1
|
Kanao E, Ishihama Y. StageTip: a little giant unveiling the potential of mass spectrometry-based proteomics. ANAL SCI 2025; 41:667-675. [PMID: 40138149 PMCID: PMC12064472 DOI: 10.1007/s44211-025-00749-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 03/06/2025] [Indexed: 03/29/2025]
Abstract
This review highlights the growing impact of StageTips (Stop and Go Extraction Tips), a pipette tip-based LC column in MS-based proteomics. By packing standard pipette tips with reversed-phase, ion-exchange, or metal oxide materials, StageTips enable efficient peptide desalting, fractionation, selective enrichment, and in-tip reactions with minimal sample loss. Recent improvements, including new resin designs and integrated workflows, have further expanded the applications to phosphoproteomics, protein terminomics, and single-cell proteomics. With their simplicity, high reproducibility, and low cost, StageTips offer a versatile platform that can be seamlessly integrated into automated pipelines, increasing the throughput and the depth of proteome analysis. As materials and protocols continue to evolve, StageTips will continue to develop as an essential keystone for robust sample preparation in next-generation proteomics research.
Collapse
Affiliation(s)
- Eisuke Kanao
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan.
- Laboratory of Proteomics for Drug Discovery, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 567-0085, Japan.
| | - Yasushi Ishihama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan.
- Laboratory of Proteomics for Drug Discovery, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 567-0085, Japan.
| |
Collapse
|
2
|
Tarasova K, Arteaga MB, Kidtiwong A, Gueltekin S, Bileck A, Gerner C, Gerner I, Jenner F. Dexamethasone: a double-edged sword in the treatment of osteoarthritis. Sci Rep 2025; 15:11832. [PMID: 40195473 PMCID: PMC11976973 DOI: 10.1038/s41598-025-96050-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 03/25/2025] [Indexed: 04/09/2025] Open
Abstract
Glucocorticoids are widely used to manage osteoarthritis (OA) symptoms, but long-term safety concerns exist. This study investigates the therapeutic potential of dexamethasone (DEX) and triamcinolone acetonide (TA) in chondrocytes, evaluating their anti-inflammatory effects and potential detrimental actions. This study evaluated the effects of DEX and TA on the expression of pro-inflammatory genes in inflamed chondrocytes. In addition, the effects of DEX treatment on chondrocytes were analyzed using next-generation sequencing, high-resolution mass spectrometry, proliferation and metabolic rate, wound healing capacity and senescence-associated B-galactosidase assays. A single therapeutic dose of DEX (40nM) effectively reduced the expression of inflammatory genes in chondrocytes, while TA showed no such effect. DEX significantly reduced inflammation but also ECM production in inflamed chondrocytes. At 24 h, DEX treatment led to 168 differentially expressed genes (DEGs) compared to untreated inflamed cells, decreasing to 5 DEGs by 48 h, indicating a rapidly diminishing anti-inflammatory effect. Conversely, the difference between DEX-treated and healthy cells increased over time, from 666 DEGs at 24 h to 1317 DEGs at 48 h. Pathway analysis revealed potential disruptions in cell cycle, mitosis, and ECM homeostasis in DEX-treated cells compared to both healthy and inflamed controls. Interestingly, repeated DEX administration at both a therapeutic (40nM) and a high dose (1µM) induced senescence in healthy cells but not in inflamed cells. In contrast, repeated high-dose DEX reduced apoptosis marker Caspase 3/7 in inflamed but not healthy cells. Despite the transient suppression of inflammation achieved with DEX treatment, the observed decrease in ECM production and induction of senescence in healthy chondrocytes at therapeutic doses, along with apoptosis in inflamed cells at higher doses, underscore the need for caution in its intra-articular administration.
Collapse
Affiliation(s)
- Karyna Tarasova
- VETERM, Equine Surgery Unit, Centre for Equine Health and Research, Department for Small Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Maria Belen Arteaga
- VETERM, Equine Surgery Unit, Centre for Equine Health and Research, Department for Small Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Angkana Kidtiwong
- VETERM, Equine Surgery Unit, Centre for Equine Health and Research, Department for Small Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Sinan Gueltekin
- VETERM, Equine Surgery Unit, Centre for Equine Health and Research, Department for Small Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Andrea Bileck
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Iris Gerner
- VETERM, Equine Surgery Unit, Centre for Equine Health and Research, Department for Small Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Florien Jenner
- VETERM, Equine Surgery Unit, Centre for Equine Health and Research, Department for Small Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria.
- Austrian Cluster for Tissue Regeneration, Vienna, Austria.
| |
Collapse
|
3
|
Steinbach MK, Leipert J, Matzanke T, Tholey A. Digital Microfluidics for Sample Preparation in Low-Input Proteomics. SMALL METHODS 2025; 9:e2400495. [PMID: 39205538 PMCID: PMC11740955 DOI: 10.1002/smtd.202400495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Low-input proteomics, also referred to as micro- or nanoproteomics, has become increasingly popular as it allows one to elucidate molecular processes in rare biological materials. A major prerequisite for the analytics of minute protein amounts, e.g., derived from low cell numbers, down to single cells, is the availability of efficient sample preparation methods. Digital microfluidics (DMF), a technology allowing the handling and manipulation of low liquid volumes, has recently been shown to be a powerful and versatile tool to address the challenges in low-input proteomics. Here, an overview is provided on recent advances in proteomics sample preparation using DMF. In particular, the capability of DMF to isolate proteomes from cells and small model organisms, and to perform all necessary chemical sample preparation steps, such as protein denaturation and proteolytic digestion on-chip, are highlighted. Additionally, major prerequisites to making these steps compatible with follow-up analytical methods such as liquid chromatography-mass spectrometry will be discussed.
