1
|
Tu S, Dong Y, Li C, Jiang M, Duan L, Zhang W, Chen X. Phosphatidylcholine Ameliorates Palmitic Acid-Induced Lipotoxicity by Facilitating Endoplasmic Reticulum and Mitochondria Contacts in Intervertebral Disc Degeneration. JOR Spine 2025; 8:e70062. [PMID: 40171442 PMCID: PMC11956213 DOI: 10.1002/jsp2.70062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 02/21/2025] [Accepted: 03/23/2025] [Indexed: 04/03/2025] Open
Abstract
Background Intervertebral disc degeneration (IDD) is a prevalent musculoskeletal disorder with substantial socioeconomic impacts. Despite its high prevalence, the pathogenesis of IDD remains unclear, and effective pharmacological interventions are lacking. This study aimed to investigate metabolic alterations in IDD and explore potential therapeutic targets by analyzing lipotoxicity-related mechanisms in nucleus pulposus (NP) cells. Methods Metabolomics and magnetic resonance spectroscopy were utilized to profile metabolic changes in NP tissues from advanced-stage IDD. Transcriptomics and metabolomics integration were performed to identify key regulatory pathways. In vitro experiments using human NP cells exposed to palmitic acid were conducted to evaluate endoplasmic reticulum (ER) stress, mitochondrial dysfunction, lipid droplet accumulation, and senescence. Phosphatidylcholine supplementation was tested for its ability to mitigate lipotoxicity, with ER-mitochondria interactions and mitochondrial oxidation capacity assessed as mechanistic endpoints. Results Our findings revealed an abnormal lipotoxic condition in NP cells from advanced-stage IDD. Furthermore, we identified abnormal accumulation of triglycerides and palmitic acid in NP cells from IDD. The palmitic acid accumulation resulted in endoplasmic reticulum stress, mitochondrial damage, lipid droplet accumulation, and senescence of NP cells. By integrating transcriptomics and metabolomics analyses, we discovered that phosphatidylcholine plays a role in regulating palmitic acid-induced lipotoxicity. Notably, phosphatidylcholine level was found to be low in the endoplasmic reticulum and mitochondria of advanced-stage NP cells. Phosphatidylcholine treatment alleviated palmitic acid-induced lipid droplet accumulation and senescence of NP cells by modulating ER-mitochondria contacts and mitochondrial oxidation capacity. Conclusion Phosphatidylcholine emerges as a potential therapeutic agent to counteract lipotoxic stress by modulating organelle interactions and mitochondrial function. These findings advance our understanding of IDD pathogenesis and provide a novel metabolic target for therapeutic development.
Collapse
Affiliation(s)
- Shuangshuang Tu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
- College of Pharmacy, Anhui Xinhua UniversityHefeiChina
| | - Yijun Dong
- Department of OrthopedicsThe First Affiliated Hospital of USTC, Provincial Hospital Affiliated to Anhui Medical UniversityHefeiChina
| | - Chuanfu Li
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
- Clinical College of Anhui Medical UniversityHefeiChina
| | - Mingxin Jiang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
- School of Clinical MedicineAnhui University of Science and TechnologyHuainanChina
| | - Liqun Duan
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Wenzhi Zhang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Xi Chen
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| |
Collapse
|
2
|
He P, Zhang L, Ma P, Xu T, Wang Z, Li L, Du G, Qiang G, Liu C. Targeted Lipidomics and Transcriptomics Unveil Aberrant Lipid Metabolic Remodeling in Visceral and Subcutaneous Adipose Tissue under ER Stress. J Proteome Res 2025; 24:1971-1982. [PMID: 40067327 DOI: 10.1021/acs.jproteome.4c00952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Endoplasmic reticulum (ER) stress is known to impair the function of visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT), disrupting lipid metabolism. Despite the crucial role lipid plays in regulating adipose tissue function, the specific lipidomic alterations in VAT and SAT under ER stress remain unclear. In this study, ER stress was induced in VAT and SAT, and targeted lipidomic and transcriptomic approaches were used to analyze lipid metabolism and gene expression profiles. The results revealed that VAT exhibited a stronger ER stress response, characterized by a significant increase in binding immunoglobulin protein (BiP) expression and notable lipidomic disruptions, especially in glycerides and sterols. These disruptions were marked by a decrease in protective polyunsaturated fatty acyl species and the accumulation of lipotoxic molecules. In contrast, SAT displayed less severe lipidomic alterations. Transcriptomic analysis indicated that VAT was more susceptible to immune activation, inflammation, and metabolic dysfunction, while SAT primarily showed alterations in protein folding processes. These findings underscore the tissue-specific mechanisms of ER stress adaptation in VAT and SAT. In conclusion, VAT appears to be a critical target for addressing metabolic dysfunction in obesity and related disorders, with potential therapeutic implications for managing ER stress-induced metabolic diseases.
