1
|
English D, Lee S, Sabat K, Baker I, Pham TK, Collins M, Cowley S. Rapid degradation of histone deacetylase 1 (HDAC1) reveals essential roles in both gene repression and active transcription. Nucleic Acids Res 2025; 53:gkae1223. [PMID: 39704107 PMCID: PMC11879047 DOI: 10.1093/nar/gkae1223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/28/2024] [Accepted: 11/27/2024] [Indexed: 12/21/2024] Open
Abstract
Histone Deacetylase 1 (HDAC1) removes acetyl groups from lysine residues on core histones, a critical step in regulating chromatin accessibility. Despite histone deacetylation being an apparently repressive activity, suppression of HDACs causes both up- and downregulation of gene expression. Here we exploited the degradation tag (dTAG) system to rapidly degrade HDAC1 in mouse embryonic stem cells (ESCs) lacking its paralog, HDAC2. The dTAG system allowed specific degradation and removal of HDAC1 in <1 h (100x faster than genetic knockouts). This rapid degradation caused increased histone acetylation in as little as 2 h, with H2BK5 and H2BK11 being the most sensitive. The majority of differentially expressed genes following 2 h of HDAC1 degradation were upregulated (275 genes up versus 15 down) with increased proportions of downregulated genes observed at 6 h (1153 up versus 443 down) and 24 h (1146 up versus 967 down), respectively. Upregulated genes showed increased H2BK5ac and H3K27ac around their transcriptional start site (TSS). In contrast, decreased acetylation and chromatin accessibility of super-enhancers was linked to the most strongly downregulated genes. These findings suggest a paradoxical role for HDAC1 in the maintenance of histone acetylation levels at critical enhancer regions required for the pluripotency-associated gene network.
Collapse
Affiliation(s)
- David M English
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Samuel N Lee
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Khadija A Sabat
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - India M Baker
- Cambridge Stem Cell Institute & Department of Haematology, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, United Kingdom
| | - Trong Khoa Pham
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
- biOMICS Mass Spectrometry Facility, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Mark O Collins
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
- biOMICS Mass Spectrometry Facility, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Shaun M Cowley
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester, LE1 7RH, United Kingdom
| |
Collapse
|
2
|
Zhang R, Fang J, Xie X, Carrico C, Meyer JG, Wei L, Bons J, Rose J, Riley R, Kwok R, Ashok Kumaar PV, Zhang Y, He W, Nishida Y, Liu X, Locasale JW, Schilling B, Verdin E. Regulation of urea cycle by reversible high-stoichiometry lysine succinylation. Nat Metab 2024; 6:550-566. [PMID: 38448615 DOI: 10.1038/s42255-024-01005-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 02/06/2024] [Indexed: 03/08/2024]
Abstract
The post-translational modification lysine succinylation is implicated in the regulation of various metabolic pathways. However, its biological relevance remains uncertain due to methodological difficulties in determining high-impact succinylation sites. Here, using stable isotope labelling and data-independent acquisition mass spectrometry, we quantified lysine succinylation stoichiometries in mouse livers. Despite the low overall stoichiometry of lysine succinylation, several high-stoichiometry sites were identified, especially upon deletion of the desuccinylase SIRT5. In particular, multiple high-stoichiometry lysine sites identified in argininosuccinate synthase (ASS1), a key enzyme in the urea cycle, are regulated by SIRT5. Mutation of the high-stoichiometry lysine in ASS1 to succinyl-mimetic glutamic acid significantly decreased its enzymatic activity. Metabolomics profiling confirms that SIRT5 deficiency decreases urea cycle activity in liver. Importantly, SIRT5 deficiency compromises ammonia tolerance, which can be reversed by the overexpression of wild-type, but not succinyl-mimetic, ASS1. Therefore, lysine succinylation is functionally important in ammonia metabolism.
Collapse
Affiliation(s)
- Ran Zhang
- Buck Institute for Research on Aging, Novato, CA, USA
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Jingqi Fang
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Xueshu Xie
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Chris Carrico
- Buck Institute for Research on Aging, Novato, CA, USA
- Gladstone Institutes and University of California, San Francisco, San Francisco, CA, USA
| | - Jesse G Meyer
- Buck Institute for Research on Aging, Novato, CA, USA
- Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Lei Wei
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Joanna Bons
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Jacob Rose
- Buck Institute for Research on Aging, Novato, CA, USA
| | | | - Ryan Kwok
- Buck Institute for Research on Aging, Novato, CA, USA
| | | | - Yini Zhang
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Wenjuan He
- Gladstone Institutes and University of California, San Francisco, San Francisco, CA, USA
| | - Yuya Nishida
- Gladstone Institutes and University of California, San Francisco, San Francisco, CA, USA
| | - Xiaojing Liu
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA
| | - Jason W Locasale
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA
| | | | - Eric Verdin
- Buck Institute for Research on Aging, Novato, CA, USA.