Collapse
Affiliation(s)
- Max K. Steinbach
- Systematic Proteome Research & BioanalyticsInstitute for Experimental MedicineChristian‐Albrechts‐Universität zu Kiel24105KielGermany
| | - Jan Leipert
- Systematic Proteome Research & BioanalyticsInstitute for Experimental MedicineChristian‐Albrechts‐Universität zu Kiel24105KielGermany
| | - Theo Matzanke
- Systematic Proteome Research & BioanalyticsInstitute for Experimental MedicineChristian‐Albrechts‐Universität zu Kiel24105KielGermany
| | - Andreas Tholey
- Systematic Proteome Research & BioanalyticsInstitute for Experimental MedicineChristian‐Albrechts‐Universität zu Kiel24105KielGermany
| |
Collapse
|
4
|
Kanao E, Tanaka S, Tomioka A, Ogata K, Tanigawa T, Kubo T, Ishihama Y. High-Recovery Desalting Tip Columns for a Wide Variety of Peptides in Mass Spectrometry-Based Proteomics. Anal Chem 2024; 96:20390-20397. [PMID: 39679664 PMCID: PMC11696827 DOI: 10.1021/acs.analchem.4c03753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 12/17/2024]
Abstract
In mass spectrometry-based proteomics, loss-minimized peptide purification techniques play a key role in improving sensitivity and coverage. We have developed a desalting tip column packed with thermoplastic polymer-coated chromatographic particles, named ChocoTip, to achieve high recoveries in peptide purification by pipet-tip-based LC with centrifugation (tipLC). ChocoTip identified more than twice as many peptides from 20 ng of tryptic peptides from Hela cell lysate compared to a typical StageTip packed with chromatographic particles entangled in a Teflon mesh in tipLC. The high recovery of ChocoTip in tipLC was maintained for peptides with a wide variety of physical properties over the entire retention time range of the LC-MS/MS analysis, and was especially noteworthy for peptides with long retention times. These excellent properties are attributable to the unique morphology of ChocoTip, in which the thermoplastic polymer covers the pores, thereby inhibiting irreversible adsorption of peptides into mesopores of the chromatographic particles. ChocoTip is expected to find applications, especially in clinical proteomics and single-cell proteomics, where sample amounts are limited.
Collapse
Affiliation(s)
- Eisuke Kanao
- Graduate
School of Pharmaceutical Sciences, Kyoto
University, Kyoto 606−8501, Japan
- Laboratory
of Proteomics for Drug Discovery, National
Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| | - Shunsuke Tanaka
- Graduate
School of Pharmaceutical Sciences, Kyoto
University, Kyoto 606−8501, Japan
| | - Ayana Tomioka
- Graduate
School of Pharmaceutical Sciences, Kyoto
University, Kyoto 606−8501, Japan
| | - Kosuke Ogata
- Graduate
School of Pharmaceutical Sciences, Kyoto
University, Kyoto 606−8501, Japan
| | - Tetsuya Tanigawa
- Graduate
School of Pharmaceutical Sciences, Kyoto
University, Kyoto 606−8501, Japan
| | - Takuya Kubo
- Graduate
School of Life and Environmental Science, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Yasushi Ishihama
- Graduate
School of Pharmaceutical Sciences, Kyoto
University, Kyoto 606−8501, Japan
- Laboratory
of Proteomics for Drug Discovery, National
Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| |
Collapse
|
5
|
Martin KR, Le HT, Abdelgawad A, Yang C, Lu G, Keffer JL, Zhang X, Zhuang Z, Asare-Okai PN, Chan CS, Batish M, Yu Y. Development of an efficient, effective, and economical technology for proteome analysis. CELL REPORTS METHODS 2024; 4:100796. [PMID: 38866007 PMCID: PMC11228373 DOI: 10.1016/j.crmeth.2024.100796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/21/2024] [Accepted: 05/20/2024] [Indexed: 06/14/2024]
Abstract
We present an efficient, effective, and economical approach, named E3technology, for proteomics sample preparation. By immobilizing silica microparticles into the polytetrafluoroethylene matrix, we develop a robust membrane medium, which could serve as a reliable platform to generate proteomics-friendly samples in a rapid and low-cost fashion. We benchmark its performance using different formats and demonstrate them with a variety of sample types of varied complexity, quantity, and volume. Our data suggest that E3technology provides proteome-wide identification and quantitation performance equivalent or superior to many existing methods. We further propose an enhanced single-vessel approach, named E4technology, which performs on-filter in-cell digestion with minimal sample loss and high sensitivity, enabling low-input and low-cell proteomics. Lastly, we utilized the above technologies to investigate RNA-binding proteins and profile the intact bacterial cell proteome.
Collapse
Affiliation(s)
- Katherine R Martin
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Ha T Le
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Ahmed Abdelgawad
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; Department of Medical and Molecular Sciences, University of Delaware, Newark, DE 19716, USA
| | - Canyuan Yang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Guotao Lu
- CDS Analytical, LLC, Oxford, PA 19363, USA
| | - Jessica L Keffer
- Department of Earth Sciences, University of Delaware, Newark, DE 19716, USA
| | | | - Zhihao Zhuang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Papa Nii Asare-Okai
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Clara S Chan
- Department of Earth Sciences, University of Delaware, Newark, DE 19716, USA; School of Marine Science and Policy, University of Delaware, Newark, DE 19716, USA
| | - Mona Batish
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; Department of Medical and Molecular Sciences, University of Delaware, Newark, DE 19716, USA.
| | - Yanbao Yu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
6
|
Greguš M, Koller A, Ray S, Ivanov AR. Improved Data Acquisition Settings on Q Exactive HF-X and Fusion Lumos Tribrid Orbitrap-Based Mass Spectrometers for Proteomic Analysis of Limited Samples. J Proteome Res 2024; 23:2230-2240. [PMID: 38690845 PMCID: PMC11165581 DOI: 10.1021/acs.jproteome.4c00181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/03/2024]
Abstract
Deep proteomic profiling of complex biological and medical samples available at low nanogram and subnanogram levels is still challenging. Thorough optimization of settings, parameters, and conditions in nanoflow liquid chromatography-tandem mass spectrometry (MS)-based proteomic profiling is crucial for generating informative data using amount-limited samples. This study demonstrates that by adjusting selected instrument parameters, e.g., ion injection time, automated gain control, and minimally altering the conditions for resuspending or storing the sample in solvents of different compositions, up to 15-fold more thorough proteomic profiling can be achieved compared to conventionally used settings. More specifically, the analysis of 1 ng of the HeLa protein digest standard by Q Exactive HF-X Hybrid Quadrupole-Orbitrap and Orbitrap Fusion Lumos Tribrid mass spectrometers yielded an increase from 1758 to 5477 (3-fold) and 281 to 4276 (15-fold) peptides, respectively, demonstrating that higher protein identification results can be obtained using the optimized methods. While the instruments applied in this study do not belong to the latest generation of mass spectrometers, they are broadly used worldwide, which makes the guidelines for improving performance desirable to a wide range of proteomics practitioners.
