1
|
Ji X, Li TE. Selective Excitation of IR-Inactive Modes via Vibrational Polaritons: Insights from Atomistic Simulations. J Phys Chem Lett 2025; 16:5034-5042. [PMID: 40356572 DOI: 10.1021/acs.jpclett.5c00848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Vibrational polaritons, hybrid light-matter states formed between molecular vibrations and infrared (IR) cavity modes, provide a novel approach for modifying chemical reaction pathways and energy transfer processes. For vibrational polaritons involving condensed-phase molecules, the short polariton lifetime raises a debate over whether pumping polaritons may produce different effects on molecules compared to directly exciting the molecules in free space or under weak coupling. Here, for liquid methane under vibrational strong coupling, classical cavity molecular dynamics simulations show that pumping the upper polariton (UP) formed by the asymmetric bending mode of methane can sometimes selectively excite the IR-inactive symmetric bending mode. This finding is validated when the molecular system is described using both empirical force fields and machine-learning potentials, also in qualitative agreement with analytical theory of polariton energy transfer rates based on Fermi's golden rule calculations. Additionally, our study suggests that polariton-induced energy transfer to IR-inactive modes reaches maximal efficiency when the UP has significant contributions from both photons and molecules, underscoring the importance of light-matter hybridization. As IR-inactive vibrational modes are generally inaccessible to direct IR excitation, our study highlights the unique role of polariton formation in selectively controlling IR-inactive vibrations. Since this polariton-induced process occurs after the polariton decays, it may impact IR photochemistry on a time scale longer than the polariton lifetime, as observed in experiments.
Collapse
Affiliation(s)
- Xinwei Ji
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, United States
| | - Tao E Li
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
2
|
Chen H, Ai J, Bai X, Hou S, Forrest SR, Ogilvie JP, Song Y. Tracking relaxation dynamics of polaritons and reservoir states in organic exciton-polaritons. J Phys Chem Lett 2025:5265-5271. [PMID: 40387196 DOI: 10.1021/acs.jpclett.5c00666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Organic exciton-polaritons have garnered significant attention in optoelectronic devices and photochemistry, primarily due to their micrometer-scale diffusion lengths and tunable energy levels. Recent studies have underscored the critical role of reservoir states in the dynamical processes following polaritonic relaxation. However, questions remain regarding the peak assignments of reservoir states and their specific functions during relaxation. In this study, we employed pump-probe and two-dimensional electronic spectroscopy (2DES) coupled with model simulations to investigate photoexcited dynamics of organic exciton-polaritons. By comparing experimental data with simulations, we identified that reservoir states consist of dark states and excited-state molecules uncoupled to the cavity mode, each exhibiting distinct spectral characteristics. Analyses of the spectral evolution in 2DES reveal that reservoir states are generated through three pathways: direct photoexcitation, rapid relaxation from middle polaritons, and entropy-driven relaxation from lower polaritons. Moreover, we find that equilibrium is established between dark states and uncoupled excited-state molecules following polaritonic relaxation, regardless of the excitation wavelength. This equilibrium facilitates subsequent polaritonic regeneration. Modulating the equilibrium constant can be achieved by engineering the light-matter interaction strength, offering a strategy to control postrelaxation polaritonic dynamics. These insights advance our understanding of relaxation dynamics in organic exciton-polaritons that can benefit the design of next-generation optoelectronic devices.
Collapse
Affiliation(s)
- Haolin Chen
- MIIT Key Laboratory of Complex-Field Intelligent Exploration, School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China
| | - Jingxuan Ai
- MIIT Key Laboratory of Complex-Field Intelligent Exploration, School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiaolu Bai
- MIIT Key Laboratory of Complex-Field Intelligent Exploration, School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China
| | - Shaocong Hou
- School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei 430072, China
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Stephen R Forrest
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Material Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | - Yin Song
- MIIT Key Laboratory of Complex-Field Intelligent Exploration, School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
3
|
Csehi A, Szabó K, Vibók Á, Cederbaum LS, Halász GJ. Controlling Molecular Dynamics by Exciting Atoms in a Cavity. PHYSICAL REVIEW LETTERS 2025; 134:188001. [PMID: 40408666 DOI: 10.1103/physrevlett.134.188001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/06/2024] [Accepted: 04/04/2025] [Indexed: 05/25/2025]
Abstract
Placing an atom and a molecule in a cavity opens the door to initialize molecular dynamics by exciting a level of the atom. This approach enlarges the range of choosing the light source to trigger molecular dynamics substantially. The interplay of the atomic, molecular, and photonic populations gives rise to rich dynamics. The cavity photon plays the role of a mediator between the atom and the molecule and it is found that the photonic population is rather low throughout and its evolution follows that of the molecule. Cavities are known to be subject to losses. In spite of the losses it is demonstrated that the presence of the atom gives rise to a long-lived dynamics that should be of relevance for experimental investigations. The presence of more atoms and molecules is expected to further enrich the dynamics.
Collapse
Affiliation(s)
- András Csehi
- University of Debrecen, Department of Theoretical Physics, Faculty of Science and Technology, H-4002 Debrecen, Post Office Box 400, Hungary
| | - Krisztián Szabó
- University of Debrecen, Department of Theoretical Physics, Faculty of Science and Technology, H-4002 Debrecen, Post Office Box 400, Hungary
| | - Ágnes Vibók
- University of Debrecen, Department of Theoretical Physics, Faculty of Science and Technology, H-4002 Debrecen, Post Office Box 400, Hungary
- ELI-ALPS, ELI-HU Non-Profit Ltd., H-6720 Szeged, Dugonics tér 13, Hungary
| | - Lorenz S Cederbaum
- Heidelberg University, Theoretical Chemistry, Institute of Physical Chemistry, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
| | - Gábor J Halász
- University of Debrecen, Department of Information Technology, Faculty of Informatics, H-4002 Debrecen, Post Office Box 400, Hungary
| |
Collapse
|
4
|
Peruffo N, Liang M, Bhuyan R, Acharya V, Höög JL, Börjesson K. Role of Vibrational-Assisted Scattering and Surface-Enhanced Raman Scattering in Colloidal Plexcitonic Materials. ACS NANO 2025; 19:15627-15637. [PMID: 40237032 PMCID: PMC12044703 DOI: 10.1021/acsnano.4c17571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 04/09/2025] [Accepted: 04/09/2025] [Indexed: 04/17/2025]
Abstract
Strong coupling between excitons and an electromagnetic mode leads to the formation of polaritonic materials. These half-light half-matter states obey Bose-Einstein statistics and have therefore promised a route toward room temperature condensates and low-threshold polariton lasers. However, our understanding of how to enhance the rate of relaxation toward the lowest energy excited state must be greatly enhanced for electrically driven organic condensates and polariton lasers to be realized. Here, the mechanism of excited-state relaxation in colloidal plexcitonic materials (CPMs) is explored. CPMs are a subgroup of polaritonic materials formed when an exciton interacts strongly with a plasmonic resonance of a nanoparticle. Based on our current understanding of relaxation in polaritonic systems, which is based on experiments done using Fabry-Pérot cavities, CPMs are expected to have high relaxation rates through the vibrationally assisted scattering (VAS) mechanism. However, so far, it has been unclear whether we can transfer the knowledge gained from Fabry-Pérot cavities to plasmonic cavities. Our results indicate that not only VAS but also surface-enhanced Raman scattering (SERS) is active in CPMs and that the predominant mechanism depends on to which state excitation occurs. Therefore, caution must be exercised when interpreting the emission from plexcitonic materials and when using theories obtained from polaritonic materials prepared with Fabry-Pérot cavities on plexcitonic materials. Additionally, we found that plexcitonic materials can provide an electromagnetic enhancement of both the excitation and emission part in SERS, increasing its enhancement factor and allowing tuning of the sensitivity to specific vibrations.
Collapse
Affiliation(s)
- Nicola Peruffo
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, 413 90 Göteborg, Sweden
| | - Minpeng Liang
- Department
of Applied Physics and Science Education, Eindhoven Hendrik Casimir
Institute and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5612AE Eindhoven, The Netherlands
| | - Rahul Bhuyan
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, 413 90 Göteborg, Sweden
| | - Vajradhar Acharya
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, 413 90 Göteborg, Sweden
| | - Johanna L. Höög
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, 413 90 Göteborg, Sweden
| | - Karl Börjesson
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, 413 90 Göteborg, Sweden
| |
Collapse
|
5
|
Bocanegra Vargas AF, Li TE. Polariton-induced Purcell effects via a reduced semiclassical electrodynamics approach. J Chem Phys 2025; 162:124101. [PMID: 40125669 DOI: 10.1063/5.0251767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/28/2025] [Indexed: 03/25/2025] Open
Abstract
Recent experiments have demonstrated that polariton formation provides a novel strategy for modifying local molecular processes when a large ensemble of molecules is confined within an optical cavity. Herein, a numerical strategy based on coupled Maxwell-Schrödinger equations is examined for simulating local molecular processes in a realistic cavity structure under collective strong coupling. In this approach, only a few molecules, referred to as quantum impurities, are treated quantum mechanically, while the remaining macroscopic molecular layer and the cavity structure are modeled using dielectric functions. When a single electronic two-level system embedded in a Lorentz medium is confined in a two-dimensional Bragg resonator, our numerical simulations reveal a polariton-induced Purcell effect: the radiative decay rate of the quantum impurity is significantly enhanced by the cavity when the impurity frequency matches the polariton frequency, while the rate can sometimes be greatly suppressed when the impurity is near resonance with the bulk molecules forming strong coupling. In addition, this approach demonstrates that the cavity absorption of light exhibits Rabi-splitting-dependent suppression due to the inclusion of a realistic cavity structure. Our simulations also identify a fundamental limitation of this approach-an inaccurate description of polariton dephasing rates into dark modes. This arises because the dark-mode degrees of freedom are not explicitly included when most molecules are modeled using simple dielectric functions. As the polariton-induced Purcell effect alters molecular radiative decay differently from the Purcell effect under weak coupling, this polariton-induced effect may facilitate understanding the origin of polariton-modified photochemistry under electronic strong coupling.
Collapse
Affiliation(s)
| | - Tao E Li
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|
6
|
Hu D, Chng BXK, Ying W, Huo P. Trajectory-based non-adiabatic simulations of the polariton relaxation dynamics. J Chem Phys 2025; 162:124113. [PMID: 40145468 DOI: 10.1063/5.0246099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
We benchmark the accuracy of various trajectory-based non-adiabatic methods in simulating the polariton relaxation dynamics under the collective coupling regime. The Holstein-Tavis-Cummings Hamiltonian is used to describe the hybrid light-matter system of N molecules coupled to a single cavity mode. We apply various recently developed trajectory-based methods to simulate the population relaxation dynamics by initially exciting the upper polariton state and benchmark the results against populations computed from exact quantum dynamical propagation using the hierarchical equations of motion approach. In these benchmarks, we have systematically varied the number of molecules N, light-matter detunings, and the light-matter coupling strengths. Our results demonstrate that the symmetrical quasi-classical method with γ correction and spin-mapping linearized semi-classical approaches yield more accurate polariton population dynamics than traditional mixed quantum-classical methods, such as the Ehrenfest and surface hopping techniques.
