1
|
Wang J, Sun M, Xu H, Hao F, Wa Q, Su J, Zhou J, Wang Y, Yu J, Zhang P, Ye R, Chu S, Huang B, Shao M, Fan Z. Coordination Environment Engineering of Metal Centers in Coordination Polymers for Selective Carbon Dioxide Electroreduction toward Multicarbon Products. ACS NANO 2024; 18:7192-7203. [PMID: 38385434 DOI: 10.1021/acsnano.3c12389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Electrocatalytic carbon dioxide reduction reaction (CO2RR) toward value-added chemicals/fuels has offered a sustainable strategy to achieve a carbon-neutral energy cycle. However, it remains a great challenge to controllably and precisely regulate the coordination environment of active sites in catalysts for efficient generation of targeted products, especially the multicarbon (C2+) products. Herein we report the coordination environment engineering of metal centers in coordination polymers for efficient electroreduction of CO2 to C2+ products under neutral conditions. Significantly, the Cu coordination polymer with Cu-N2S2 coordination configuration (Cu-N-S) demonstrates superior Faradaic efficiencies of 61.2% and 82.2% for ethylene and C2+ products, respectively, compared to the selective formic acid generation on an analogous polymer with the Cu-I2S2 coordination mode (Cu-I-S). In situ studies reveal the balanced formation of atop and bridge *CO intermediates on Cu-N-S, promoting C-C coupling for C2+ production. Theoretical calculations suggest that coordination environment engineering can induce electronic modulations in Cu active sites, where the d-band center of Cu is upshifted in Cu-N-S with stronger selectivity to the C2+ products. Consequently, Cu-N-S displays a stronger reaction trend toward the generation of C2+ products, while Cu-I-S favors the formation of formic acid due to the suppression of C-C couplings for C2+ pathways with large energy barriers.
Collapse
Affiliation(s)
- Juan Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Mingzi Sun
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
| | - Hongming Xu
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Fengkun Hao
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Qingbo Wa
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Jianjun Su
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Jingwen Zhou
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong 999077, China
| | - Yunhao Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Jinli Yu
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Penghui Zhang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ruquan Ye
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Shengqi Chu
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
| | - Minhua Shao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong 999077, China
- City University of Hong Kong, Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
2
|
Shao Y, Yuan Q, Zhou J. Single-Atom Catalysts and Dual-Atom Catalysts for CO 2 Electroreduction: Competition or Cooperation? SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303446. [PMID: 37267928 DOI: 10.1002/smll.202303446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/22/2023] [Indexed: 06/04/2023]
Abstract
Developing highly active and selective electrocatalysts for electrochemical reduction of CO2 can reduce environmental pollution and mitigation of greenhouse gas emission. Owing to maximal atomic utilization, the atomically dispersed catalysts are broadly adopted in CO2 reduction reaction (CO2 RR). Dual-atom catalysts (DACs), with more flexible active sites, distinct electronic structures, and synergetic interatomic interactions compared to single-atom catalysts (SACs), may have great potential to enhance catalytic performance. Nevertheless, most of the existing electrocatalysts have low activity and selectivity due to their high energy barrier. Herein, 15 electrocatalysts are explored with noble metallic (Cu, Ag, and Au) active sites embedded in metal-organic hybrids (MOHs) for high-performance CO2 RR and studied the relationship between SACs and DACs by first-principles calculation. The results indicated that the DACs have excellent electrocatalytic performance, and the moderate interaction between the single- and dual-atomic center can improve catalytic activity in CO2 RR. Four among the 15 catalysts, including (CuAu), (CuCu), Cu(CuCu), and Cu(CuAu) MOHs inherited a capability of suppressing the competitive hydrogen evolution reaction with favorable CO overpotential. This work not only reveals outstanding candidates for MOHs-based dual-atom CO2 RR electrocatalysts but also provides new theoretical insights into rationally designing 2D metallic electrocatalysts.