Collapse
Affiliation(s)
- Michal Greguš
- Barnett Institute of Chemical
and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave., Boston, Massachusetts 02115, United States
| | - Antonius Koller
- Barnett Institute of Chemical
and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave., Boston, Massachusetts 02115, United States
| | - Somak Ray
- Barnett Institute of Chemical
and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave., Boston, Massachusetts 02115, United States
| | - Alexander R. Ivanov
- Barnett Institute of Chemical
and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave., Boston, Massachusetts 02115, United States
| |
Collapse
|
7
|
Gent L, Chiappetta ME, Hesketh S, Palmowski P, Porter A, Bonicelli A, Schwalbe EC, Procopio N. Bone Proteomics Method Optimization for Forensic Investigations. J Proteome Res 2024; 23:1844-1858. [PMID: 38621258 PMCID: PMC11077585 DOI: 10.1021/acs.jproteome.4c00151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/30/2024] [Accepted: 04/03/2024] [Indexed: 04/17/2024]
Abstract
The application of proteomic analysis to forensic skeletal remains has gained significant interest in improving biological and chronological estimations in medico-legal investigations. To enhance the applicability of these analyses to forensic casework, it is crucial to maximize throughput and proteome recovery while minimizing interoperator variability and laboratory-induced post-translational protein modifications (PTMs). This work compared different workflows for extracting, purifying, and analyzing bone proteins using liquid chromatography with tandem mass spectrometry (LC-MS)/MS including an in-StageTip protocol previously optimized for forensic applications and two protocols using novel suspension-trap technology (S-Trap) and different lysis solutions. This study also compared data-dependent acquisition (DDA) with data-independent acquisition (DIA). By testing all of the workflows on 30 human cortical tibiae samples, S-Trap workflows resulted in increased proteome recovery with both lysis solutions tested and in decreased levels of induced deamidations, and the DIA mode resulted in greater sensitivity and window of identification for the identification of lower-abundance proteins, especially when open-source software was utilized for data processing in both modes. The newly developed S-Trap protocol is, therefore, suitable for forensic bone proteomic workflows and, particularly when paired with DIA mode, can offer improved proteomic outcomes and increased reproducibility, showcasing its potential in forensic proteomics and contributing to achieving standardization in bone proteomic analyses for forensic applications.
Collapse
Affiliation(s)
- Luke Gent
- School
of Law and Policing, Research Centre for Field Archaeology and Forensic
Taphonomy, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Maria Elena Chiappetta
- School
of Law and Policing, Research Centre for Field Archaeology and Forensic
Taphonomy, University of Central Lancashire, Preston PR1 2HE, United Kingdom
- Department
of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Arcavacata
di Rende 87036, Italy
| | - Stuart Hesketh
- School
of Medicine, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Pawel Palmowski
- NUPPA
Facility, Medical School, Newcastle University, Newcastle Upon Tyne NE1
7RU, United Kingdom
| | - Andrew Porter
- NUPPA
Facility, Medical School, Newcastle University, Newcastle Upon Tyne NE1
7RU, United Kingdom
| | - Andrea Bonicelli
- School
of Law and Policing, Research Centre for Field Archaeology and Forensic
Taphonomy, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Edward C. Schwalbe
- Department
of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1
8ST, United Kingdom
| | - Noemi Procopio
- School
of Law and Policing, Research Centre for Field Archaeology and Forensic
Taphonomy, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| |
Collapse
|
8
|
Zimmerman AJ, Greguš M, Ivanov AR. Comprehensive Micro-SPE-Based Bottom-Up Proteomic Workflow for Sensitive Analysis of Limited Samples. Methods Mol Biol 2024; 2817:19-31. [PMID: 38907144 DOI: 10.1007/978-1-0716-3934-4_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Clinical and biological samples are often scarce and precious (e.g., rare cell isolates, microneedle tissue biopsies, small-volume liquid biopsies, and even single cells or organelles). Typical large-scale proteomic methods, where significantly higher protein amounts are analyzed, are not directly transferable to the analysis of limited samples due to their incompatibility with pg-, ng-, and low-μg-level protein sample amounts. Here, we report the on-microsolid-phase extraction tip (OmSET)-based sample preparation workflow for sensitive analysis of limited biological samples to address this challenge. The developed platform was successfully tested for the analysis of 100-10,000 typical mammalian cells and is scalable to allow for lower and larger protein amounts and more samples to be analyzed (i.e., higher throughput of analysis).