Collapse
Affiliation(s)
- Deping Hu
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| | - Benjamin X K Chng
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| | - Wenxiang Ying
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, USA
| | - Pengfei Huo
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, USA
- The Institute of Optics, Hajim School of Engineering, University of Rochester, Rochester, New York 14627, USA
- Center for Coherence and Quantum Optics, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
7
|
Liu T, Yin G, Xiong W. Unlocking delocalization: how much coupling strength is required to overcome energy disorder in molecular polaritons? Chem Sci 2025; 16:4676-4683. [PMID: 39950062 PMCID: PMC11817099 DOI: 10.1039/d4sc07053d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 02/02/2025] [Indexed: 02/16/2025] Open
Abstract
Polaritons, quasiparticles formed from the collective strong coupling of light and matter, have been shown for their capability to modify chemical reactions, energy and charge transport - amazing features that can revolutionize the way we control molecular properties. Many of these features originate from the delocalization of polaritons, i.e., polaritons possess delocalized wavefunctions, which is one of their hallmarks. Furthermore, polariton delocalization has long been assumed to be robust against disorder that is ubiquitous in chemical systems, without being fully checked. Herein, we examined the criteria to ensure delocalization in molecular polaritons, and this study reveals that transition energy disorder destroys delocalization of polaritons. In order to mitigate the impact of disorder and restore delocalization, the collective coupling strength needs to exceed four times the standard deviation of the energy disorder linewidth. This observation indicates a more stringent criterion for preserving the unique delocalization characteristics of polaritons compared to the conventionally adopted standard (Rabi splitting larger than photonic and molecular spectral linewidths). This work sheds light on previous polariton dynamic studies performed by our group and others, explaining why the onset of Rabi splitting capable of modifying dynamics is bigger than the strong coupling criteria, and it provides an important threshold to reach polariton delocalization for chemical and material research under strong coupling.
Collapse
Affiliation(s)
- Tianlin Liu
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla CA 92093 USA
| | - Guoxin Yin
- Materials Science and Engineering Program, University of California San Diego La Jolla CA 92093 USA
| | - Wei Xiong
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla CA 92093 USA
- Materials Science and Engineering Program, University of California San Diego La Jolla CA 92093 USA
| |
Collapse
|
8
|
Sandik G, Feist J, García-Vidal FJ, Schwartz T. Cavity-enhanced energy transport in molecular systems. NATURE MATERIALS 2025; 24:344-355. [PMID: 39122930 DOI: 10.1038/s41563-024-01962-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 07/01/2024] [Indexed: 08/12/2024]
Abstract
Molecules are the building blocks of all of nature's functional components, serving as the machinery that captures, stores and releases energy or converts it into useful work. However, molecules interact with each other over extremely short distances, which hinders the spread of energy across molecular systems. Conversely, photons are inert, but they are fast and can traverse large distances very efficiently. Using optical resonators, these distinct entities can be mixed with each other, opening a path to new architectures that benefit from both the active nature of molecules and the long-range transport obtained by the coupling with light. In this Review, we present the physics underlying the enhancement of energy transfer and energy transport in molecular systems, and highlight the experimental and theoretical advances in this field over the past decade. Finally, we identify several key questions and theoretical challenges that remain to be resolved via future research.
Collapse
Affiliation(s)
- Gal Sandik
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences and Center for Light-Matter Interaction, Tel Aviv University, Tel Aviv, Israel
| | - Johannes Feist
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid, Spain.
| | - Francisco J García-Vidal
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid, Spain.
| | - Tal Schwartz
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences and Center for Light-Matter Interaction, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
9
|
Pérez-Sánchez JB, Koner A, Raghavan-Chitra S, Yuen-Zhou J. CUT-E as a 1/N expansion for multiscale molecular polariton dynamics. J Chem Phys 2025; 162:064101. [PMID: 39927531 DOI: 10.1063/5.0244452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/06/2025] [Indexed: 02/11/2025] Open
Abstract
Molecular polaritons arise when the collective coupling between an ensemble of N molecules and an optical mode exceeds individual photon and molecular linewidths. The complexity of their description stems from their multiscale nature, where the local dynamics of each molecule can, in principle, be influenced by the collective behavior of the entire ensemble. To address this, we previously introduced a formalism called collective dynamics using truncated equations (CUT-E). CUT-E approaches the problem in two stages. First, it exploits permutational symmetries to obtain a substantial simplification of the problem. However, this is often insufficient for parameter regimes relevant to most experiments. Second, it takes the exact solution of the problem in the N → ∞ limit as a reference and derives systematic finite-N corrections. Here, we provide a novel derivation of CUT-E based on recently developed bosonization techniques. We lay down its connections with 1/N expansions that are ubiquitous in other fields of physics and present previously unexplored key aspects of this formalism, including various types of approximations and extensions to high-excitation manifolds.
Collapse
Affiliation(s)
- Juan B Pérez-Sánchez
- Department of Chemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Arghadip Koner
- Department of Chemistry, University of California San Diego, La Jolla, California 92093, USA
| | | | - Joel Yuen-Zhou
- Department of Chemistry, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
10
|
Nagatsuka N, Matsuguchi R, Watanabe K, Koitaya T, Yamamoto D, Okuyama H, Yasuike T. Far-Ultraviolet Plexciton Formation in Water-Covered Indium Clusters. J Phys Chem Lett 2025; 16:1276-1281. [PMID: 39868767 DOI: 10.1021/acs.jpclett.5c00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
In this work, we study the plexciton in the far-ultraviolet region formed between indium nanoclusters and water molecules. The indium clusters are fabricated on graphene under ultrahigh vacuum conditions and show a strong localized surface plasmon polariton (LSP) absorption band at 6-7 eV. Adsorption of water molecules onto the clusters at 115 K induces a band splitting larger than 1 eV, indicating a strong coupling between the LSP and water 4a1 ← 1b1 transition. The spectral evolution as a function of the water coverage is revealed, enabling the determination of the decay length of the plexciton collective effect to be ∼8 nm.
Collapse
Affiliation(s)
- Naoki Nagatsuka
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Ryoto Matsuguchi
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Kazuya Watanabe
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Takanori Koitaya
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Daiki Yamamoto
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Hiroshi Okuyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Tomokazu Yasuike
- Department of Nature and Environment, Faculty of Liberal Arts, The Open University of Japan, Chiba 261-8586, Japan
| |
Collapse
|
11
|
Mondal ME, Vamivakas AN, Cundiff ST, Krauss TD, Huo P. Polariton spectra under the collective coupling regime. I. Efficient simulation of linear spectra and quantum dynamics. J Chem Phys 2025; 162:014114. [PMID: 39777510 DOI: 10.1063/5.0243535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
We outline two general theoretical techniques to simulate polariton quantum dynamics and optical spectra under the collective coupling regimes described by a Holstein-Tavis-Cummings (HTC) model Hamiltonian. The first one takes advantage of sparsity of the HTC Hamiltonian, which allows one to reduce the cost of acting polariton Hamiltonian onto a state vector to the linear order of the number of states, instead of the quadratic order. The second one is applying the well-known Chebyshev series expansion approach for quantum dynamics propagation and to simulate the polariton dynamics in the HTC system; this approach allows us to use a much larger time step for propagation and only requires a few recursive operations of the polariton Hamiltonian acting on state vectors. These two theoretical approaches are general and can be applied to any trajectory-based non-adiabatic quantum dynamics methods. We apply these two techniques with our previously developed Lindblad-partially linearized density matrix approach to simulate the linear absorption spectra of the HTC model system, with both inhomogeneous site energy disorders and dipolar orientational disorders. Our numerical results agree well with the previous analytic and numerical work.
Collapse
Affiliation(s)
- M Elious Mondal
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
| | - A Nickolas Vamivakas
- The Institute of Optics, Hajim School of Engineering, University of Rochester, Rochester, New York 14627, USA
- Center for Coherence and Quantum Optics, University of Rochester, Rochester, New York 14627, USA
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| | - Steven T Cundiff
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Todd D Krauss
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
- The Institute of Optics, Hajim School of Engineering, University of Rochester, Rochester, New York 14627, USA
- Center for Coherence and Quantum Optics, University of Rochester, Rochester, New York 14627, USA
| | - Pengfei Huo
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
- The Institute of Optics, Hajim School of Engineering, University of Rochester, Rochester, New York 14627, USA
- Center for Coherence and Quantum Optics, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
12
|
Chng BK, Ying W, Lai Y, Vamivakas AN, Cundiff ST, Krauss TD, Huo P. Mechanism of Molecular Polariton Decoherence in the Collective Light-Matter Couplings Regime. J Phys Chem Lett 2024; 15:11773-11783. [PMID: 39556114 PMCID: PMC11613686 DOI: 10.1021/acs.jpclett.4c03049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Molecular polaritons, the hybridization of electronic states in molecules with photonic excitation inside a cavity, play an important role in fundamental quantum science and technology. Understanding the decoherence mechanism of molecular polaritons is among the most significant fundamental questions. We theoretically demonstrate that hybridizing many molecular excitons in a cavity protects the overall quantum coherence from phonon-induced decoherence. The polariton coherence time can be prolonged up to 100 fs with a realistic collective Rabi splitting and quality factor at room temperature, compared to the typical electronic coherence time which is around 15 fs. Our numerically exact simulations and analytic theory suggest that the dominant decoherence mechanism is the population transfer from the upper polariton state to the dark state manifold. Increasing the collective coupling strength will increase the energy gap between these two sets of states and thus prolong the coherence lifetime. We further derived valuable scaling relations that directly indicate how polariton coherence depends on the number of molecules, Rabi splittings, and light-matter detunings.
Collapse
Affiliation(s)
- Benjamin
X. K. Chng
- Department
of Physics and Astronomy, University of
Rochester, Rochester, New York 14627, United States
| | - Wenxiang Ying
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Yifan Lai
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - A. Nickolas Vamivakas
- Department
of Physics and Astronomy, University of
Rochester, Rochester, New York 14627, United States
- The
Institute of Optics, Hajim School of Engineering, University of Rochester, Rochester, New York 14627, United States
- Center
for Coherence and Quantum Optics, University
of Rochester, Rochester, New York 14627, United States
| | - Steven T. Cundiff
- Department
of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Todd D. Krauss
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
- The
Institute of Optics, Hajim School of Engineering, University of Rochester, Rochester, New York 14627, United States
- Center
for Coherence and Quantum Optics, University
of Rochester, Rochester, New York 14627, United States
| | - Pengfei Huo
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
- The
Institute of Optics, Hajim School of Engineering, University of Rochester, Rochester, New York 14627, United States
- Center
for Coherence and Quantum Optics, University
of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
13
|
Sánchez Martínez CJ, Lindel F, García-Vidal FJ, Feist J. General theory of cavity-mediated interactions between low-energy matter excitations. J Chem Phys 2024; 161:194303. [PMID: 39546370 DOI: 10.1063/5.0231058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024] Open
Abstract
The manipulation of low-energy matter properties such as superconductivity, ferromagnetism, and ferroelectricity via cavity quantum electrodynamics engineering has been suggested as a way to enhance these many-body collective phenomena. In this work, we investigate the effective interactions between low-energy matter excitations induced by the off-resonant coupling with cavity electromagnetic modes. We extend a previous work by going beyond the dipole approximation accounting for the full polarization and magnetization densities of matter. We further include the often neglected diamagnetic interaction and, for the cavity, we consider general linear absorbing media with possibly non-local and non-reciprocal response. We demonstrate that, even in this general scenario, the effective cavity-induced interactions between the matter degrees of freedom are of electrostatic and magnetostatic nature. This confirms the necessity of a multimode description for cavity engineering of matter systems where the low-energy assumption holds. Our findings provide a theoretical framework for studying the influence of general optical environments on extended low-energy matter excitations.
