joc.3c01500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
In the presence of catalytic amounts of Pd nanoparticles, generated from Pd2dba3/Ag(I), cis-1,2-ditrimethylsilylarylethylenes undergo with aryl iodides a stereospecific Mizoroki-Heck arylation leading to trans-ditrimethylsilyldiarylethylenes. This chemoselectivity is in contrast to that of their trimethylgermyl analogues, which are arylated at the position of the C-Ge bonds. trans-1,2-Ditrimethylsilylarylethylenes are completely unreactive under the standard reaction conditions. The reaction tolerates the presence of boryl, silyl, or bromine substituents on the aryl iodides. From a mechanistic point of view, the process involves syn-arylpalladation followed by syn-dehydropalladation.
Collapse
Affiliation(s)
- Georgios Kyriakakis
- Department of Chemistry, University of Crete, Voutes, 71003 Heraklion, Greece
| | - Marios Kidonakis
- Department of Chemistry, University of Crete, Voutes, 71003 Heraklion, Greece
| | - Anastasia Louka
- Department of Chemistry, University of Crete, Voutes, 71003 Heraklion, Greece
| | - Manolis Stratakis
- Department of Chemistry, University of Crete, Voutes, 71003 Heraklion, Greece
| |
Collapse
|
12
|
Patil SJ, Kurouski D. Tip-enhanced Raman imaging of plasmon-driven dimerization of 4-bromothiophenol on nickel-decorated gold nanoplate bimetallic nanostructures. Chem Commun (Camb) 2023; 59:10976-10979. [PMID: 37614175 DOI: 10.1039/d3cc02670a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
We used tip-enhanced Raman spectroscopy (TERS) to examine plasmon-driven dimerization of 4-bromothiophenol (4-BTP) into thiophenol (TP) and 4,4'-biphenyldithiol (4,4'-BPDT) on Au and Ni@AuNPs. TERS revealed that cross-coupling of these molecular reactants into 4,4'-BPDT occurred primarily on Ni nano islands rather than the surrounding Au on the surface of Ni@AuNPs.
Collapse
Affiliation(s)
- Swati J Patil
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA.
| | - Dmitry Kurouski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA.
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, 77843, USA
| |
Collapse
|
13
|
Abstract
Electrocatalytic conversion of carbon dioxide to valuable chemicals and fuels driven by renewable energy plays a crucial role in achieving net-zero carbon emissions. Understanding the structure-activity relationship and the reaction mechanism is significant for tuning electrocatalyst selectivity. Therefore, characterizing catalyst dynamic evolution and reaction intermediates under reaction conditions is necessary but still challenging. We first summarize the most recent progress in mechanistic understanding of heterogeneous CO2/CO reduction using in situ/operando techniques, including surface-enhanced vibrational spectroscopies, X-ray- and electron-based techniques, and mass spectroscopy, along with discussing remaining limitations. We then offer insights and perspectives to accelerate the future development of in situ/operando techniques.
Collapse
Affiliation(s)
- Bjorn Hasa
- Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA;
| | - Yaran Zhao
- BNU-HKUST Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, China
| | - Feng Jiao
- Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA;
| |
Collapse
|
14
|
Nan L, Giráldez-Martínez J, Stefancu A, Zhu L, Liu M, Govorov AO, Besteiro LV, Cortés E. Investigating Plasmonic Catalysis Kinetics on Hot-Spot Engineered Nanoantennae. NANO LETTERS 2023; 23:2883-2889. [PMID: 37001024 DOI: 10.1021/acs.nanolett.3c00219] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Strong hot-spots can facilitate photocatalytic reactions potentially providing effective solar-to-chemical energy conversion pathways. Although it is well-known that the local electromagnetic field in plasmonic nanocavities increases as the cavity size reduces, the influence of hot-spots on photocatalytic reactions remains elusive. Herein, we explored hot-spot dependent catalytic behaviors on a highly controlled platform with varying interparticle distances. Plasmon-meditated dehalogenation of 4-iodothiophenol was employed to observe time-resolved catalytic behaviors via in situ surface-enhanced Raman spectroscopy on dimers with 5, 10, 20, and 30 nm interparticle distances. As a result, we show that by reducing the gap from 20 to 10 nm, the reaction rate can be sped up more than 2 times. Further reduction in the interparticle distance did not improve reaction rate significantly although the maximum local-field was ∼2.3-fold stronger. Our combined experimental and theoretical study provides valuable insights in designing novel plasmonic photocatalytic platforms.
Collapse
Affiliation(s)
- Lin Nan
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maxilimians-Universität München, 80539 München, Germany
| | - Jesús Giráldez-Martínez
- CINBIO, University of Vigo, Campus Universitario de Vigo, Lagoas Marcosende, 36310 Vigo, Spain
| | - Andrei Stefancu
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maxilimians-Universität München, 80539 München, Germany
| | - Li Zhu
- CINBIO, University of Vigo, Campus Universitario de Vigo, Lagoas Marcosende, 36310 Vigo, Spain
| | - Min Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics and Electronics, Central South University, 410083 Changsha, China
| | - Alexander O Govorov
- Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, United States
| | - Lucas V Besteiro
- CINBIO, University of Vigo, Campus Universitario de Vigo, Lagoas Marcosende, 36310 Vigo, Spain
| | - Emiliano Cortés
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maxilimians-Universität München, 80539 München, Germany
| |
Collapse
|
15
|
Zhou YH, Jiang CC, Yu Z, Wang YH, Zheng JF, Zhou XS. In situ Raman monitoring of electroreductive dehalogenation of aryl halides at an Ag/aqueous solution interface. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:771-777. [PMID: 36683583 DOI: 10.1039/d2ay02060b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Electroreductive dehalogenation as an efficient and green approach has attracted much attention in pollution remediation. Herein, we have employed a shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) technique to in situ probe the electroreductive dehalogenation process of aryl halides with thiol groups at Ag/aqueous solution interfaces. It is found that 4-bromothiophenol (BTP) and 4-chlorothiophenol (CTP) can turn into mixed products of 4,4'-biphenyldithiol (BPDT) and thiophenol (TP) as the electrode potential decreases. The conversion ratios estimated from the Raman intensity variations of C-Cl and C-Br vibrations are 44% and 58% for CTP and BTP in neutral solution, respectively. Furthermore, the quantitative analysis of benzene ring vibrations reveals a C-C cross coupling between the benzene free radical intermediate and adjacent TP product, which results in increased selectivity for biphenyl products at negative potentials.