Collapse
Affiliation(s)
- Alan J Zimmerman
- Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA, USA
| | - Michal Greguš
- Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA, USA
| | - Alexander R Ivanov
- Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA, USA.
| |
Collapse
|
9
|
Li J, Huang L, Guo Y, Cupp-Sutton KA, Wu S. An automated spray-capillary platform for the microsampling and CE-MS analysis of picoliter- and nanoliter-volume samples. Anal Bioanal Chem 2023; 415:6961-6973. [PMID: 37581707 PMCID: PMC10843549 DOI: 10.1007/s00216-023-04870-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/01/2023] [Accepted: 07/04/2023] [Indexed: 08/16/2023]
Abstract
Capillary electrophoresis mass spectrometry (CE-MS) is an emerging analytical tool for microscale biological sample analysis that offers high separation resolution, low detection limit, and low sample consumption. We recently developed a novel microsampling device, "spray-capillary," for quantitative low-volume sample extraction (as low as 15 pL/s) and online CE-MS analysis. This platform can efficiently analyze picoliter samples (e.g., single cells) with minimal sample loss and no additional offline sample-handling steps. However, our original spray-capillary-based experiments required manual manipulation of the sample inlet for sample collection and separation, which is time consuming and requires proficiency in device handling. To optimize the performance of spray-capillary CE-MS analysis, we developed an automated platform for robust, high-throughput analysis of picoliter samples using a commercially available CE autosampler. Our results demonstrated high reproducibility among 50 continuous runs using the standard peptide angiotensin II (Ang II), with an RSD of 14.70% and 0.62% with respect to intensity and elution time, respectively. We also analyzed Ang II using varying injection times to evaluate the capability of the spray-capillary to perform quantitative sampling and found high linearity for peptide intensity with respect to injection time (R2 > 0.99). These results demonstrate the capability of the spray-capillary sampling platform for high-throughput quantitative analysis of low-volume, low-complexity samples using pressure elution (e.g., direct injection). To further evaluate and optimize the automated spray-capillary platform to analyze complex biological samples, we performed online CE-MS analysis on Escherichia coli lysate digest spiked with Ang II using varying injection times. We maintained high linearity of intensity with respect to injection time for Ang II and E. coli peptides (R2 > 0.97 in all cases). Furthermore, we observed good CE separation and high reproducibility between automated runs. Overall, we demonstrated that the automated spray-capillary CE-MS platform can efficiently and reproducibly sample picoliter and nanoliter biological samples for high-throughput proteomics analysis.
Collapse
Affiliation(s)
- Jiaxue Li
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Room 2210, Norman, OK, 73019, USA
| | - Lushuang Huang
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Room 2210, Norman, OK, 73019, USA
| | - Yanting Guo
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Room 2210, Norman, OK, 73019, USA
| | - Kellye A Cupp-Sutton
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Room 2210, Norman, OK, 73019, USA.
| | - Si Wu
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Room 2210, Norman, OK, 73019, USA.
| |
Collapse
|
10
|
Greguš M, Ivanov AR, Wilson SR. Ultralow flow liquid chromatography and related approaches: A focus on recent bioanalytical applications. J Sep Sci 2023; 46:e2300440. [PMID: 37528733 PMCID: PMC11087205 DOI: 10.1002/jssc.202300440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/03/2023]
Abstract
Ultralow flow LC employs ultra-narrow bore columns and mid-range pL/min to low nL/min flow rates (i.e., ≤20 nL/min). The separation columns that are used under these conditions are typically 2-30 μm in inner diameter. Ultralow flow LC systems allow for exceptionally high sensitivity and frequently high resolution. There has been an increasing interest in the analysis of scarce biological samples, for example, circulating tumor cells, extracellular vesicles, organelles, and single cells, and ultralow flow LC was efficiently applied to such samples. Hence, advances towards dedicated ultralow flow LC instrumentation, technical approaches, and higher throughput (e.g., tens-to-hundreds of single cells analyzed per day) were recently made. Here, we review the types of ultralow flow LC technology, followed by a discussion of selected representative ultralow flow LC applications, focusing on the progress made in bioanalysis of amount-limited samples during the last 10 years. We also discuss several recently reported high-sensitivity applications utilizing flow rates up to 100 nL/min, which are below commonly used nanoLC flow rates. Finally, we discuss the path forward for future developments of ultralow flow LC.
Collapse
Affiliation(s)
- Michal Greguš
- Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, Massachusetts, USA
| | - Alexander R. Ivanov
- Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, Massachusetts, USA
| | - Steven Ray Wilson
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Department of Chemistry, University of Oslo, Oslo, Norway
| |
Collapse
|
11
|
Bagwe K, Gould N, Johnson KR, Ivanov AR. Single-cell omic molecular profiling using capillary electrophoresis-mass spectrometry. Trends Analyt Chem 2023; 165:117117. [PMID: 37388554 PMCID: PMC10306258 DOI: 10.1016/j.trac.2023.117117] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Tissues and other cell populations are highly heterogeneous at the cellular level, owing to differences in expression and modifications of proteins, polynucleotides, metabolites, and lipids. The ability to assess this heterogeneity is crucial in understanding numerous biological phenomena, including various pathologies. Traditional analyses apply bulk-cell sampling, which masks the potentially subtle differences between cells that can be important in understanding of biological processes. These limitations due to cell heterogeneity inspired significant efforts and interest toward the analysis of smaller sample sizes, down to the level of individual cells. Among the emerging techniques, the unique capabilities of capillary electrophoresis coupled with mass spectrometry (CE-MS) made it a prominent technique for proteomics and metabolomics analysis at the single-cell level. In this review, we focus on the application of CE-MS in the proteomic and metabolomic profiling of single cells and highlight the recent advances in sample preparation, separation, MS acquisition, and data analysis.
Collapse
Affiliation(s)
- Ketki Bagwe
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave., Boston, MA, 02115, United States
| | - Noah Gould
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave., Boston, MA, 02115, United States
| | - Kendall R. Johnson
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave., Boston, MA, 02115, United States
| | - Alexander R. Ivanov
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave., Boston, MA, 02115, United States
| |
Collapse
|
12
|
Yu Y, Martin K, Le H, Yang C, Lu G, Zhang X, Grimes C, Zhuang Z, Asare-Okai PN. Development of an Efficient, Effective, and Economical Technology for Proteome Analysis. RESEARCH SQUARE 2023:rs.3.rs-3165690. [PMID: 37502920 PMCID: PMC10371162 DOI: 10.21203/rs.3.rs-3165690/v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Proteomics experiments have typically high economic and technical barriers to broad biomedical scientists, which not only result in costly supplies and accessories for sample preparation but also the reluctance to adapt new techniques. In the present study, we present an effective and efficient, yet economical technology, which we call E3technology, for proteomics sample preparation. By immobilizing silica microparticles into a polytetrafluoroethylene (PTFE) matrix, we developed a novel medium, which could be used as a robust and reliable proteomics platform to generate LCMS-friendly samples in a rapid and low-cost fashion. Using different formats of E3technology, including E3tip, E3filter, E3cartridge, and E3plate, we explored a variety of sample types in varied complexity, quantity, volume, and size, including bacterial, fungi, mammalian cells, mouse tissue, and human body fluids. We benchmark their performance against several established approaches. Our data suggest that E3technology outperforms many of the currently available techniques in terms of proteome identification and quantitation. It is widely applicable, highly reproducible, readily scalable and automatable, and is user-friendly and stress-free to non-expert proteomics laboratories. It does not require specialized expertise and equipment, and significantly lowers the technical and economical barrier to proteomics experiments. An enhanced version, E4technology, also opens new avenues to sample preparation for low input and/or low-cell proteomics analysis. The presented technologies by our study represent a breakthrough innovation in biomedical science, and we anticipate widespread adoption by the proteomics community.