Collapse
Affiliation(s)
- Carlos J Sánchez Martínez
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Frieder Lindel
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Francisco J García-Vidal
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Johannes Feist
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| |
Collapse
|
14
|
Lindel F, Lentrodt D, Buhmann SY, Schäfer C. Quantized embedding approaches for collective strong coupling-Connecting ab initio and macroscopic QED to simple models in polaritonics. J Chem Phys 2024; 161:154111. [PMID: 39431447 DOI: 10.1063/5.0234989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 10/02/2024] [Indexed: 10/22/2024] Open
Abstract
Collective light-matter interactions have been used to control chemistry and energy transfer, yet accessible approaches that combine ab initio methodology with large many-body quantum optical systems are missing due to the fast increase in computational cost for explicit simulations. We introduce an accessible ab initio quantum embedding concept for many-body quantum optical systems that allows us to treat the collective coupling of molecular many-body systems effectively in the spirit of macroscopic quantum electrodynamics while keeping the rigor of ab initio quantum chemistry for the molecular structure. Our approach fully includes the quantum fluctuations of the polaritonic field and yet remains much simpler and more intuitive than complex embedding approaches such as dynamical mean-field theory. We illustrate the underlying assumptions by comparison to the Tavis-Cummings model. The intuitive application of the quantized embedding approach and its transparent limitations offer a practical framework for the field of ab initio polaritonic chemistry to describe collective effects in realistic molecular ensembles.
Collapse
Affiliation(s)
- Frieder Lindel
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, D-79104 Freiburg, Germany
| | - Dominik Lentrodt
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, D-79104 Freiburg, Germany
| | - Stefan Yoshi Buhmann
- Institut für Physik, Universität Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - Christian Schäfer
- Department of Physics, Chalmers University of Technology, 41296 Göteborg, Sweden
| |
Collapse
|
15
|
Fojt J, Erhart P, Schäfer C. Controlling Plasmonic Catalysis via Strong Coupling with Electromagnetic Resonators. NANO LETTERS 2024; 24:11913-11920. [PMID: 39264279 PMCID: PMC11440648 DOI: 10.1021/acs.nanolett.4c03153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Plasmonic excitations decay within femtoseconds, leaving nonthermal (often referred to as "hot") charge carriers behind that can be injected into molecular structures to trigger chemical reactions that are otherwise out of reach─a process known as plasmonic catalysis. In this Letter, we demonstrate that strong coupling between resonator structures and plasmonic nanoparticles can be used to control the spectral overlap between the plasmonic excitation energy and the charge injection energy into nearby molecules. Our atomistic description couples real-time density-functional theory self-consistently to an electromagnetic resonator structure via the radiation-reaction potential. Control over the resonator provides then an additional knob for nonintrusively enhancing plasmonic catalysis, here more than 6-fold, and dynamically reacting to deterioration of the catalyst─a new facet of modern catalysis.
Collapse
Affiliation(s)
- Jakub Fojt
- Department of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Paul Erhart
- Department of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Christian Schäfer
- Department of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| |
Collapse
|
16
|
Amin M, Koessler ER, Morshed O, Awan F, Cogan NMB, Collison R, Tumiel TM, Girten W, Leiter C, Vamivakas AN, Huo P, Krauss TD. Cavity Controlled Upconversion in CdSe Nanoplatelet Polaritons. ACS NANO 2024; 18:21388-21398. [PMID: 39078943 PMCID: PMC11328175 DOI: 10.1021/acsnano.4c05871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2024]
Abstract
Exciton-polaritons provide a versatile platform for investigating quantum electrodynamics effects in chemical systems, such as polariton-altered chemical reactivity. However, using polaritons in chemical contexts will require a better understanding of their photophysical properties under ambient conditions, where chemistry is typically performed. Here, we used cavity quality factor to control strong light-matter interactions and in particular the excited state dynamics of colloidal CdSe nanoplatelets (NPLs) coupled to a Fabry-Pérot optical cavity. With increasing cavity quality factor, we observe significant population of the upper polariton (UP) state, exemplified by the rare observation of substantial UP photoluminescence (PL). Excitation of the lower polariton (LP) states results in upconverted PL emission from the UP branch due to efficient exchange of population between the LP, UP and the reservoir of dark states present in collectively coupled polaritonic systems. In addition, we measure time scales for polariton dynamics ∼100 ps, implying great potential for NPL based polariton systems to affect photochemical reaction rates. State-of-the-art quantum dynamical simulations show outstanding quantitative agreement with experiments, and thus provide important insight into polariton photophysical dynamics of collectively coupled nanocrystal-based systems. These findings represent a significant step toward the development of practical polariton photochemistry platforms.
Collapse
Affiliation(s)
- Mitesh Amin
- The Institute of Optics, University of Rochester, Rochester, New York 14627, United States
| | - Eric R Koessler
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Ovishek Morshed
- The Institute of Optics, University of Rochester, Rochester, New York 14627, United States
| | - Farwa Awan
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Nicole M B Cogan
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Robert Collison
- The Institute of Optics, University of Rochester, Rochester, New York 14627, United States
| | - Trevor M Tumiel
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - William Girten
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Christopher Leiter
- Department of Chemistry, Regis University, Denver, Colorado 80221, United States
| | - A Nickolas Vamivakas
- The Institute of Optics, University of Rochester, Rochester, New York 14627, United States
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, United States
| | - Pengfei Huo
- The Institute of Optics, University of Rochester, Rochester, New York 14627, United States
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Todd D Krauss
- The Institute of Optics, University of Rochester, Rochester, New York 14627, United States
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
17
|
De PK, Jain A. Exciton energy transfer inside cavity-A benchmark study of polaritonic dynamics using the surface hopping method. J Chem Phys 2024; 161:054117. [PMID: 39105549 DOI: 10.1063/5.0216787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024] Open
Abstract
Strong coupling between the molecular system and photon inside the cavity generates polaritons, which can alter reaction rates by orders of magnitude. In this work, we benchmark the surface hopping method to simulate non-adiabatic dynamics in a cavity. The comparison is made against a numerically exact method (the hierarchical equations of motion) for a model system investigating excitonic energy transfer for a broad range of parameters. Surface hopping captures the effects of the radiation mode well, both at resonance and off-resonance. We have further investigated parameters that can increase or decrease the rate of population transfer, and we find that surface hopping in general can capture both effects well. Finally, we show that the dipole self-energy term within our parameter regime does not significantly affect the system's dynamics.
Collapse
Affiliation(s)
- Priyam Kumar De
- Department of Chemistry, Indian Institute of Technology, Mumbai 400076, India
| | - Amber Jain
- Department of Chemistry, Indian Institute of Technology, Mumbai 400076, India
| |
Collapse
|
18
|
Dutta A, Tiainen V, Sokolovskii I, Duarte L, Markešević N, Morozov D, Qureshi HA, Pikker S, Groenhof G, Toppari JJ. Thermal disorder prevents the suppression of ultra-fast photochemistry in the strong light-matter coupling regime. Nat Commun 2024; 15:6600. [PMID: 39097575 PMCID: PMC11297929 DOI: 10.1038/s41467-024-50532-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 07/11/2024] [Indexed: 08/05/2024] Open
Abstract
Strong coupling between molecules and confined light modes of optical cavities to form polaritons can alter photochemistry, but the origin of this effect remains largely unknown. While theoretical models suggest a suppression of photochemistry due to the formation of new polaritonic potential energy surfaces, many of these models do not account for the energetic disorder among the molecules, which is unavoidable at ambient conditions. Here, we combine simulations and experiments to show that for an ultra-fast photochemical reaction such thermal disorder prevents the modification of the potential energy surface and that suppression is due to radiative decay of the lossy cavity modes. We also show that the excitation spectrum under strong coupling is a product of the excitation spectrum of the bare molecules and the absorption spectrum of the molecule-cavity system, suggesting that polaritons can act as gateways for channeling an excitation into a molecule, which then reacts normally. Our results therefore imply that strong coupling provides a means to tune the action spectrum of a molecule, rather than to change the reaction.
Collapse
Affiliation(s)
- Arpan Dutta
- Nanoscience Center and Department of Physics, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
- Department of Mechanical and Materials Engineering, University of Turku, 20014, Turku, Finland
| | - Ville Tiainen
- Nanoscience Center and Department of Physics, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
| | - Ilia Sokolovskii
- Nanoscience Center and Department of Chemistry, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
| | - Luís Duarte
- Nanoscience Center and Department of Physics, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
- Department of Chemistry, University of Helsinki, P.O. Box 55, 00014, Helsinki, Finland
| | - Nemanja Markešević
- Nanoscience Center and Department of Physics, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
- CNR-INO Istituto Nazionale di Ottica del Consiglio Nazionale delle Ricerche and LENS European Laboratory for Nonlinear Spectroscopy, Via Nello Carrara 1, Sesto Fiorentino, 50019, Italy
| | - Dmitry Morozov
- Nanoscience Center and Department of Chemistry, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
| | - Hassan A Qureshi
- Nanoscience Center and Department of Physics, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
- Department of Mechanical and Materials Engineering, University of Turku, 20014, Turku, Finland
| | - Siim Pikker
- Nanoscience Center and Department of Physics, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411, Tartu, Estonia
| | - Gerrit Groenhof
- Nanoscience Center and Department of Chemistry, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland.
| | - J Jussi Toppari
- Nanoscience Center and Department of Physics, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland.
| |
Collapse
|
19
|
Borges L, Schnappinger T, Kowalewski M. Extending the Tavis-Cummings model for molecular ensembles-Exploring the effects of dipole self-energies and static dipole moments. J Chem Phys 2024; 161:044119. [PMID: 39072423 PMCID: PMC7616353 DOI: 10.1063/5.0214362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/24/2024] [Indexed: 07/30/2024] Open
Abstract
Strong coupling of organic molecules to the vacuum field of a nanoscale cavity can be used to modify their chemical and physical properties. We extend the Tavis-Cummings model for molecular ensembles and show that the often neglected interaction terms arising from the static dipole moment and the dipole self-energy are essential for a correct description of the light-matter interaction in polaritonic chemistry. On the basis of a full quantum description, we simulate the excited-state dynamics and spectroscopy of MgH+ molecules resonantly coupled to an optical cavity. We show that the inclusion of static dipole moments and the dipole self-energy is necessary to obtain a consistent model. We construct an efficient two-level system approach that reproduces the main features of the real molecular system and may be used to simulate larger molecular ensembles.
Collapse
Affiliation(s)
- Lucas Borges
- Department of Physics, Stockholm University, AlbaNova University Center, SE-106 91Stockholm, Sweden
| | - Thomas Schnappinger
- Department of Physics, Stockholm University, AlbaNova University Center, SE-106 91Stockholm, Sweden
| | | |
Collapse
|
20
|
Hirschmann O, Bhakta HH, Kort-Kamp WJM, Jones AC, Xiong W. Spatially Resolved Near Field Spectroscopy of Vibrational Polaritons at the Small N Limit. ACS PHOTONICS 2024; 11:2650-2658. [PMID: 39036063 PMCID: PMC11258779 DOI: 10.1021/acsphotonics.4c00345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 07/23/2024]
Abstract
Vibrational polaritons, which have been primarily studied in Fabry-Pérot cavities with a large number of molecules (N ∼ 106-1010) coupled to the resonator mode, exhibit various experimentally observed effects on chemical reactions. However, the exact mechanism is elusively understood from the theoretical side, as the large number of molecules involved in an experimental strong coupling condition cannot be represented completely in simulations. This discrepancy between theory and experiment arises from computational descriptions of polariton systems typically being limited to only a few molecules, thus failing to represent the experimental conditions adequately. To address this mismatch, we used surface phonon polariton (SPhP) resonators as an alternative platform for vibrational strong coupling. SPhPs exhibit strong electromagnetic confinement on the surface and thus allow for coupling to a small number of molecules. As a result, this platform can enhance nonlinearity and slow down relaxation to the dark modes. In this study, we fabricated a pillar-shaped quartz resonator and then coated it with a thin layer of cobalt phthalocyanine (CoPc). By employing scattering-type scanning near-field optical microscopy (s-SNOM), we spatially investigated the dependency of vibrational strong coupling on the spatially varying electromagnetic field strength and demonstrated strong coupling with 38,000 molecules only-reaching to the small N limit. Through s-SNOM analysis, we found that strong coupling was observed primarily on the edge of the quartz pillar and the apex of the s-SNOM tip, where the maximum field enhancement occurs. In contrast, a weak resonance signal and lack of coupling were observed closer to the center of the pillar. This work demonstrates the importance of spatially resolved polariton systems in nanophotonic platforms and lays a foundation to explore polariton chemistry and chemical dynamics at the small N limit-one step closer to reconcile with high-level quantum calculations.