Collapse
Affiliation(s)
- Ying-Hua Zhou
- Jinhua Education College, Jinhua 321000, China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| | - Chen-Chen Jiang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| | - Zhou Yu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| | - Ya-Hao Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| | - Ju-Fang Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| | - Xiao-Shun Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
16
|
Su HS, Chang X, Xu B. Surface-enhanced vibrational spectroscopies in electrocatalysis: Fundamentals, challenges, and perspectives. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64157-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Hu Y, Li Y, Yu L, Zhang Y, Lai Y, Zhang W, Xie W. Universal linker-free assembly of core-satellite hetero-superstructures. Chem Sci 2022; 13:11792-11797. [PMID: 36320924 PMCID: PMC9580622 DOI: 10.1039/d2sc02843c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/17/2022] [Indexed: 11/21/2022] Open
Abstract
Colloidal superstructures comprising hetero-building blocks often show unanticipated physical and chemical properties. Here, we present a universal assembly methodology to prepare hetero-superstructures. This straightforward methodology allows the assembly of building block materials varying from inorganic nanoparticles to living cells to form superstructures. No molecular linker is required to bind the building blocks together and thus the products do not contain any unwanted adscititious material. The Fourier transform infrared spectra, high resolution transmission electron microscopic images and nanoparticle adhesion force measurement results reveal that the key to self-organization is stripping surface ligands by adding non-polar solvents or neutralizing surface charge by adding salts, which allow us to tune the balance between van der Waals attraction and electrostatic repulsion in the colloid so as to trigger the assembling process. As a proof-of-concept, the superior photocatalytic activity and single-particle surface-enhanced Raman scattering of the corresponding superstructures are demonstrated. Our methodology greatly extends the scope of building blocks for superstructure assembly and enables scalable construction of colloidal multifunctional materials.
Collapse
Affiliation(s)
- Yanfang Hu
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Lab of Molecular Recognition & Biosensing, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University Weijin Rd. 94 Tianjin 300071 China
| | - Yonglong Li
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Lab of Molecular Recognition & Biosensing, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University Weijin Rd. 94 Tianjin 300071 China
| | - Linfeng Yu
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Lab of Molecular Recognition & Biosensing, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University Weijin Rd. 94 Tianjin 300071 China
| | - Yuying Zhang
- School of Medicine, Nankai University Weijin Rd. 94 Tianjin 300071 China
| | - Yuming Lai
- National Center for Materials Service Safety, University of Science and Technology Beijing Beijing 100083 China
| | - Wei Zhang
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Lab of Molecular Recognition & Biosensing, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University Weijin Rd. 94 Tianjin 300071 China
| | - Wei Xie
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Lab of Molecular Recognition & Biosensing, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University Weijin Rd. 94 Tianjin 300071 China
| |
Collapse
|
18
|
Jeddi N, Scott NWJ, Fairlamb IJS. Well-Defined Pd n Clusters for Cross-Coupling and Hydrogenation Catalysis: New Opportunities for Catalyst Design. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Neda Jeddi
- Department of Chemistry, University of York, Heslington, York, North Yorkshire, U.K. YO10 5DD
| | - Neil W. J. Scott
- Department of Chemistry, University of York, Heslington, York, North Yorkshire, U.K. YO10 5DD
| | - Ian J. S. Fairlamb
- Department of Chemistry, University of York, Heslington, York, North Yorkshire, U.K. YO10 5DD
| |
Collapse
|
19
|
Zhang C, Li Y, Zhu A, Yang L, Du X, Hu Y, Yang X, Zhang F, Xie W. In situ monitoring of Suzuki-Miyaura cross-coupling reaction by using surface-enhanced Raman spectroscopy on a bifunctional Au-Pd nanocoronal film. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
20
|
Schürmann R, Dutta A, Ebel K, Tapio K, Milosavljevic A, Bald I. Plasmonic reactivity of halogen thiophenols on gold nanoparticles studied by SERS and XPS. J Chem Phys 2022; 157:084708. [DOI: 10.1063/5.0098110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Localized surface plasmon resonances on noble metal nanoparticles (NPs) can efficiently drive reactions of adsorbed ligand molecules and provide versatile opportunities in chemical synthesis. The driving forces of these reactions are typically elevated temperatures, hot charge carriers or enhanced electric fields. In the present work the dehalogenation of halogenated thiophenols on the surface of AuNPs has been studied by surface enhanced Raman scattering (SERS) as a function of the photon energy to track the kinetics and identify reaction products. Reaction rates are found to be surprisingly similar for the different halothiophenols studied here, although the bond dissociation energies of the C-X bonds differ significantly. Complementary information about the electronic properties at the AuNP surface, namely work-function and valence band states, have been determined by X-ray photoelectron spectroscopy (XPS) of isolated AuNPs in the gas-phase. In this way, it is revealed how the electronic properties are altered by the adsorption of the ligand molecules, and we conclude that the reaction rates are mainly determined by the plasmonic properties of the AuNPs. SERS spectra reveal differences in the reaction product formation for the different halogen species and on this basis the possible reaction mechanisms are discussed to approach an understanding of opportunities and limitations in the design of catalytical systems with plasmonic NPs.