Collapse
|
13
|
Dowling P, Gargan S, Zweyer M, Swandulla D, Ohlendieck K. Extracellular Matrix Proteomics: The mdx-4cv Mouse Diaphragm as a Surrogate for Studying Myofibrosis in Dystrophinopathy. Biomolecules 2023; 13:1108. [PMID: 37509144 PMCID: PMC10377647 DOI: 10.3390/biom13071108] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
The progressive degeneration of the skeletal musculature in Duchenne muscular dystrophy is accompanied by reactive myofibrosis, fat substitution, and chronic inflammation. Fibrotic changes and reduced tissue elasticity correlate with the loss in motor function in this X-chromosomal disorder. Thus, although dystrophinopathies are due to primary abnormalities in the DMD gene causing the almost-complete absence of the cytoskeletal Dp427-M isoform of dystrophin in voluntary muscles, the excessive accumulation of extracellular matrix proteins presents a key histopathological hallmark of muscular dystrophy. Animal model research has been instrumental in the characterization of dystrophic muscles and has contributed to a better understanding of the complex pathogenesis of dystrophinopathies, the discovery of new disease biomarkers, and the testing of novel therapeutic strategies. In this article, we review how mass-spectrometry-based proteomics can be used to study changes in key components of the endomysium, perimysium, and epimysium, such as collagens, proteoglycans, matricellular proteins, and adhesion receptors. The mdx-4cv mouse diaphragm displays severe myofibrosis, making it an ideal model system for large-scale surveys of systematic alterations in the matrisome of dystrophic fibers. Novel biomarkers of myofibrosis can now be tested for their appropriateness in the preclinical and clinical setting as diagnostic, pharmacodynamic, prognostic, and/or therapeutic monitoring indicators.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Margit Zweyer
- Department of Neonatology and Paediatric Intensive Care, Children's Hospital, German Center for Neurodegenerative Diseases, University of Bonn, D53127 Bonn, Germany
| | - Dieter Swandulla
- Institute of Physiology, Medical Faculty, University of Bonn, D53115 Bonn, Germany
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
14
|
Park N, Lee H, Kwon Y, Ju S, Lee S, Yoo S, Park KS, Lee C. One-STAGE Tip Method for TMT-Based Proteomic Analysis of a Minimal Amount of Cells. ACS OMEGA 2023; 8:19741-19751. [PMID: 37305273 PMCID: PMC10249390 DOI: 10.1021/acsomega.3c01392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/15/2023] [Indexed: 06/13/2023]
Abstract
Liquid chromatography-tandem mass spectrometry (LC-MS)-based profiling of proteomes with isobaric tag labeling from low-quantity biological and clinical samples, including needle-core biopsies and laser capture microdissection, has been challenging due to the limited amount and sample loss during preparation. To address this problem, we developed OnM (On-Column from Myers et al. and mPOP)-modified on-column method combining freeze-thaw lysis of mPOP with isobaric tag labeling of On-Column method to minimize sample loss. OnM is a method that processes the sample in one-STAGE tip from cell lysis to tandem mass tag (TMT) labeling without any transfer of the sample. In terms of protein coverage, cellular components, and TMT labeling efficiency, the modified On-Column (or OnM) displayed similar performance to the results from Myers et al. To evaluate the lower-limit processing capability of OnM, we utilized OnM for multiplexing and were able to quantify 301 proteins in a TMT 9-plex with 50 cells per channel. We optimized the method as low as 5 cells per channel in which we identified 51 quantifiable proteins. OnM method is a low-input proteomics method widely applicable and capable of identifying and quantifying proteomes from limited samples, with tools that are readily available in a majority of proteomic laboratories.
Collapse
Affiliation(s)
- Narae Park
- Chemical
& Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- KHU-KIST
Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea
| | - Hankyul Lee
- Chemical
& Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- KHU-KIST
Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea
| | - Yumi Kwon
- Chemical
& Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Shinyeong Ju
- Chemical
& Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Seonjeong Lee
- Chemical
& Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division
of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Seongjin Yoo
- Chemical
& Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division
of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Kang-Sik Park
- KHU-KIST
Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea
- Department
of Physiology, School of Medicine, Kyung
Hee University, Seoul 02447, Korea
| | - Cheolju Lee
- Chemical
& Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division
of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| |
Collapse
|
15
|
Zhao H, Chen Y, Li H, Zhang Y, Zhang W, Qin W. An angled-shape tip-based strategy for highly sensitive proteomic profiling of a low number of cells. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:1215-1222. [PMID: 36804579 DOI: 10.1039/d2ay01884e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Profiling proteins plays an essential role in understanding the functions and dynamic networks in biological systems. Mass spectrometry-based proteomic analysis commonly requires multistep sample processing, which results in severe sample loss. Although the recently developed microproteomic strategies have substantially reduced sample loss via droplet microfluidic technology, specialized equipment and well-trained personnel are needed, which may limit their wide adoption. Here, we report an angled-shape tip-based strategy for rapid sample preparation and sensitive proteomic profiling of small cell populations (<1000 cells). The angled-shape tip provided a 'reactor' for the entire proteomic sample processing workflow, from cell capture and lysis to protein digestion, eliminating the sample transfer-induced protein loss. The angled-shape tip was surface-treated for anti-protein adsorption which further reduced the sample loss. Using this strategy, 1241 ± 38-4110 ± 37 protein groups and 4010 ± 700-34 879 ± 575 peptides were identified from 10-1000 HeLa cells with high quantification reproducibility in only 4.5 h sample processing time, which was superior to the reported methods and commercial kits, especially for <100 cells. This approach was easily accessible, straightforward to operate, and compatible with flow cytometry-based cell sorting. It showed great potential for in-depth proteomic profiling of rare cells (<1000 cells) in both basic biological research and clinical application.