Collapse
Affiliation(s)
- Ping He
- College of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Li Zhang
- Beijing Key Laboratory of Drug Target and Screening Research and Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Peng Ma
- Beijing Key Laboratory of Drug Target and Screening Research and Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Tianshu Xu
- Beijing Key Laboratory of Drug Target and Screening Research and Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zijing Wang
- Beijing Key Laboratory of Drug Target and Screening Research and Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Li Li
- Department of Pharmacy, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Guanhua Du
- Beijing Key Laboratory of Drug Target and Screening Research and Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Guifen Qiang
- Beijing Key Laboratory of Drug Target and Screening Research and Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Cuiqing Liu
- College of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
3
|
Yuan C, Yu B, Li L, Chen J, Qin W, Zhou Z, Su M, Wang D, Zhang Y, Wu Q, He C, Wei D. SUCNR 1 promotes atherosclerosis by inducing endoplasmic reticulum stress mediated ER-mito crosstalk. Int Immunopharmacol 2024; 143:113510. [PMID: 39486175 DOI: 10.1016/j.intimp.2024.113510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/19/2024] [Accepted: 10/23/2024] [Indexed: 11/04/2024]
Abstract
Atherosclerosis is a progressive inflammatory disease within the large and medium arteries. SUCNR1(Succinate receptor 1) has been reported to regulate the inflammatory response in cardiovascular diseases, but how it works in atherosclerosis remains unclear. In this study, we observed that SUCNR1 is upregulated in endothelial cells within human atherosclerotic lesions. The deletion of SUCNR1 in vascular endothelial cells can mitigate the progression of atherosclerotic lesions in high-fat diet ApoE-/- mice. The overexpression or activation of SUCNR1 intensified endoplasmic reticulum stress and mitochondria-endoplasmic reticulum interactions. Moreover, SUCNR1 exacerbated mitochondrial injury, mtDNA leakage, and the activation of cGAS-STING signaling. Elevated mitochondrial damage, ER-mitochondrial interactions, and inflammation induced by SUCNR1 activation were blocked by the endoplasmic reticulum stress inhibitor. Collectively, these findings suggest that SUCNR1 promotes atherosclerosis through endoplasmic reticulum stress signaling mediated ER-mitochondrial crosstalk and its downstream cGAS-STING pathway. Our results provide new insights into the mechanism of SUCNR1 in atherosclerosis and inhibiting endoplasmic reticulum stress signaling may provide a promising strategy to prevent and treat atherosclerosis.
Collapse
Affiliation(s)
- Chuchu Yuan
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Bo Yu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Lu Li
- Department of Pathology, Shenzhen People's Hospital (The Second Clinical Medical College), Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518020, China
| | - Jinna Chen
- Department of Pathology & Pathophysiology, Hunan University of Medicine, Huaihua, Hunan 418000, China
| | - Wenhua Qin
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zhixiang Zhou
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Ming Su
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Die Wang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yile Zhang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Qian Wu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Chao He
- Department of Pediatrics, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China.
| | - Dangheng Wei
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
4
|
Chen X, Chen K, Hu J, Dong Y, Zheng M, Jiang J, Hu Q, Zhang W. Palmitic acid induces lipid droplet accumulation and senescence in nucleus pulposus cells via ER-stress pathway. Commun Biol 2024; 7:539. [PMID: 38714886 PMCID: PMC11076507 DOI: 10.1038/s42003-024-06248-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
Intervertebral disc degeneration (IDD) is a highly prevalent musculoskeletal disorder affecting millions of adults worldwide, but a poor understanding of its pathogenesis has limited the effectiveness of therapy. In the current study, we integrated untargeted LC/MS metabolomics and magnetic resonance spectroscopy data to investigate metabolic profile alterations during IDD. Combined with validation via a large-cohort analysis, we found excessive lipid droplet accumulation in the nucleus pulposus cells of advanced-stage IDD samples. We also found abnormal palmitic acid (PA) accumulation in IDD nucleus pulposus cells, and PA exposure resulted in lipid droplet accumulation and cell senescence in an endoplasmic reticulum stress-dependent manner. Complementary transcriptome and proteome profiles enabled us to identify solute carrier transporter (SLC) 43A3 involvement in the regulation of the intracellular PA level. SLC43A3 was expressed at low levels and negatively correlated with intracellular lipid content in IDD nucleus pulposus cells. Overexpression of SLC43A3 significantly alleviated PA-induced endoplasmic reticulum stress, lipid droplet accumulation and cell senescence by inhibiting PA uptake. This work provides novel integration analysis-based insight into the metabolic profile alterations in IDD and further reveals new therapeutic targets for IDD treatment.