Collapse
Affiliation(s)
- Robin Schürmann
- Institute of Chemistry, University of Potsdam Institute of Chemistry, Germany
| | | | - Kenny Ebel
- University of Potsdam Institute of Chemistry, Germany
| | | | | | | |
Collapse
|
21
|
Zhou J, Guo J, Mebel AM, Ghimire G, Liang F, Chang S, He J. Probing the Intermediates of Catalyzed Dehydration Reactions of Primary Amide to Nitrile in Plasmonic Junctions. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jianghao Zhou
- The State Key Laboratory of Refractories and Metallurgy, School of Materials and Metallurgy, Improve-WUST Joint Laboratory of Advanced Technology for Point-of-Care Testing and Precision Medicine, Wuhan University of Science and Technology, Wuhan 430081, China
- Department of Physics, Florida International University, Miami, Florida 33199, United States
| | - Jing Guo
- Department of Physics, Florida International University, Miami, Florida 33199, United States
| | - Alexander Moiseevich Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Govinda Ghimire
- Department of Physics, Florida International University, Miami, Florida 33199, United States
| | - Feng Liang
- The State Key Laboratory of Refractories and Metallurgy, School of Materials and Metallurgy, Improve-WUST Joint Laboratory of Advanced Technology for Point-of-Care Testing and Precision Medicine, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Shuai Chang
- The State Key Laboratory of Refractories and Metallurgy, School of Materials and Metallurgy, Improve-WUST Joint Laboratory of Advanced Technology for Point-of-Care Testing and Precision Medicine, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Jin He
- Department of Physics, Florida International University, Miami, Florida 33199, United States
- Biomolecular Science Institute, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
22
|
Jiang CC, Li XC, Fan JA, Fu JY, Huang-Fu XN, Li JJ, Zheng JF, Zhou XS, Wang YH. Electrochemically activated carbon-halogen bond cleavage and C-C coupling monitored by in situ shell-isolated nanoparticle-enhanced Raman spectroscopy. Analyst 2022; 147:1341-1347. [PMID: 35244130 DOI: 10.1039/d2an00054g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The electroreductive cleavage of carbon-halogen bonds has attracted increasing attention in both electrosynthesis and pollution remediation. Herein, by employing the in situ electrochemical shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) technique, we have successfully investigated the electroreductive dehalogenation process of aryl halides with the thiol group on a smooth Au electrode in aqueous solution at different pH values. The obtained potential-dependent Raman spectra directly reveal a mixture of the reduction products 4,4'-biphenyldithiol (BPDT) and thiophenol (TP). The conversion ratios of the C-Cl and C-Br bonds at pH = 7 are 37% and 55%, respectively. Furthermore, quantitative analysis of the intensity variations of ν(C-Cl), ν(C-Br) and aromatic ν(CC) stretching modes suggests electroreductive dehalogenation via both direct electron transfer reduction and electrocatalytic hydrodehalogenation. Molecular evidence for the C-C cross coupling process through TP reaction with benzene free radical intermediates is found at negative potentials, which leads to the increasing selectivity of biphenyl products.
Collapse
Affiliation(s)
- Chen-Chen Jiang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| | - Xiao-Chong Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| | - Jian-Ang Fan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| | - Jia-Ying Fu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| | - Xu-Nan Huang-Fu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| | - Jia-Jie Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| | - Ju-Fang Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| | - Xiao-Shun Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| | - Ya-Hao Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
23
|
Ondar EE, Burykina JV, Ananikov VP. Evidence for the “cocktail” nature of platinum-catalyzed alkyne and alkene hydrosilylation reactions. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02006d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Evidence of the involvement of a “cocktail”-type catalytic system in the alkyne and alkene hydrosilylation reaction in the presence of platinum on a carbon support is reported.
Collapse
Affiliation(s)
- Evgeniia E. Ondar
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia
| | - Julia V. Burykina
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia
| | - Valentine P. Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia
| |
Collapse
|
24
|
Sala L, Sedmidubská B, Vinklárek I, Fárník M, Schürmann R, Bald I, Med J, Slavíček P, Kočišek J. Electron attachment to microhydrated 4-nitro- and 4-bromo-thiophenol. Phys Chem Chem Phys 2021; 23:18173-18181. [PMID: 34612280 DOI: 10.1039/d1cp02019f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We investigate the effect of microhydration on electron attachment to thiophenols with halogen (Br) and nitro (NO2) functional groups in the para position. We focus on the formation of anions upon the attachment of low-energy electrons with energies below 8 eV to heterogeneous clusters of the thiophenols with water. For nitro-thiophenol (NTP), the primary reaction channel observed is the associative electron attachment, irrespective of the microhydration. On the other hand, bromothiophenol (BTP) fragments significantly upon the electron attachment, producing Br- and (BTP-H)- anions. Microhydration suppresses fragmentation of both molecules, however in bromothiophenol, the Br- channel remains intense and Br(H2O)n- hydrated fragment clusters are observed. The results are supported by the reaction energetics obtained from ab initio calculations. Different dissociation dynamics of NTP and BTP can be related to different products of their plasmon induced reactions on Au nanoparticles. Computational modeling of the simplified BTP(H2O) system indicates that the electron attachment products reflect the structure of neutral precursor clusters - the anion dissociation dynamics is controlled by the hydration site.
Collapse
Affiliation(s)
- Leo Sala
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Su HS, Feng HS, Wu X, Sun JJ, Ren B. Recent advances in plasmon-enhanced Raman spectroscopy for catalytic reactions on bifunctional metallic nanostructures. NANOSCALE 2021; 13:13962-13975. [PMID: 34477677 DOI: 10.1039/d1nr04009j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Metallic nanostructures exhibit superior catalytic performance for diverse chemical reactions and the in-depth understanding of reaction mechanisms requires versatile characterization methods. Plasmon-enhanced Raman spectroscopy (PERS), including surface-enhanced Raman spectroscopy (SERS), shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS), and tip-enhanced Raman spectroscopy (TERS), appears as a powerful technique to characterize the Raman fingerprint information of surface species with high chemical sensitivity and spatial resolution. To expand the range of catalytic reactions studied by PERS, catalytically active metals are integrated with plasmonic metals to produce bifunctional metallic nanostructures. In this minireview, we discuss the recent advances in PERS techniques to probe the chemical reactions catalysed by bifunctional metallic nanostructures. First, we introduce different architectures of these dual-functionality nanostructures. We then highlight the recent works using PERS to investigate important catalytic reactions as well as the electronic and catalytic properties of these nanostructures. Finally, we provide some perspectives for future PERS studies in this field.
