1
|
Henry B, Phillips AJ, Sibley LD, Rosenberg A. A combination of four Toxoplasma gondii nuclear-targeted effectors protects against interferon gamma-driven human host cell death. mBio 2024; 15:e0212424. [PMID: 39292011 PMCID: PMC11481881 DOI: 10.1128/mbio.02124-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
In both mice and humans, Type II interferon gamma (IFNγ) is crucial for the regulation of Toxoplasma gondii (T. gondii) infection, during acute or chronic phases. To thwart this defense, T. gondii secretes protein effectors hindering the host's immune response. For example, T. gondii relies on the MYR translocon complex to deploy soluble dense granule effectors (GRAs) into the host cell cytosol or nucleus. Recent genome-wide loss-of-function screens in IFNγ-primed primary human fibroblasts identified MYR translocon components as crucial for parasite resistance against IFNγ-driven vacuole clearance. However, these screens did not pinpoint specific MYR-dependent GRA proteins responsible for IFNγ signaling blockade, suggesting potential functional redundancy. Our study reveals that T. gondii depends on the MYR translocon complex to prevent parasite premature egress and host cell death in human cells stimulated with IFNγ post-infection, a unique phenotype observed in various human cell lines but not in murine cells. Intriguingly, inhibiting parasite egress did not prevent host cell death, indicating this mechanism is distinct from those described previously. Genome-wide loss-of-function screens uncovered TgIST, GRA16, GRA24, and GRA28 as effectors necessary for a complete block of IFNγ response. GRA24 and GRA28 directly influenced IFNγ-driven transcription, GRA24's action depended on its interaction with p38 MAPK, while GRA28 disrupted histone acetyltransferase activity of CBP/p300. Given the intricate nature of the immune response to T. gondii, it appears that the parasite has evolved equally elaborate mechanisms to subvert IFNγ signaling, extending beyond direct interference with the JAK/STAT1 pathway, to encompass other signaling pathways as well.IMPORTANCEToxoplasma gondii, an intracellular parasite, affects nearly one-third of the global human population, posing significant risks for immunocompromised patients and infants infected in utero. In murine models, the core mechanisms of IFNγ-mediated immunity against T. gondii are consistently preserved, showcasing a remarkable conservation of immune defense mechanisms. In humans, the recognized restriction mechanisms vary among cell types, lacking a universally applicable mechanism. This difference underscores a significant variation in the genes employed by T. gondii to shield itself against the IFNγ response in human vs murine cells. Here, we identified a specific combination of four parasite-secreted effectors deployed into the host cell nucleus, disrupting IFNγ signaling. This disruption is crucial in preventing premature egress of the parasite and host cell death. Notably, this phenotype is exclusive to human cells, highlighting the intricate and unique mechanisms T. gondii employs to modulate host responses in the human cellular environment.
Collapse
Affiliation(s)
- Brittany Henry
- Department of Infectious Diseases, Center for Tropical and Emerging Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | - Aubrey J. Phillips
- Department of Infectious Diseases, Center for Tropical and Emerging Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | - L. David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Alex Rosenberg
- Department of Infectious Diseases, Center for Tropical and Emerging Infectious Diseases, University of Georgia, Athens, Georgia, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
2
|
Henry B, Sibley LD, Rosenberg A. A Combination of Four Nuclear Targeted Effectors Protects Toxoplasma Against Interferon Gamma Driven Human Host Cell Death During Acute Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.24.573224. [PMID: 38234811 PMCID: PMC10793417 DOI: 10.1101/2023.12.24.573224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
In both mice and humans, Type II interferon-gamma (IFNγ) is crucial for regulation of Toxoplasma gondii (T. gondii) infection, during acute or chronic phases. To thwart this defense, T. gondii secretes protein effectors hindering the hosťs immune response. For example, T. gondii relies on the MYR translocon complex to deploy soluble dense granule effectors (GRAs) into the host cell cytosol or nucleus. Recent genome-wide loss-of-function screens in IFNγ-primed primary human fibroblasts identified MYR translocon components as crucial for parasite resistance against IFNγ driven vacuole clearance. However, these screens did not pinpoint specific MYR-dependent GRA proteins responsible for IFNγ signaling blockade, suggesting potential functional redundancy. Our study reveals that T. gondii depends on the MYR translocon complex to prevent host cell death and parasite premature egress in human cells stimulated with IFNγ postinfection, a unique phenotype observed in various human cell lines but not in murine cells. Intriguingly, inhibiting parasite egress did not prevent host cell death, indicating this mechanism is distinct from those described previously. Genome-wide loss-of-function screens uncovered TgIST, GRA16, GRA24, and GRA28 as effectors necessary for a complete block of IFNγ response. GRA24 and GRA28 directly influenced IFNγ driven transcription, GRA24's action depended on its interaction with p38 MAPK, while GRA28 disrupted histone acetyltransferase activity of CBP/p300. Given the intricate nature of the immune response to T. gondii, it appears that the parasite has evolved equally elaborate mechanisms to subvert IFNγ signaling, extending beyond direct interference with the JAK/STAT1 pathway, to encompass other signaling pathways as well.