Collapse
Affiliation(s)
- Yueyue Shao
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology, Shenzhen, 518055, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Qunhui Yuan
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Jia Zhou
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology, Shenzhen, 518055, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
3
|
Hutchison P, Kaminsky CJ, Surendranath Y, Hammes-Schiffer S. Concerted Proton-Coupled Electron Transfer to a Graphite Adsorbed Metalloporphyrin Occurs by Band to Bond Electron Redistribution. ACS CENTRAL SCIENCE 2023; 9:927-936. [PMID: 37252356 PMCID: PMC10214502 DOI: 10.1021/acscentsci.3c00186] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Indexed: 05/31/2023]
Abstract
Surface immobilized catalysts are highly promising candidates for a range of energy conversion reactions, and atomistic mechanistic understanding is essential for their rational design. Cobalt tetraphenylporphyrin (CoTPP) nonspecifically adsorbed on a graphitic surface has been shown to undergo concerted proton-coupled electron transfer (PCET) in aqueous solution. Herein, density functional theory calculations on both cluster and periodic models representing π-stacked interactions or axial ligation to a surface oxygenate are performed. As the electrode surface is charged due to applied potential, the adsorbed molecule experiences the electrical polarization of the interface and nearly the same electrostatic potential as the electrode, regardless of the adsorption mode. PCET occurs by electron abstraction from the surface to the CoTPP concerted with protonation to form a cobalt hydride, thereby circumventing Co(II/I) redox. Specifically, the Co(II) d-state localized orbital interacts with a proton from solution and an electron from the delocalized graphitic band states to produce a Co(III)-H bonding orbital below the Fermi level, corresponding to redistribution of electrons from the band states to the bonding states. These insights have broad implications for electrocatalysis by chemically modified electrodes and surface immobilized catalysts.
Collapse
Affiliation(s)
- Phillips Hutchison
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Corey J. Kaminsky
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Yogesh Surendranath
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | | |
Collapse
|
4
|
Aldossary A, Gimferrer M, Mao Y, Hao H, Das AK, Salvador P, Head-Gordon T, Head-Gordon M. Force Decomposition Analysis: A Method to Decompose Intermolecular Forces into Physically Relevant Component Contributions. J Phys Chem A 2023; 127:1760-1774. [PMID: 36753558 DOI: 10.1021/acs.jpca.2c08061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Computational quantum chemistry can be more than just numerical experiments when methods are specifically adapted to investigate chemical concepts. One important example is the development of energy decomposition analysis (EDA) to reveal the physical driving forces behind intermolecular interactions. In EDA, typically the interaction energy from a good-quality density functional theory (DFT) calculation is decomposed into multiple additive components that unveil permanent and induced electrostatics, Pauli repulsion, dispersion, and charge-transfer contributions to noncovalent interactions. Herein, we formulate, implement, and investigate decomposing the forces associated with intermolecular interactions into the same components. The resulting force decomposition analysis (FDA) is potentially useful as a complement to the EDA to understand chemistry, while also providing far more information than an EDA for data analysis purposes such as training physics-based force fields. We apply the FDA based on absolutely localized molecular orbitals (ALMOs) to analyze interactions of water with sodium and chloride ions as well as in the water dimer. We also analyze the forces responsible for geometric changes in carbon dioxide upon adsorption onto (and activation by) gold and silver anions. We also investigate how the force components of an EDA-based force field for water clusters, namely MB-UCB, compare to those from force decomposition analysis.
Collapse
Affiliation(s)
- Abdulrahman Aldossary
- Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley California 94720, United States
| | - Martí Gimferrer
- Institut de Química Computacional i Catàlsi and Departament de Química, Universitat de Girona, 17003 Girona, Catalonia Spain
| | - Yuezhi Mao
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182, United States
| | - Hongxia Hao
- Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley California 94720, United States
| | - Akshaya K Das
- Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley California 94720, United States
| | - Pedro Salvador
- Institut de Química Computacional i Catàlsi and Departament de Química, Universitat de Girona, 17003 Girona, Catalonia Spain
| | - Teresa Head-Gordon
- Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley California 94720, United States
| | - Martin Head-Gordon
- Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley California 94720, United States
| |
Collapse
|
5
|
Li WJ, Lou ZX, Zhao JY, Liu PF, Yuan HY, Yang HG. Positive Valent Metal Sites in Electrochemical CO 2 Reduction Reaction. Chemphyschem 2023; 24:e202200657. [PMID: 36646629 DOI: 10.1002/cphc.202200657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/08/2022] [Indexed: 01/18/2023]
Abstract
The discovery of high-performance catalysts for the electrochemical CO2 reduction reaction (CO2 RR) has faced an enormous challenge for years. The lack of cognition about the surface active structures or centers of catalysts in complex conditions limits the development of advanced catalysts for CO2 RR. Recently, the positive valent metal sites (PVMS) are demonstrated as a kind of potential active sites, which can facilitate carbon dioxide (CO2 ) activation and conversation but are always unstable under reduction potentials. Many advanced technologies in theory and experiment have been utilized to understand and develop excellent catalysts with PVMS for CO2 RR. Here, we present an introduction of some typical catalysts with PVMS in CO2 RR and give some understanding of the activity and stability for these related catalysts.