Collapse
Affiliation(s)
- Hai-Sheng Su
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | | | | | | | | |
Collapse
|
26
|
Li R, Zhang CC, Wang D, Hu YF, Li YL, Xie W. Reaction pathway change on plasmonic Au nanoparticles studied by surface-enhanced Raman spectroscopy. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.02.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
27
|
Hu C, Hu Y, Fan C, Yang L, Zhang Y, Li H, Xie W. Surface-Enhanced Raman Spectroscopic Evidence of Key Intermediate Species and Role of NiFe Dual-Catalytic Center in Water Oxidation. Angew Chem Int Ed Engl 2021; 60:19774-19778. [PMID: 34184371 DOI: 10.1002/anie.202103888] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/27/2021] [Indexed: 11/10/2022]
Abstract
NiFe-based electrocatalysts have attracted great interests due to the low price and high activity in oxygen evolution reaction (OER). However, the complex reaction mechanism of NiFe-catalyzed OER has not been fully explored yet. Detection of intermediate species can bridge the gap between OER performances and catalyst component/structure properties. Here, we performed label-free surface-enhanced Raman spectroscopic (SERS) monitoring of interfacial OER process on Ni3 FeOx nanoparticles (NPs) in alkaline medium. By using bifunctional Au@Ni3 FeOx core-satellite superstructures as Raman signal enhancer, we found direct spectroscopic evidence of intermediate O-O- species. According to the SERS results, Fe atoms are the catalytic sites for the initial OH- to O-O- oxidation. The O-O- species adsorbed across neighboring Fe and Ni sites experiences further oxidation caused by electron transfer to NiIII and eventually forms O2 product.
Collapse
Affiliation(s)
- Cejun Hu
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin, 300071, China
| | - Yanfang Hu
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin, 300071, China
| | - Chenghao Fan
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin, 300071, China
| | - Ling Yang
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin, 300071, China
| | - Yutong Zhang
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin, 300071, China
| | - Haixia Li
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin, 300071, China
| | - Wei Xie
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin, 300071, China
| |
Collapse
|
28
|
Hu C, Hu Y, Fan C, Yang L, Zhang Y, Li H, Xie W. Surface‐Enhanced Raman Spectroscopic Evidence of Key Intermediate Species and Role of NiFe Dual‐Catalytic Center in Water Oxidation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103888] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Cejun Hu
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Weijin Rd. 94 Tianjin 300071 China
| | - Yanfang Hu
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Weijin Rd. 94 Tianjin 300071 China
| | - Chenghao Fan
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Weijin Rd. 94 Tianjin 300071 China
| | - Ling Yang
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Weijin Rd. 94 Tianjin 300071 China
| | - Yutong Zhang
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Weijin Rd. 94 Tianjin 300071 China
| | - Haixia Li
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Weijin Rd. 94 Tianjin 300071 China
| | - Wei Xie
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Weijin Rd. 94 Tianjin 300071 China
| |
Collapse
|
29
|
Fu H, Bao H, Zhang H, Zhao Q, Zhou L, Zhu S, Wei Y, Li Y, Cai W. Quantitative Surface-Enhanced Raman Spectroscopy for Field Detections Based on Structurally Homogeneous Silver-Coated Silicon Nanocone Arrays. ACS OMEGA 2021; 6:18928-18938. [PMID: 34337232 PMCID: PMC8320141 DOI: 10.1021/acsomega.1c02179] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/21/2021] [Indexed: 05/28/2023]
Abstract
Practical application of surface-enhanced Raman spectroscopy (SERS) is greatly limited by the inaccurate quantitative analyses due to the measuring parameter's fluctuations induced by different operators, different Raman spectrometers, and different test sites and moments, especially during the field tests. Herein, we develop a strategy of quantitative SERS for field detection via designing structurally homogeneous and ordered Ag-coated Si nanocone arrays. Such an array is fabricated as SERS chips by depositing Ag on the template etching-induced Si nanocone array. Taking 4-aminothiophenol as the typical analyte, the influences of fluctuations in measuring parameters (such as defocusing depth and laser powers) on Raman signals are systematically studied, which significantly change SERS measurements. It has been shown that the silicon underneath the Ag coating in the chip can respond to the measuring parameters' fluctuations synchronously with and similar to the analyte adsorbed on the chip surface, and the normalization with Si Raman signals can well eliminate the big fluctuations (up to 1 or 2 orders of magnitude) in measurements, achieving highly reproducible measurements (mostly, <5% in signal fluctuations) and accurate quantitative SERS analyses. Finally, the simulated field tests demonstrate that the developed strategy enables quantitatively analyzing the highly scattered SERS measurements well with 1 order of magnitude in signal fluctuation, exhibiting good practicability. This study provides a new practical chip and reliable quantitative SERS for the field detection of real samples.
Collapse
Affiliation(s)
- Hao Fu
- Key
Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology,
Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- University
of Science and Technology of China, Hefei 230026, P. R. China
| | - Haoming Bao
- Key
Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology,
Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Hongwen Zhang
- Key
Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology,
Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Qian Zhao
- Key
Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology,
Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Le Zhou
- Key
Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology,
Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- University
of Science and Technology of China, Hefei 230026, P. R. China
| | - Shuyi Zhu
- Key
Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology,
Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- University
of Science and Technology of China, Hefei 230026, P. R. China
| | - Yi Wei
- Key
Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology,
Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- University
of Science and Technology of China, Hefei 230026, P. R. China
| | - Yue Li
- Key
Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology,
Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Weiping Cai
- Key
Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology,
Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- University
of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
30
|
Li Z, Kurouski D. Probing the plasmon-driven Suzuki-Miyaura coupling reactions with cargo-TERS towards tailored catalysis. NANOSCALE 2021; 13:11793-11799. [PMID: 34190293 DOI: 10.1039/d1nr02478g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We present a label-free approach that is based on tip-enhanced Raman spectroscopy (TERS) for a direct in situ assessment of the molecular reactivity in plasmon-driven reactions. Using this analytical approach, named cargo-TERS, we investigate the relationship between the chemical structure of aromatic halides and the catalytic probability of the Suzuki-Miyaura coupling reaction on gold-palladium bimetallic nanoplates (Au@PdNPs). We demonstrate that cargo-TERS can be used to quantify the yield of biphenyl-4,4'-dithiol (BPDT), the product of the coupling reaction. Our results also show that the halide reactivity decreases from bromo through chloro to fluorohalides. Finally, we employ this novel imaging technique to unravel the nanoscale reactivity and selectivity of Au@PdNPs. We find that the edges and corners of these nanostructures exhibit the highest catalytic reactivity, while the flat terraces of Au@PdNPs remain catalytically inactive.