Collapse
Affiliation(s)
- Brittany Henry
- Department of Infectious Diseases, Center for Tropical and Emerging Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | - L. David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Alex Rosenberg
- Department of Infectious Diseases, Center for Tropical and Emerging Infectious Diseases, University of Georgia, Athens, Georgia, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, USA
| |
Collapse
|
3
|
Wan W, Dong H, Lai DH, Yang J, He K, Tang X, Liu Q, Hide G, Zhu XQ, Sibley LD, Lun ZR, Long S. The Toxoplasma micropore mediates endocytosis for selective nutrient salvage from host cell compartments. Nat Commun 2023; 14:977. [PMID: 36813769 PMCID: PMC9947163 DOI: 10.1038/s41467-023-36571-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 02/03/2023] [Indexed: 02/24/2023] Open
Abstract
Apicomplexan parasite growth and replication relies on nutrient acquisition from host cells, in which intracellular multiplication occurs, yet the mechanisms that underlie the nutrient salvage remain elusive. Numerous ultrastructural studies have documented a plasma membrane invagination with a dense neck, termed the micropore, on the surface of intracellular parasites. However, the function of this structure remains unknown. Here we validate the micropore as an essential organelle for endocytosis of nutrients from the host cell cytosol and Golgi in the model apicomplexan Toxoplasma gondii. Detailed analyses demonstrated that Kelch13 is localized at the dense neck of the organelle and functions as a protein hub at the micropore for endocytic uptake. Intriguingly, maximal activity of the micropore requires the ceramide de novo synthesis pathway in the parasite. Thus, this study provides insights into the machinery underlying acquisition of host cell-derived nutrients by apicomplexan parasites that are otherwise sequestered from host cell compartments.
Collapse
Affiliation(s)
- Wenyan Wan
- National Key Laboratory of Veterinary Public Health Security and School of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Hui Dong
- National Key Laboratory of Veterinary Public Health Security and School of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - De-Hua Lai
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jiong Yang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Kai He
- National Key Laboratory of Veterinary Public Health Security and School of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Xiaoyan Tang
- National Key Laboratory of Veterinary Public Health Security and School of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Qun Liu
- National Key Laboratory of Veterinary Public Health Security and School of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Geoff Hide
- Biomedical Research and Innovation Centre and Environmental Research and Innovation Centre, School of Science, Engineering and Environment, University of Salford, Salford, M5 4WT, UK
| | - Xing-Quan Zhu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - L David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine in Saint Louis, Saint Louis, MO, 63110-1093, USA
| | - Zhao-Rong Lun
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Shaojun Long
- National Key Laboratory of Veterinary Public Health Security and School of Veterinary Medicine, China Agricultural University, 100193, Beijing, China.
| |
Collapse
|
4
|
Moschonas GD, De Meyer M, De Sutter D, Timmerman E, Van Damme P, Eyckerman S. Virotrap: Trapping Protein Complexes in Virus-Like Particles. Methods Mol Biol 2023; 2718:53-71. [PMID: 37665454 DOI: 10.1007/978-1-0716-3457-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The discovery of protein-protein interactions can provide crucial information on protein function by linking proteins into known pathways or complexes within the cell. Mass spectrometry (MS)-based methods, such as affinity purification (AP)-MS and proximity-dependent biotin identification (BioID), allowed for a vast increase in the number of reported protein complexes. As a more recent addition to the arsenal of MS-based methods, Virotrap represents a unique technology that benefits from the specific properties of the human immunodeficiency virus-1 (HIV-1) Gag polyprotein. More specifically, Virotrap captures protein complexes in virus-like particles budded from human embryonic kidney (HEK293T) cells, bypassing the need for cell lysis and thus supporting identification of their content using MS. Being intrinsically different to its two main predecessors, affinity purification MS (AP-MS) and biotin-dependent identification (BioID), Virotrap was shown to complement data obtained with the existing MS-based toolkit. The proven complementarity of these MS-based strategies underlines the importance of using different techniques to enable comprehensive mapping of protein-protein interactions (PPIs). In this chapter, we provide a detailed overview of the Virotrap protocol to screen for PPIs using a bait protein of interest.
Collapse
Affiliation(s)
- George D Moschonas
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Margaux De Meyer
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- iRIP Unit, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Delphine De Sutter
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Evy Timmerman
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB Proteomics Core, Ghent, Belgium
| | - Petra Van Damme
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- iRIP Unit, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Sven Eyckerman
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium.