Collapse
Affiliation(s)
- Wen Jing Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Zhen Xin Lou
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jia Yue Zhao
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Peng Fei Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Hai Yang Yuan
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Hua Gui Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
6
|
Lambie S, Low JL, Gaston N, Paulus B. Catalytic Potential of Post-Transition Metal Doped Graphene-Based Single-Atom Catalysts for the CO 2 Electroreduction Reaction. Chemphyschem 2022; 23:e202200024. [PMID: 35224844 PMCID: PMC9315035 DOI: 10.1002/cphc.202200024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/23/2022] [Indexed: 11/16/2022]
Abstract
Catalysts are required to ensure electrochemical reduction of CO2 to fuels proceeds at industrially acceptable rates and yields. As such, highly active and selective catalysts must be developed. Herein, a density functional theory study of p-block element and noble metal doped graphene-based single-atom catalysts in two defect sites for the electrochemical reduction of CO2 to CO and HCOOH is systematically undertaken. It is found that on all of the systems considered, the thermodynamic product is HCOOH. Pb/C3 , Pb/N4 and Sn/C3 are identified as having the lowest overpotential for HCOOH production while Al/C3 , Al/N4 , Au/C3 and Ga/C3 are identified as having the potential to form higher order products due to the strength of binding of adsorbed HCOOH.
Collapse
Affiliation(s)
- Stephanie Lambie
- MacDiarmid Institute for Advanced Materials and NanotechnologyDepartment of PhysicsUniversity of AucklandPrivate Bag92019AucklandNew Zealand
- Institut für Chemie und BiochemieFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Jian Liang Low
- Institut für Chemie und BiochemieFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Nicola Gaston
- MacDiarmid Institute for Advanced Materials and NanotechnologyDepartment of PhysicsUniversity of AucklandPrivate Bag92019AucklandNew Zealand
| | - Beate Paulus
- Institut für Chemie und BiochemieFreie Universität BerlinArnimallee 2214195BerlinGermany
| |
Collapse
|
7
|
Zhang Y, Mo Y, Cao Z. Rational Design of Main Group Metal-Embedded Nitrogen-Doped Carbon Materials as Frustrated Lewis Pair Catalysts for CO 2 Hydrogenation to Formic Acid. ACS APPLIED MATERIALS & INTERFACES 2022; 14:1002-1014. [PMID: 34935336 DOI: 10.1021/acsami.1c20230] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Developing efficient and inexpensive main group catalysts for CO2 conversion and utilization has attracted increasing attention, as the conversion process would be both economical and environmentally benign. Here, based on the main group element Al, we designed several heterogeneous frustrated Lewis acid/base pair (FLP) catalysts and performed extensive first-principles calculations for the hydrogenation of CO2. These catalysts, including Al@N-Gr-1, Al@N-Gr-2, and Al@C2N, are composed of a single Al atom and two-dimensional (2D) N-doped carbon-based materials to form frustrated Al/C or Al/N Lewis acid/base pairs, which are all predicted to have high reactivity to absorb and activate hydrogen (H2). Compared with Al@N-Gr-1, both Al@N-Gr-2 and Al@C2N, especially Al@N-Gr-2, containing Al/N Lewis pairs exhibit better catalytic activity for CO2 hydrogenation with lower activation energies. CO2 hydrogenation on the three catalysts prefers to go through a three-step mechanism, i.e., the heterolytic dissociation of H2, followed by the transfer of the hydride near Al to CO2, and finally the activation of a second H2 molecule. Other IIIA group element (B and Ga)-embedded N-Gr-2 materials (B@N-Gr-2 and Ga@N-Gr-2) were also explored and compared. Both Al@N-Gr-2 and Ga@N-Gr-2 show higher catalytic activity for CO2 hydrogenation to HCOOH than B@N-Gr-2. However, the CO2 hydrogenation path on Ga@N-Gr-2 tends to follow a two-step mechanism, including H2 dissociation and subsequent hydrogen transfer. The present study provides a potential solution for CO2 hydrogenation by designing novel and effective FLP catalysts based on main group elements.