Collapse
Affiliation(s)
- Zhandong Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA.
| | | |
Collapse
|
31
|
Scott NW, Ford MJ, Jeddi N, Eyles A, Simon L, Whitwood AC, Tanner T, Willans CE, Fairlamb IJS. A Dichotomy in Cross-Coupling Site Selectivity in a Dihalogenated Heteroarene: Influence of Mononuclear Pd, Pd Clusters, and Pd Nanoparticles-the Case for Exploiting Pd Catalyst Speciation. J Am Chem Soc 2021; 143:9682-9693. [PMID: 34152135 PMCID: PMC8297865 DOI: 10.1021/jacs.1c05294] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Indexed: 12/23/2022]
Abstract
Site-selective dihalogenated heteroarene cross-coupling with organometallic reagents usually occurs at the halogen proximal to the heteroatom, enabled by intrinsic relative electrophilicity, particularly in strongly polarized systems. An archetypical example is the Suzuki-Miyaura cross-coupling (SMCC) of 2,4-dibromopyridine with organoboron species, which typically exhibit C2-arylation site-selectivity using mononuclear Pd (pre)catalysts. Given that Pd speciation, particularly aggregation, is known to lead to the formation of catalytically competent multinuclear Pdn species, the influence of these species on cross-coupling site-selectivity remains largely unknown. Herein, we disclose that multinuclear Pd species, in the form of Pd3-type clusters and nanoparticles, switch arylation site-selectivity from C2 to C4, in 2,4-dibromopyridine cross-couplings with both organoboronic acids (SMCC reactions) and Grignard reagents (Kumada-type reactions). The Pd/ligand ratio and the presence of suitable stabilizing salts were found to be critically important in switching the site-selectivity. More generally, this study provides experimental evidence that aggregated Pd catalyst species not only are catalytically competent but also alter reaction outcomes through changes in product selectivity.
Collapse
Affiliation(s)
- Neil W.
J. Scott
- Department
of Chemistry, University of York, Heslington, York, North
Yorkshire YO10 5DD, United Kingdom
| | - Mark J. Ford
- Bayer
AG, Alfred-Nobel-Strasse
50, 40789 Monheim, Germany
| | - Neda Jeddi
- Department
of Chemistry, University of York, Heslington, York, North
Yorkshire YO10 5DD, United Kingdom
| | - Anthony Eyles
- Department
of Chemistry, University of York, Heslington, York, North
Yorkshire YO10 5DD, United Kingdom
| | - Lauriane Simon
- Department
of Chemistry, University of York, Heslington, York, North
Yorkshire YO10 5DD, United Kingdom
| | - Adrian C. Whitwood
- Department
of Chemistry, University of York, Heslington, York, North
Yorkshire YO10 5DD, United Kingdom
| | - Theo Tanner
- Department
of Chemistry, University of York, Heslington, York, North
Yorkshire YO10 5DD, United Kingdom
| | - Charlotte E. Willans
- School
of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United
Kingdom
| | - Ian J. S. Fairlamb
- Department
of Chemistry, University of York, Heslington, York, North
Yorkshire YO10 5DD, United Kingdom
| |
Collapse
|
32
|
Shi W, Niu Y, Li S, Zhang L, Zhang Y, Botton GA, Wan Y, Zhang B. Revealing the Structure Evolution of Heterogeneous Pd Catalyst in Suzuki Reaction via the Identical Location Transmission Electron Microscopy. ACS NANO 2021; 15:8621-8637. [PMID: 33960778 DOI: 10.1021/acsnano.1c00486] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The mechanism of palladium nanoparticles (Pd NPs)-catalyzed cross-coupling reactions has been the subject of intense debate since the recognition of catalytic active sites involving a wide array of dynamic changed Pd species. Here, through the combination of the hot filtration experiment together with the recently developed identical location transmission electron microscopy (IL-TEM) method, the delicate structure evolution of highly dispersed Pd NPs supported on oxygen-functionalized carbon nanotubes (Pd/oCNTs) as well as the kinetics properties of derived dissolved species in liquid phase were systemically investigated in the Suzuki-Miyaura reaction. The result indicates that the leached Pd components caused by the strong adsorption of reactants might have a significant contribution to the coupling products, and the degree for different substrates follows the order of iodobenzene > phenylboronic acid > bromobenzene. Meanwhile, the typical three sequential behaviors of supported Pd NPs, including dissolution, deposition, and growth, along with the increase of the conversion throughout the reaction were spatiotemporally observed by tracking the evolution of individually identifiable NPs. The performed work not only provides direct evidence for the interaction between Pd NPs surface with reactants on atomic scale but also gives a valuable reference for fundamentally understanding the mechanism of the heterogeneous Pd-catalyzed Suzuki coupling process as well as rational design of next-generation catalysts with high efficiency and reusability for synthetic applications.