Collapse
Affiliation(s)
- Hongxian Zhao
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, P. R. China.
| | - Yongle Chen
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, P. R. China.
| | - Hang Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yangjun Zhang
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, P. R. China.
| | - Wanjun Zhang
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, P. R. China.
| | - Weijie Qin
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, P. R. China.
| |
Collapse
|
16
|
Badawy MEI, El-Nouby MAM, Kimani PK, Lim LW, Rabea EI. A review of the modern principles and applications of solid-phase extraction techniques in chromatographic analysis. ANAL SCI 2022; 38:1457-1487. [PMID: 36198988 PMCID: PMC9659506 DOI: 10.1007/s44211-022-00190-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/08/2022] [Indexed: 11/25/2022]
Abstract
Analytical processes involving sample preparation, separation, and quantifying analytes in complex mixtures are indispensable in modern-day analysis. Each step is crucial to enriching correct and informative results. Therefore, sample preparation is the critical factor that determines both the accuracy and the time consumption of a sample analysis process. Recently, several promising sample preparation approaches have been made available with environmentally friendly technologies with high performance. As a result of its many advantages, solid-phase extraction (SPE) is practiced in many different fields in addition to the traditional methods. The SPE is an alternative method to liquid-liquid extraction (LLE), which eliminates several disadvantages, including many organic solvents, a lengthy operation time and numerous steps, potential sources of error, and high costs. SPE advanced sorbent technology reorients with various functions depending on the structure of extraction sorbents, including reversed-phase, normal-phase, cation exchange, anion exchange, and mixed-mode. In addition, the commercial SPE systems are disposable. Still, with the continual developments, the restricted access materials (RAM) and molecular imprinted polymers (MIP) are fabricated to be active reusable extraction cartridges. This review will discuss all the theoretical and practical principles of the SPE techniques, focusing on packing materials, different forms, and performing factors in recent and future advances. The information about novel methodological and instrumental solutions in relation to different variants of SPE techniques, solid-phase microextraction (SPME), in-tube solid-phase microextraction (IT-SPME), and magnetic solid-phase extraction (MSPE) is presented. The integration of SPE with analytical chromatographic techniques such as LC and GC is also indicated. Furthermore, the applications of these techniques are discussed in detail along with their advantages in analyzing pharmaceuticals, biological samples, natural compounds, pesticides, and environmental pollutants, as well as foods and beverages.
Collapse
Affiliation(s)
- Mohamed E I Badawy
- Department of Pesticide Chemistry and Technology, Laboratory of Pesticide Residues Analysis, Faculty of Agriculture, Alexandria University, Aflatoun St., 21545-El-Shatby, Alexandria, Egypt.
| | - Mahmoud A M El-Nouby
- Department of Pesticide Chemistry and Technology, Laboratory of Pesticide Residues Analysis, Faculty of Agriculture, Alexandria University, Aflatoun St., 21545-El-Shatby, Alexandria, Egypt
- Department of Engineering, Graduate School of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Paul K Kimani
- Department of Engineering, Graduate School of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Lee W Lim
- International Joint Department of Materials Science and Engineering Between National University of Malaysia and Gifu University, Graduate School of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Entsar I Rabea
- Department of Plant Protection, Faculty of Agriculture, Damanhour University, Damanhour, 22516, Egypt
| |
Collapse
|
17
|
Cupp-Sutton KA, Fang M, Wu S. Separation methods in single-cell proteomics: RPLC or CE? INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2022; 481:116920. [PMID: 36211475 PMCID: PMC9542495 DOI: 10.1016/j.ijms.2022.116920] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cellular heterogeneity is commonly investigated using single-cell genomics and transcriptomics to investigate biological questions such as disease mechanism, therapeutic screening, and genomic and transcriptomic diversity between cellular populations and subpopulations at the cellular level. Single-cell mass spectrometry (MS)-based proteomics enables the high-throughput examination of protein expression at the single-cell level with wide applicability, and with spatial and temporal resolution, applicable to the study of cellular development, disease, effect of treatment, etc. The study of single-cell proteomics has lagged behind genomics and transcriptomics largely because proteins from single-cell samples cannot be amplified as DNA and RNA can using well established techniques such as PCR. Therefore, analytical methods must be robust, reproducible, and sensitive enough to detect the very small amount of protein within a single cell. To this end, nearly every step of the proteomics process has been extensively altered and improved to facilitate the proteomics analysis of single cells including cell counting and sorting, lysis, protein digestion, sample cleanup, separation, MS data acquisition, and data analysis. Here, we have reviewed recent advances in single-cell protein separation using nano reversed phase liquid chromatography (nRPLC) and capillary electrophoresis (CE) to inform application driven selection of separation techniques in the laboratory setting.
Collapse
Affiliation(s)
| | - Mulin Fang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| | - Si Wu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| |
Collapse
|
18
|
Gregus M, Zimmerman A, Marie AL, Johnson KR, Ivanov AR. Development of Highly Sensitive LC–MS and CE–MS Methods for In-Depth Proteomic and Glycomic Profiling of Limited Biological Samples. LCGC NORTH AMERICA 2022. [DOI: 10.56530/lcgc.na.ag4186o5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
nformative and deep proteomic and glycomic characterization of limited availability biological and medical samples has been a significant challenge. Here, we describe our current and recent efforts in advancing sample preparation as well as miniaturized electric field- and pressure-driven separation approaches interfaced with high-end mass spectrometry (MS) to enhance the sensitivity and depth of proteomic and glycomic profiling of several types of limited biological and clinically relevant samples.
