1
|
Goswami P, Cesare J, Rekowski MJ, Clark Z, Thornton J, Washburn MP. Analysis of FAIMS for the study of affinity-purified protein complexes using the orbitrap ascend tribrid mass spectrometer. Mol Omics 2025. [PMID: 40391882 DOI: 10.1039/d5mo00038f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
In this study, we analyzed the combination of affinity purification mass spectrometry (AP-MS) with high-field asymmetric waveform ion mobility spectrometry (FAIMS), integrated between nanoLC-MS and an Orbitrap Ascend tribrid mass spectrometer. Our primary objective was to evaluate the application of the FAIMS interface for detecting affinity purified SAP25 protein complexes with enhanced sensitivity and robustness. As a result, we observed that nanoLC-FAIMS-MS (with FAIMS) significantly improved the sensitivity and detection limits at the protein level, peptide level and significantly reduced chemical contaminants compared to nanoLC-MS alone without FAIMS (No FAIMS). This FAIMS configuration resulted in 42% and 92% increases for the total proteins and unique proteins, respectively, and 44% and 88% increases for total peptides and unique peptides compared to the No FAIMS configuration. Our in-depth comparison of FAIMS and No FAIMS shows that FAIMS outperforms by significantly reducing the missing value by <15% in datasets and plays a significant role in filtering chemical contaminants. Lastly, we searched the datasets for multiple post-translational modifications important in chromatin remodeling and found several arginine methylation sites on the bait protein SAP25. Our findings highlight the potential of FAIMS with Orbitrap Ascend tribrid mass spectrometer to enhance the depth of AP-MS analysis. The data were deposited with the MASSIVE repository with the identifier MSV000096548.
Collapse
Affiliation(s)
- Pratik Goswami
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| | - Joseph Cesare
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Michaella J Rekowski
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| | - Zachary Clark
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| | - Janet Thornton
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| | - Michael P Washburn
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
2
|
Ourailidis I, Stögbauer F, Zhou Y, Beck S, Romanovsky E, Eckert S, Wollenberg B, Wirth M, Steiger K, Kuster B, Gires O, Stenzinger A, Schirmacher P, Weichert W, Kuhn PH, Boxberg M, Budczies J. Multi-omics analysis to uncover the molecular basis of tumor budding in head and neck squamous cell carcinoma. NPJ Precis Oncol 2025; 9:73. [PMID: 40082664 PMCID: PMC11906922 DOI: 10.1038/s41698-025-00856-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 02/25/2025] [Indexed: 03/16/2025] Open
Abstract
Tumor budding (TB) is a prognostic biomarker in HPV-negative and HPV-positive head and neck squamous cell carcinoma (HNSCC). Analyzing TCGA and CPTAC mutation, RNA, and RPPA data and performing proteomics and IHC in two independent in-house cohorts, we uncovered molecular correlates of TB in an unprecedentedly comprehensive manner. NSD1 mutations were associated with lower TB in HPV-negative HNSCC. Comparing budding and nonbudding tumors, 66 miRNAs, including the miRNA-200 family, were differentially expressed in HPV-negative HNSCC. 3,052 (HPV-negative HNSCC) and 360 (HPV-positive HNSCC) RNAs were differentially expressed. EMT, myogenesis, and other cancer hallmarks were enriched in the overexpressed RNAs. In HPV-negative HNSCC, 88 proteins were differentially expressed, significantly overlapping with the differentially expressed RNAs. CAV1 and MMP14 protein expression investigated by IHC increased gradually from nonbudding tumors to the bulk of budding tumors and tumor buds. The molecular insights gained support new approaches to therapy development and guidance for HNSCC.
Collapse
Affiliation(s)
- Iordanis Ourailidis
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Fabian Stögbauer
- Institute of Pathology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Yuxiang Zhou
- Institute of Pathology, School of Medicine, Technical University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, a Partnership Between DKFZ and University Center Technical University of Munich, Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Susanne Beck
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Eva Romanovsky
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Stephan Eckert
- German Cancer Consortium (DKTK), Partner Site Munich, a Partnership Between DKFZ and University Center Technical University of Munich, Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Proteomics and Bioanalytics, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Barbara Wollenberg
- Department of Otolaryngology Head and Neck Surgery, School of Medicine, Technical University of Munich, Munich, Germany
| | - Markus Wirth
- Department of Otolaryngology Head and Neck Surgery, School of Medicine, Technical University of Munich, Munich, Germany
| | - Katja Steiger
- Institute of Pathology, School of Medicine, Technical University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, a Partnership Between DKFZ and University Center Technical University of Munich, Munich, Germany
- Comparative Experimental Pathology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Bernhard Kuster
- German Cancer Consortium (DKTK), Partner Site Munich, a Partnership Between DKFZ and University Center Technical University of Munich, Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Proteomics and Bioanalytics, School of Life Sciences, Technical University of Munich, Freising, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Olivier Gires
- Clinic and Polyclinic for Otorhinolaryngology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Albrecht Stenzinger
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Center for Personalized Medicine (ZPM), Heidelberg, Germany
| | - Peter Schirmacher
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Center for Personalized Medicine (ZPM), Heidelberg, Germany
| | | | - Peer-Hendrik Kuhn
- Institute of Pathology Kaufbeuren Memmingen Ravensburg, Kaufbeuren, Germany
| | - Melanie Boxberg
- Institute of Pathology, School of Medicine, Technical University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, a Partnership Between DKFZ and University Center Technical University of Munich, Munich, Germany
| | - Jan Budczies
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.