Collapse
Affiliation(s)
- Xi Chen
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Kun Chen
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Jun Hu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Yijun Dong
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Menglong Zheng
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Jiang Jiang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Qingsong Hu
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| | - Wenzhi Zhang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| |
Collapse
|
5
|
Sun M, Shao W, Liu Z, Ma X, Chen H, Zheng N, Zhao Y. Microbial diversity in camel milk from Xinjiang, China as revealed by metataxonomic analysis. Front Microbiol 2024; 15:1367116. [PMID: 38533337 PMCID: PMC10964795 DOI: 10.3389/fmicb.2024.1367116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
The quality of raw camel milk is affected by its bacterial composition and diversity. However, few studies have investigated the bacterial composition and diversity of raw camel milk. In this study, we obtained 20 samples of camel milk during spring and summer in Urumqi and Hami, Xinjiang, China. Single-molecule real-time sequencing technology was used to analyze the bacterial community composition. The results revealed that there were significant seasonal differences in the bacterial composition and diversity of camel milk. Overall, Epilithonimonas was the most abundant bacterial genus in our samples. Through the annotated genes inferred by PICRUSt2 were mapped against KEGG database. Non-parametric analysis of the bacterial community prediction function revealed a strong bacterial interdependence with metabolic pathways (81.83%). There were clear regional and seasonal differences in level 3 metabolic pathways such as fat, vitamins, and amino acids in camel milk. In addition, we identified lactic acid bacteria in camel milk with antibacterial and anti-tumor activities. Our findings revealed that camel milk from Xinjiang had serious risk of contamination by psychrophilic and pathogenic bacteria. Our research established a crucial theoretical foundation for ensuring the quality and safety of camel milk, thereby contributing significantly to the robust growth of China's camel milk industry.
Collapse
Affiliation(s)
- Miao Sun
- Institute of Quality Standards and Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Laboratory of Quality and Safety Risk Assessment for Agro-products, Ministry of Agriculture, Urumqi, China
- College of Animal Science Xinjiang Agriculture University, Urumqi, China
| | - Wei Shao
- College of Animal Science Xinjiang Agriculture University, Urumqi, China
| | - Zhengyu Liu
- Institute of Quality Standards and Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Laboratory of Quality and Safety Risk Assessment for Agro-products, Ministry of Agriculture, Urumqi, China
- College of Animal Science Xinjiang Agriculture University, Urumqi, China
| | - Xianlan Ma
- Institute of Quality Standards and Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Laboratory of Quality and Safety Risk Assessment for Agro-products, Ministry of Agriculture, Urumqi, China
| | - He Chen
- Institute of Quality Standards and Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Laboratory of Quality and Safety Risk Assessment for Agro-products, Ministry of Agriculture, Urumqi, China
| | - Nan Zheng
- Ministry of Agriculture Laboratory of Quality and Safety Risk Assessment for Dairy Products, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yankun Zhao
- Institute of Quality Standards and Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Laboratory of Quality and Safety Risk Assessment for Agro-products, Ministry of Agriculture, Urumqi, China
- Ministry of Agriculture Laboratory of Quality and Safety Risk Assessment for Dairy Products, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
6
|
Zhang S, Liu Y, Chai Y, Xing L, Li J. Effects of intermittent cold stimulation on growth performance, meat quality, antioxidant capacity and liver lipid metabolism in broiler chickens. Poult Sci 2024; 103:103442. [PMID: 38262335 PMCID: PMC10835453 DOI: 10.1016/j.psj.2024.103442] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/30/2023] [Accepted: 01/04/2024] [Indexed: 01/25/2024] Open
Abstract
Intermittent cold stimulation (ICS) enhances broilers' resistance to cold stress. Nonetheless, further research is needed to investigate the underlying mechanisms that enhance cold stress resistance. A total of 160 one-day-old male Ross 308 broilers were randomly divided into 2 groups (CC and CS5), with the CC group managing temperature according to the standard for broiler growth stages, while the CS5 group were subjected to cold stimulation at a temperature 3℃ lower than the CC group for 5 h, every 2 d from 15 to 35 d. Sampling was conducted at 36 d (36D), 50 d (50D) and after acute cold stress for 24 h (Y24). First, we examined the effects of ICS on broiler growth performance, meat quality, antioxidant capacity, and lipid metabolism. The results demonstrated that ICS enhanced the performance of broilers to a certain degree. Specifically, the average weight gain in the CS5 group was significantly higher than that of the CC group, and the feed conversion ratio significantly decreased compared to CC at 4 W and 6 W (P ≤ 0.05). Compared with the CC group, cold stimulation significantly reduced drip loss, shearing force, and yellowness (a* value) of chicken meat, while significantly increased redness (b* value) (P ≤ 0.05). At Y24, the levels of T-AOC and GSH-PX in the serum of the CS5 group were significantly higher than those of the CC group, while the level of MDA was significantly lower (P ≤ 0.05). The content of TG, FFA, and VLDL in the serum of the CS5 group was significantly elevated, whereas the level of TC and HDL was significantly lower (P ≤ 0.05). In addition, we further explored whether AMPK-mTOR pathway is involved in the regulation of changes in lipid metabolism and the possible regulatory mechanisms downstream of the signaling pathway. The results showed that ICS significantly upregulated the expression levels of AMPK mRNA and protein in the liver of the CS5 group at 36D and Y24, while significantly down-regulating mTOR (P ≤ 0.05). Compared with the CC group, ICS significantly down-regulated the mRNA expression levels of lipid synthesis and endoplasmic reticulum stress-related genes (SREBP1c, FAS, SCD, ACC, GRP78 and PERK) at 36D and Y24, while significantly up-regulating the mRNA expression levels of lipid decomposition and autophagy-related genes (PPAR and LC3) (P ≤ 0.05). In addition, at Y24, the protein expression levels of endoplasmic reticulum stress-related genes (GRP78) in the CS5 group were significantly lower, while autophagy-related genes (LC3 and ATG7) were significantly higher (P ≤ 0.05). ICS can affect meat quality and lipid metabolism in broilers, and when broilers are subjected to acute cold stress, broilers trained with cold stimulation have stronger lipid metabolism capacity.