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
| |
Collapse
|
5
|
Rosenberg A, Sibley LD. Toxoplasma gondii secreted effectors co-opt host repressor complexes to inhibit necroptosis. Cell Host Microbe 2021; 29:1186-1198.e8. [PMID: 34043960 PMCID: PMC8711274 DOI: 10.1016/j.chom.2021.04.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 02/22/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023]
Abstract
Toxoplasma gondii translocates effector proteins into its host cell to subvert various host pathways. T. gondii effector TgIST blocks the transcription of interferon-stimulated genes to reduce immune defense. Interferons upregulate numerous genes, including protein kinase R (PKR), which induce necrosome formation to activate mixed-lineage-kinase-domain-like (MLKL) pseudokinase and induce necroptosis. Whether these interferon functions are targeted by Toxoplasma is unknown. Here, we examine secreted effectors that localize to the host cell nucleus and find that the chronic bradyzoite stage secretes effector TgNSM that targets the NCoR/SMRT complex, a repressor for various transcription factors, to inhibit interferon-regulated genes involved in cell death. TgNSM acts with TgIST to block IFN-driven expression of PKR and MLKL, thus preventing host cell necroptotic death and protecting the parasite's intracellular niche. The mechanism of action of TgNSM uncovers a role of NCoR/SMRT in necroptosis, assuring survival of intracellular cysts and chronic infection.
Collapse
Affiliation(s)
- Alex Rosenberg
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63130, USA
| | - L David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
6
|
Bittremieux W, Adams C, Laukens K, Dorrestein PC, Bandeira N. Open Science Resources for the Mass Spectrometry-Based Analysis of SARS-CoV-2. J Proteome Res 2021; 20:1464-1475. [PMID: 33605735 DOI: 10.1021/acs.jproteome.0c00929] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The SARS-CoV-2 virus is the causative agent of the 2020 pandemic leading to the COVID-19 respiratory disease. With many scientific and humanitarian efforts ongoing to develop diagnostic tests, vaccines, and treatments for COVID-19, and to prevent the spread of SARS-CoV-2, mass spectrometry research, including proteomics, is playing a role in determining the biology of this viral infection. Proteomics studies are starting to lead to an understanding of the roles of viral and host proteins during SARS-CoV-2 infection, their protein-protein interactions, and post-translational modifications. This is beginning to provide insights into potential therapeutic targets or diagnostic strategies that can be used to reduce the long-term burden of the pandemic. However, the extraordinary situation caused by the global pandemic is also highlighting the need to improve mass spectrometry data and workflow sharing. We therefore describe freely available data and computational resources that can facilitate and assist the mass spectrometry-based analysis of SARS-CoV-2. We exemplify this by reanalyzing a virus-host interactome data set to detect protein-protein interactions and identify host proteins that could potentially be used as targets for drug repurposing.
Collapse
Affiliation(s)
- Wout Bittremieux
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla 92093, California, United States.,Department of Computer Science, University of Antwerp, Antwerp 2020, Belgium
| | - Charlotte Adams
- Department of Computer Science, University of Antwerp, Antwerp 2020, Belgium
| | - Kris Laukens
- Department of Computer Science, University of Antwerp, Antwerp 2020, Belgium
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla 92093, California, United States
| | - Nuno Bandeira
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla 92093, California, United States.,Department of Computer Science and Engineering, University of California San Diego, La Jolla 92093, California, United States
| |
Collapse
|
7
|
Poverennaya EV, Kiseleva OI, Ivanov AS, Ponomarenko EA. Methods of Computational Interactomics for Investigating Interactions of Human Proteoforms. BIOCHEMISTRY (MOSCOW) 2020; 85:68-79. [PMID: 32079518 DOI: 10.1134/s000629792001006x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Human genome contains ca. 20,000 protein-coding genes that could be translated into millions of unique protein species (proteoforms). Proteoforms coded by a single gene often have different functions, which implies different protein partners. By interacting with each other, proteoforms create a network reflecting the dynamics of cellular processes in an organism. Perturbations of protein-protein interactions change the network topology, which often triggers pathological processes. Studying proteoforms is a relatively new research area in proteomics, and this is why there are comparatively few experimental studies on the interaction of proteoforms. Bioinformatics tools can facilitate such studies by providing valuable complementary information to the experimental data and, in particular, expanding the possibilities of the studies of proteoform interactions.