- Center for Personalized Medicine (ZPM), Heidelberg, Germany.
| |
Collapse
|
3
|
Eckert S, Berner N, Kramer K, Schneider A, Müller J, Lechner S, Brajkovic S, Sakhteman A, Graetz C, Fackler J, Dudek M, Pfaffl MW, Knolle P, Wilhelm S, Kuster B. Decrypting the molecular basis of cellular drug phenotypes by dose-resolved expression proteomics. Nat Biotechnol 2025; 43:406-415. [PMID: 38714896 PMCID: PMC11919725 DOI: 10.1038/s41587-024-02218-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 03/25/2024] [Indexed: 03/20/2025]
Abstract
Proteomics is making important contributions to drug discovery, from target deconvolution to mechanism of action (MoA) elucidation and the identification of biomarkers of drug response. Here we introduce decryptE, a proteome-wide approach that measures the full dose-response characteristics of drug-induced protein expression changes that informs cellular drug MoA. Assaying 144 clinical drugs and research compounds against 8,000 proteins resulted in more than 1 million dose-response curves that can be interactively explored online in ProteomicsDB and a custom-built Shiny App. Analysis of the collective data provided molecular explanations for known phenotypic drug effects and uncovered new aspects of the MoA of human medicines. We found that histone deacetylase inhibitors potently and strongly down-regulated the T cell receptor complex resulting in impaired human T cell activation in vitro and ex vivo. This offers a rational explanation for the efficacy of histone deacetylase inhibitors in certain lymphomas and autoimmune diseases and explains their poor performance in treating solid tumors.
Collapse
Affiliation(s)
- Stephan Eckert
- Chair of Proteomics and Bioanalytics, School of Life Sciences, Technical University of Munich, Freising, Germany
- German Cancer Consortium (DKTK), partner site Munich, a partnership between DKFZ and University Center Technical University of Munich, Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nicola Berner
- Chair of Proteomics and Bioanalytics, School of Life Sciences, Technical University of Munich, Freising, Germany
- German Cancer Consortium (DKTK), partner site Munich, a partnership between DKFZ and University Center Technical University of Munich, Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Karl Kramer
- Chair of Proteomics and Bioanalytics, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Annika Schneider
- Chair of Proteomics and Bioanalytics, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Julian Müller
- Chair of Proteomics and Bioanalytics, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Severin Lechner
- Chair of Proteomics and Bioanalytics, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Sarah Brajkovic
- Chair of Proteomics and Bioanalytics, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Amirhossein Sakhteman
- Chair of Proteomics and Bioanalytics, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Christian Graetz
- Chair of Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Jonas Fackler
- Institute of Molecular Immunology and Experimental Oncology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Michael Dudek
- Institute of Molecular Immunology and Experimental Oncology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Michael W Pfaffl
- Chair of Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Percy Knolle
- Institute of Molecular Immunology and Experimental Oncology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Stephanie Wilhelm
- Chair of Proteomics and Bioanalytics, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, School of Life Sciences, Technical University of Munich, Freising, Germany.
- German Cancer Consortium (DKTK), partner site Munich, a partnership between DKFZ and University Center Technical University of Munich, Munich, Germany.