Collapse
Affiliation(s)
- Shijie Zhang
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yuanyuan Liu
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yiwen Chai
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Lu Xing
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Jianhong Li
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, China.
| |
Collapse
|
7
|
Zeng S, Wang Y, Chen C, Kim H, Liu X, Jiang M, Yu Y, Kafuti YS, Chen Q, Wang J, Peng X, Li H, Yoon J. An ER-targeted, Viscosity-sensitive Hemicyanine Dye for the Diagnosis of Nonalcoholic Fatty Liver and Photodynamic Cancer Therapy by Activating Pyroptosis Pathway. Angew Chem Int Ed Engl 2024; 63:e202316487. [PMID: 38197735 DOI: 10.1002/anie.202316487] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/15/2023] [Accepted: 01/09/2024] [Indexed: 01/11/2024]
Abstract
The concept of molecular design, integrating diagnostic and therapeutic functions, aligns with the general trend of modern medical advancement. Herein, we rationally designed the smart molecule ER-ZS for endoplasmic reticulum (ER)-targeted diagnosis and treatment in cell and animal models by combining hemicyanine dyes with ER-targeted functional groups (p-toluenesulfonamide). Owing to its ability to target the ER with a highly specific response to viscosity, ER-ZS demonstrated substantial fluorescence turn-on only after binding to the ER, independent of other physiological environments. In addition, ER-ZS, being a small molecule, allows for the diagnosis of nonalcoholic fatty liver disease (NAFLD) via liver imaging based on high ER stress. Importantly, ER-ZS is a type I photosensitizer, producing O2 ⋅- and ⋅OH under light irradiation. Thus, after irradiating for a certain period, the photodynamic therapy inflicted severe oxidative damage to the ER of tumor cells in hypoxic (2 % O2 ) conditions and activated the unique pyroptosis pathway, demonstrating excellent antitumor capacity in xenograft tumor models. Hence, the proposed strategy will likely shed new light on integrating molecular optics for NAFLD diagnosis and cancer therapy.
Collapse
Affiliation(s)
- Shuang Zeng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, 116024, Dalian, China
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, 116024, Dalian, China
| | - Yang Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, 116024, Dalian, China
| | - Chen Chen
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, 116024, Dalian, China
| | - Heejeong Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 03760, Seoul, Korea
| | - Xiaosheng Liu
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, 116024, Dalian, China
| | - Maojun Jiang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, 116024, Dalian, China
| | - Yichu Yu
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, 116024, Dalian, China
| | - Yves S Kafuti
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, 116024, Dalian, China
| | - Qixian Chen
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, 116024, Dalian, China
| | - Jingyun Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, 116024, Dalian, China
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, 116024, Dalian, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, 116024, Dalian, China
| | - Haidong Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, 116024, Dalian, China
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, 116024, Dalian, China
- Provincial Key Laboratory of Interdisciplinary Medical Engineering for Gastrointestinal Carcinoma, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute), 110042, Shenyang, Liaoning, China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, 03760, Seoul, Korea
| |
Collapse
|
8
|
Wang R, Chen Y, Chen J, Ma M, Xu M, Liu S. Integration of transcriptomics and metabolomics analysis for unveiling the toxicological profile in the liver of mice exposed to uranium in drinking water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122296. [PMID: 37536476 DOI: 10.1016/j.envpol.2023.122296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/17/2023] [Accepted: 07/29/2023] [Indexed: 08/05/2023]
Abstract
Uranium is a contaminate in the underground water in many regions of the world, which poses health risks to the local populations through drinking water. Although the health hazards of natural uranium have been concerned for decades, the controversies about its detrimental effects continue at present since it is still unclear how uranium interacts with molecular regulatory networks to generate toxicity. Here, we integrate transcriptomic and metabolomic methods to unveil the molecular mechanism of lipid metabolism disorder induced by uranium. Following exposure to uranium in drinking water for twenty-eight days, aberrant lipid metabolism and lipogenesis were found in the liver, accompanied with aggravated lipid peroxidation and an increase in dead cells. Multi-omics analysis reveals that uranium can promote the biosynthesis of unsaturated fatty acids through dysregulating the metabolism of arachidonic acid (AA), linoleic acid, and glycerophospholipid. Most notably, the disordered metabolism of polyunsaturated fatty acids (PUFAs) like AA may contribute to lipid peroxidation induced by uranium, which in turn triggers ferroptosis in hepatocytes. Our findings highlight disorder of lipid metabolism as an essential toxicological mechanism of uranium in the liver, offering insight into the health risks of uranium in drinking water.