Collapse
Affiliation(s)
| | - O I Kiseleva
- Institute of Biomedical Chemistry, Moscow, 119121, Russia
| | - A S Ivanov
- Institute of Biomedical Chemistry, Moscow, 119121, Russia
| | | |
Collapse
|
8
|
Abstract
It remains a significant challenge to define individual protein associations within networks where an individual protein can directly interact with other proteins and/or be part of large complexes, which contain functional modules. Here we demonstrate the topological scoring (TopS) algorithm for the analysis of quantitative proteomic datasets from affinity purifications. Data is analyzed in a parallel fashion where a prey protein is scored in an individual affinity purification by aggregating information from the entire dataset. Topological scores span a broad range of values indicating the enrichment of an individual protein in every bait protein purification. TopS is applied to interaction networks derived from human DNA repair proteins and yeast chromatin remodeling complexes. TopS highlights potential direct protein interactions and modules within complexes. TopS is a rapid method for the efficient and informative computational analysis of datasets, is complementary to existing analysis pipelines, and provides important insights into protein interaction networks. Inferring direct protein−protein interactions (PPIs) and modules in PPI networks remains a challenge. Here, the authors introduce an algorithm to infer potential direct PPIs from quantitative proteomic AP-MS data by identifying enriched interactions of each bait relative to the other baits.
Collapse
|
9
|
Tian B, Duan Q, Zhao C, Teng B, He Z. Reinforce: An Ensemble Approach for Inferring PPI Network from AP-MS Data. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2019; 16:365-376. [PMID: 28534782 DOI: 10.1109/tcbb.2017.2705060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Affinity Purification-Mass Spectrometry (AP-MS) is one of the most important technologies for constructing protein-protein interaction (PPI) networks. In this paper, we propose an ensemble method, Reinforce, for inferring PPI network from AP-MS data set. The new algorithm named Reinforce is based on rank aggregation and false discovery rate control. Under the null hypothesis that the interaction scores from different scoring methods are randomly generated, Reinforce follows three steps to integrate multiple ranking results from different algorithms or different data sets. The experimental results show that Reinforce can get more stable and accurate inference results than existing algorithms. The source codes of Reinforce and data sets used in the experiments are available at: https://sourceforge.net/projects/reinforce/.
Collapse
|
10
|
Titeca K, Lemmens I, Tavernier J, Eyckerman S. Discovering cellular protein-protein interactions: Technological strategies and opportunities. MASS SPECTROMETRY REVIEWS 2019; 38:79-111. [PMID: 29957823 DOI: 10.1002/mas.21574] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 01/03/2018] [Accepted: 06/04/2018] [Indexed: 05/09/2023]
Abstract
The analysis of protein interaction networks is one of the key challenges in the study of biology. It connects genotypes to phenotypes, and disruption often leads to diseases. Hence, many technologies have been developed to study protein-protein interactions (PPIs) in a cellular context. The expansion of the PPI technology toolbox however complicates the selection of optimal approaches for diverse biological questions. This review gives an overview of the binary and co-complex technologies, with the former evaluating the interaction of two co-expressed genetically tagged proteins, and the latter only needing the expression of a single tagged protein or no tagged proteins at all. Mass spectrometry is crucial for some binary and all co-complex technologies. After the detailed description of the different technologies, the review compares their unique specifications, advantages, disadvantages, and applicability, while highlighting opportunities for further advancements.
Collapse
Affiliation(s)
- Kevin Titeca
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Irma Lemmens
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Jan Tavernier
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Sven Eyckerman
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
| |
Collapse
|
11
|
Titeca K, Meysman P, Laukens K, Martens L, Tavernier J, Eyckerman S. sfinx: an R package for the elimination of false positives from affinity purification-mass spectrometry datasets. Bioinformatics 2018; 33:1902-1904. [PMID: 28186257 DOI: 10.1093/bioinformatics/btx076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 02/07/2017] [Indexed: 01/13/2023] Open
Abstract
Summary We describe sfinx, an R package providing access to the straightforward filtering index (SFINX) for the separation of true positive from false positive protein interactions in affinity purification - mass spectrometry datasets. This package maintains the reliability and user-friendliness of the SFINX web site interface but is faster, unlimited in input size, and can be run locally within R. Availability and Implementation The sfinx R package is available for download at the comprehensive R archive network (CRAN) https://cran.r-project.org/web/packages/sfinx/ under the Apache License 2.0. Contact sven.eyckerman@vib-ugent.be or kevin.titeca@gmail.com. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Kevin Titeca
- VIB Medical Biotechnology Center, A. Baertsoenkaai 3, Ghent, Belgium.,Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Pieter Meysman
- Advanced Database Research and Modelling (ADReM), Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium.,Biomedical Informatics Research Center Antwerp (biomina), University of Antwerp/Antwerp University Hospital, Edegem, Belgium
| | - Kris Laukens
- Advanced Database Research and Modelling (ADReM), Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium.,Biomedical Informatics Research Center Antwerp (biomina), University of Antwerp/Antwerp University Hospital, Edegem, Belgium
| | - Lennart Martens
- VIB Medical Biotechnology Center, A. Baertsoenkaai 3, Ghent, Belgium.,Department of Biochemistry, Ghent University, Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent University, Zwijnaarde, Belgium
| | - Jan Tavernier
- VIB Medical Biotechnology Center, A. Baertsoenkaai 3, Ghent, Belgium.,Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Sven Eyckerman
- VIB Medical Biotechnology Center, A. Baertsoenkaai 3, Ghent, Belgium.,Department of Biochemistry, Ghent University, Ghent, Belgium
| |
Collapse
|
12
|
Long S, Brown KM, Sibley LD. CRISPR-mediated Tagging with BirA Allows Proximity Labeling in Toxoplasma gondii. Bio Protoc 2018; 8:e2768. [PMID: 29644258 DOI: 10.21769/bioprotoc.2768] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Defining protein interaction networks can provide key insights into how protein complexes govern complex biological problems. Here we define a method for proximity based labeling using permissive biotin ligase to define protein networks in the intracellular parasite Toxoplasma gondii. When combined with CRISPR/Cas9 based tagging, this method provides a robust approach to defining protein networks. This approach detects interaction within intact cells, it is applicable to both soluble and insoluble components, including large proteins complexes that interact with the cytoskeleton and unique microtubule organizing center that comprises the apical complex in apicomplexan parasites.