Collapse
Affiliation(s)
- Wen Shi
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Yiming Niu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Shunlin Li
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Department of Chemistry, Shanghai Normal University, Shanghai 200234, China
| | - Liyun Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Ying Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Gianluigi A Botton
- Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario Canada L8S 4M1
| | - Ying Wan
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Department of Chemistry, Shanghai Normal University, Shanghai 200234, China
| | - Bingsen Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| |
Collapse
|
33
|
Cao L, Liu H, Xie W, Jiao S, Wu X, Yuan K, Zhou X, Yang M, Guan Y, Cai H, Lai Z, Chen J, Zhou H. Real-time monitoring of aristolochic acid I reduction process using surface-enhanced Raman Spectroscopy with DFT simulation. Biosens Bioelectron 2021; 179:113061. [DOI: 10.1016/j.bios.2021.113061] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/21/2021] [Accepted: 01/29/2021] [Indexed: 02/06/2023]
|
34
|
Lagoda NA, Larina EV, Vidyaeva EV, Kurokhtina AA, Schmidt AF. Activation of Aryl Chlorides in the Suzuki-Miyaura Reaction by “Ligand-Free” Pd Species through a Homogeneous Catalytic Mechanism: Distinguishing between Homogeneous and Heterogeneous Catalytic Mechanisms. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.0c00548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nadezhda A. Lagoda
- Department of Chemistry of the Irkutsk State University, 1 K. Marx Str., 664003 Irkutsk, Russia
| | - Elizaveta V. Larina
- Department of Chemistry of the Irkutsk State University, 1 K. Marx Str., 664003 Irkutsk, Russia
| | - Elena V. Vidyaeva
- Department of Chemistry of the Irkutsk State University, 1 K. Marx Str., 664003 Irkutsk, Russia
| | - Anna A. Kurokhtina
- Department of Chemistry of the Irkutsk State University, 1 K. Marx Str., 664003 Irkutsk, Russia
| | - Alexander F. Schmidt
- Department of Chemistry of the Irkutsk State University, 1 K. Marx Str., 664003 Irkutsk, Russia
| |
Collapse
|
35
|
Ayogu JI, Onoabedje EA. Prospects and Applications of Palladium Nanoparticles in the Cross-coupling of (hetero)aryl Halides and Related Analogues. ChemistryOpen 2021; 10:430-450. [PMID: 33590728 PMCID: PMC8015734 DOI: 10.1002/open.202000309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Indexed: 12/14/2022] Open
Abstract
Discovering efficient methods for the formation of carbon-carbon bonds is a central ongoing theme in organic synthesis. Cross-coupling reactions catalysed by metal nanoparticles are attractive alternatives to the traditional use of metal counterparts due to the catalytic tunability, selectivity, recyclability and reusability of the nanoparticles. The ongoing search for sustainable processes demands that reusable and environmentally benign catalysts are used. While the advantages of nanoparticles catalysts over bulk catalysts cannot be overemphasised, the problem of sintering, agglomeration and leaching are drawbacks to their full industrial applications. Hence, efforts are being made towards advancing the efficiency of the catalytic nanoparticle systems over the years. This review presents the progress, the challenges and the prospects of palladium nanoparticle with focus on Heck, Suzuki, Hiyama and Sonogashira cross-coupling reactions involving (hetero) aryl halides and the analogues.
Collapse
Affiliation(s)
- Jude I. Ayogu
- Department of Chemistry, School of Physical and Chemical ScienceUniversity of CanterburyChristchurch8040New Zealand
- Department of Pure and Industrial ChemistryUniversity of NigeriaNsukka410001Nigeria
| | - Efeturi A. Onoabedje
- Department of Pure and Industrial ChemistryUniversity of NigeriaNsukka410001Nigeria
| |
Collapse
|
36
|
Sahoo L, Mondal S, Beena NC, Gloskovskii A, Manju U, Topwal D, Gautam UK. 3D Porous Polymeric-Foam-Supported Pd Nanocrystal as a Highly Efficient and Recyclable Catalyst for Organic Transformations. ACS APPLIED MATERIALS & INTERFACES 2021; 13:10120-10130. [PMID: 33617231 DOI: 10.1021/acsami.1c00497] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The efficient recovery of noble metal nanocrystals used in heterogeneous organic transformations has remained a significant challenge, hindering their use in industry. Herein, highly catalytic Pd nanoparticles (NPs) were first prepared having a yield of >98% by a novel hydrothermal method using PVP as the reducing cum stabilizing agent that exhibited excellent turnover frequencies of ∼38,000 h-1 for Suzuki-Miyaura cross-coupling and ∼1200 h-1 for catalytic reduction of nitroarene compounds in a benign aqueous reaction medium. The Pd NPs were more efficient for cross-coupling of aryl compounds with electron-donating substituents than with electron-donating ones. Further, to improve their recyclability, a strategy was developed to embed these Pd NPs on mechanically robust polyurethane foam (PUF) for the first time and a "dip-catalyst" (Pd-PUF) containing 3D interconnected 100-500 μm pores was constructed. The PUF was chosen as the support with an expectation to reduce the fabrication cost of the "dip-catalyst" as the production of PUF is already commercialized. Pd-PUF could be easily separated from the reaction aliquot and reused without any loss of activity because the leaching of Pd NPs was found to be negligible in the various reaction mixtures. We show that the Pd-PUF could be reused for over 50 catalytic cycles maintaining a similar activity. We further demonstrate a scale-up reaction with a single-reaction 1.5 g yield for the Suzuki-Miyaura cross-coupling reaction.
Collapse
Affiliation(s)
- Lipipuspa Sahoo
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, Mohali, SAS, Nagar, Punjab 140306, India
| | - Sanjit Mondal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, Mohali, SAS, Nagar, Punjab 140306, India
| | - Nayana Christudas Beena
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, Mohali, SAS, Nagar, Punjab 140306, India
| | - A Gloskovskii
- DESY Photon Science, Deutsches Elektronen-Synchrotron, 22603 Hamburg, Germany
| | - Unnikrishnan Manju
- CSIR -Institute of Minerals and Materials Technology, Bhubaneswar 751013, India
| | - D Topwal
- Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005, India
- Training School Complex, Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| | - Ujjal K Gautam
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, Mohali, SAS, Nagar, Punjab 140306, India
| |
Collapse
|
37
|
Rayadurgam J, Sana S, Sasikumar M, Gu Q. Palladium catalyzed C–C and C–N bond forming reactions: an update on the synthesis of pharmaceuticals from 2015–2020. Org Chem Front 2021. [DOI: 10.1039/d0qo01146k] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Some of the most prominent and promising catalysts in organic synthesis for the requisite construction of C–C and C–N bonds are palladium (Pd) catalysts, which play a pivotal role in pharmaceutical and medicinal chemistry.
Collapse
Affiliation(s)
- Jayachandra Rayadurgam
- Research Center for Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-Sen University
- Guangzhou 510006
- People's Republic of China
| | - Sravani Sana
- Alder Research Chemicals Private Limited
- CSIR-IICT
- Hyderabad
- India
| | - M. Sasikumar
- Department of Chemistry
- Indian Institute of Science Education and Research
- Tirupati
- India
| | - Qiong Gu
- Research Center for Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-Sen University
- Guangzhou 510006
- People's Republic of China
| |
Collapse
|
38
|
Heo J, Ahn H, Won J, Son JG, Shon HK, Lee TG, Han SW, Baik MH. Electro-inductive effect: Electrodes as functional groups with tunable electronic properties. Science 2020; 370:214-219. [DOI: 10.1126/science.abb6375] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 08/21/2020] [Indexed: 01/29/2023]
Abstract
In place of functional groups that impose different inductive effects, we immobilize molecules carrying thiol groups on a gold electrode. By applying different voltages, the properties of the immobilized molecules can be tuned. The base-catalyzed saponification of benzoic esters is fully inhibited by applying a mildly negative voltage of –0.25 volt versus open circuit potential. Furthermore, the rate of a Suzuki-Miyaura cross-coupling reaction can be changed by applying a voltage when the arylhalide substrate is immobilized on a gold electrode. Finally, a two-step carboxylic acid amidation is shown to benefit from a switch in applied voltage between addition of a carbodiimide coupling reagent and introduction of the amine.