Collapse
Affiliation(s)
- Yue Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemistry Engineering, Xiamen University, Xiamen 361005, China
| | - Yirong Mo
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
| | - Zexing Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemistry Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
8
|
Lambie S, Steenbergen KG, Gaston N, Paulus B. Clustering of metal dopants in defect sites of graphene-based materials. Phys Chem Chem Phys 2021; 24:98-111. [PMID: 34889923 DOI: 10.1039/d1cp05008g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Single-atom catalysts are promising candidates for many industrial reactions. However, making true single-atom catalysts is an experimental dilemma, due to the difficulty of keeping dopant single atoms stable at temperature and under pressure. This difficulty can lead to clustering of the metal dopant atoms in defect sites. However, the electronic and geometric structure of sub-nanoscale clusters in single-atom defects has not yet been explored. Furthermore, recent studies have proven sub-nanoscale clusters of dopants in single-atom defect sites can be equally good or better catalysts than their single-atom counterparts. Here, a comprehensive DFT study is undertaken to determine the geometric and electronic structure effects that influence clustering of noble and p-block dopants in C3- and N4-defect sites in graphene-based systems. We find that the defect site is the primary driver in determining clustering dynamics in these systems.
Collapse
Affiliation(s)
- Stephanie Lambie
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Department of Physics, University of Auckland, Private Bag 92019, Auckland, New Zealand. .,Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany.
| | - Krista G Steenbergen
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
| | - Nicola Gaston
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Department of Physics, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | - Beate Paulus
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany.
| |
Collapse
|
9
|
Ma M, Li F, Tang Q. Coordination environment engineering on nickel single-atom catalysts for CO 2 electroreduction. NANOSCALE 2021; 13:19133-19143. [PMID: 34779473 DOI: 10.1039/d1nr05742a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Coordination engineering has recently emerged as a promising strategy to boost the activity of single atom catalysts (SACs) in electrocatalytic CO2 reduction reactions (CO2RR). Understanding the correlation between activity/selectivity and the coordination environment would enable the rational design of more advanced SACs for CO2 reduction. Herein, via density functional theory (DFT) computations, we systematically studied the effects of coordination environment regulation on the CO2RR activity of Ni SACs on C, N, or B co-doped graphene. The results reveal that the coordination environments can strongly affect the adsorption and reaction characteristics. In the C and/or N coordinated Ni-BXCYNZ (B-free, X = 0), only Ni acts as the active site. While in the B, C and/or N coordinated Ni-BXCYNZ (X ≠ 0), the B has transition-metal-like properties, where B and Ni function as dual-site active centers and concertedly tune the adsorption of CO2RR intermediates. The tunability in the adsorption modes and strengths also results in a weakened linear scaling relationship between *COOH and *CO and causes a significant activity difference. The CO2RR activity and the adsorption energy of *COOH/*CO are correlated to construct a volcano-type activity plot. Most of the B, C, and/or N-coordinated Ni-BXCYNZ (X ≠ 0) are located in the left region where *CO desorption is the most difficult step, while the C and/or N coordinated Ni-BXCYNZ (X = 0) are located in the right region where *COOH formation is the potential-determining step. Among all the possible Ni-BXCYNZ candidates, Ni-B0C3N1 and Ni-B1C1N2-N-oppo are predicted to be the most active and selective catalysts for the CO2RR. Our findings provide insightful guidance for developing highly effective CO2RR catalysts based on a codoped coordination environment.
Collapse
Affiliation(s)
- Mengbo Ma
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China.
| | - Fuhua Li
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China.
| | - Qing Tang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
10
|
Usman M, Humayun M, Garba MD, Ullah L, Zeb Z, Helal A, Suliman MH, Alfaifi BY, Iqbal N, Abdinejad M, Tahir AA, Ullah H. Electrochemical Reduction of CO 2: A Review of Cobalt Based Catalysts for Carbon Dioxide Conversion to Fuels. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2029. [PMID: 34443860 PMCID: PMC8400998 DOI: 10.3390/nano11082029] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/29/2021] [Accepted: 08/05/2021] [Indexed: 12/15/2022]
Abstract
Electrochemical CO2 reduction reaction (CO2RR) provides a promising approach to curbing harmful emissions contributing to global warming. However, several challenges hinder the commercialization of this technology, including high overpotentials, electrode instability, and low Faradic efficiencies of desirable products. Several materials have been developed to overcome these challenges. This mini-review discusses the recent performance of various cobalt (Co) electrocatalysts, including Co-single atom, Co-multi metals, Co-complexes, Co-based metal-organic frameworks (MOFs), Co-based covalent organic frameworks (COFs), Co-nitrides, and Co-oxides. These materials are reviewed with respect to their stability of facilitating CO2 conversion to valuable products, and a summary of the current literature is highlighted, along with future perspectives for the development of efficient CO2RR.