Collapse
Affiliation(s)
- Shaojun Long
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kevin M Brown
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - L David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
13
|
A conserved ankyrin repeat-containing protein regulates conoid stability, motility and cell invasion in Toxoplasma gondii. Nat Commun 2017; 8:2236. [PMID: 29269729 PMCID: PMC5740107 DOI: 10.1038/s41467-017-02341-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/22/2017] [Indexed: 11/08/2022] Open
Abstract
Apicomplexan parasites are typified by an apical complex that contains a unique microtubule-organizing center (MTOC) that organizes the cytoskeleton. In apicomplexan parasites such as Toxoplasma gondii, the apical complex includes a spiral cap of tubulin-rich fibers called the conoid. Although described ultrastructurally, the composition and functions of the conoid are largely unknown. Here, we localize 11 previously undescribed apical proteins in T. gondii and identify an essential component named conoid protein hub 1 (CPH1), which is conserved in apicomplexan parasites. CPH1 contains ankyrin repeats that are required for structural integrity of the conoid, parasite motility, and host cell invasion. Proximity labeling and protein interaction network analysis reveal that CPH1 functions as a hub linking key motor and structural proteins that contain intrinsically disordered regions and coiled coil domains. Our findings highlight the importance of essential protein hubs in controlling biological networks of MTOCs in early-branching protozoan parasites. Apicomplexan parasites such as Toxoplasma gondii possess a tubulin-rich structure called the conoid. Here, Long et al. identify a conoid protein that interacts with motor and structural proteins and is required for structural integrity of the conoid, parasite motility, and host cell invasion.
Collapse
|
14
|
Meysman P, Titeca K, Eyckerman S, Tavernier J, Goethals B, Martens L, Valkenborg D, Laukens K. Protein complex analysis: From raw protein lists to protein interaction networks. MASS SPECTROMETRY REVIEWS 2017; 36:600-614. [PMID: 26709718 DOI: 10.1002/mas.21485] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 11/17/2015] [Indexed: 06/05/2023]
Abstract
The elucidation of molecular interaction networks is one of the pivotal challenges in the study of biology. Affinity purification-mass spectrometry and other co-complex methods have become widely employed experimental techniques to identify protein complexes. These techniques typically suffer from a high number of false negatives and false positive contaminants due to technical shortcomings and purification biases. To support a diverse range of experimental designs and approaches, a large number of computational methods have been proposed to filter, infer and validate protein interaction networks from experimental pull-down MS data. Nevertheless, this expansion of available methods complicates the selection of the most optimal ones to support systems biology-driven knowledge extraction. In this review, we give an overview of the most commonly used computational methods to process and interpret co-complex results, and we discuss the issues and unsolved problems that still exist within the field. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:600-614, 2017.