Collapse
Affiliation(s)
- Oliver Hirschmann
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
| | - Harsh H. Bhakta
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
| | - Wilton J. M. Kort-Kamp
- Theoretical
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Andrew C. Jones
- Center
for Integrated Nanotechnologies, Materials
Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Wei Xiong
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
- Materials
Science and Engineering Program, University
of California San Diego, La Jolla, California 92093, United States
- Department
of Electrical and Computer Engineering, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
21
|
Wu A, Cerrillo J, Cao J. Extracting kinetic information from short-time trajectories: relaxation and disorder of lossy cavity polaritons. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:2575-2590. [PMID: 39678665 PMCID: PMC11636469 DOI: 10.1515/nanoph-2023-0831] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/03/2024] [Indexed: 12/17/2024]
Abstract
The emerging field of molecular cavity polaritons has stimulated a surge of experimental and theoretical activities and presents a unique opportunity to develop the many-body simulation methodology. This paper presents a numerical scheme for the extraction of key kinetic information of lossy cavity polaritons based on the transfer tensor method (TTM). Steady state, relaxation timescales, and oscillatory phenomena can all be deduced directly from a set of transfer tensors without the need for long-time simulation. Moreover, we generalize TTM to disordered systems by sampling dynamical maps and achieve fast convergence to disordered-averaged dynamics using a small set of realizations. Together, these techniques provide a toolbox for characterizing the interplay of cavity loss, disorder, and cooperativity in polariton relaxation and allow us to predict unusual dependences on the initial excitation state, photon decay rate, strength of disorder, and the type of cavity models. Thus, using the example of cavity polaritons, we have demonstrated significant potential in the use of the TTM toward both the efficient computation of long-time polariton dynamics and the extraction of crucial kinetic information about polariton relaxation from a small set of short-time trajectories.
Collapse
Affiliation(s)
- Andrew Wu
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA02139, USA
| | - Javier Cerrillo
- Área de Física Aplicada, Universidad Politécnica de Cartagena, 30202Cartagena, Spain
| | - Jianshu Cao
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA02139, USA
| |
Collapse
|
22
|
Cargioli A, Lednev M, Lavista L, Camposeo A, Sassella A, Pisignano D, Tredicucci A, Garcia-Vidal FJ, Feist J, Persano L. Active control of polariton-enabled long-range energy transfer. NANOPHOTONICS 2024; 13:2541-2551. [PMID: 38836104 PMCID: PMC11147494 DOI: 10.1515/nanoph-2023-0677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/27/2023] [Indexed: 06/06/2024]
Abstract
Optical control is achieved on the excited state energy transfer between spatially separated donor and acceptor molecules, both coupled to the same optical mode of a cavity. The energy transfer occurs through the formed hybrid polaritons and can be switched on and off by means of ultraviolet and visible light. The control mechanism relies on a photochromic component used as donor, whose absorption and emission properties can be varied reversibly through light irradiation, whereas in-cavity hybridization with acceptors through polariton states enables a 6-fold enhancement of acceptor/donor contribution to the emission intensity with respect to a reference multilayer. These results pave the way for synthesizing effective gating systems for the transport of energy by light, relevant for light-harvesting and light-emitting devices, and for photovoltaic cells.
Collapse
Affiliation(s)
- Alessio Cargioli
- Dipartimento di Fisica “E. Fermi”, Università di Pisa, Largo B. Pontecorvo 3, I-56127Pisa, Italy
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, I-56127Pisa, Italy
| | - Maksim Lednev
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049Madrid, Spain
| | - Lorenzo Lavista
- Dipartimento di Fisica “E. Fermi”, Università di Pisa, Largo B. Pontecorvo 3, I-56127Pisa, Italy
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, I-56127Pisa, Italy
| | - Andrea Camposeo
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, I-56127Pisa, Italy
| | - Adele Sassella
- Dipartimento di Scienza dei Materiali, Università degli Studi di Milano-Bicocca, Via Roberto Cozzi 55, I-20125Milano, Italy
| | - Dario Pisignano
- Dipartimento di Fisica “E. Fermi” and Center for Instrument Sharing (CISUP), Università di Pisa, Largo B. Pontecorvo 3, I-56127Pisa, Italy
- NEST, Istituto Nanoscienze-CNR, I-56127Pisa, Italy
| | - Alessandro Tredicucci
- Dipartimento di Fisica “E. Fermi” and Center for Instrument Sharing (CISUP), Università di Pisa, Largo B. Pontecorvo 3, I-56127Pisa, Italy
- NEST, Istituto Nanoscienze-CNR, I-56127Pisa, Italy
| | - Francisco J. Garcia-Vidal
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049Madrid, Spain
| | - Johannes Feist
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049Madrid, Spain
| | - Luana Persano
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, I-56127Pisa, Italy
| |
Collapse
|
23
|
Odewale EO, Avramenko AG, Rury AS. Deciphering between enhanced light emission and absorption in multi-mode porphyrin cavity polariton samples. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:2695-2706. [PMID: 39678670 PMCID: PMC11636455 DOI: 10.1515/nanoph-2023-0748] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 02/29/2024] [Indexed: 12/17/2024]
Abstract
It remains unclear how the collective strong coupling of cavity-confined photons to the electronic transitions of molecular chromophore leverages the distinct properties of the polaritonic constituents for future technologies. In this study, we design, fabricate, and characterize multiple types of Fabry-Pérot (FP) mirco-resonators containing copper(II) tetraphenyl porphyrin (CuTPP) to show how cavity polariton formation affects radiative relaxation processes in the presence of substantial non-Condon vibronic coupling between two of this molecule's excited electronic states. Unlike the prototypical enhancement of Q state radiative relaxation of CuTPP in a FP resonator incapable of forming polaritons, we find the light emission processes in multimode cavity polariton samples become enhanced for cavity-exciton energy differences near those of vibrations known to mediate non-Condon vibronic coupling. We propose the value of this detuning is consistent with radiative relaxation of Herzberg-Teller polaritons into collective molecular states coupled to the cavity photon coherently. We contrast the feature stemming from light emission from the HT polariton state with those that occur due to polariton-enhanced light absorption. Our results demonstrate the landscape of molecular and photonic interactions enabled by cavity polariton formation using complex chromophores and how researchers can design resonators to leverage these interactions to characterize and control polaritonic properties.
Collapse
Affiliation(s)
- Elizabeth O. Odewale
- Materials Structural Dynamics Laboratory, Department of Chemistry, Wayne State University, 48202, Detroit, MI, USA
| | - Aleksandr G. Avramenko
- Materials Structural Dynamics Laboratory, Department of Chemistry, Wayne State University, 48202, Detroit, MI, USA
| | - Aaron S. Rury
- Materials Structural Dynamics Laboratory, Department of Chemistry, Wayne State University, 48202, Detroit, MI, USA
| |
Collapse
|
24
|
Lee IS, Filatov M, Min SK. Formulation of transition dipole gradients for non-adiabatic dynamics with polaritonic states. J Chem Phys 2024; 160:154103. [PMID: 38624116 DOI: 10.1063/5.0202095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/31/2024] [Indexed: 04/17/2024] Open
Abstract
A general formulation of the strong coupling between photons confined in a cavity and molecular electronic states is developed for the state-interaction state-average spin-restricted ensemble-referenced Kohn-Sham method. The light-matter interaction is included in the Jaynes-Cummings model, which requires the derivation and implementation of the analytical derivatives of the transition dipole moments between the molecular electronic states. The developed formalism is tested in the simulations of the nonadiabatic dynamics in the polaritonic states resulting from the strong coupling between the cavity photon mode and the ground and excited states of the penta-2,4-dieniminium cation, also known as PSB3. Comparison with the field-free simulations of the excited-state decay dynamics in PSB3 reveals that the light-matter coupling can considerably alter the decay dynamics by increasing the excited state lifetime and hindering photochemically induced torsion about the C=C double bonds of PSB3. The necessity of obtaining analytical transition dipole gradients for the accurate propagation of the dynamics is underlined.
Collapse
Affiliation(s)
- In Seong Lee
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Michael Filatov
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Seung Kyu Min
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 44919, Republic of Korea
| |
Collapse
|
25
|
Lee I, Melton SR, Xu D, Delor M. Controlling Molecular Photoisomerization in Photonic Cavities through Polariton Funneling. J Am Chem Soc 2024; 146:9544-9553. [PMID: 38530932 DOI: 10.1021/jacs.3c11292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Strong coupling between photonic modes and molecular electronic excitations, creating hybrid light-matter states called polaritons, is an attractive avenue for controlling chemical reactions. Nevertheless, experimental demonstrations of polariton-modified chemical reactions remain sparse. Here, we demonstrate modified photoisomerization kinetics of merocyanine and diarylethene by coupling the reactant's optical transition with photonic microcavity modes. We leverage broadband Fourier-plane optical microscopy to noninvasively and rapidly monitor photoisomerization within microcavities, enabling systematic investigation of chemical kinetics for different cavity-exciton detunings and photoexcitation conditions. We demonstrate three distinct effects of cavity coupling: first, a renormalization of the photonic density of states, akin to a Purcell effect, leads to enhanced absorption and isomerization rates at certain wavelengths, notably red-shifting the onset of photoisomerization. This effect is present under both strong and weak light-matter couplings. Second, kinetic competition between polariton localization into reactive molecular states and cavity losses leads to a suppression of the photoisomerization yield. Finally, our key result is that in reaction mixtures with multiple reactant isomers, exhibiting partially overlapping optical transitions and distinct isomerization pathways, the cavity resonance can be tuned to funnel photoexcitations into specific reactant isomers. Thus, upon decoherence, polaritons localize into a chosen isomer, selectively triggering the latter's photoisomerization despite initially being delocalized across all isomers. This result suggests that careful tuning of the cavity resonance is a promising avenue to steer chemical reactions and enhance product selectivity in reaction mixtures.
Collapse
Affiliation(s)
- Inki Lee
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Sarah R Melton
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Ding Xu
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Milan Delor
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
26
|
Sokolovskii I, Groenhof G. Non-Hermitian molecular dynamics simulations of exciton-polaritons in lossy cavities. J Chem Phys 2024; 160:092501. [PMID: 38426514 DOI: 10.1063/5.0188613] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Abstract
The observation that materials can change their properties when placed inside or near an optical resonator has sparked a fervid interest in understanding the effects of strong light-matter coupling on molecular dynamics, and several approaches have been proposed to extend the methods of computational chemistry into this regime. Whereas the majority of these approaches have focused on modeling a single molecule coupled to a single cavity mode, changes to chemistry have so far only been observed experimentally when very many molecules are coupled collectively to multiple modes with short lifetimes. While atomistic simulations of many molecules coupled to multiple cavity modes have been performed with semi-classical molecular dynamics, an explicit description of cavity losses has so far been restricted to simulations in which only a very few molecular degrees of freedom were considered. Here, we have implemented an effective non-Hermitian Hamiltonian to explicitly treat cavity losses in large-scale semi-classical molecular dynamics simulations of organic polaritons and used it to perform both mean-field and surface hopping simulations of polariton relaxation, propagation, and energy transfer.