Collapse
Affiliation(s)
- Muhammad Usman
- Center of Research Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia; (A.H.); (M.H.S.); (B.Y.A.)
| | - Muhammad Humayun
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China;
| | - Mustapha D. Garba
- Department of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK;
| | - Latif Ullah
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China;
| | - Zonish Zeb
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China;
| | - Aasif Helal
- Center of Research Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia; (A.H.); (M.H.S.); (B.Y.A.)
| | - Munzir H. Suliman
- Center of Research Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia; (A.H.); (M.H.S.); (B.Y.A.)
| | - Bandar Y. Alfaifi
- Center of Research Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia; (A.H.); (M.H.S.); (B.Y.A.)
| | - Naseem Iqbal
- US-Pakistan Centre for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan;
| | - Maryam Abdinejad
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada;
| | - Asif Ali Tahir
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE, UK;
| | - Habib Ullah
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE, UK;
| |
Collapse
|
11
|
Han SG, Ma DD, Zhu QL. Atomically Structural Regulations of Carbon-Based Single-Atom Catalysts for Electrochemical CO 2 Reduction. SMALL METHODS 2021; 5:e2100102. [PMID: 34927867 DOI: 10.1002/smtd.202100102] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/04/2021] [Indexed: 06/14/2023]
Abstract
The electrochemical carbon dioxide reduction reaction (CO2 RR) converting CO2 into value-added chemicals and fuels to realize carbon recycling is a solution to the problem of renewable energy shortage and environmental pollution. Among all the catalysts, the carbon-based single-atom catalysts (SACs) with isolated metal atoms immobilized on conductive carbon substrates have shown significant potential toward CO2 RR, which intrigues researchers to explore high-performance SACs for fuel and chemical production by CO2 RR. Especially, regulating the coordination structures of the metal centers and the microenvironments of the substrates in carbon-based SACs has emerged as an effective strategy for the tailoring of their CO2 RR catalytic performance. In this review, the current in situ/operando study techniques and the fundamental parameters for CO2 RR performance are first briefly presented. Furthermore, the recent advances in synthetic strategies which regulate the atomic structures of the carbon-based SACs, including heteroatom coordination, coordination numbers, diatomic metal centers, and the microenvironments of substrates are summarized. In particular, the structure-performance relationship of the SACs toward CO2 RR is highlighted. Finally, the inevitable challenges for SACs are outlined and further research directions toward CO2 RR are presented from the perspectives.
Collapse
Affiliation(s)
- Shu-Guo Han
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dong-Dong Ma
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Qi-Long Zhu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, China
| |
Collapse
|
12
|
Guo C, Zhang T, Lu X, Wu CML. Rational Design and Effective Control of Gold-Based Bimetallic Electrocatalyst for Boosting CO 2 Reduction Reaction: A First-Principles Study. CHEMSUSCHEM 2021; 14:2731-2739. [PMID: 33931946 DOI: 10.1002/cssc.202100785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Indexed: 06/12/2023]
Abstract
Electrochemical CO2 reduction reaction (CO2 RR) is an effective strategy converting CO2 to value-added products. Au is regarded as an efficient catalyst for electrochemical reduction of CO2 to CO, and the introduction of Pd can tune CO2 RR properties due to its strong affinity to CO. Herein, Au-Pd bimetallic electrocatalysts with different metal ratio were firstly investigated on CO2 RR mechanism by using density functional theory. The Au monolayer over Pd substrate and single Pd atom on Au(111) were found to show better CO2 RR selectivity against hydrogen evolution reaction (HER). Based on this, various single-atom catalysts on Au(111) and core-shell models with top Au monolayer were designed to study their CO2 RR performance. The results indicated that Pt, Cu, and Rh substrates below Au monolayer could enhance the activity and selectivity for CO production compared to pure Au, in which the limiting potential reduced from -0.74 to -0.63, -0.69, and -0.71 V, respectively. The single Pd embedded on Au(111) could adjust the adsorption strength, which provided an effective site to receive and further reduce CO to CH3 OH and CH4 at a low limiting potential of -0.61 V, and also avoided catalyst poisoning due to the over-strengthened CO adsorption caused by high Pd proportion on the surface. In addition, the adsorption energy of COOH was observed as a better CO2 RR reactivity descriptor than the common CO adsorption when establishing scaling relationship, which could avoid the fitting error caused by intermediate physisorption of CO.