Collapse
Affiliation(s)
- Pieter Meysman
- Advanced Database Research and Modelling (ADReM), Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium
- Biomedical Informatics Research Center Antwerp (biomina), University of Antwerp/Antwerp University Hospital, Edegem, Belgium
| | - Kevin Titeca
- Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium
- Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Sven Eyckerman
- Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium
- Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Jan Tavernier
- Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium
- Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Bart Goethals
- Advanced Database Research and Modelling (ADReM), Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium
| | - Lennart Martens
- Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium
- Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Dirk Valkenborg
- Flemish Institute for Technological Research (VITO), Mol, Belgium
- IBioStat, Hasselt University, Hasselt, Belgium
- CFP-CeProMa, University of Antwerp, Antwerp, Belgium
| | - Kris Laukens
- Advanced Database Research and Modelling (ADReM), Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium
- Biomedical Informatics Research Center Antwerp (biomina), University of Antwerp/Antwerp University Hospital, Edegem, Belgium
| |
Collapse
|
15
|
Gupta S, Verheggen K, Tavernier J, Martens L. Unbiased Protein Association Study on the Public Human Proteome Reveals Biological Connections between Co-Occurring Protein Pairs. J Proteome Res 2017; 16:2204-2212. [PMID: 28480704 PMCID: PMC5491052 DOI: 10.1021/acs.jproteome.6b01066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
Mass-spectrometry-based, high-throughput
proteomics experiments
produce large amounts of data. While typically acquired to answer
specific biological questions, these data can also be reused in orthogonal
ways to reveal new biological knowledge. We here present a novel method
for such orthogonal data reuse of public proteomics data. Our method
elucidates biological relationships between proteins based on the
co-occurrence of these proteins across human experiments in the PRIDE
database. The majority of the significantly co-occurring protein pairs
that were detected by our method have been successfully mapped to
existing biological knowledge. The validity of our novel method is
substantiated by the extremely few pairs that can be mapped to existing
knowledge based on random associations between the same set of proteins.
Moreover, using literature searches and the STRING database, we were
able to derive meaningful biological associations for unannotated
protein pairs that were detected using our method, further illustrating
that as-yet unknown associations present highly interesting targets
for follow-up analysis.
Collapse
Affiliation(s)
- Surya Gupta
- VIB-UGent Center for Medical Biotechnology, VIB , A. Baertsoenkaai 3, B-9000 Ghent, Belgium.,Department of Biochemistry, Ghent University , B-9000 Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent University , B-9000 Ghent, Belgium
| | - Kenneth Verheggen
- VIB-UGent Center for Medical Biotechnology, VIB , A. Baertsoenkaai 3, B-9000 Ghent, Belgium.,Department of Biochemistry, Ghent University , B-9000 Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent University , B-9000 Ghent, Belgium
| | - Jan Tavernier
- VIB-UGent Center for Medical Biotechnology, VIB , A. Baertsoenkaai 3, B-9000 Ghent, Belgium.,Department of Biochemistry, Ghent University , B-9000 Ghent, Belgium
| | - Lennart Martens
- VIB-UGent Center for Medical Biotechnology, VIB , A. Baertsoenkaai 3, B-9000 Ghent, Belgium.,Department of Biochemistry, Ghent University , B-9000 Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent University , B-9000 Ghent, Belgium
| |
Collapse
|
16
|
Sala S, Van Troys M, Medves S, Catillon M, Timmerman E, Staes A, Schaffner-Reckinger E, Gevaert K, Ampe C. Expanding the Interactome of TES by Exploiting TES Modules with Different Subcellular Localizations. J Proteome Res 2017; 16:2054-2071. [DOI: 10.1021/acs.jproteome.7b00034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Stefano Sala
- Department of Biochemistry, Ghent University, 9000 Gent, Belgium
| | | | - Sandrine Medves
- Cytoskeleton
and Cell Plasticity Lab, Life Sciences Research Unit − FSTC, University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg
- Laboratory of Experimental Cancer Research, LIH, 1445 Strassen, Luxembourg
| | - Marie Catillon
- Cytoskeleton
and Cell Plasticity Lab, Life Sciences Research Unit − FSTC, University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg
| | - Evy Timmerman
- Department of Biochemistry, Ghent University, 9000 Gent, Belgium
- VIB Medical Biotechnology Center, 9000 Gent, Belgium
| | - An Staes
- Department of Biochemistry, Ghent University, 9000 Gent, Belgium
- VIB Medical Biotechnology Center, 9000 Gent, Belgium
| | - Elisabeth Schaffner-Reckinger
- Cytoskeleton
and Cell Plasticity Lab, Life Sciences Research Unit − FSTC, University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg
| | - Kris Gevaert
- Department of Biochemistry, Ghent University, 9000 Gent, Belgium
- VIB Medical Biotechnology Center, 9000 Gent, Belgium
| | - Christophe Ampe
- Department of Biochemistry, Ghent University, 9000 Gent, Belgium
| |
Collapse
|
17
|
Titeca K, Van Quickelberghe E, Samyn N, De Sutter D, Verhee A, Gevaert K, Tavernier J, Eyckerman S. Analyzing trapped protein complexes by Virotrap and SFINX. Nat Protoc 2017; 12:881-898. [PMID: 28358392 DOI: 10.1038/nprot.2017.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The analysis of protein interaction networks is one of the key challenges in the study of biology. It connects genotypes to phenotypes, and disruption of such networks is associated with many pathologies. Virtually all the approaches to the study of protein complexes require cell lysis, a dramatic step that obliterates cellular integrity and profoundly affects protein interactions. This protocol starts with Virotrap, a novel approach that avoids the need for cell homogenization by fusing the protein of interest to the HIV-1 Gag protein, trapping protein complexes in virus-like particles. By using the straightforward filtering index (SFINX), which is a powerful and intuitive online tool (http://sfinx.ugent.be) that enables contaminant removal from candidate lists resulting from mass-spectrometry-based analysis, we provide a complete workflow for researchers interested in mammalian protein complexes. Given direct access to mass spectrometers, researchers can process up to 24 samples in 7 d.