Collapse
Affiliation(s)
- Joon Heo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Hojin Ahn
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Joonghee Won
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Jin Gyeong Son
- Center for Nano-Bio Measurement, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Republic of Korea
| | - Hyun Kyong Shon
- Center for Nano-Bio Measurement, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Republic of Korea
| | - Tae Geol Lee
- Center for Nano-Bio Measurement, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Republic of Korea
| | - Sang Woo Han
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Mu-Hyun Baik
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
39
|
Zhang K, Yang L, Hu Y, Fan C, Zhao Y, Bai L, Li Y, Shi F, Liu J, Xie W. Synthesis of a Gold-Metal Oxide Core-Satellite Nanostructure for In Situ SERS Study of CuO-Catalyzed Photooxidation. Angew Chem Int Ed Engl 2020; 59:18003-18009. [PMID: 32602629 DOI: 10.1002/anie.202007462] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/28/2020] [Indexed: 11/09/2022]
Abstract
This work reports on an assembling-calcining method for preparing gold-metal oxide core-satellite nanostructures, which enable surface-enhanced Raman spectroscopic detection of chemical reactions on metal oxide nanoparticles. By using the nanostructure, we study the photooxidation of Si-H catalyzed by CuO nanoparticles. As evidenced by the in situ spectroscopic results, oxygen vacancies of CuO are found to be very active sites for oxygen activation, and hydroxide radicals (*OH) adsorbed at the catalytic sites are likely to be the reactive intermediates that trigger the conversion from silanes into the corresponding silanols. According to our finding, oxygen vacancy-rich CuO catalysts are confirmed to be of both high activity and selectivity in photooxidation of various silanes.
Collapse
Affiliation(s)
- Kaifu Zhang
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin, 300071, China
| | - Ling Yang
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin, 300071, China
| | - Yanfang Hu
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin, 300071, China
| | - Chenghao Fan
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin, 300071, China
| | - Yaran Zhao
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin, 300071, China
| | - Lu Bai
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin, 300071, China
| | - Yonglong Li
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin, 300071, China
| | - Faxing Shi
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin, 300071, China
| | - Jun Liu
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin, 300071, China
| | - Wei Xie
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin, 300071, China
| |
Collapse
|
40
|
Luo C, Yang J, Li J, He S, Meng B, Shao T, Zhang Q, Zhang D, Zhou X. Green synthesis of Au@N-CQDs@Pd core-shell nanoparticles for enhanced methanol electrooxidation. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114423] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
41
|
Zhang K, Yang L, Hu Y, Fan C, Zhao Y, Bai L, Li Y, Shi F, Liu J, Xie W. Synthesis of a Gold–Metal Oxide Core–Satellite Nanostructure for In Situ SERS Study of CuO‐Catalyzed Photooxidation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007462] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Kaifu Zhang
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Weijin Rd. 94 Tianjin 300071 China
| | - Ling Yang
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Weijin Rd. 94 Tianjin 300071 China
| | - Yanfang Hu
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Weijin Rd. 94 Tianjin 300071 China
| | - Chenghao Fan
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Weijin Rd. 94 Tianjin 300071 China
| | - Yaran Zhao
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Weijin Rd. 94 Tianjin 300071 China
| | - Lu Bai
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Weijin Rd. 94 Tianjin 300071 China
| | - Yonglong Li
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Weijin Rd. 94 Tianjin 300071 China
| | - Faxing Shi
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Weijin Rd. 94 Tianjin 300071 China
| | - Jun Liu
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Weijin Rd. 94 Tianjin 300071 China
| | - Wei Xie
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Weijin Rd. 94 Tianjin 300071 China
| |
Collapse
|
42
|
Bulatov E, Lahtinen E, Kivijärvi L, Hey‐Hawkins E, Haukka M. 3D Printed Palladium Catalyst for Suzuki‐Miyaura Cross‐coupling Reactions. ChemCatChem 2020. [DOI: 10.1002/cctc.202000806] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Evgeny Bulatov
- Department of Chemistry University of Jyväskylä P.O. Box 35 40014 Jyväskylä Finland
- Department of Chemistry University of Helsinki A.I. Virtasen aukio 1, P.O. Box 55 00014 Helsinki Finland
| | - Elmeri Lahtinen
- Department of Chemistry University of Jyväskylä P.O. Box 35 40014 Jyväskylä Finland
| | - Lauri Kivijärvi
- Department of Chemistry University of Jyväskylä P.O. Box 35 40014 Jyväskylä Finland
| | - Evamarie Hey‐Hawkins
- Faculty of Chemistry and Mineralogy Institute of Inorganic Chemistry Leipzig University Johannisallee 29 04103 Leipzig Germany
| | - Matti Haukka
- Department of Chemistry University of Jyväskylä P.O. Box 35 40014 Jyväskylä Finland
| |
Collapse
|
43
|
Bao G, Fan X, Xu T, Li C, Bai J. Preparing Pd catalysts based on urea ligand via electrospinning for Suzuki–Miyaura cross‐coupling reactions. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Guangyang Bao
- Chemical Engineering College Inner Mongolia University of Technology Huhhot 010051 People's Republic of China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200241 People's Republic of China
| | - Xiaoye Fan
- Chemical Engineering College Inner Mongolia University of Technology Huhhot 010051 People's Republic of China
| | - Tong Xu
- Chemical Engineering College Inner Mongolia University of Technology Huhhot 010051 People's Republic of China
- Inner Mongolia Key Laboratory of Industrial Catalysis Hohhot 010051 People's Republic of China
| | - Chunping Li
- Chemical Engineering College Inner Mongolia University of Technology Huhhot 010051 People's Republic of China
- Inner Mongolia Key Laboratory of Industrial Catalysis Hohhot 010051 People's Republic of China
| | - Jie Bai
- Chemical Engineering College Inner Mongolia University of Technology Huhhot 010051 People's Republic of China
- Inner Mongolia Key Laboratory of Industrial Catalysis Hohhot 010051 People's Republic of China
| |
Collapse
|
44
|