Collapse
Affiliation(s)
- Chen Guo
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| | - Tian Zhang
- School of Materials Science and Engineering, China University of Petroleum Qingdao, Shandong, P. R. China
| | - Xiaoqing Lu
- School of Materials Science and Engineering, China University of Petroleum Qingdao, Shandong, P. R. China
| | - Chi-Man Lawrence Wu
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| |
Collapse
|
13
|
Wang W, Li D, Cui T. Carbon and Oxygen Coordinating Atoms Adjust Transition Metal Single-Atom Catalysts Based On Boron Nitride Monolayers for Highly Efficient CO 2 Electroreduction. ACS APPLIED MATERIALS & INTERFACES 2021; 13:18934-18943. [PMID: 33852266 DOI: 10.1021/acsami.1c04580] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Although single-atom catalysts (SACs) with transition metal-nitrogen complexes have been studied widely, investigations that use light-element atoms to adjust the coordination environment of the central metal atoms in metal-nitrogen complexes are still rare but show enormous potential for various electrocatalytic reactions. Herein, we design novel SACs based on monolayer BN adjusted by B, C, or O coordinating atoms as catalysts for the CO2 reduction reaction (CRR). These SACs are denoted as M@BN_D (BN = monolayer boron nitride; D = B, C, or O atom; M = Co, Cr, Fe, Mn, Mo, Pd, Pt, Ru, V, W, Ni, Zn, Zr, Ag, Au, Cu, or Ti atom) and are investigated as CRR catalysts using density functional theory calculations. Among these structures, we identified some promising candidate catalysts for CRR with impressive low limiting potential (UL): Pt@BN_C with a UL of -0.18 for the product CH4 and Co@BN_C and Au@BN_O with UL of -0.41 and -0.37 V, respectively, for the product CH3OH. In particular, Pt@BN_C shows a remarkable reduction in UL for the product CH4 compared to any existing catalysts, synthesized or predicted. In addition, the ultralow UL for CRR on Pt@BN_C was derived from the unique bonding feature between the single metal atom and adsorbates and the modulation of ionic interactions induced by the coordination effect of the C atom.
Collapse
Affiliation(s)
- Wenjie Wang
- State Key Lab of Superhard Materials, College of Physics, Jilin University, Changchun 130012, P.R. China
| | - Da Li
- State Key Lab of Superhard Materials, College of Physics, Jilin University, Changchun 130012, P.R. China
| | - Tian Cui
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, P.R. China
| |
Collapse
|
14
|
Chen Z, Zhang G, Du L, Zheng Y, Sun L, Sun S. Nanostructured Cobalt-Based Electrocatalysts for CO 2 Reduction: Recent Progress, Challenges, and Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004158. [PMID: 33258230 DOI: 10.1002/smll.202004158] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/05/2020] [Indexed: 05/21/2023]
Abstract
CO2 reduction reaction (CO2 RR) provides a promising strategy for sustainable carbon fixation by converting CO2 into value-added fuels and chemicals. In recent years, considerable efforts are focused on the development of transition-metal (TM)-based catalysts for the selectively electrochemical CO2 reduction reaction (ECO2 RR). Co-based catalysts emerge as one of the most promising electrocatalysts with high Faradaic efficiency, current density, and low overpotential, exhibiting excellent catalytic performance toward ECO2 RR for CO and HCOOH productions that are economically viable. The intrinsic contribution of Co and the synergistic effects in Co-hybrid catalysts play essential roles for future commercial productions by ECO2 RR. This review summarizes the rational design of Co-based catalysts for ECO2 RR, including molecular, single-metal-site, and oxide-derived catalysts, along with the nanostructure engineering techniques to highlight the distribution of the ECO2 RR products by Co-based catalysts. The density functional theory (DFT) simulations and advanced in situ characterizations contribute to interpreting the synergies between Co and other materials for the enhanced product selectivity and catalytic activity. Challenges and outlook concerning the catalyst design and reaction mechanism, including the upgrading of reaction systems of Co-based catalysts for ECO2 RR, are also discussed.