| |
Collapse
|
4
|
Humphries EM, Hains PG, Robinson PJ. Overlap of Formalin-Fixed Paraffin-Embedded and Fresh-Frozen Matched Tissues for Proteomics and Phosphoproteomics. ACS OMEGA 2025; 10:6891-6900. [PMID: 40028131 PMCID: PMC11865994 DOI: 10.1021/acsomega.4c09289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/08/2025] [Accepted: 01/15/2025] [Indexed: 03/05/2025]
Abstract
Many liquid chromatography-mass spectrometry (LC-MS) studies have compared formalin-fixed paraffin-embedded (FFPE) tissues with matched fresh-frozen (FF) tissues to examine the effect of preservation techniques on the proteome; however, few studies have included the phosphoproteome. A high degree of overlap and correlation between the two preservation techniques would demonstrate the importance of FFPE tissues as a valuable biomedical resource. Our aim was to quantitatively compare the proteome and phosphoproteome of matched FFPE and FF tissues using data-independent acquisition LC-MS. Four organs from three rats were cut in half to produce matched FFPE and FF tissue pairs. Excellent overlaps of 85-97% for the proteome and 82-98% for the phosphoproteome were observed, depending on the organ type, between the two preservation techniques. Most of the unique identifications were found in FF with less than 0.3% being unique to FFPE tissues. Strong agreement between FFPE and FF matched tissue pairs was observed with Pearson correlation coefficients of 0.93-0.97 and 0.79-0.87 for the proteome and phosphoproteome, respectively. Digestion efficiency was slightly higher in FFPE (92-94%) than in FF tissues (86-89%), and a search of a data subset for formaldehyde induced chemical modifications revealed that only 0.05% of precursors were unique to FFPE tissues. This suggests that with quality sample preparation methods it is not necessary to include formaldehyde induced chemical modifications when analyzing FFPE tissues. We attribute the lower number of identifications in FFPE tissues to inaccurate peptide quantitation, which resulted in a lower MS peptide load and tryptic peptide enrichment load. Our results demonstrate that both proteomic and phosphoproteomic analyses of FFPE and FF tissues are highly comparable and highlight the suitability of FFPE tissues for both proteomic and phosphoproteomic analysis.
Collapse
Affiliation(s)
- Erin M. Humphries
- ProCan, Children’s
Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Peter G. Hains
- ProCan, Children’s
Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Phillip J. Robinson
- ProCan, Children’s
Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| |
Collapse
|
5
|
Tüshaus J, Eckert S, Schliemann M, Zhou Y, Pfeiffer P, Halves C, Fusco F, Weigel J, Hönikl L, Butenschön V, Todorova R, Rauert-Wunderlich H, The M, Rosenwald A, Heinemann V, Holch J, Steiger K, Delbridge C, Meyer B, Weichert W, Mogler C, Kuhn PH, Kuster B. Towards routine proteome profiling of FFPE tissue: insights from a 1,220-case pan-cancer study. EMBO J 2025; 44:304-329. [PMID: 39558110 PMCID: PMC11697351 DOI: 10.1038/s44318-024-00289-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 11/20/2024] Open
Abstract
Proteome profiling of formalin-fixed paraffin-embedded (FFPE) specimens has gained traction for the analysis of cancer tissue for the discovery of molecular biomarkers. However, reports so far focused on single cancer entities, comprised relatively few cases and did not assess the long-term performance of experimental workflows. In this study, we analyze 1220 tumors from six cancer entities processed over the course of three years. Key findings include the need for a new normalization method ensuring equal and reproducible sample loading for LC-MS/MS analysis across cohorts, showing that tumors can, on average, be profiled to a depth of >4000 proteins and discovering that current software fails to process such large ion mobility-based online fractionated datasets. We report the first comprehensive pan-cancer proteome expression resource for FFPE material comprising 11,000 proteins which is of immediate utility to the scientific community, and can be explored via a web resource. It enables a range of analyses including quantitative comparisons of proteins between patients and cohorts, the discovery of protein fingerprints representing the tissue of origin or proteins enriched in certain cancer entities.
Collapse
Affiliation(s)
- Johanna Tüshaus
- Proteomics and Bioanalytics, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Stephan Eckert
- Proteomics and Bioanalytics, School of Life Sciences, Technical University of Munich, Freising, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, a Partnership between DKFZ and University Center Technical University of Munich, Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marius Schliemann
- Proteomics and Bioanalytics, School of Life Sciences, Technical University of Munich, Freising, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Yuxiang Zhou
- German Cancer Consortium (DKTK), Partner Site Munich, a Partnership between DKFZ and University Center Technical University of Munich, Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Pathology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Pauline Pfeiffer
- Institute of Pathology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Christiane Halves
- Institute of Pathology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Federico Fusco
- Institute of Pathology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Johannes Weigel
- Institute of Pathology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Lisa Hönikl
- Department of Neurosurgery, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Vicki Butenschön
- Department of Neurosurgery, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Rumyana Todorova
- Department of Medicine III and Comprehensive Cancer Center Munich, University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | | | - Matthew The
- Proteomics and Bioanalytics, School of Life Sciences, Technical University of Munich, Freising, Germany
| | | | - Volker Heinemann
- Department of Medicine III and Comprehensive Cancer Center Munich, University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - Julian Holch
- Department of Medicine III and Comprehensive Cancer Center Munich, University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - Katja Steiger
- Institute of Pathology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Claire Delbridge
- Institute of Pathology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Bernhard Meyer
- Department of Neurosurgery, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Wilko Weichert
- German Cancer Consortium (DKTK), Partner Site Munich, a Partnership between DKFZ and University Center Technical University of Munich, Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Pathology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Carolin Mogler
- German Cancer Consortium (DKTK), Partner Site Munich, a Partnership between DKFZ and University Center Technical University of Munich, Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Pathology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Peer-Hendrik Kuhn
- German Cancer Consortium (DKTK), Partner Site Munich, a Partnership between DKFZ and University Center Technical University of Munich, Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Pathology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Bernhard Kuster
- Proteomics and Bioanalytics, School of Life Sciences, Technical University of Munich, Freising, Germany.