Collapse
Affiliation(s)
- Ilia Sokolovskii
- Nanoscience Center and Department of Chemistry, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland
| | - Gerrit Groenhof
- Nanoscience Center and Department of Chemistry, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland
| |
Collapse
|
27
|
Schäfer C, Fojt J, Lindgren E, Erhart P. Machine Learning for Polaritonic Chemistry: Accessing Chemical Kinetics. J Am Chem Soc 2024; 146:5402-5413. [PMID: 38354223 PMCID: PMC10910569 DOI: 10.1021/jacs.3c12829] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/16/2024]
Abstract
Altering chemical reactivity and material structure in confined optical environments is on the rise, and yet, a conclusive understanding of the microscopic mechanisms remains elusive. This originates mostly from the fact that accurately predicting vibrational and reactive dynamics for soluted ensembles of realistic molecules is no small endeavor, and adding (collective) strong light-matter interaction does not simplify matters. Here, we establish a framework based on a combination of machine learning (ML) models, trained using density-functional theory calculations and molecular dynamics to accelerate such simulations. We then apply this approach to evaluate strong coupling, changes in reaction rate constant, and their influence on enthalpy and entropy for the deprotection reaction of 1-phenyl-2-trimethylsilylacetylene, which has been studied previously both experimentally and using ab initio simulations. While we find qualitative agreement with critical experimental observations, especially with regard to the changes in kinetics, we also find differences in comparison with previous theoretical predictions. The features for which the ML-accelerated and ab initio simulations agree show the experimentally estimated kinetic behavior. Conflicting features indicate that a contribution of dynamic electronic polarization to the reaction process is more relevant than currently believed. Our work demonstrates the practical use of ML for polaritonic chemistry, discusses limitations of common approximations, and paves the way for a more holistic description of polaritonic chemistry.
Collapse
Affiliation(s)
- Christian Schäfer
- Department
of Physics, Chalmers University of Technology, 412 96, Göteborg, Sweden
- Department
of Microtechnology and Nanoscience, MC2, Chalmers University of Technology, 412 96, Göteborg, Sweden
| | - Jakub Fojt
- Department
of Physics, Chalmers University of Technology, 412 96, Göteborg, Sweden
| | - Eric Lindgren
- Department
of Physics, Chalmers University of Technology, 412 96, Göteborg, Sweden
| | - Paul Erhart
- Department
of Physics, Chalmers University of Technology, 412 96, Göteborg, Sweden
| |
Collapse
|
28
|
Parolin G, Peruffo N, Mancin F, Collini E, Corni S. Molecularly Detailed View of Strong Coupling in Supramolecular Plexcitonic Nanohybrids. NANO LETTERS 2024; 24:2273-2281. [PMID: 38261782 DOI: 10.1021/acs.nanolett.3c04514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Plexcitons constitute a peculiar example of light-matter hybrids (polaritons) originating from the (strong) coupling of plasmonic modes and molecular excitations. Here we propose a fully quantum approach to model plexcitonic systems and test it against existing experiments on peculiar hybrids formed by Au nanoparticles and a well-known porphyrin derivative, involving the Q branch of the organic dye absorption spectrum. Our model extends simpler descriptions of polaritonic systems to account for the multilevel structure of the dyes, spatially varying interactions with a given plasmon mode, and the simultaneous occurrence of plasmon-molecule and intermolecular interactions. By keeping a molecularly detailed view, we were able to gain insights into the local structure and individual contributions to the resulting plexcitons. Our model can be applied to rationalize and predict energy funneling toward specific molecular sites within a plexcitonic assembly, which is highly valuable for designing and controlling chemical transformations in the new polaritonic landscapes.
Collapse
Affiliation(s)
- Giovanni Parolin
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Nicola Peruffo
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Fabrizio Mancin
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Elisabetta Collini
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
- Padua Quantum Technologies Research Center, University of Padova, 35131 Padova, Italy
| | - Stefano Corni
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
- Padua Quantum Technologies Research Center, University of Padova, 35131 Padova, Italy
- CNR Institute of Nanoscience, 41125 Modena, Italy
| |
Collapse
|
29
|
Bujalance C, Caliò L, Dirin DN, Tiede DO, Galisteo-López JF, Feist J, García-Vidal FJ, Kovalenko MV, Míguez H. Strong Light-Matter Coupling in Lead Halide Perovskite Quantum Dot Solids. ACS NANO 2024; 18:4922-4931. [PMID: 38301147 PMCID: PMC10867889 DOI: 10.1021/acsnano.3c10358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/03/2024]
Abstract
Strong coupling between lead halide perovskite materials and optical resonators enables both polaritonic control of the photophysical properties of these emerging semiconductors and the observation of fundamental physical phenomena. However, the difficulty in achieving optical-quality perovskite quantum dot (PQD) films showing well-defined excitonic transitions has prevented the study of strong light-matter coupling in these materials, central to the field of optoelectronics. Herein we demonstrate the formation at room temperature of multiple cavity exciton-polaritons in metallic resonators embedding highly transparent Cesium Lead Bromide quantum dot (CsPbBr3-QD) solids, revealed by a significant reconfiguration of the absorption and emission properties of the system. Our results indicate that the effects of biexciton interaction or large polaron formation, frequently invoked to explain the properties of PQDs, are seemingly absent or compensated by other more conspicuous effects in the CsPbBr3-QD optical cavity. We observe that strong coupling enables a significant reduction of the photoemission line width, as well as the ultrafast modulation of the optical absorption, controllable by means of the excitation fluence. We find that the interplay of the polariton states with the large dark state reservoir plays a decisive role in determining the dynamics of the emission and transient absorption properties of the hybridized light-quantum dot solid system. Our results should serve as the basis for future investigations of PQD solids as polaritonic materials.
Collapse
Affiliation(s)
- Clara Bujalance
- Multifunctional
Optical Materials Group, Institute of Materials
Science of Sevilla, Consejo Superior de Investigaciones Científicas
− Universidad de Sevilla (CSIC-US), Américo Vespucio 49, Sevilla 41092, Spain
| | - Laura Caliò
- Multifunctional
Optical Materials Group, Institute of Materials
Science of Sevilla, Consejo Superior de Investigaciones Científicas
− Universidad de Sevilla (CSIC-US), Américo Vespucio 49, Sevilla 41092, Spain
| | - Dmitry N. Dirin
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland
- EMPA
− Swiss Federal Laboratories for Materials Science and Technology, Dübendorf CH-8600, Switzerland
| | - David O. Tiede
- Multifunctional
Optical Materials Group, Institute of Materials
Science of Sevilla, Consejo Superior de Investigaciones Científicas
− Universidad de Sevilla (CSIC-US), Américo Vespucio 49, Sevilla 41092, Spain
| | - Juan F. Galisteo-López
- Multifunctional
Optical Materials Group, Institute of Materials
Science of Sevilla, Consejo Superior de Investigaciones Científicas
− Universidad de Sevilla (CSIC-US), Américo Vespucio 49, Sevilla 41092, Spain
| | - Johannes Feist
- Departamento
de Física Teórica de la Materia Condensada and Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, Madrid 28049, Spain
| | - Francisco J. García-Vidal
- Departamento
de Física Teórica de la Materia Condensada and Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, Madrid 28049, Spain
| | - Maksym V. Kovalenko
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland
- EMPA
− Swiss Federal Laboratories for Materials Science and Technology, Dübendorf CH-8600, Switzerland
| | - Hernán Míguez
- Multifunctional
Optical Materials Group, Institute of Materials
Science of Sevilla, Consejo Superior de Investigaciones Científicas
− Universidad de Sevilla (CSIC-US), Américo Vespucio 49, Sevilla 41092, Spain
| |
Collapse
|
30
|
Weight BM, Li X, Zhang Y. Theory and modeling of light-matter interactions in chemistry: current and future. Phys Chem Chem Phys 2023; 25:31554-31577. [PMID: 37842818 DOI: 10.1039/d3cp01415k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Light-matter interaction not only plays an instrumental role in characterizing materials' properties via various spectroscopic techniques but also provides a general strategy to manipulate material properties via the design of novel nanostructures. This perspective summarizes recent theoretical advances in modeling light-matter interactions in chemistry, mainly focusing on plasmon and polariton chemistry. The former utilizes the highly localized photon, plasmonic hot electrons, and local heat to drive chemical reactions. In contrast, polariton chemistry modifies the potential energy curvatures of bare electronic systems, and hence their chemistry, via forming light-matter hybrid states, so-called polaritons. The perspective starts with the basic background of light-matter interactions, molecular quantum electrodynamics theory, and the challenges of modeling light-matter interactions in chemistry. Then, the recent advances in modeling plasmon and polariton chemistry are described, and future directions toward multiscale simulations of light-matter interaction-mediated chemistry are discussed.
Collapse
Affiliation(s)
- Braden M Weight
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
- Department of Physics and Astronomy, University of Rochester, Rochester, NY, 14627, USA
| | - Xinyang Li
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| | - Yu Zhang
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| |
Collapse
|
31
|
Tichauer RH, Sokolovskii I, Groenhof G. Tuning the Coherent Propagation of Organic Exciton-Polaritons through the Cavity Q-factor. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302650. [PMID: 37818758 PMCID: PMC10667804 DOI: 10.1002/advs.202302650] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/22/2023] [Indexed: 10/13/2023]
Abstract
Transport of excitons in organic materials can be enhanced through polariton formation when the interaction strength between these excitons and the confined light modes of an optical resonator exceeds their decay rates. While the polariton lifetime is determined by the Q(uality)-factor of the optical resonator, the polariton group velocity is not. Instead, the latter is solely determined by the polariton dispersion. Yet, experiments suggest that the Q-factor also controls the polariton propagation velocity. To understand this observation, the authors perform molecular dynamics simulations of Rhodamine chromophores strongly coupled to Fabry-Pérot cavities with various Q-factors. The results suggest that propagation in the aforementioned experiments is initially dominated by ballistic motion of upper polariton states at their group velocities, which leads to a rapid expansion of the wavepacket. Cavity decay in combination with non-adiabatic population transfer into dark states, rapidly depletes these bright states, causing the wavepacket to contract. However, because population transfer is reversible, propagation continues, but as a diffusion process, at lower velocity. By controlling the lifetime of bright states, the Q-factor determines the duration of the ballistic phase and the diffusion coefficient in the diffusive regime. Thus, polariton propagation in organic microcavities can be effectively tuned through the Q-factor.
Collapse
Affiliation(s)
- Ruth H. Tichauer
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC)Universidad Autónoma de MadridMadridE‐28049Spain
| | - Ilia Sokolovskii
- Nanoscience Center and Department of ChemistryUniversity of JyväskyläP.O. Box 35, 40014JyväskyläFinland
| | - Gerrit Groenhof
- Nanoscience Center and Department of ChemistryUniversity of JyväskyläP.O. Box 35, 40014JyväskyläFinland
| |
Collapse
|
32
|
Chen X, Alnatah H, Mao D, Xu M, Fan Y, Wan Q, Beaumariage J, Xie W, Xu H, Shi ZY, Snoke D, Sun Z, Wu J. Bose Condensation of Upper-Branch Exciton-Polaritons in a Transferable Microcavity. NANO LETTERS 2023; 23:9538-9546. [PMID: 37818838 PMCID: PMC10603810 DOI: 10.1021/acs.nanolett.3c03123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/05/2023] [Indexed: 10/13/2023]
Abstract
Exciton-polaritons are composite quasiparticles that result from the coupling of excitonic transitions and optical modes. They have been extensively studied because of their quantum phenomena and potential applications in unconventional coherent light sources and all-optical control elements. In this work, we report the observation of Bose-Einstein condensation of the upper polariton branch in a transferable WS2 monolayer microcavity. Near the condensation threshold, we observe a nonlinear increase in upper polariton intensity accompanied by a decrease in line width and an increase in temporal coherence, all of which are hallmarks of Bose-Einstein condensation. Simulations show that this condensation occurs within a specific particle density range, depending on the excitonic properties and pumping conditions. The manifestation of upper polariton condensation unlocks new possibilities for studying the condensate competition while linking it to practical realizations in polaritonic lasers. Our findings contribute to the understanding of bosonic systems and offer potential for the development of polaritonic devices.