Collapse
Affiliation(s)
- Zhangsen Chen
- Institut National de la Recherche Scientifique-Énergie Matériaux et Télécommunications, Varennes, Québec, J3 × 1S2, Canada
| | - Gaixia Zhang
- Institut National de la Recherche Scientifique-Énergie Matériaux et Télécommunications, Varennes, Québec, J3 × 1S2, Canada
| | - Lei Du
- Institut National de la Recherche Scientifique-Énergie Matériaux et Télécommunications, Varennes, Québec, J3 × 1S2, Canada
| | - Yi Zheng
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Lixian Sun
- Guangxi Collaborative Innovation Center of Structure and Property for New Energy & Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, P. R. China
| | - Shuhui Sun
- Institut National de la Recherche Scientifique-Énergie Matériaux et Télécommunications, Varennes, Québec, J3 × 1S2, Canada
| |
Collapse
|
15
|
Zhang Y, Fang L, Cao Z. Atomically dispersed Cu and Fe on N-doped carbon materials for CO 2 electroreduction: insight into the curvature effect on activity and selectivity. RSC Adv 2020; 10:43075-43084. [PMID: 35514934 PMCID: PMC9058126 DOI: 10.1039/d0ra08857a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 11/22/2020] [Indexed: 02/02/2023] Open
Abstract
CO2 electroreduction reaction (CO2ER) by single metal sites embedded in N-doped graphene (M@N-Gr, M = Cu and Fe) and carbon nanotubes (M@N-CNT, M = Cu and Fe) has been explored by extensive first-principles calculations in combination with the computational hydrogen electrode model. Both atomically dispersed Cu and Fe nanostructures, as the single atom catalysts (SACs), have higher selectivity towards CO2ER, compared to hydrogen evolution reduction (HER), and they can catalyze CO2ER to CO, HCOOH, and CH3OH. In comparison with Cu@N-Gr, the limiting potentials for generating CO, HCOOH, and CH3OH are reduced obviously on the high-curvature Cu@N-CNT. However, the curvature effect is less notable for the single-Fe-atom catalysts. Such discrepancies can be attributed to the d-band center changes of the single Cu and Fe sites and their different dependences on the curvature of carbon-based support materials. Atomically dispersed Cu/Fe catalysts have high selectivity toward CO2ER and the curvature of the catalyst support influences their activity.![]()
Collapse
Affiliation(s)
- Yue Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 360015 China
| | - Lei Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 360015 China
| | - Zexing Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 360015 China
| |
Collapse
|
16
|
Zhuo HY, Zhang X, Liang JX, Yu Q, Xiao H, Li J. Theoretical Understandings of Graphene-based Metal Single-Atom Catalysts: Stability and Catalytic Performance. Chem Rev 2020; 120:12315-12341. [PMID: 33112608 DOI: 10.1021/acs.chemrev.0c00818] [Citation(s) in RCA: 206] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Research on heterogeneous single-atom catalysts (SACs) has become an emerging frontier in catalysis science because of their advantages in high utilization of noble metals, precisely identified active sites, high selectivity, and tunable activity. Graphene, as a one-atom-thick two-dimensional carbon material with unique structural and electronic properties, has been reported to be a superb support for SACs. Herein, we provide an overview of recent progress in investigations of graphene-based SACs. Among the large number of publications, we will selectively focus on the stability of metal single-atoms (SAs) anchored on different sites of graphene support and the catalytic performances of graphene-based SACs for different chemical reactions, including thermocatalysis and electrocatalysis. We will summarize the fundamental understandings on the electronic structures and their intrinsic connection with catalytic properties of graphene-based SACs, and also provide a brief perspective on the future design of efficient SACs with graphene and graphene-like materials.
Collapse
Affiliation(s)
- Hong-Ying Zhuo
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China.,State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Beijing 102249, China
| | - Xin Zhang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Beijing 102249, China
| | - Jin-Xia Liang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Qi Yu
- School of Materials Science and Engineering, Institute of Graphene at Shaanxi Key Laboratory of Catalysis, Shaanxi University of Technology, Hanzhong 723001, China
| | - Hai Xiao
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Jun Li
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China.,Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
17
|
Li X, Liu L, Ren X, Gao J, Huang Y, Liu B. Microenvironment modulation of single-atom catalysts and their roles in electrochemical energy conversion. SCIENCE ADVANCES 2020; 6:eabb6833. [PMID: 32967833 PMCID: PMC7531890 DOI: 10.1126/sciadv.abb6833] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 08/07/2020] [Indexed: 05/20/2023]
Abstract
Single-atom catalysts (SACs) have become the most attractive frontier research field in heterogeneous catalysis. Since the atomically dispersed metal atoms are commonly stabilized by ionic/covalent interactions with neighboring atoms, the geometric and electronic structures of SACs depend greatly on their microenvironment, which, in turn, determine the performances in catalytic processes. In this review, we will focus on the recently developed strategies of SAC synthesis, with attention on the microenvironment modulation of single-atom active sites of SACs. Furthermore, experimental and computational advances in understanding such microenvironment in association to the catalytic activity and mechanisms are summarized and exemplified in the electrochemical applications, including the water electrolysis and O2/CO2/N2 reduction reactions. Last, by highlighting the prospects and challenges for microenvironment engineering of SACs, we wish to shed some light on the further development of SACs for electrochemical energy conversion.