Collapse
Affiliation(s)
- Kevin Titeca
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium.,Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Emmy Van Quickelberghe
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium.,Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Noortje Samyn
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium.,Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Delphine De Sutter
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium.,Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Annick Verhee
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium.,Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Kris Gevaert
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium.,Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Jan Tavernier
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium.,Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Sven Eyckerman
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium.,Department of Biochemistry, Ghent University, Ghent, Belgium
| |
Collapse
|
18
|
Eyckerman S, Impens F, Van Quickelberghe E, Samyn N, Vandemoortele G, De Sutter D, Tavernier J, Gevaert K. Intelligent Mixing of Proteomes for Elimination of False Positives in Affinity Purification-Mass Spectrometry. J Proteome Res 2016; 15:3929-3937. [PMID: 27640904 DOI: 10.1021/acs.jproteome.6b00517] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Protein complexes are essential in all organizational and functional aspects of the cell. Different strategies currently exist for analyzing such protein complexes by mass spectrometry, including affinity purification (AP-MS) and proximal labeling-based strategies. However, the high sensitivity of current mass spectrometers typically results in extensive protein lists mainly consisting of nonspecifically copurified proteins. Finding the true positive interactors in these lists remains highly challenging. Here, we report a powerful design based on differential labeling with stable isotopes combined with nonequal mixing of control and experimental samples to discover bona fide interaction partners in AP-MS experiments. We apply this intelligent mixing of proteomes (iMixPro) concept to overexpression experiments for RAF1, RNF41, and TANK and also to engineered cell lines expressing epitope-tagged endogenous PTPN14, JIP3, and IQGAP1. For all baits, we confirmed known interactions and found a number of novel interactions. The results for RNF41 and TANK were compared to a classical affinity purification experiment, which demonstrated the efficiency and specificity of the iMixPro approach.
Collapse
Affiliation(s)
- Sven Eyckerman
- VIB Medical Biotechnology Center , Albert Baertsoenkaai 3, B-9000 Ghent, Belgium.,Department of Biochemistry, Ghent University , Albert Baertsoenkaai 3, B-9000 Ghent, Belgium
| | - Francis Impens
- VIB Medical Biotechnology Center , Albert Baertsoenkaai 3, B-9000 Ghent, Belgium.,Department of Biochemistry, Ghent University , Albert Baertsoenkaai 3, B-9000 Ghent, Belgium.,VIB Proteomics Expertise Center , Albert Baertsoenkaai 3, B-9000 Ghent, Belgium
| | - Emmy Van Quickelberghe
- VIB Medical Biotechnology Center , Albert Baertsoenkaai 3, B-9000 Ghent, Belgium.,Department of Biochemistry, Ghent University , Albert Baertsoenkaai 3, B-9000 Ghent, Belgium
| | - Noortje Samyn
- VIB Medical Biotechnology Center , Albert Baertsoenkaai 3, B-9000 Ghent, Belgium.,Department of Biochemistry, Ghent University , Albert Baertsoenkaai 3, B-9000 Ghent, Belgium
| | - Giel Vandemoortele
- VIB Medical Biotechnology Center , Albert Baertsoenkaai 3, B-9000 Ghent, Belgium.,Department of Biochemistry, Ghent University , Albert Baertsoenkaai 3, B-9000 Ghent, Belgium
| | - Delphine De Sutter
- VIB Medical Biotechnology Center , Albert Baertsoenkaai 3, B-9000 Ghent, Belgium.,Department of Biochemistry, Ghent University , Albert Baertsoenkaai 3, B-9000 Ghent, Belgium
| | - Jan Tavernier
- VIB Medical Biotechnology Center , Albert Baertsoenkaai 3, B-9000 Ghent, Belgium.,Department of Biochemistry, Ghent University , Albert Baertsoenkaai 3, B-9000 Ghent, Belgium
| | - Kris Gevaert
- VIB Medical Biotechnology Center , Albert Baertsoenkaai 3, B-9000 Ghent, Belgium.,Department of Biochemistry, Ghent University , Albert Baertsoenkaai 3, B-9000 Ghent, Belgium
| |
Collapse
|
19
|
Eyckerman S, Titeca K, Van Quickelberghe E, Cloots E, Verhee A, Samyn N, De Ceuninck L, Timmerman E, De Sutter D, Lievens S, Van Calenbergh S, Gevaert K, Tavernier J. Trapping mammalian protein complexes in viral particles. Nat Commun 2016; 7:11416. [PMID: 27122307 PMCID: PMC4853472 DOI: 10.1038/ncomms11416] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 03/22/2016] [Indexed: 01/22/2023] Open
Abstract
Cell lysis is an inevitable step in classical mass spectrometry–based strategies to analyse protein complexes. Complementary lysis conditions, in situ cross-linking strategies and proximal labelling techniques are currently used to reduce lysis effects on the protein complex. We have developed Virotrap, a viral particle sorting approach that obviates the need for cell homogenization and preserves the protein complexes during purification. By fusing a bait protein to the HIV-1 GAG protein, we show that interaction partners become trapped within virus-like particles (VLPs) that bud from mammalian cells. Using an efficient VLP enrichment protocol, Virotrap allows the detection of known binary interactions and MS-based identification of novel protein partners as well. In addition, we show the identification of stimulus-dependent interactions and demonstrate trapping of protein partners for small molecules. Virotrap constitutes an elegant complementary approach to the arsenal of methods to study protein complexes. A large portion of the proteome carries out its cellular function as part of macromolecular complexes. Here the authors describe Virotrap, a novel lysis-free approach for the isolation and identification of biologically relevant protein-protein and small molecule-protein interactions.