Collapse
Affiliation(s)
- Xingzhou Chen
- State
Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Hassan Alnatah
- Department
of Physics and Astronomy, University of
Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Danqun Mao
- State
Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Mengyao Xu
- State
Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Yuening Fan
- State
Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Qiaochu Wan
- Department
of Physics and Astronomy, University of
Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jonathan Beaumariage
- Department
of Physics and Astronomy, University of
Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Wei Xie
- State
Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Hongxing Xu
- State
Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Zhe-Yu Shi
- State
Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - David Snoke
- Department
of Physics and Astronomy, University of
Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Zheng Sun
- State
Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
- Collaborative
Innovation Center of Extreme Optics, Shanxi
University, Taiyuan, Shanxi 030006, China
| | - Jian Wu
- State
Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
- Collaborative
Innovation Center of Extreme Optics, Shanxi
University, Taiyuan, Shanxi 030006, China
- Chongqing
Key Laboratory of Precision Optics, Chongqing
Institute of East China Normal University, Chongqing 401121, China
- CAS
Center for Excellence in Ultra-intense Laser Science, Shanghai 201800, China
| |
Collapse
|
33
|
Sokolovskii I, Tichauer RH, Morozov D, Feist J, Groenhof G. Multi-scale molecular dynamics simulations of enhanced energy transfer in organic molecules under strong coupling. Nat Commun 2023; 14:6613. [PMID: 37857599 PMCID: PMC10587084 DOI: 10.1038/s41467-023-42067-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 09/21/2023] [Indexed: 10/21/2023] Open
Abstract
Exciton transport can be enhanced in the strong coupling regime where excitons hybridize with confined light modes to form polaritons. Because polaritons have group velocity, their propagation should be ballistic and long-ranged. However, experiments indicate that organic polaritons propagate in a diffusive manner and more slowly than their group velocity. Here, we resolve this controversy by means of molecular dynamics simulations of Rhodamine molecules in a Fabry-Pérot cavity. Our results suggest that polariton propagation is limited by the cavity lifetime and appears diffusive due to reversible population transfers between polaritonic states that propagate ballistically at their group velocity, and dark states that are stationary. Furthermore, because long-lived dark states transiently trap the excitation, propagation is observed on timescales beyond the intrinsic polariton lifetime. These insights not only help to better understand and interpret experimental observations, but also pave the way towards rational design of molecule-cavity systems for coherent exciton transport.
Collapse
Affiliation(s)
- Ilia Sokolovskii
- Nanoscience Center and Department of Chemistry, University of Jyväskylä, P.O. Box 35, Jyväskylä, 40014, Finland
| | - Ruth H Tichauer
- Nanoscience Center and Department of Chemistry, University of Jyväskylä, P.O. Box 35, Jyväskylä, 40014, Finland
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid, Spain
| | - Dmitry Morozov
- Nanoscience Center and Department of Chemistry, University of Jyväskylä, P.O. Box 35, Jyväskylä, 40014, Finland
| | - Johannes Feist
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid, Spain
| | - Gerrit Groenhof
- Nanoscience Center and Department of Chemistry, University of Jyväskylä, P.O. Box 35, Jyväskylä, 40014, Finland.
| |
Collapse
|
34
|
Ruggenthaler M, Sidler D, Rubio A. Understanding Polaritonic Chemistry from Ab Initio Quantum Electrodynamics. Chem Rev 2023; 123:11191-11229. [PMID: 37729114 PMCID: PMC10571044 DOI: 10.1021/acs.chemrev.2c00788] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Indexed: 09/22/2023]
Abstract
In this review, we present the theoretical foundations and first-principles frameworks to describe quantum matter within quantum electrodynamics (QED) in the low-energy regime, with a focus on polaritonic chemistry. By starting from fundamental physical and mathematical principles, we first review in great detail ab initio nonrelativistic QED. The resulting Pauli-Fierz quantum field theory serves as a cornerstone for the development of (in principle exact but in practice) approximate computational methods such as quantum-electrodynamical density functional theory, QED coupled cluster, or cavity Born-Oppenheimer molecular dynamics. These methods treat light and matter on equal footing and, at the same time, have the same level of accuracy and reliability as established methods of computational chemistry and electronic structure theory. After an overview of the key ideas behind those ab initio QED methods, we highlight their benefits for understanding photon-induced changes of chemical properties and reactions. Based on results obtained by ab initio QED methods, we identify open theoretical questions and how a so far missing detailed understanding of polaritonic chemistry can be established. We finally give an outlook on future directions within polaritonic chemistry and first-principles QED.
Collapse
Affiliation(s)
- Michael Ruggenthaler
- Max-Planck-Institut
für Struktur und Dynamik der Materie, Luruper Chaussee 149, 22761 Hamburg, Germany
- The
Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Dominik Sidler
- Max-Planck-Institut
für Struktur und Dynamik der Materie, Luruper Chaussee 149, 22761 Hamburg, Germany
- The
Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Angel Rubio
- Max-Planck-Institut
für Struktur und Dynamik der Materie, Luruper Chaussee 149, 22761 Hamburg, Germany
- The
Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
- Center
for Computational Quantum Physics, Flatiron Institute, 162 Fifth Avenue, New York, New York 10010, United States
| |
Collapse
|
35
|
Bhuyan R, Mony J, Kotov O, Castellanos GW, Gómez Rivas J, Shegai TO, Börjesson K. The Rise and Current Status of Polaritonic Photochemistry and Photophysics. Chem Rev 2023; 123:10877-10919. [PMID: 37683254 PMCID: PMC10540218 DOI: 10.1021/acs.chemrev.2c00895] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Indexed: 09/10/2023]
Abstract
The interaction between molecular electronic transitions and electromagnetic fields can be enlarged to the point where distinct hybrid light-matter states, polaritons, emerge. The photonic contribution to these states results in increased complexity as well as an opening to modify the photophysics and photochemistry beyond what normally can be seen in organic molecules. It is today evident that polaritons offer opportunities for molecular photochemistry and photophysics, which has caused an ever-rising interest in the field. Focusing on the experimental landmarks, this review takes its reader from the advent of the field of polaritonic chemistry, over the split into polariton chemistry and photochemistry, to present day status within polaritonic photochemistry and photophysics. To introduce the field, the review starts with a general description of light-matter interactions, how to enhance these, and what characterizes the coupling strength. Then the photochemistry and photophysics of strongly coupled systems using Fabry-Perot and plasmonic cavities are described. This is followed by a description of room-temperature Bose-Einstein condensation/polariton lasing in polaritonic systems. The review ends with a discussion on the benefits, limitations, and future developments of strong exciton-photon coupling using organic molecules.
Collapse
Affiliation(s)
- Rahul Bhuyan
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, 412 96 Göteborg, Sweden
| | - Jürgen Mony
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, 412 96 Göteborg, Sweden
| | - Oleg Kotov
- Department
of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Gabriel W. Castellanos
- Department
of Applied Physics and Science Education, Eindhoven Hendrik Casimir
Institute and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5612 AE Eindhoven, The Netherlands
| | - Jaime Gómez Rivas
- Department
of Applied Physics and Science Education, Eindhoven Hendrik Casimir
Institute and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5612 AE Eindhoven, The Netherlands
| | - Timur O. Shegai
- Department
of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Karl Börjesson
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, 412 96 Göteborg, Sweden
| |
Collapse
|
36
|
Schnappinger T, Sidler D, Ruggenthaler M, Rubio A, Kowalewski M. Cavity Born-Oppenheimer Hartree-Fock Ansatz: Light-Matter Properties of Strongly Coupled Molecular Ensembles. J Phys Chem Lett 2023; 14:8024-8033. [PMID: 37651603 PMCID: PMC10510432 DOI: 10.1021/acs.jpclett.3c01842] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023]
Abstract
Experimental studies indicate that optical cavities can affect chemical reactions through either vibrational or electronic strong coupling and the quantized cavity modes. However, the current understanding of the interplay between molecules and confined light modes is incomplete. Accurate theoretical models that take into account intermolecular interactions to describe ensembles are therefore essential to understand the mechanisms governing polaritonic chemistry. We present an ab initio Hartree-Fock ansatz in the framework of the cavity Born-Oppenheimer approximation and study molecules strongly interacting with an optical cavity. This ansatz provides a nonperturbative, self-consistent description of strongly coupled molecular ensembles, taking into account the cavity-mediated dipole self-energy contributions. To demonstrate the capability of the cavity Born-Oppenheimer Hartree-Fock ansatz, we study the collective effects in ensembles of strongly coupled diatomic hydrogen fluoride molecules. Our results highlight the importance of the cavity-mediated intermolecular dipole-dipole interactions, which lead to energetic changes of individual molecules in the coupled ensemble.
Collapse
Affiliation(s)
- Thomas Schnappinger
- Department
of Physics, Stockholm University, AlbaNova University Center, SE-106 91 Stockholm, Sweden
| | - Dominik Sidler
- Max
Planck Institute for the Structure and Dynamics of Matter and Center
for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
- The
Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Michael Ruggenthaler
- Max
Planck Institute for the Structure and Dynamics of Matter and Center
for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
- The
Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Angel Rubio
- Max
Planck Institute for the Structure and Dynamics of Matter and Center
for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
- The
Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
- Center
for Computational Quantum Physics, Flatiron
Institute, 162 Fifth
Avenue, New York, New York 10010, United States
- Nano-Bio
Spectroscopy Group, University of the Basque
Country (UPV/EHU), 20018 San Sebastián, Spain
| | - Markus Kowalewski
- Department
of Physics, Stockholm University, AlbaNova University Center, SE-106 91 Stockholm, Sweden
| |
Collapse
|
37
|
Mandal A, Taylor MA, Weight BM, Koessler ER, Li X, Huo P. Theoretical Advances in Polariton Chemistry and Molecular Cavity Quantum Electrodynamics. Chem Rev 2023; 123:9786-9879. [PMID: 37552606 PMCID: PMC10450711 DOI: 10.1021/acs.chemrev.2c00855] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Indexed: 08/10/2023]
Abstract
When molecules are coupled to an optical cavity, new light-matter hybrid states, so-called polaritons, are formed due to quantum light-matter interactions. With the experimental demonstrations of modifying chemical reactivities by forming polaritons under strong light-matter interactions, theorists have been encouraged to develop new methods to simulate these systems and discover new strategies to tune and control reactions. This review summarizes some of these exciting theoretical advances in polariton chemistry, in methods ranging from the fundamental framework to computational techniques and applications spanning from photochemistry to vibrational strong coupling. Even though the theory of quantum light-matter interactions goes back to the midtwentieth century, the gaps in the knowledge of molecular quantum electrodynamics (QED) have only recently been filled. We review recent advances made in resolving gauge ambiguities, the correct form of different QED Hamiltonians under different gauges, and their connections to various quantum optics models. Then, we review recently developed ab initio QED approaches which can accurately describe polariton states in a realistic molecule-cavity hybrid system. We then discuss applications using these method advancements. We review advancements in polariton photochemistry where the cavity is made resonant to electronic transitions to control molecular nonadiabatic excited state dynamics and enable new photochemical reactivities. When the cavity resonance is tuned to the molecular vibrations instead, ground-state chemical reaction modifications have been demonstrated experimentally, though its mechanistic principle remains unclear. We present some recent theoretical progress in resolving this mystery. Finally, we review the recent advances in understanding the collective coupling regime between light and matter, where many molecules can collectively couple to a single cavity mode or many cavity modes. We also lay out the current challenges in theory to explain the observed experimental results. We hope that this review will serve as a useful document for anyone who wants to become familiar with the context of polariton chemistry and molecular cavity QED and thus significantly benefit the entire community.