Collapse
Affiliation(s)
- Ruixia Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongjiu Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Unit III & Ostomy Service, Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Jiahao Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minghao Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
9
|
Liang H, Song K. Comprehensive metabolomics and transcriptomics analysis reveals protein and amino acid metabolic characteristics in liver tissue under chronic hypoxia. PLoS One 2023; 18:e0291798. [PMID: 37747892 PMCID: PMC10519603 DOI: 10.1371/journal.pone.0291798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 09/06/2023] [Indexed: 09/27/2023] Open
Abstract
At high altitudes, oxygen deprivation can cause pathophysiological changes. Liver tissue function is known to impact whole-body energy metabolism; however, how these functions are affected by chronic hypoxia remains unclear. We aimed to elucidate changing characteristics underlying the effect of chronic hypoxia on protein and amino acid metabolism in mouse livers. Mice were maintained in a hypobaric chamber simulating high altitude for 4 weeks. Livers were collected for metabolomic analysis via ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry. For transcriptomics analysis, we conducted RNA sequencing of hepatic tissues followed by Gene Ontology and KEGG pathway enrichment analyses. Chronic hypoxic exposure caused metabolic disorders of amino acids and their derivatives in liver tissue. We identified a number of metabolites with significantly altered profiles (including amino acids, peptides, and analogues), of which serine, phenylalanine, leucine, proline, aspartic acid, L-glutamate, creatine, 5-aminovaleric acid, L-hydroxyarginin, and g-guanidinobutyrate showed great potential as biomarkers of chronic hypoxia. A total of 2124 genes with significantly different expression levels were identified in hypoxic liver tissue, of which 1244 were upregulated and 880 were downregulated. We found pathways for protein digestion and absorption, arginine and proline metabolism, and mineral absorption related to amino acid metabolism were affected by hypoxia. Our findings surrounding the regulation of key metabolites and differentially expressed genes provide new insights into changes in protein and amino acid metabolism in the liver that result from chronic hypoxia.
Collapse
Affiliation(s)
- Hong Liang
- Department of Basic Medical Sciences, Medical College, Qinghai University, Xining, Qinghai, China
| | - Kang Song
- Endocrinology Department, Qinghai Provincial People’s Hospital, Xining, Qinghai, China
- Qinghai University Affiliated People’s Hospital, Xining, PR, China
| |
Collapse
|
10
|
Maan K, Baghel R, Dhariwal S, Sharma A, Bakhshi R, Rana P. Metabolomics and transcriptomics based multi-omics integration reveals radiation-induced altered pathway networking and underlying mechanism. NPJ Syst Biol Appl 2023; 9:42. [PMID: 37689794 PMCID: PMC10492812 DOI: 10.1038/s41540-023-00305-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/25/2023] [Indexed: 09/11/2023] Open
Abstract
Recent advancement in integrated multi-omics has significantly contributed to many areas of the biomedical field. Radiation research has also grasped uprising omics technologies in biomarker identification to aid in triage management. Herein, we have used a combinatorial multi-omics approach based on transcriptomics together with metabolomics and lipidomics of blood from murine exposed to 1 Gy (LD) and 7.5 Gy (HD) of total-body irradiation (TBI) for a comprehensive understanding of biological processes through integrated pathways and networking. Both omics displayed demarcation of HD group from controls using multivariate analysis. Dysregulated amino acids, various PC, PE and carnitine were observed along with many dysregulated genes (Nos2, Hmgcs2, Oxct2a, etc.). Joint-Pathway Analysis and STITCH interaction showed radiation exposure resulted in changes in amino acid, carbohydrate, lipid, nucleotide, and fatty acid metabolism. Elicited immune response was also observed by Gene Ontology. BioPAN has predicted Elovl5, Elovl6 and Fads2 for fatty acid pathways, only in HD group. Collectively, the combined omics approach facilitated a better understanding of processes uncovering metabolic pathways. Presumably, this is the first in radiation metabolomics that utilized an integrated omics approach following TBI in mice. Our work showed that omics integration could be a valuable tool for better comprehending the mechanism as well as molecular interactions.