- German Cancer Consortium (DKTK), Partner Site Munich, a Partnership between DKFZ and University Center Technical University of Munich, Munich, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Bavarian Cancer Research Center (BZKF), Munich, Germany.
| |
Collapse
|
6
|
Haines M, Thorup JR, Gohsman S, Ctortecka C, Newton C, Rohrer DC, Hostetter G, Mani DR, Gillette MA, Satpathy S, Carr SA. High-throughput proteomic and phosphoproteomic analysis of formalin-fixed paraffin-embedded tissue. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.17.624038. [PMID: 39605438 PMCID: PMC11601474 DOI: 10.1101/2024.11.17.624038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Formalin-fixed, paraffin-embedded (FFPE) patient tissues are a valuable resource for proteomic studies with the potential to associate the derived molecular insights with clinical annotations and outcomes. Here we present an optimized, partially automated workflow for FFPE proteomics combining pathology-guided macro-dissection, Adaptive Focused Acoustics (AFA) sonication for lysis and decrosslinking, S-Trap digestion to peptides, and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis using Orbitrap, Astral or timsTOF HT instrumentation. The workflow enables analysis of up to 96 dissected FFPE tissue samples or 10 μm scrolls, identifying 8,000-10,000 unique proteins per sample with median CVs <20%. Key optimizations include improved tissue lysis strategies, protein quantification for normalization, and peptide cleanup prior to LC-MS/MS analysis. Application to lung adenocarcinoma (LUAD) FFPE blocks confirms the platform's effectiveness in processing complex, clinically relevant samples, achieving deep proteome coverage and quantitative robustness comparable to TMT-based methods. Using the newly released Orbitrap Astral with short, 24-minute gradients, the workflow identifies up to ~10,000 unique proteins and ~11,000 localized phosphosites in LUAD FFPE tissue. This high-throughput, scalable workflow advances biomarker discovery and proteomic research in archival tissue samples.
Collapse
Affiliation(s)
- Moe Haines
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | | | | | | | | | - D. R. Mani
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Shankha Satpathy
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Current address: AstraZeneca, Waltham, MA, USA
| | | |
Collapse
|
7
|
Humphries EM, Loudon C, Craft GE, Hains PG, Robinson PJ. Quantitative Comparison of Deparaffinization, Rehydration, and Extraction Methods for FFPE Tissue Proteomics and Phosphoproteomics. Anal Chem 2024; 96:13358-13370. [PMID: 39102789 DOI: 10.1021/acs.analchem.3c04479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Formalin-fixed paraffin-embedded (FFPE) tissues are suitable for proteomic and phosphoproteomic biomarker studies by data-independent acquisition mass spectrometry. The choice of the sample preparation method influences the number, intensity, and reproducibility of identifications. By comparing four deparaffinization and rehydration methods, including heptane, histolene, SubX, and xylene, we found that heptane and methanol produced the lowest coefficients of variation (CVs). Using this, five extraction methods from the literature were modified and evaluated for their performance using kidney, leg muscle, lung, and testicular rat organs. All methods performed well, except for SP3 due to insufficient tissue lysis. Heat n' Beat was the fastest and most reproducible method with the highest digestion efficiency and lowest CVs. S-Trap produced the highest peptide yield, while TFE produced the best phosphopeptide enrichment efficiency. The quantitation of FFPE-derived peptides remains an ongoing challenge with bias in UV and fluorescence assays across methods, most notably in SPEED. Functional enrichment analysis demonstrated that each method favored extracting some gene ontology cellular components over others including chromosome, cytoplasmic, cytoskeleton, endoplasmic reticulum, membrane, mitochondrion, and nucleoplasm protein groups. The outcome is a set of recommendations for choosing the most appropriate method for different settings.