Collapse
Affiliation(s)
- Arkajit Mandal
- Department
of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
| | - Michael A.D. Taylor
- The
Institute of Optics, Hajim School of Engineering, University of Rochester, Rochester, New York 14627, United States
| | - Braden M. Weight
- Department
of Physics and Astronomy, University of
Rochester, Rochester, New York 14627, United
States
| | - Eric R. Koessler
- Department
of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
| | - Xinyang Li
- Department
of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
- Theoretical
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Pengfei Huo
- Department
of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
- The
Institute of Optics, Hajim School of Engineering, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
38
|
Davidsson E, Kowalewski M. The role of dephasing for dark state coupling in a molecular Tavis-Cummings model. J Chem Phys 2023; 159:044306. [PMID: 37493131 PMCID: PMC7615654 DOI: 10.1063/5.0155302] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/07/2023] [Indexed: 07/27/2023] Open
Abstract
The collective coupling of an ensemble of molecules to a light field is commonly described by the Tavis-Cummings model. This model includes numerous eigenstates that are optically decoupled from the optically bright polariton states. Accessing these dark states requires breaking the symmetry in the corresponding Hamiltonian. In this paper, we investigate the influence of non-unitary processes on the dark state dynamics in the molecular Tavis-Cummings model. The system is modeled with a Lindblad equation that includes pure dephasing, as it would be caused by weak interactions with an environment, and photon decay. Our simulations show that the rate of pure dephasing, as well as the number of two-level systems, has a significant influence on the dark state population.
Collapse
Affiliation(s)
- Eric Davidsson
- Department of Physics, Stockholm University, Albanova University Center, SE-106 91 Stockholm, Sweden
| | - Markus Kowalewski
- Department of Physics, Stockholm University, Albanova University Center, SE-106 91 Stockholm, Sweden
| |
Collapse
|
39
|
Xu D, Mandal A, Baxter JM, Cheng SW, Lee I, Su H, Liu S, Reichman DR, Delor M. Ultrafast imaging of polariton propagation and interactions. Nat Commun 2023; 14:3881. [PMID: 37391396 DOI: 10.1038/s41467-023-39550-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/16/2023] [Indexed: 07/02/2023] Open
Abstract
Semiconductor excitations can hybridize with cavity photons to form exciton-polaritons (EPs) with remarkable properties, including light-like energy flow combined with matter-like interactions. To fully harness these properties, EPs must retain ballistic, coherent transport despite matter-mediated interactions with lattice phonons. Here we develop a nonlinear momentum-resolved optical approach that directly images EPs in real space on femtosecond scales in a range of polaritonic architectures. We focus our analysis on EP propagation in layered halide perovskite microcavities. We reveal that EP-phonon interactions lead to a large renormalization of EP velocities at high excitonic fractions at room temperature. Despite these strong EP-phonon interactions, ballistic transport is maintained for up to half-exciton EPs, in agreement with quantum simulations of dynamic disorder shielding through light-matter hybridization. Above 50% excitonic character, rapid decoherence leads to diffusive transport. Our work provides a general framework to precisely balance EP coherence, velocity, and nonlinear interactions.
Collapse
Affiliation(s)
- Ding Xu
- Department of Chemistry, Columbia University, New York, NY, 10027, US
| | - Arkajit Mandal
- Department of Chemistry, Columbia University, New York, NY, 10027, US
| | - James M Baxter
- Department of Chemistry, Columbia University, New York, NY, 10027, US
| | - Shan-Wen Cheng
- Department of Chemistry, Columbia University, New York, NY, 10027, US
| | - Inki Lee
- Department of Chemistry, Columbia University, New York, NY, 10027, US
| | - Haowen Su
- Department of Chemistry, Columbia University, New York, NY, 10027, US
| | - Song Liu
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, US
| | - David R Reichman
- Department of Chemistry, Columbia University, New York, NY, 10027, US.
| | - Milan Delor
- Department of Chemistry, Columbia University, New York, NY, 10027, US.
| |
Collapse
|
40
|
Bhatt P, Dutta J, Kaur K, George J. Long-Range Energy Transfer in Strongly Coupled Donor-Acceptor Phototransistors. NANO LETTERS 2023. [PMID: 37235844 DOI: 10.1021/acs.nanolett.3c00867] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Strong light-matter coupling offers a way to tailor the optoelectronic properties of materials. Energy transfer between strongly coupled donor-acceptor pairs shows remarkable efficiency beyond the Förster distance via coupling through a confined photon. This long-range energy transfer is facilitated through the collective nature of polaritonic states. Here, the cooperative, strong coupling of a donor (MoS2 monolayer) and an acceptor (BRK) generates mixed polaritonic states. The photocurrent spectrum of the MoS2 monolayer is measured in a field effect transistor while coupling the two oscillators to the confined cavity mode. The strongly coupled system shows efficient energy transfer, which is observed through the photoresponsivity even the donor and acceptor are physically separated by 500 Å. These studies are further correlated with the Hopfield coefficients and the overlap integral of the lower polaritonic and uncoupled/dark states. Cavity detuning and distance-dependent studies support the above evidence. These observations open new avenues for using long-range interaction of polaritonic states in optoelectronic devices.
Collapse
Affiliation(s)
- Pooja Bhatt
- Indian Institute of Science Education and Research (IISER), Mohali, Punjab 140306, India
| | - Jhuma Dutta
- Indian Institute of Science Education and Research (IISER), Mohali, Punjab 140306, India
| | - Kuljeet Kaur
- Indian Institute of Science Education and Research (IISER), Mohali, Punjab 140306, India
| | - Jino George
- Indian Institute of Science Education and Research (IISER), Mohali, Punjab 140306, India
| |
Collapse
|
41
|
Hu D, Huo P. Ab Initio Molecular Cavity Quantum Electrodynamics Simulations Using Machine Learning Models. J Chem Theory Comput 2023; 19:2353-2368. [PMID: 37000936 PMCID: PMC10134431 DOI: 10.1021/acs.jctc.3c00137] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Indexed: 04/03/2023]
Abstract
We present a mixed quantum-classical simulation of polariton dynamics for molecule-cavity hybrid systems. In particular, we treat the coupled electronic-photonic degrees of freedom (DOFs) as the quantum subsystem and the nuclear DOFs as the classical subsystem and use the trajectory surface hopping approach to simulate non-adiabatic dynamics among the polariton states due to the coupled motion of nuclei. We use the accurate nuclear gradient expression derived from the Pauli-Fierz quantum electrodynamics Hamiltonian without making further approximations. The energies, gradients, and derivative couplings of the molecular systems are obtained from the on-the-fly simulations at the level of complete active space self-consistent field (CASSCF), which are used to compute the polariton energies and nuclear gradients. The derivatives of dipoles are also necessary ingredients in the polariton nuclear gradient expression but are often not readily available in electronic structure methods. To address this challenge, we use a machine learning model with the Kernel ridge regression method to construct the dipoles and further obtain their derivatives, at the same level as the CASSCF theory. The cavity loss process is modeled with the Lindblad jump superoperator on the reduced density of the electronic-photonic quantum subsystem. We investigate the azomethane molecule and its photoinduced isomerization dynamics inside the cavity. Our results show the accuracy of the machine-learned dipoles and their usage in simulating polariton dynamics. Our polariton dynamics results also demonstrate the isomerization reaction of azomethane can be effectively tuned by coupling to an optical cavity and by changing the light-matter coupling strength and the cavity loss rate.
Collapse
Affiliation(s)
- Deping Hu
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Pengfei Huo
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
42
|
Schäfer C, Baranov DG. Chiral Polaritonics: Analytical Solutions, Intuition, and Use. J Phys Chem Lett 2023; 14:3777-3784. [PMID: 37052302 PMCID: PMC10123817 DOI: 10.1021/acs.jpclett.3c00286] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Preferential selection of a given enantiomer over its chiral counterpart has become increasingly relevant in the advent of the next era of medical drug design. In parallel, cavity quantum electrodynamics has grown into a solid framework to control energy transfer and chemical reactivity, the latter requiring strong coupling. In this work, we derive an analytical solution to a system of many chiral emitters interacting with a chiral cavity similar to the widely used Tavis-Cummings and Hopfield models of quantum optics. We are able to estimate the discriminating strength of chiral polaritonics, discuss possible future development directions and exciting applications such as elucidating homochirality, and deliver much needed intuition to foster the newly flourishing field of chiral polaritonics.
Collapse
Affiliation(s)
- Christian Schäfer
- MC2
Department, Chalmers University of Technology, 41258 Gothenburg, Sweden
| | - Denis G. Baranov
- Center
for Photonics and 2D Materials, Moscow Institute
of Physics and Technology, Dolgoprudny 141700, Russia
| |
Collapse
|
43
|
Li TE, Hammes-Schiffer S. QM/MM Modeling of Vibrational Polariton Induced Energy Transfer and Chemical Dynamics. J Am Chem Soc 2023; 145:377-384. [PMID: 36574620 DOI: 10.1021/jacs.2c10170] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Vibrational strong coupling (VSC) provides a novel means to modify chemical reactions and energy transfer pathways. To efficiently model chemical dynamics under VSC in the collective regime, herein a hybrid quantum mechanical/molecular mechanical (QM/MM) cavity molecular dynamics (CavMD) scheme is developed and applied to an experimentally studied chemical system. This approach can achieve linear scaling with respect to the number of molecules for a dilute solution under VSC by assuming that each QM solute molecule is surrounded by an independent MM solvent bath. Application of this approach to a dilute solution of Fe(CO)5 in n-dodecane under VSC demonstrates polariton dephasing to the dark modes and polariton-enhanced molecular nonlinear absorption. These simulations predict that strongly exciting the lower polariton may provide an energy transfer pathway that selectively excites the equatorial CO vibrations rather than the axial CO vibrations. Moreover, these simulations also directly probe the cavity effect on the dynamics of the Fe(CO)5 Berry pseudorotation reaction for comparison to recent two-dimensional infrared spectroscopy experiments. This theoretical approach is applicable to a wide range of other polaritonic systems and provides a tool for exploring the use of VSC for selective infrared photochemistry.
Collapse
Affiliation(s)
- Tao E Li
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | | |
Collapse
|
44
|
Schäfer C, Flick J, Ronca E, Narang P, Rubio A. Shining light on the microscopic resonant mechanism responsible for cavity-mediated chemical reactivity. Nat Commun 2022; 13:7817. [PMID: 36535939 PMCID: PMC9763331 DOI: 10.1038/s41467-022-35363-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Strong light-matter interaction in cavity environments is emerging as a promising approach to control chemical reactions in a non-intrusive and efficient manner. The underlying mechanism that distinguishes between steering, accelerating, or decelerating a chemical reaction has, however, remained unclear, hampering progress in this frontier area of research. We leverage quantum-electrodynamical density-functional theory to unveil the microscopic mechanism behind the experimentally observed reduced reaction rate under cavity induced resonant vibrational strong light-matter coupling. We observe multiple resonances and obtain the thus far theoretically elusive but experimentally critical resonant feature for a single strongly coupled molecule undergoing the reaction. While we describe only a single mode and do not explicitly account for collective coupling or intermolecular interactions, the qualitative agreement with experimental measurements suggests that our conclusions can be largely abstracted towards the experimental realization. Specifically, we find that the cavity mode acts as mediator between different vibrational modes. In effect, vibrational energy localized in single bonds that are critical for the reaction is redistributed differently which ultimately inhibits the reaction.