Collapse
Affiliation(s)
- Kiran Maan
- Metabolomics Research Facility, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Delhi, India
- Department of Biomedical Science, Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, Delhi, India
| | - Ruchi Baghel
- Metabolomics Research Facility, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Delhi, India
| | - Seema Dhariwal
- Metabolomics Research Facility, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Delhi, India
| | - Apoorva Sharma
- Metabolomics Research Facility, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Delhi, India
| | - Radhika Bakhshi
- Department of Biomedical Science, Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, Delhi, India
| | - Poonam Rana
- Metabolomics Research Facility, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Delhi, India.
| |
Collapse
|
11
|
Wu Y, Deng X, Wu Z, Liu D, Fu X, Tang L, He S, Lv J, Wang J, Li Q, Zhan T, Tang Z. Multilayer omics reveals the molecular mechanism of early infection of Clonorchis sinensis juvenile. Parasit Vectors 2023; 16:285. [PMID: 37587524 PMCID: PMC10428567 DOI: 10.1186/s13071-023-05891-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/19/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Clonorchiasis remains a non-negligible global zoonosis, causing serious socioeconomic burdens in endemic areas. Clonorchis sinensis infection typically elicits Th1/Th2 mixed immune responses during the course of biliary injury and periductal fibrosis. However, the molecular mechanism by which C. sinensis juvenile initially infects the host remains poorly understood. METHODS The BALB/c mouse model was established to study early infection (within 7 days) with C. sinensis juveniles. Liver pathology staining and observation as well as determination of biochemical enzymes, blood routine and cytokines in blood were conducted. Furthermore, analysis of liver transcriptome, proteome and metabolome changes was performed using multi-omics techniques. Statistical analyses were performed using Student's t-test. RESULTS Histopathological analysis revealed that liver injury, characterized by collagen deposition and inflammatory cell infiltration, occurred as early as 24 h of infection. Blood indicators including ALT, AST, WBC, CRP and IL-6 indicated that both liver injury and systemic inflammation worsened as the infection progressed. Proteomic data showed that apoptosis and junction-related pathways were enriched within 3 days of infection, indicating the occurrence of liver injury. Furthermore, proteomic and transcriptomic analysis jointly verified that the detoxification and antioxidant defense system was activated by enrichment of glutathione metabolism and cytochrome P450-related pathways in response to acute liver injury. Proteomic-based GO analysis demonstrated that biological processes such as cell deformation, proliferation, migration and wound healing occurred in the liver during the early infection. Correspondingly, transcriptomic results showed significant enrichment of cell cycle pathway on day 3 and 7. In addition, the KEGG analysis of multi-omics data demonstrated that numerous pathways related to immunity, inflammation, tumorigenesis and metabolism were enriched in the liver. Besides, metabolomic screening identified several metabolites that could promote inflammation and hepatobiliary periductal fibrosis, such as CA7S. CONCLUSIONS This study revealed that acute inflammatory injury was rapidly triggered by initial infection by C. sinensis juveniles in the host, accompanied by the enrichment of detoxification, inflammation, fibrosis, tumor and metabolism-related pathways in the liver, which provides a new perspective for the early intervention and therapy of clonorchiasis.
Collapse
Affiliation(s)
- Yuhong Wu
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, China
| | - Xueling Deng
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, China
| | - Zhanshuai Wu
- Department of Immunology, Guangxi University of Chinese Medicine, Nanning, 530021, China
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases With Integrative Medicine, Nanning, 530021, China
| | - Dengyu Liu
- Department of Parasitology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, China
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, 530021, China
- Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Xiaoyin Fu
- Department of Parasitology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, China
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, 530021, China
- Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Lili Tang
- Department of Parasitology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, China
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, 530021, China
- Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Shanshan He
- Department of Parasitology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, China
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, 530021, China
- Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Jiahui Lv
- Department of Parasitology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, China
| | - Jilong Wang
- Department of Parasitology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, China
| | - Qing Li
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, China.
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, 530021, China.
- Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530021, China.
| | - Tingzheng Zhan
- Department of Parasitology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, China.
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, 530021, China.
- Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530021, China.
| | - Zeli Tang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, China.
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, 530021, China.
- Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, 530021, China.
| |
Collapse
|
12
|
García-Velázquez L, Massieu L. The proteomic effects of ketone bodies: implications for proteostasis and brain proteinopathies. Front Mol Neurosci 2023; 16:1214092. [PMID: 37575967 PMCID: PMC10413579 DOI: 10.3389/fnmol.2023.1214092] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/07/2023] [Indexed: 08/15/2023] Open
Abstract
A growing body of evidence supports the beneficial effects of the ketone bodies (KBs), acetoacetate and β-hydroxybutyrate (BHB), on diverse physiological processes and diseases. Hence, KBs have been suggested as therapeutic tools for neurodegenerative diseases. KBs are an alternative fuel during fasting and starvation as they can be converted to Ac-CoA to produce ATP. A ketogenic diet (KD), enriched in fats and low in carbohydrates, induces KB production in the liver and favors their use in the brain. BHB is the most abundant KB in the circulation; in addition to its role as energy fuel, it exerts many actions that impact the set of proteins in the cell and tissue. BHB can covalently bind to proteins in lysine residues as a new post-translational modification (PTM) named β-hydroxybutyrylation (Kbhb). Kbhb has been identified in many proteins where Kbhb sites can be critical for binding to other proteins or cofactors. Kbhb is mostly found in proteins involved in chromatin structure, DNA repair, regulation of spliceosome, transcription, and oxidative phosphorylation. Histones are the most studied family of proteins with this PTM, and H3K9bhb is the best studied histone mark. Their target genes are mainly related to cell metabolism, chromatin remodeling and the control of circadian rhythms. The role of Kbhb on physiological processes is poorly known, but it might link KB metabolism to cell signaling and genome regulation. BHB also impacts the proteome by influencing proteostasis. This KB can modulate the Unfolded Protein Response (UPR) and autophagy, two processes involved in the maintenance of protein homeostasis through the clearance of accumulated unfolded and damaged proteins. BHB can support proteostasis and regulate the UPR to promote metabolism adaptation in the liver and prevent cell damage in the brain. Also, BHB stimulates autophagy aiding to the degradation of accumulated proteins. Protein aggregation is common to proteinopathies like Alzheimer's (AD) and Parkinson's (PD) diseases, where the KD and BHB treatment have shown favorable effects. In the present review, the current literature supporting the effects of KBs on proteome conformation and proteostasis is discussed, as well as its possible impact on AD and PD.
Collapse
Affiliation(s)
| | - Lourdes Massieu
- Department of Molecular Neuropathology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), México City, Mexico
| |
Collapse
|
13
|
Li X, Wang ZY, Ren N, Wei ZY, Hu WW, Gu JM, Zhang ZL, Yu XT, Wang C. Identifying therapeutic biomarkers of zoledronic acid by metabolomics. Front Pharmacol 2023; 14:1084453. [PMID: 37180703 PMCID: PMC10166846 DOI: 10.3389/fphar.2023.1084453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 04/07/2023] [Indexed: 05/16/2023] Open
Abstract
Zoledronic acid (ZOL) is a potent antiresorptive agent that increases bone mineral density (BMD) and reduces fracture risk in postmenopausal osteoporosis (PMOP). The anti-osteoporotic effect of ZOL is determined by annual BMD measurement. In most cases, bone turnover markers function as early indicators of therapeutic response, but they fail to reflect long-term effects. We used untargeted metabolomics to characterize time-dependent metabolic shifts in response to ZOL and to screen potential therapeutic markers. In addition, bone marrow RNA-seq was performed to support plasma metabolic profiling. Sixty rats were assigned to sham-operated group (SHAM, n = 21) and ovariectomy group (OVX, n = 39) and received sham operation or bilateral ovariectomy, respectively. After modeling and verification, rats in the OVX group were further divided into normal saline group (NS, n = 15) and ZOL group (ZA, n = 18). Three doses of 100 μg/kg ZOL were administrated to the ZA group every 2 weeks to simulate 3-year ZOL therapy in PMOP. An equal volume of saline was administered to the SHAM and NS groups. Plasma samples were collected at five time points for metabolic profiling. At the end of the study, selected rats were euthanatized for bone marrow RNA-seq. A total number of 163 compound were identified as differential metabolites between the ZA and NS groups, including mevalonate, a critical molecule in target pathway of ZOL. In addition, prolyl hydroxyproline (PHP), leucyl hydroxyproline (LHP), 4-vinylphenol sulfate (4-VPS) were identified as differential metabolites throughout the study. Moreover, 4-VPS negatively correlated with increased vertebral BMD after ZOL administration as time-series analysis revealed. Bone marrow RNA-seq showed that the PI3K-AKT signaling pathway was significantly associated with ZOL-mediated changes in expression (adjusted-p = 0.018). In conclusion, mevalonate, PHP, LHP, and 4-VPS are candidate therapeutic markers of ZOL. The pharmacological effect of ZOL likely occurs through inhibition of the PI3K-AKT signaling pathway.