Collapse
Affiliation(s)
- Xuning Li
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Linghui Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xinyi Ren
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jiajian Gao
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Yanqiang Huang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Bin Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore.
| |
Collapse
|
18
|
Affiliation(s)
- Bingzhang Lu
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| | - Qiming Liu
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| | - Shaowei Chen
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| |
Collapse
|
19
|
Yuan H, Li Z, Zeng XC, Yang J. Descriptor-Based Design Principle for Two-Dimensional Single-Atom Catalysts: Carbon Dioxide Electroreduction. J Phys Chem Lett 2020; 11:3481-3487. [PMID: 32298119 DOI: 10.1021/acs.jpclett.0c00676] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Single-atom catalysis has recently emerged as a promising approach for catalyzing the carbon dioxide reduction reaction (CO2RR). In this study, we present a principle for designing active single-atom catalysts (SACs) for CO2RR. We systematically examine totally 24 transition metals supported by a graphitic carbon nitride (g-CN) monolayer and find that their catalytic activities are highly correlated with the adsorption free energies of two intermediate species (OH and OCH). We then identify two important intrinsic descriptors, namely, the number of electrons in the outmost d-shell and the enthalpy of vaporization of the transition metal. Test calculations on transition metals supported by a C2N monolayer indicate that both descriptors are quite universal for SACs of CO2RR. Based on these results, we show that Ni@g-CN, Cu@g-CN, and Co@C2N are promising SACs for CO2RR. This study offers an effective principle for designing highly active SACs for CO2RR on the basis of intrinsic properties of transition metals.
Collapse
Affiliation(s)
- Hao Yuan
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Chemistry, Department of Chemical & Biomolecular Engineering, Department of Mechanical & Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Zhenyu Li
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiao Cheng Zeng
- Department of Chemistry, Department of Chemical & Biomolecular Engineering, Department of Mechanical & Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Jinlong Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
20
|
Wang ZL, Choi J, Xu M, Hao X, Zhang H, Jiang Z, Zuo M, Kim J, Zhou W, Meng X, Yu Q, Sun Z, Wei S, Ye J, Wallace GG, Officer DL, Yamauchi Y. Optimizing Electron Densities of Ni-N-C Complexes by Hybrid Coordination for Efficient Electrocatalytic CO 2 Reduction. CHEMSUSCHEM 2020; 13:929-937. [PMID: 31880398 DOI: 10.1002/cssc.201903427] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Indexed: 06/10/2023]
Abstract
Metal-N-C is a type of attractive electrocatalyst for efficient CO2 reduction to CO. Because of the ambiguity in their atomic structures, the active sites and catalytic mechanisms of the catalysts have remained under debate. Here, the effects of N and C hybrid coordination on the activity of Ni-N-C catalysts were investigated, combining theoretical and experimental methods. The theoretical calculations revealed that N and C hybrid coordination greatly enhanced the capability of single-atom Ni active sites to provide electrons to reactant molecules and strengthens the bonding of Ni to N and C in the Ni-N-C complexes. During the reaction process, the C and N coordination synergistically optimized the reaction energies in the conversion of CO2 to CO. A good agreement between theoretical calculations and electrochemical experiments was achieved based on the newly developed Ni-N-C electrocatalysts. The activity of hybrid-coordination NiN2 C2 was more than double that of single-coordination NiN4 .
Collapse
Affiliation(s)
- Zhong-Li Wang
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P.R. China
| | - Jaecheol Choi
- ARC Centre of Excellence for Electromaterials Science and the Intelligent Polymer Research Institute (IPRI), Australian Institute for Innovative Materials (AIIM), University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Mingquan Xu
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Xianfeng Hao
- Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, 066004, P.R. China
| | - Hao Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204, P.R. China
| | - Zheng Jiang
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204, P.R. China
| | - Ming Zuo
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| | - Jeonghun Kim
- School of Chemical Engineering & Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Wu Zhou
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Xianguang Meng
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Qing Yu
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Zhihu Sun
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, P.R. China
| | - Shiqiang Wei
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, P.R. China
| | - Jinhua Ye
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Gordon G Wallace
- ARC Centre of Excellence for Electromaterials Science and the Intelligent Polymer Research Institute (IPRI), Australian Institute for Innovative Materials (AIIM), University of Wollongong, Wollongong, NSW, 2522, Australia
| | - David L Officer
- ARC Centre of Excellence for Electromaterials Science and the Intelligent Polymer Research Institute (IPRI), Australian Institute for Innovative Materials (AIIM), University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Yusuke Yamauchi
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- School of Chemical Engineering & Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin-si, 446-701, South Korea
| |
Collapse
|