Collapse
|
19
|
Dong C, Donnarumma F, Murray KK. Infrared Laser Ablation Microsampling for Small Volume Proteomics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1003-1010. [PMID: 35536596 DOI: 10.1021/jasms.2c00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Infrared (IR) laser ablation was used to remove localized tissue regions from which proteins were extracted and processed with a low volume sample preparation workflow for bottom-up proteomics by liquid chromatography tandem mass spectrometry (LC-MS/MS). A polytetrafluoroethylene (PTFE) coated glass slide with 2 mm diameter microwells was used to capture ablated rat brain tissue for in situ protein digestion with submicroliter solution volumes. The resulting peptides were analyzed with LC-MS/MS for protein identification and label-free quantification. The method was used to identify an average of 600, 1350, and 1900 proteins from ablation areas of 0.01, 0.04, and 0.1 mm2, respectively, from a 50 μm thick rat brain tissue section. Differential proteomics of 0.01 mm2 regions captured from cerebral cortex and corpus callosum was accomplished to demonstrate the capabilities of the approach.
Collapse
Affiliation(s)
- Chao Dong
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Fabrizio Donnarumma
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Kermit K Murray
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
20
|
Sandbaumhüter FA, Nezhyva M, Eriksson O, Engberg A, Kreuger J, Andrén PE, Jansson ET. Well-Plate μFASP for Proteomic Analysis of Single Pancreatic Islets. J Proteome Res 2022; 21:1167-1174. [PMID: 35293755 PMCID: PMC8981318 DOI: 10.1021/acs.jproteome.2c00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Filter-aided sample preparation (FASP) is widely used in bottom-up proteomics for tryptic digestion. However, the sample recovery yield of this method is limited by the amount of the starting material. While ∼100 ng of digested protein is sufficient for thorough protein identification, proteomic information gets lost with a protein content <10 μg due to incomplete peptide recovery from the filter. We developed and optimized a flexible well-plate μFASP device and protocol that is suitable for an ∼1 μg protein sample. In 1 μg of HeLa digest, we identified 1295 ± 10 proteins with μFASP followed by analysis with liquid chromatography-mass spectrometry. In contrast, only 524 ± 5 proteins were identified with the standard FASP protocol, while 1395 ± 4 proteins were identified in 20 μg after standard FASP as a benchmark. Furthermore, we conducted a combined peptidomic and proteomic study of single pancreatic islets with well-plate μFASP. Here, we separated neuropeptides and digested the remaining on-filter proteins for bottom-up proteomic analysis. Our results indicate inter-islet heterogeneity for the expression of proteins involved in glucose catabolism, pancreatic hormone processing, and secreted peptide hormones. We consider our method to provide a useful tool for proteomic characterization of samples where the biological material is scarce. All proteomic data are available under DOI: 10.6019/PXD029039.
Collapse
Affiliation(s)
| | - Mariya Nezhyva
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala 751 24, Sweden
| | - Olle Eriksson
- Department of Medical Cell Biology, Uppsala University, Uppsala 751 23, Sweden
| | - Adam Engberg
- Department of Medical Cell Biology, Uppsala University, Uppsala 751 23, Sweden
| | - Johan Kreuger
- Department of Medical Cell Biology, Uppsala University, Uppsala 751 23, Sweden
| | - Per E Andrén
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala 751 24, Sweden.,Science for Life Laboratory, Spatial Mass Spectrometry, Uppsala University, Uppsala 751 24, Sweden
| | - Erik T Jansson
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala 751 24, Sweden
| |
Collapse
|
21
|
Johnson KR, Greguš M, Kostas JC, Ivanov AR. Capillary Electrophoresis Coupled to Electrospray Ionization Tandem Mass Spectrometry for Ultra-Sensitive Proteomic Analysis of Limited Samples. Anal Chem 2022; 94:704-713. [PMID: 34983182 PMCID: PMC8770592 DOI: 10.1021/acs.analchem.1c02929] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this work, we developed an ultra-sensitive CE-MS/MS method for bottom-up proteomics analysis of limited samples, down to sub-nanogram levels of total protein. Analysis of 880 and 88 pg of the HeLa protein digest standard by CE-MS/MS yielded ∼1100 ± 46 and ∼160 ± 59 proteins, respectively, demonstrating higher protein and peptide identifications than the current state-of-the-art CE-MS/MS-based proteomic analyses with similar amounts of sample. To demonstrate potential applications of our ultra-sensitive CE-MS/MS method for the analysis of limited biological samples, we digested 500 and 1000 HeLa cells using a miniaturized in-solution digestion workflow. From 1-, 5-, and 10-cell equivalents injected from the resulted digests, we identified 744 ± 127, 1139 ± 24, and 1271 ± 6 proteins and 3353 ± 719, 5709 ± 513, and 8527 ± 114 peptide groups, respectively. Furthermore, we performed a comparative assessment of CE-MS/MS and two reversed-phased nano-liquid chromatography (RP-nLC-MS/MS) methods (monolithic and packed columns) for the analysis of a ∼10 ng HeLa protein digest standard. Our results demonstrate complementarity in the protein- and especially peptide-level identifications of the evaluated CE-MS- and RP-nLC-MS-based methods. The techniques were further assessed to detect post-translational modifications and highlight the strengths of the CE-MS/MS approach in identifying potentially important and biologically relevant modified peptides. With a migration window of ∼60 min, CE-MS/MS identified ∼2000 ± 53 proteins on average from a single injection of ∼8.8 ng of the HeLa protein digest standard. Additionally, an average of 232 ± 10 phosphopeptides and 377 ± 14 N-terminal acetylated peptides were identified in CE-MS/MS analyses at this sample amount, corresponding to 2- and 1.5-fold more identifications for each respective modification found by nLC-MS/MS methods.