Collapse
Affiliation(s)
- Xiang Li
- Department of Osteoporosis and Bone Diseases, Shanghai Clinical Research Center of Bone Disease, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zi-Yuan Wang
- Department of Osteoporosis and Bone Diseases, Shanghai Clinical Research Center of Bone Disease, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Na Ren
- Department of Osteoporosis and Bone Diseases, Shanghai Clinical Research Center of Bone Disease, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhan-Ying Wei
- Department of Osteoporosis and Bone Diseases, Shanghai Clinical Research Center of Bone Disease, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei-Wei Hu
- Department of Osteoporosis and Bone Diseases, Shanghai Clinical Research Center of Bone Disease, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie-Mei Gu
- Department of Osteoporosis and Bone Diseases, Shanghai Clinical Research Center of Bone Disease, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen-Lin Zhang
- Department of Osteoporosis and Bone Diseases, Shanghai Clinical Research Center of Bone Disease, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang-Tian Yu
- Clinical Research Center, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chun Wang
- Department of Osteoporosis and Bone Diseases, Shanghai Clinical Research Center of Bone Disease, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Zhu Y, Zhang J, Wang C, Zheng T, Di S, Wang Y, Fei W, Liang W, Wang L. Ameliorative Effect of Ethanolic Echinacea purpurea against Hyperthyroidism-Induced Oxidative Stress via AMRK and PPAR Signal Pathway Using Transcriptomics and Network Pharmacology Analysis. Int J Mol Sci 2022; 24:ijms24010187. [PMID: 36613632 PMCID: PMC9820381 DOI: 10.3390/ijms24010187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/25/2022] Open
Abstract
Echinacea purpurea (L.) Moench (EP) is a well-known botanical supplement with antioxidant characteristics. However, the effects of EP on oxidative stress induced by hyperthyroidism have not yet been studied. This study was designed to evaluate the antioxidative effect of ethanolic Echinacea Purpurea (EEP) on hyperthyroidism-induced oxidative stress mice using an integrated strategy combining transcriptomics with network pharmacology analysis. Firstly, a hyperthyroidism mice model was induced via thyroxine (160 mg/kg) and EEP (1, 2, or 4 g/kg) once daily for 2 weeks. Body weight, thyroid-stimulating hormones, and oxidative stress markers were tested. Secondly, EEP regulating the potential genes at transcript level were analyzed. Thirdly, a network pharmacology based on the constituents of EEP identified using UPLC-Q-TOF-MS analysis was adopted. Finally, a joint analysis was performed to identify the key pathway. The results showed that EEP significantly changed the thyroid-stimulating hormones and oxidative stress markers. Meanwhile, RT-qPCR and Western Blotting demonstrated that the mechanism of the antioxidant effect of EEP reversed the mRNA expression of EHHADH, HMGCR and SLC27A2 and the protein expression of FABP and HMGCR in AMPK and PPAR signaling pathways. This study integrates transcriptomics with network pharmacology to reveal the mechanism of ameliorative effect of EEP on hyperthyroidism-induced oxidative stress.
Collapse
Affiliation(s)
- Yingli Zhu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jianjun Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
- Correspondence: (J.Z.); (L.W.)
| | - Chun Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ting Zheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Songrui Di
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yinyin Wang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Wenting Fei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Weican Liang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Linyuan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
- Correspondence: (J.Z.); (L.W.)
| |
Collapse
|
15
|
Guo J, Nie J, Chen Z, Wang X, Hu H, Xu J, Lu J, Ma L, Ji H, Yuan J, Xu B. Cold exposure-induced endoplasmic reticulum stress regulates autophagy through the SIRT2/FoxO1 signaling pathway. J Cell Physiol 2022; 237:3960-3970. [PMID: 35938526 DOI: 10.1002/jcp.30856] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 01/14/2023]
Abstract
Cold is a factor affecting health in humans and animals. The liver, a major metabolic center, is highly susceptible to ambient air temperature. Recent studies have shown that endoplasmic reticulum (ER) stress is associated with the liver, and regulates the occurrence and development of liver injury and autophagy. However, the mechanism underlying the relationship between cold exposure and ER stress in the liver is not well understood. In this study, we investigated the effect of ER stress on liver autophagy and its mechanism under cold exposure. AML12 cells were treated with Tg to construct an ER stress model, and the level of autophagy increased. To further explore the mechanism through which ER stress regulates autophagy, we knocked down SIRT2 with shRNA in Tg-treated AML12 cells. Knockdown of SIRT2 significantly increased ER stress and autophagy, increased FoxO1 acetylation, and promoted its entry into the nucleus. To further verify the results of in vitro experiments, we exposed mice to 4°C for 3 h per day for 3 weeks to exacerbate the burden on the liver after cold exposure. Cold exposure damaged the structure and function of the liver and promoted the inflammatory response. It also activated ER stress and promoted autophagy. In addition, cold exposure inhibited the expression of SIRT2, promoted FoxO1 acetylation, and enhanced the interaction with autophagy. Our findings indicated that cold exposure induces liver damage, ER stress, and autophagy through the SIRT2/FoxO1 pathway. These findings suggest that SIRT2 may be a potential target for regulating health under cold exposure.
Collapse
Affiliation(s)
- Jingru Guo
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Junshu Nie
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Zhuo Chen
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xian Wang
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Huijie Hu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jing Xu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jingjing Lu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Li Ma
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Hong Ji
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jianbin Yuan
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Bin Xu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|