Sun B, Ning L, Zeng HC. Confirmation of Suzuki–Miyaura Cross-Coupling Reaction Mechanism through Synthetic Architecture of Nanocatalysts. J Am Chem Soc 2020; 142:13823-13832. [DOI: 10.1021/jacs.0c04804] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Bo Sun
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
| | - Lulu Ning
- College of Bioresource Chemical and Materials Engineering, Shaanxi University of Science and Technology, Shaanxi 710021, China
| | - Hua Chun Zeng
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
| |
Collapse
|
45
|
Zhao Y, Chang X, Malkani AS, Yang X, Thompson L, Jiao F, Xu B. Speciation of Cu Surfaces During the Electrochemical CO Reduction Reaction. J Am Chem Soc 2020; 142:9735-9743. [PMID: 32338904 DOI: 10.1021/jacs.0c02354] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cu-catalyzed selective electrocatalytic upgrading of carbon dioxide/monoxide to valuable multicarbon oxygenates and hydrocarbons is an attractive strategy for combating climate change. Despite recent research on Cu-based catalysts for the CO2 and CO reduction reactions, surface speciation of the various types of Cu surfaces under reaction conditions remains a topic of discussion. Herein, in situ surface-enhanced Raman spectroscopy (SERS) is employed to investigate the speciation of four commonly used Cu surfaces, i.e., Cu foil, Cu micro/nanoparticles, electrochemically deposited Cu film, and oxide-derived Cu, at potentials relevant to the CO reduction reaction in an alkaline electrolyte. Multiple oxide and hydroxide species exist on all Cu surfaces at negative potentials, however, the speciation on the Cu foil is distinct from that on micro/nanostructured Cu. The surface speciation is demonstrated to correlate with the initial degree of oxidation of the Cu surface prior to the exposure to negative potentials. Combining reactivity and spectroscopic results on these four types of Cu surfaces, we conclude that the oxygen containing surface species identified by Raman spectroscopy are unlikely to be active in facilitating the formation of C2+ oxygenates in the CO reduction reaction.
Collapse
Affiliation(s)
- Yaran Zhao
- Center for Catalytic Science and Technology, Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Xiaoxia Chang
- Center for Catalytic Science and Technology, Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Arnav S Malkani
- Center for Catalytic Science and Technology, Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Xuan Yang
- Center for Catalytic Science and Technology, Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Levi Thompson
- Center for Catalytic Science and Technology, Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Feng Jiao
- Center for Catalytic Science and Technology, Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Bingjun Xu
- Center for Catalytic Science and Technology, Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
46
|
Eseola AO, Görls H, Orighomisan Woods JA, Plass W. Single monodentate N-donor ligands versus multi-ligand analogues in Pd(II)-catalysed C–C coupling at reduced temperatures. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
47
|
Hartman T, Geitenbeek RG, Wondergem CS, van der Stam W, Weckhuysen BM. Operando Nanoscale Sensors in Catalysis: All Eyes on Catalyst Particles. ACS NANO 2020; 14:3725-3735. [PMID: 32307982 PMCID: PMC7199205 DOI: 10.1021/acsnano.9b09834] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
An era of circularity requires robust and flexible catalysts and reactors. We need profound knowledge of catalytic surface reactions on the local scale (i.e., angstrom-nanometer), whereas the reaction conditions, such as reaction temperature and pressure, are set and controlled on the macroscale (i.e., millimeter-meter). Nanosensors operating on all relevant length scales can supply this information in real time during operando working conditions. In this Perspective, we demonstrate the potential of nanoscale sensors, with special emphasis on local molecular sensing with shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) and local temperature sensing with luminescence thermometry, to acquire new insights of the reaction pathways. We also argue that further developments should be focused on local pressure measurements and on expanding the applications of these local sensors in other areas, such as liquid-phase catalysis, electrocatalysis, and photocatalysis. Ideally, a combination of sensors will be applied to monitor catalyst and reactor "health" and serve as feedback to the reactor conditions.
Collapse
Affiliation(s)
- Thomas Hartman
- Inorganic Chemistry and Catalysis,
Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Robin G. Geitenbeek
- Inorganic Chemistry and Catalysis,
Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Caterina S. Wondergem
- Inorganic Chemistry and Catalysis,
Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Ward van der Stam
- Inorganic Chemistry and Catalysis,
Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Bert M. Weckhuysen
- Inorganic Chemistry and Catalysis,
Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
48
|
Fairlamb IJS, Scott NWJ. Pd Nanoparticles in C–H Activation and Cross-coupling Catalysis. TOP ORGANOMETAL CHEM 2020. [DOI: 10.1007/3418_2020_41] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
49
|
Shin T, Kim M, Jung Y, Cho SJ, Kim H, Song H. Characterization of heterogeneous aryl–Pd(ii)–oxo clusters as active species for C–H arylation. Chem Commun (Camb) 2020; 56:14404-14407. [DOI: 10.1039/d0cc06716d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The surface oxidation of Pd nanoparticles with [Ph2I]BF4 resulted in the generation of Pd(ii)–aryl–oxo clusters, which led to C–H arylation in high yields and regioselectivity.
Collapse
Affiliation(s)
- Taeil Shin
- Department of Chemistry
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
| | - Minjun Kim
- Department of Chemistry
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
| | - Younjae Jung
- Department of Chemistry
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
| | - Sung June Cho
- Department of Chemical Engineering
- Chonnam National University
- Gwangju 61186
- Republic of Korea
| | - Hyunwoo Kim
- Department of Chemistry
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
| | - Hyunjoon Song
- Department of Chemistry
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
| |
Collapse
|
50
|
Chen T, Fang Q, Zhou L, Xu Z, Qiu J, Wang M, Wang J. Comparative study of cross-linked and linear thermo-responsive carriers supported palladium nanoparticles in the reduction of 4-nitrophenol: Structure, catalytic activity and responsive catalysis property. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2019.06.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|