Collapse
Affiliation(s)
- Erin M Humphries
- ProCan, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales 2145, Australia
| | - Clare Loudon
- ProCan, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales 2145, Australia
| | - George E Craft
- ProCan, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales 2145, Australia
| | - Peter G Hains
- ProCan, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales 2145, Australia
| | - Phillip J Robinson
- ProCan, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales 2145, Australia
| |
Collapse
|
8
|
Humphries EM, Xavier D, Ashman K, Hains PG, Robinson PJ. High-Throughput Proteomics and Phosphoproteomics of Rat Tissues Using Microflow Zeno SWATH. J Proteome Res 2024; 23:2355-2366. [PMID: 38819404 DOI: 10.1021/acs.jproteome.4c00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
High-throughput tissue proteomics has great potential in the advancement of precision medicine. Here, we investigated the combined sensitivity of trap-elute microflow liquid chromatography with a ZenoTOF for DIA proteomics and phosphoproteomics. Method optimization was conducted on HEK293T cell lines to determine the optimal variable window size, MS2 accumulation time and gradient length. The ZenoTOF 7600 was then compared to the previous generation TripleTOF 6600 using eight rat organs, finding up to 23% more proteins using a fifth of the sample load and a third of the instrument time. Spectral reference libraries generated from Zeno SWATH data in FragPipe (MSFragger-DIA/DIA-NN) contained 4 times more fragment ions than the DIA-NN only library and quantified more proteins. Replicate single-shot phosphopeptide enrichments of 50-100 μg of rat tryptic peptide were analyzed by microflow HPLC using Zeno SWATH without fractionation. Using Spectronaut we quantified a shallow phosphoproteome containing 1000-3000 phosphoprecursors per organ. Promisingly, clear hierarchical clustering of organs was observed with high Pearson correlation coefficients >0.95 between replicate enrichments and median CV of 20%. The combined sensitivity of microflow HPLC with Zeno SWATH allows for the high-throughput quantitation of an extensive proteome and shallow phosphoproteome from small tissue samples.
Collapse
Affiliation(s)
- Erin M Humphries
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales 2145, Australia
| | - Dylan Xavier
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales 2145, Australia
| | - Keith Ashman
- Sciex, 96 Ricketts Road,Mount Waverley, Victoria 3149, Australia
| | - Peter G Hains
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales 2145, Australia
| | - Phillip J Robinson
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales 2145, Australia
| |
Collapse
|
9
|
Xavier D, Lucas N, Williams SG, Koh JMS, Ashman K, Loudon C, Reddel R, Hains PG, Robinson PJ. Heat 'n Beat: A Universal High-Throughput End-to-End Proteomics Sample Processing Platform in under an Hour. Anal Chem 2024; 96:4093-4102. [PMID: 38427620 DOI: 10.1021/acs.analchem.3c04708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Proteomic analysis by mass spectrometry of small (≤2 mg) solid tissue samples from diverse formats requires high throughput and comprehensive proteome coverage. We developed a nearly universal, rapid, and robust protocol for sample preparation, suitable for high-throughput projects that encompass most cell or tissue types. This end-to-end workflow extends from original sample to loading the mass spectrometer and is centered on a one-tube homogenization and digestion method called Heat 'n Beat (HnB). It is applicable to most tissues, regardless of how they were fixed or embedded. Sample preparation was divided into separate challenges. The initial sample washing and final peptide cleanup steps were adapted to three tissue sources: fresh frozen (FF), optimal cutting temperature (OCT) compound embedded (FF-OCT), and formalin-fixed paraffin embedded (FFPE). Third, for core processing, tissue disruption and lysis were decreased to a 7 min heat and homogenization treatment, and reduction, alkylation, and proteolysis were optimized into a single step. The refinements produced near doubled peptide yield when compared to our earlier method ABLE delivered a consistently high digestion efficiency of 85-90%, reported by ProteinPilot, and required only 38 min for core processing in a single tube, with the total processing time being 53-63 min. The robustness of HnB was demonstrated on six organ types, a cell line, and a cancer biopsy. Its suitability for high-throughput applications was demonstrated on a set of 1171 FF-OCT human cancer biopsies, which were processed for end-to-end completion in 92 h, producing highly consistent peptide yield and quality for over 3513 MS runs.