Collapse
Affiliation(s)
- Sven Eyckerman
- VIB Medical Biotechnology Center, VIB, Ghent University, A. Baertsoenkaai 3, Ghent B-9000, Belgium.,Department of Biochemistry, Ghent University, A. Baertsoenkaai 3, Ghent B-9000, Belgium
| | - Kevin Titeca
- VIB Medical Biotechnology Center, VIB, Ghent University, A. Baertsoenkaai 3, Ghent B-9000, Belgium.,Department of Biochemistry, Ghent University, A. Baertsoenkaai 3, Ghent B-9000, Belgium
| | - Emmy Van Quickelberghe
- VIB Medical Biotechnology Center, VIB, Ghent University, A. Baertsoenkaai 3, Ghent B-9000, Belgium.,Department of Biochemistry, Ghent University, A. Baertsoenkaai 3, Ghent B-9000, Belgium
| | - Eva Cloots
- VIB Medical Biotechnology Center, VIB, Ghent University, A. Baertsoenkaai 3, Ghent B-9000, Belgium.,Department of Biochemistry, Ghent University, A. Baertsoenkaai 3, Ghent B-9000, Belgium
| | - Annick Verhee
- VIB Medical Biotechnology Center, VIB, Ghent University, A. Baertsoenkaai 3, Ghent B-9000, Belgium.,Department of Biochemistry, Ghent University, A. Baertsoenkaai 3, Ghent B-9000, Belgium
| | - Noortje Samyn
- VIB Medical Biotechnology Center, VIB, Ghent University, A. Baertsoenkaai 3, Ghent B-9000, Belgium.,Department of Biochemistry, Ghent University, A. Baertsoenkaai 3, Ghent B-9000, Belgium
| | - Leentje De Ceuninck
- VIB Medical Biotechnology Center, VIB, Ghent University, A. Baertsoenkaai 3, Ghent B-9000, Belgium.,Department of Biochemistry, Ghent University, A. Baertsoenkaai 3, Ghent B-9000, Belgium
| | - Evy Timmerman
- VIB Medical Biotechnology Center, VIB, Ghent University, A. Baertsoenkaai 3, Ghent B-9000, Belgium.,Department of Biochemistry, Ghent University, A. Baertsoenkaai 3, Ghent B-9000, Belgium
| | - Delphine De Sutter
- VIB Medical Biotechnology Center, VIB, Ghent University, A. Baertsoenkaai 3, Ghent B-9000, Belgium.,Department of Biochemistry, Ghent University, A. Baertsoenkaai 3, Ghent B-9000, Belgium
| | - Sam Lievens
- VIB Medical Biotechnology Center, VIB, Ghent University, A. Baertsoenkaai 3, Ghent B-9000, Belgium.,Department of Biochemistry, Ghent University, A. Baertsoenkaai 3, Ghent B-9000, Belgium
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, Ghent B-9000, Belgium
| | - Kris Gevaert
- VIB Medical Biotechnology Center, VIB, Ghent University, A. Baertsoenkaai 3, Ghent B-9000, Belgium.,Department of Biochemistry, Ghent University, A. Baertsoenkaai 3, Ghent B-9000, Belgium
| | - Jan Tavernier
- VIB Medical Biotechnology Center, VIB, Ghent University, A. Baertsoenkaai 3, Ghent B-9000, Belgium.,Department of Biochemistry, Ghent University, A. Baertsoenkaai 3, Ghent B-9000, Belgium
| |
Collapse
|