Collapse
Affiliation(s)
- Kendall R Johnson
- Department of Chemistry and Chemical Biology, Northeastern University, Barnett Institute of Chemical and Biological Analysis, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Michal Greguš
- Department of Chemistry and Chemical Biology, Northeastern University, Barnett Institute of Chemical and Biological Analysis, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - James C Kostas
- Department of Chemistry and Chemical Biology, Northeastern University, Barnett Institute of Chemical and Biological Analysis, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Alexander R Ivanov
- Department of Chemistry and Chemical Biology, Northeastern University, Barnett Institute of Chemical and Biological Analysis, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
22
|
Kassem S, van der Pan K, de Jager AL, Naber BAE, de Laat IF, Louis A, van Dongen JJM, Teodosio C, Díez P. Proteomics for Low Cell Numbers: How to Optimize the Sample Preparation Workflow for Mass Spectrometry Analysis. J Proteome Res 2021; 20:4217-4230. [PMID: 34328739 PMCID: PMC8419858 DOI: 10.1021/acs.jproteome.1c00321] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Indexed: 12/20/2022]
Abstract
Nowadays, massive genomics and transcriptomics data can be generated at the single-cell level. However, proteomics in this setting is still a big challenge. Despite the great improvements in sensitivity and performance of mass spectrometry instruments and the better knowledge on sample preparation processing, it is widely acknowledged that multistep proteomics workflows may lead to substantial sample loss, especially when working with paucicellular samples. Still, in clinical fields, frequently limited sample amounts are available for downstream analysis, thereby hampering comprehensive characterization at protein level. To aim at better protein and peptide recoveries, we compare existing and novel approaches in the multistep sample preparation protocols for mass spectrometry studies, from sample collection, cell lysis, protein quantification, and electrophoresis/staining to protein digestion, peptide recovery, and LC-MS/MS instruments. From this critical evaluation, we conclude that the recent innovations and technologies, together with high quality management of samples, make proteomics on paucicellular samples possible, which will have immediate impact for the proteomics community.
Collapse
Affiliation(s)
- Sara Kassem
- Department
of Immunology, Leiden University Medical
Center (LUMC), Albinusdreef 2, 2333ZA Leiden, Netherlands
| | - Kyra van der Pan
- Department
of Immunology, Leiden University Medical
Center (LUMC), Albinusdreef 2, 2333ZA Leiden, Netherlands
| | - Anniek L. de Jager
- Department
of Immunology, Leiden University Medical
Center (LUMC), Albinusdreef 2, 2333ZA Leiden, Netherlands
| | - Brigitta A. E. Naber
- Department
of Immunology, Leiden University Medical
Center (LUMC), Albinusdreef 2, 2333ZA Leiden, Netherlands
| | - Inge F. de Laat
- Department
of Immunology, Leiden University Medical
Center (LUMC), Albinusdreef 2, 2333ZA Leiden, Netherlands
| | - Alesha Louis
- Department
of Immunology, Leiden University Medical
Center (LUMC), Albinusdreef 2, 2333ZA Leiden, Netherlands
| | - Jacques J. M. van Dongen
- Department
of Immunology, Leiden University Medical
Center (LUMC), Albinusdreef 2, 2333ZA Leiden, Netherlands
| | - Cristina Teodosio
- Department
of Immunology, Leiden University Medical
Center (LUMC), Albinusdreef 2, 2333ZA Leiden, Netherlands
| | - Paula Díez
- Department
of Immunology, Leiden University Medical
Center (LUMC), Albinusdreef 2, 2333ZA Leiden, Netherlands
| |
Collapse
|
23
|
Bian Y, The M, Giansanti P, Mergner J, Zheng R, Wilhelm M, Boychenko A, Kuster B. Identification of 7 000-9 000 Proteins from Cell Lines and Tissues by Single-Shot Microflow LC-MS/MS. Anal Chem 2021; 93:8687-8692. [PMID: 34124897 DOI: 10.1021/acs.analchem.1c00738] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A current trend in proteomics is to acquire data in a "single-shot" by LC-MS/MS because it simplifies workflows and promises better throughput and quantitative accuracy than schemes that involve extensive sample fractionation. However, single-shot approaches can suffer from limited proteome coverage when performed by data dependent acquisition (ssDDA) on nanoflow LC systems. For applications where sample quantities are not scarce, this study shows that high proteome coverage can be obtained using a microflow LC-MS/MS system operating a 1 mm i.d. × 150 mm column, at a flow-rate of 50 μL/min and coupled to an Orbitrap HF-X mass spectrometer. The results demonstrate the identification of ∼9 000 proteins from 50 μg of protein digest from Arabidopsis roots, 7 500 from mouse thymus, and 7 300 from human breast cancer cells in 3 h of analysis time in a single run. The dynamic range of protein quantification measured by the iBAQ approach spanned 5 orders of magnitude and replicate analysis showed that the median coefficient of variation was below 20%. Together, this study shows that ssDDA by μLC-MS/MS is a robust method for comprehensive and large-scale proteome analysis and which may be further extended to more rapid chromatography and data independent acquisition approaches in the future.̀.
Collapse
Affiliation(s)
- Yangyang Bian
- College of Life Science, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, P. R. China.,Chair of Proteomics and Bioanalytics, Technical University of Munich, Emil Erlenmeyer Forum 5, 85354 Freising, Germany
| | - Matthew The
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Emil Erlenmeyer Forum 5, 85354 Freising, Germany
| | - Piero Giansanti
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Emil Erlenmeyer Forum 5, 85354 Freising, Germany
| | - Julia Mergner
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Emil Erlenmeyer Forum 5, 85354 Freising, Germany
| | - Runsheng Zheng
- Thermo Fisher Scientific, Dornierstraße 4, 82110 Germering, Germany
| | - Mathias Wilhelm
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Emil Erlenmeyer Forum 5, 85354 Freising, Germany
| | | | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Emil Erlenmeyer Forum 5, 85354 Freising, Germany.,Bavarian Biomolecular Mass Spectrometry Center (BayBioMS), Technical University of Munich, Gregor-Mendel-Straße 4, 85354 Freising, Germany
| |
Collapse
|