Collapse
Affiliation(s)
- Dylan Xavier
- ProCan, Faculty of Medicine and Health, The University of Sydney, Children's Medical Research Institute, Westmead, NSW 2145, Australia
| | - Natasha Lucas
- ProCan, Faculty of Medicine and Health, The University of Sydney, Children's Medical Research Institute, Westmead, NSW 2145, Australia
| | - Steven G Williams
- ProCan, Faculty of Medicine and Health, The University of Sydney, Children's Medical Research Institute, Westmead, NSW 2145, Australia
| | - Jennifer M S Koh
- ProCan, Faculty of Medicine and Health, The University of Sydney, Children's Medical Research Institute, Westmead, NSW 2145, Australia
| | - Keith Ashman
- ProCan, Faculty of Medicine and Health, The University of Sydney, Children's Medical Research Institute, Westmead, NSW 2145, Australia
| | - Clare Loudon
- ProCan, Faculty of Medicine and Health, The University of Sydney, Children's Medical Research Institute, Westmead, NSW 2145, Australia
| | - Roger Reddel
- ProCan, Faculty of Medicine and Health, The University of Sydney, Children's Medical Research Institute, Westmead, NSW 2145, Australia
| | - Peter G Hains
- ProCan, Faculty of Medicine and Health, The University of Sydney, Children's Medical Research Institute, Westmead, NSW 2145, Australia
| | - Phillip J Robinson
- ProCan, Faculty of Medicine and Health, The University of Sydney, Children's Medical Research Institute, Westmead, NSW 2145, Australia
| |
Collapse
|
10
|
Fröhlich K, Furrer R, Schori C, Handschin C, Schmidt A. Robust, Precise, and Deep Proteome Profiling Using a Small Mass Range and Narrow Window Data-Independent-Acquisition Scheme. J Proteome Res 2024; 23:1028-1038. [PMID: 38275131 PMCID: PMC10913089 DOI: 10.1021/acs.jproteome.3c00736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024]
Abstract
In recent years, a plethora of different data-independent acquisition methods have been developed for proteomics to cover a wide range of requirements. Current deep proteome profiling methods rely on fractionations, elaborate chromatography, and mass spectrometry setups or display suboptimal quantitative precision. We set out to develop an easy-to-use one shot DIA method that achieves high quantitative precision and high proteome coverage. We achieve this by focusing on a small mass range of 430-670 m/z using small isolation windows without overlap. With this new method, we were able to quantify >9200 protein groups in HEK lysates with an average coefficient of variance of 3.2%. To demonstrate the power of our newly developed narrow mass range method, we applied it to investigate the effect of PGC-1α knockout on the skeletal muscle proteome in mice. Compared to a standard data-dependent acquisition method, we could double proteome coverage and, most importantly, achieve a significantly higher quantitative precision, as compared to a previously proposed DIA method. We believe that our method will be especially helpful in quantifying low abundant proteins in samples with a high dynamic range. All raw and result files are available at massive.ucsd.edu (MSV000092186).
Collapse
Affiliation(s)
- Klemens Fröhlich
- Proteomics
Core Facility, Biozentrum Basel, University
of Basel, 4056 Basel, Switzerland
| | - Regula Furrer
- Biozentrum
Basel, University of Basel, 4056 Basel, Switzerland
| | - Christian Schori
- Proteomics
Core Facility, Biozentrum Basel, University
of Basel, 4056 Basel, Switzerland
| | | | - Alexander Schmidt
- Proteomics
Core Facility, Biozentrum Basel, University
of Basel, 4056 Basel, Switzerland
| |
Collapse
|
11
|
Darville LNF, Lockhart JH, Putty Reddy S, Fang B, Izumi V, Boyle TA, Haura EB, Flores ER, Koomen JM. A Fast-Tracking Sample Preparation Protocol for Proteomics of Formalin-Fixed Paraffin-Embedded Tumor Tissues. Methods Mol Biol 2024; 2823:193-223. [PMID: 39052222 PMCID: PMC11648944 DOI: 10.1007/978-1-0716-3922-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Archived tumor specimens are routinely preserved by formalin fixation and paraffin embedding. Despite the conventional wisdom that proteomics might be ineffective due to the cross-linking and pre-analytical variables, these samples have utility for both discovery and targeted proteomics. Building on this capability, proteomics approaches can be used to maximize our understanding of cancer biology and clinical relevance by studying preserved tumor tissues annotated with the patients' medical histories. Proteomics of formalin-fixed paraffin-embedded (FFPE) tissues also integrates with histological evaluation and molecular pathology strategies, so that additional collection of research biopsies or resected tumor aliquots is not needed. The acquisition of data from the same tumor sample also overcomes concerns about biological variation between samples due to intratumoral heterogeneity. However, the protein extraction and proteomics sample preparation from FFPE samples can be onerous, particularly for small (i.e., limited or precious) samples. Therefore, we provide a protocol for a recently introduced kit-based EasyPep method with benchmarking against a modified version of the well-established filter-aided sample preparation strategy using laser-capture microdissected lung adenocarcinoma tissues from a genetically engineered mouse model. This model system allows control over the tumor preparation and pre-analytical variables while also supporting the development of methods for spatial proteomics to examine intratumoral heterogeneity. Data are posted in ProteomeXchange (PXD045879).
Collapse
Affiliation(s)
| | | | | | - Bin Fang
- H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | | | | | | | | | - John M Koomen
- H. Lee Moffitt Cancer Center, Tampa, FL, USA.