Collapse
Affiliation(s)
- Christian Schäfer
- Max Planck Institute for the Structure and Dynamics of Matter and Center for Free-Electron Laser Science & Department of Physics, Hamburg, Germany.
- The Hamburg Center for Ultrafast Imaging, Hamburg, Germany.
- Department of Physics, Chalmers University of Technology, Göteborg, Sweden.
- Department of Microtechnology and Nanoscience, MC2, Chalmers University of Technology, Göteborg, Sweden.
| | - Johannes Flick
- Center for Computational Quantum Physics, Flatiron Institute, New York, NY, USA.
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
- Department of Physics, City College of New York, New York, NY, USA.
- Department of Physics, The Graduate Center, City University of New York, New York, NY, USA.
| | - Enrico Ronca
- Istituto per i Processi Chimico Fisici del CNR (IPCF-CNR), Pisa, Italy.
| | - Prineha Narang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
- Physical Sciences, College of Letters and Science, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Angel Rubio
- Max Planck Institute for the Structure and Dynamics of Matter and Center for Free-Electron Laser Science & Department of Physics, Hamburg, Germany.
- The Hamburg Center for Ultrafast Imaging, Hamburg, Germany.
- Center for Computational Quantum Physics, Flatiron Institute, New York, NY, USA.
| |
Collapse
|
45
|
Chowdhury SN, Zhang P, Beratan DN. Interference between Molecular and Photon Field-Mediated Electron Transfer Coupling Pathways in Cavities. J Phys Chem Lett 2022; 13:9822-9828. [PMID: 36240481 DOI: 10.1021/acs.jpclett.2c02496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cavity polaritonics creates novel opportunities to direct chemical reactions. Electron transfer (ET) reactions are among the simplest reactions, and they underpin energy conversion. New strategies to manipulate and direct electron flow at the nanoscale are of particular interest in biochemistry, energy science, bioinspired materials science, and chemistry. We show that optical cavities can modulate electron transfer pathway interferences and ET rates in donor-bridge-acceptor (DBA) systems. We derive the rate for DBA electron transfer when the molecules are coupled to cavity modes, emphasizing novel cavity-induced pathway interferences with the molecular electronic coupling pathways, as these interferences allow a new kind of ET rate tuning. The interference between the cavity-induced coupling pathways and the intrinsic molecular coupling pathway is dependent on the cavity properties. Thus, manipulating the interference between the cavity-induced DA coupling and the bridge-mediated coupling offers an approach to direct and manipulate charge flow at the nanoscale.
Collapse
Affiliation(s)
- Sutirtha N Chowdhury
- Department of Chemistry, Duke University, Durham, North Carolina27708, United States
| | - Peng Zhang
- Department of Chemistry, Duke University, Durham, North Carolina27708, United States
| | - David N Beratan
- Department of Chemistry and Department of Physics, Duke University, Durham, North Carolina27708, United States
- Department of Biochemistry, Duke University, Durham, North Carolina27710, United States
| |
Collapse
|
46
|
Cohn B, Sufrin S, Basu A, Chuntonov L. Vibrational Polaritons in Disordered Molecular Ensembles. J Phys Chem Lett 2022; 13:8369-8375. [PMID: 36043884 PMCID: PMC9465717 DOI: 10.1021/acs.jpclett.2c02341] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/26/2022] [Indexed: 06/12/2023]
Abstract
Disorder is an intrinsic attribute of any realistic molecular system. It is known to lead to localization, which hampers efficient transport. It was recently proposed that in molecular ensembles strongly coupled to photonic cavities, moderate disorder leads to delocalization and increases of the transport and chemical reaction rates. Vibrational polaritons involve molecular vibrations hybridized with an infrared cavity. When the coupling strength largely exceeds the molecular inhomogeneity, polaritons are unaffected by disorder. However, in many experiments, such a homogeneous limit does not apply. We investigated vibrational polaritons involving molecular ensembles with systematically modified disorder. Counterintuitively, moderate disorder leads to an increase in Rabi splitting and the modification of the polariton bandwidths. Experimental spectroscopic data agree with a Tavis-Cummings-like model that suggests enhanced delocalization of the reservoir states occurs via the admixture of the cavity mode. Our results provide new insights into the paradigm of disorder-induced cavity-assisted delocalization in molecular polaritons.
Collapse
Affiliation(s)
- Bar Cohn
- Schulich
Faculty of Chemistry, Solid State Institute, Faculty of Mechanical Engineering, Technion−Israel Institute of Technology, Haifa 3200003, Israel
| | - Shmuel Sufrin
- Schulich
Faculty of Chemistry, Solid State Institute, Faculty of Mechanical Engineering, Technion−Israel Institute of Technology, Haifa 3200003, Israel
| | - Arghyadeep Basu
- Schulich
Faculty of Chemistry, Solid State Institute, Faculty of Mechanical Engineering, Technion−Israel Institute of Technology, Haifa 3200003, Israel
| | - Lev Chuntonov
- Schulich
Faculty of Chemistry, Solid State Institute, Faculty of Mechanical Engineering, Technion−Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
47
|
Zhou W, Hu D, Mandal A, Huo P. Nuclear Gradient Expressions for Molecular Cavity Quantum ElectrodynamicsSimulations using Mixed Quantum-Classical Methods. J Chem Phys 2022; 157:104118. [DOI: 10.1063/5.0109395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We derive a rigorous nuclear gradient for a molecule-cavity hybrid system using the Quantum Electrodynamics Hamiltonian. We treat the electronic-photonic DOFs as the quantum subsystem, and the nuclei as the classical subsystem. Using the adiabatic basis for the electronic DOF and the Fock basis for the photonic DOF, and requiring the total energy conservation of this mixed quantum-classical system, we derived the rigorous nuclear gradient for the molecule-cavity hybrid system, which is naturally connected to the approximate gradient under the Jaynes-Cummings approximation. The nuclear gradient expression can be readily used in any mixed quantum-classical simulations and will allow one to perform the non-adiabatic on-the-fly simulation of polariton quantum dynamics. The theoretical developments in this work could significantly benefit the polariton quantum dynamics community with a rigorous nuclear gradient of the molecule-cavity hybrid system and have a broad impact on the future non-adiabatic simulations of polariton quantum dynamics.
Collapse
Affiliation(s)
| | - Deping Hu
- University of Rochester, United States of America
| | | | - Pengfei Huo
- Department of Chemsitry, University of Rochester Department of Chemistry, United States of America
| |
Collapse
|
48
|
Schäfer C. Polaritonic Chemistry from First Principles via Embedding Radiation Reaction. J Phys Chem Lett 2022; 13:6905-6911. [PMID: 35866694 PMCID: PMC9358701 DOI: 10.1021/acs.jpclett.2c01169] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
The coherent interaction of a large collection of molecules with a common photonic mode results in strong light-matter coupling, a feature that has proven highly beneficial for chemistry and has introduced the research topics polaritonic and QED chemistry. Here, we demonstrate an embedding approach to capture the collective nature while retaining the full ab initio representation of single molecules─an approach ideal for polaritonic chemistry. The accuracy of the embedding radiation-reaction ansatz is demonstrated for time-dependent density-functional theory. Then, by virtue of a simple proton-tunneling model, we illustrate that the influence of collective strong coupling on chemical reactions features a nontrivial dependence on the number of emitters and can alternate between strong catalyzing and an inhibiting effect. Bridging classical electrodynamics, quantum optical descriptions, and the ab initio description of realistic molecules, this work can serve as a guiding light for future developments and investigations in the quickly growing fields of QED chemistry and QED material design.
Collapse
Affiliation(s)
- Christian Schäfer
- Department of Microtechnology and Nanoscience,
MC2, Chalmers University of Technology, 412 96 Göteborg, Sweden
| |
Collapse
|
49
|
Peruffo N, Mancin F, Collini E. Ultrafast Dynamics of Multiple Plexcitons in Colloidal Nanomaterials: The Mediating Action of Plasmon Resonances and Dark States. J Phys Chem Lett 2022; 13:6412-6419. [PMID: 35815626 PMCID: PMC9310092 DOI: 10.1021/acs.jpclett.2c01750] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Plexcitons, that is, mixed plasmon-exciton states, are currently gaining broad interest to control the flux of energy at the nanoscale. Several promising properties of plexcitonic materials have already been revealed, but the debate about their ultrafast dynamic properties is still vibrant. Here, pump-probe spectroscopy is used to characterize the ultrafast dynamics of colloidal nanohybrids prepared by coupling gold nanoparticles and porphyrin dyes, where one or two sets of plexcitonic resonances can be selectively activated. We found that these dynamics are strongly affected by the presence of a reservoir of states including plasmon resonances and dark states. The time constants regulating the plexciton relaxations are significantly longer than the typical values found in the literature and can be modulated over more than 1 order of magnitude, opening possible interesting perspectives to modify rates of chemically relevant molecular processes.
Collapse
Affiliation(s)
- Nicola Peruffo
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Fabrizio Mancin
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Elisabetta Collini
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
- Padua
Quantum Technologies Research Center, 35122 Padova, Italy
| |
Collapse
|
50
|
Berghuis AM, Tichauer RH, de Jong LMA, Sokolovskii I, Bai P, Ramezani M, Murai S, Groenhof G, Gómez Rivas J. Controlling Exciton Propagation in Organic Crystals through Strong Coupling to Plasmonic Nanoparticle Arrays. ACS PHOTONICS 2022; 9:2263-2272. [PMID: 35880071 PMCID: PMC9306002 DOI: 10.1021/acsphotonics.2c00007] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Exciton transport in most organic materials is based on an incoherent hopping process between neighboring molecules. This process is very slow, setting a limit to the performance of organic optoelectronic devices. In this Article, we overcome the incoherent exciton transport by strongly coupling localized singlet excitations in a tetracene crystal to confined light modes in an array of plasmonic nanoparticles. We image the transport of the resulting exciton-polaritons in Fourier space at various distances from the excitation to directly probe their propagation length as a function of the exciton to photon fraction. Exciton-polaritons with an exciton fraction of 50% show a propagation length of 4.4 μm, which is an increase by 2 orders of magnitude compared to the singlet exciton diffusion length. This remarkable increase has been qualitatively confirmed with both finite-difference time-domain simulations and atomistic multiscale molecular dynamics simulations. Furthermore, we observe that the propagation length is modified when the dipole moment of the exciton transition is either parallel or perpendicular to the cavity field, which opens a new avenue for controlling the anisotropy of the exciton flow in organic crystals. The enhanced exciton-polariton transport reported here may contribute to the development of organic devices with lower recombination losses and improved performance.
Collapse
Affiliation(s)
- Anton Matthijs Berghuis
- Department
of Applied Physics and Eindhoven Hendrik Casimir Institute, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Ruth H. Tichauer
- Nanoscience
Center and Department of Chemistry, University
of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland
| | - Lianne M. A. de Jong
- Department
of Applied Physics and Eindhoven Hendrik Casimir Institute, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Ilia Sokolovskii
- Nanoscience
Center and Department of Chemistry, University
of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland
| | - Ping Bai
- Department
of Applied Physics and Eindhoven Hendrik Casimir Institute, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Mohammad Ramezani
- Department
of Applied Physics and Eindhoven Hendrik Casimir Institute, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Shunsuke Murai
- Department
of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo, 6158510, Kyoto, Japan
| | - Gerrit Groenhof
- Nanoscience
Center and Department of Chemistry, University
of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland
| | - Jaime Gómez Rivas
- Department
of Applied Physics and Eindhoven Hendrik Casimir Institute, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Institute
for Complex Molecular Systems ICMS, Eindhoven
University of Technology, P.O. Box 513, 5612 AJ, Eindhoven, The Netherlands
| |
Collapse
|