- Molecular Oncology/Pathology, Moffitt Cancer Center, Tampa, FL, USA.
| |
Collapse
|
12
|
Tüshaus J, Sakhteman A, Lechner S, The M, Mucha E, Krisp C, Schlegel J, Delbridge C, Kuster B. A region-resolved proteomic map of the human brain enabled by high-throughput proteomics. EMBO J 2023; 42:e114665. [PMID: 37916885 PMCID: PMC10690467 DOI: 10.15252/embj.2023114665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 11/03/2023] Open
Abstract
Substantial efforts are underway to deepen our understanding of human brain morphology, structure, and function using high-resolution imaging as well as high-content molecular profiling technologies. The current work adds to these approaches by providing a comprehensive and quantitative protein expression map of 13 anatomically distinct brain regions covering more than 11,000 proteins. This was enabled by the optimization, characterization, and implementation of a high-sensitivity and high-throughput microflow liquid chromatography timsTOF tandem mass spectrometry system (LC-MS/MS) capable of analyzing more than 2,000 consecutive samples prepared from formalin-fixed paraffin embedded (FFPE) material. Analysis of this proteomic resource highlighted brain region-enriched protein expression patterns and functional protein classes, protein localization differences between brain regions and individual markers for specific areas. To facilitate access to and ease further mining of the data by the scientific community, all data can be explored online in a purpose-built R Shiny app (https://brain-region-atlas.proteomics.ls.tum.de).
Collapse
Affiliation(s)
- Johanna Tüshaus
- Proteomics and Bioanalytics, Department of Molecular Life Sciences, School of Life SciencesTechnical University of MunichMunichGermany
| | - Amirhossein Sakhteman
- Proteomics and Bioanalytics, Department of Molecular Life Sciences, School of Life SciencesTechnical University of MunichMunichGermany
| | - Severin Lechner
- Proteomics and Bioanalytics, Department of Molecular Life Sciences, School of Life SciencesTechnical University of MunichMunichGermany
| | - Matthew The
- Proteomics and Bioanalytics, Department of Molecular Life Sciences, School of Life SciencesTechnical University of MunichMunichGermany
| | - Eike Mucha
- Bruker Daltonics GmbH & Co. KGBremenGermany
| | | | - Jürgen Schlegel
- Department of Neuropathology, Klinikum Rechts der ISAR, School of MedicineTechnical University MunichMunichGermany
| | - Claire Delbridge
- Department of Neuropathology, Klinikum Rechts der ISAR, School of MedicineTechnical University MunichMunichGermany
| | - Bernhard Kuster
- Proteomics and Bioanalytics, Department of Molecular Life Sciences, School of Life SciencesTechnical University of MunichMunichGermany
- German Cancer Consortium (DKTK), Munich SiteHeidelbergGermany
| |
Collapse
|
13
|
Montero-Calle A, Garranzo-Asensio M, Rejas-González R, Feliu J, Mendiola M, Peláez-García A, Barderas R. Benefits of FAIMS to Improve the Proteome Coverage of Deteriorated and/or Cross-Linked TMT 10-Plex FFPE Tissue and Plasma-Derived Exosomes Samples. Proteomes 2023; 11:35. [PMID: 37987315 PMCID: PMC10661291 DOI: 10.3390/proteomes11040035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/20/2023] [Accepted: 10/20/2023] [Indexed: 11/22/2023] Open
Abstract
The proteome characterization of complex, deteriorated, or cross-linked protein mixtures as paired clinical FFPE or exosome samples isolated from low plasma volumes (250 µL) might be a challenge. In this work, we aimed at investigating the benefits of FAIMS technology coupled to the Orbitrap Exploris 480 mass spectrometer for the TMT quantitative proteomics analyses of these complex samples in comparison to the analysis of protein extracts from cells, frozen tissue, and exosomes isolated from large volume plasma samples (3 mL). TMT experiments were performed using a two-hour gradient LC-MS/MS with or without FAIMS and two compensation voltages (CV = -45 and CV = -60). In the TMT experiments of cells, frozen tissue, or exosomes isolated from large plasma volumes (3 mL) with FAIMS, a limited increase in the number of identified and quantified proteins accompanied by a decrease in the number of peptides identified and quantified was observed. However, we demonstrated here a noticeable improvement (>100%) in the number of peptide and protein identifications and quantifications for the plasma exosomes isolated from low plasma volumes (250 µL) and FFPE tissue samples in TMT experiments with FAIMS in comparison to the LC-MS/MS analysis without FAIMS. Our results highlight the potential of mass spectrometry analyses with FAIMS to increase the depth into the proteome of complex samples derived from deteriorated, cross-linked samples and/or those where the material was scarce, such as FFPE and plasma-derived exosomes from low plasma volumes (250 µL), which might aid in the characterization of their proteome and proteoforms and in the identification of dysregulated proteins that could be used as biomarkers.
Collapse
Affiliation(s)
- Ana Montero-Calle
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, 28220 Majadahonda, Spain; (M.G.-A.); (R.R.-G.)
| | - María Garranzo-Asensio
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, 28220 Majadahonda, Spain; (M.G.-A.); (R.R.-G.)
| | - Raquel Rejas-González
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, 28220 Majadahonda, Spain; (M.G.-A.); (R.R.-G.)
| | - Jaime Feliu
- Translational Oncology Group, La Paz University Hospital (IdiPAZ), 28046 Madrid, Spain;
- Center for Biomedical Research in the Cancer Network (CIBERONC), Instituto de Salud Carlos III, 28046 Madrid, Spain;
| | - Marta Mendiola
- Center for Biomedical Research in the Cancer Network (CIBERONC), Instituto de Salud Carlos III, 28046 Madrid, Spain;
- Molecular Pathology and Therapeutic Targets Group, La Paz University Hospital (IdiPAZ), 28046 Madrid, Spain;
| | - Alberto Peláez-García
- Molecular Pathology and Therapeutic Targets Group, La Paz University Hospital (IdiPAZ), 28046 Madrid, Spain;
| | - Rodrigo Barderas
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, 28220 Majadahonda, Spain; (M.G.-A.); (R.R.-G.)
| |
Collapse
|
14
|
Ai L, Binek A, Kreimer S, Ayres M, Stotland A, Van Eyk JE. High-Field Asymmetric Waveform Ion Mobility Spectrometry: Practical Alternative for Cardiac Proteome Sample Processing. J Proteome Res 2023; 22:2124-2130. [PMID: 37040897 PMCID: PMC10243111 DOI: 10.1021/acs.jproteome.3c00027] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Indexed: 04/13/2023]
Abstract
Heart tissue sample preparation for mass spectrometry (MS) analysis that includes prefractionation reduces the cellular protein dynamic range and increases the relative abundance of nonsarcomeric proteins. We previously described "IN-Sequence" (IN-Seq) where heart tissue lysate is sequentially partitioned into three subcellular fractions to increase the proteome coverage more than a single direct tissue analysis by mass spectrometry. Here, we report an adaptation of the high-field asymmetric ion mobility spectrometry (FAIMS) coupled to mass spectrometry, and the establishment of a simple one step sample preparation coupled with gas-phase fractionation. The FAIMS approach substantially reduces manual sample handling, significantly shortens the MS instrument processing time, and produces unique protein identification and quantification approximating the commonly used IN-Seq method in less time.
Collapse
Affiliation(s)
- Lizhuo Ai
- Department
of Biomedical Sciences, Cedars-Sinai Medical
Center, Los Angeles, California 90048, United States
- Advanced
Clinical Biosystems Research Institute, Smidt Heart institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Aleksandra Binek
- Advanced
Clinical Biosystems Research Institute, Smidt Heart institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Simion Kreimer
- Advanced
Clinical Biosystems Research Institute, Smidt Heart institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Matthew Ayres
- Advanced
Clinical Biosystems Research Institute, Smidt Heart institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Aleksandr Stotland
- Advanced
Clinical Biosystems Research Institute, Smidt Heart institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| | - Jennifer E. Van Eyk
- Department
of Biomedical Sciences, Cedars-Sinai Medical
Center, Los Angeles, California 90048, United States
- Advanced
Clinical Biosystems Research Institute, Smidt Heart institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, United States
| |
Collapse
|
15
|
High-end ion mobility mass spectrometry: A current review of analytical capacity in omics applications and structural investigations. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Abstract
INTRODUCTION Due to its excellent sensitivity, nano-flow liquid chromatography tandem mass spectrometry (LC-MS/MS) is the mainstay in proteome research; however, this comes at the expense of limited throughput and robustness. In contrast, micro-flow LC-MS/MS enables high-throughput, robustness, quantitative reproducibility, and precision while retaining a moderate degree of sensitivity. Such features make it an attractive technology for a wide range of proteomic applications. In particular, large-scale projects involving the analysis of hundreds to thousands of samples. AREAS COVERED This review summarizes the history of chromatographic separation in discovery proteomics with a focus on micro-flow LC-MS/MS, discusses the current state-of-the-art, highlights advances in column development and instrumentation, and provides guidance on which LC flow best supports different types of proteomic applications. EXPERT OPINION Micro-flow LC-MS/MS will replace nano-flow LC-MS/MS in many proteomic applications, particularly when sample quantities are not limited and sample cohorts are large. Examples include clinical analyses of body fluids, tissues, drug discovery and chemical biology investigations, plus systems biology projects across all kingdoms of life. When combined with rapid and sensitive MS, intelligent data acquisition, and informatics approaches, it will soon become possible to analyze large cohorts of more than 10,000 samples in a comprehensive and fully quantitative fashion.
Collapse
Affiliation(s)
- Yangyang Bian
- The College of Life Science, Northwest University, Xi'an, P.R. China
| | - Chunli Gao
- The College of Life Science, Northwest University, Xi'an, P.R. China
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| |
Collapse
|