- Gladstone Institutes and University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
3
|
Morse PT, Pérez-Mejías G, Wan J, Turner AA, Márquez I, Kalpage HA, Vaishnav A, Zurek MP, Huettemann PP, Kim K, Arroum T, De la Rosa MA, Chowdhury DD, Lee I, Brunzelle JS, Sanderson TH, Malek MH, Meierhofer D, Edwards BFP, Díaz-Moreno I, Hüttemann M. Cytochrome c lysine acetylation regulates cellular respiration and cell death in ischemic skeletal muscle. Nat Commun 2023; 14:4166. [PMID: 37443314 PMCID: PMC10345088 DOI: 10.1038/s41467-023-39820-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Skeletal muscle is more resilient to ischemia-reperfusion injury than other organs. Tissue specific post-translational modifications of cytochrome c (Cytc) are involved in ischemia-reperfusion injury by regulating mitochondrial respiration and apoptosis. Here, we describe an acetylation site of Cytc, lysine 39 (K39), which was mapped in ischemic porcine skeletal muscle and removed by sirtuin5 in vitro. Using purified protein and cellular double knockout models, we show that K39 acetylation and acetylmimetic K39Q replacement increases cytochrome c oxidase (COX) activity and ROS scavenging while inhibiting apoptosis via decreased binding to Apaf-1, caspase cleavage and activity, and cardiolipin peroxidase activity. These results are discussed with X-ray crystallography structures of K39 acetylated (1.50 Å) and acetylmimetic K39Q Cytc (1.36 Å) and NMR dynamics. We propose that K39 acetylation is an adaptive response that controls electron transport chain flux, allowing skeletal muscle to meet heightened energy demand while simultaneously providing the tissue with robust resilience to ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Paul T Morse
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA
| | - Gonzalo Pérez-Mejías
- Instituto de Investigaciones Químicas, Universidad de Sevilla - CSIC, 41092, Sevilla, Spain
| | - Junmei Wan
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA
| | - Alice A Turner
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI, 48201, USA
| | - Inmaculada Márquez
- Instituto de Investigaciones Químicas, Universidad de Sevilla - CSIC, 41092, Sevilla, Spain
| | - Hasini A Kalpage
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA
| | - Asmita Vaishnav
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI, 48201, USA
| | - Matthew P Zurek
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI, 48201, USA
| | - Philipp P Huettemann
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA
| | - Katherine Kim
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA
| | - Tasnim Arroum
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA
| | - Miguel A De la Rosa
- Instituto de Investigaciones Químicas, Universidad de Sevilla - CSIC, 41092, Sevilla, Spain
| | - Dipanwita Dutta Chowdhury
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI, 48201, USA
| | - Icksoo Lee
- College of Medicine, Dankook University, Cheonan-si, Chungcheongnam-do 31116, Republic of Korea
| | - Joseph S Brunzelle
- Life Sciences Collaborative Access Team, Northwestern University, Center for Synchrotron Research, Argonne, IL, 60439, USA
| | - Thomas H Sanderson
- Department of Emergency Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Moh H Malek
- Department of Health Care Sciences, Eugene Applebaum College of Pharmacy & Health Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Brian F P Edwards
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI, 48201, USA
| | - Irene Díaz-Moreno
- Instituto de Investigaciones Químicas, Universidad de Sevilla - CSIC, 41092, Sevilla, Spain.
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA.
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI, 48201, USA.
| |
Collapse
|
4
|
Soaita I, Megill E, Kantner D, Chatoff A, Cheong YJ, Clarke P, Arany Z, Snyder NW, Wellen KE, Trefely S. Dynamic protein deacetylation is a limited carbon source for acetyl-CoA-dependent metabolism. J Biol Chem 2023; 299:104772. [PMID: 37142219 PMCID: PMC10244699 DOI: 10.1016/j.jbc.2023.104772] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023] Open
Abstract
The ability of cells to store and rapidly mobilize energy reserves in response to nutrient availability is essential for survival. Breakdown of carbon stores produces acetyl-CoA (AcCoA), which fuels essential metabolic pathways and is also the acyl donor for protein lysine acetylation. Histones are abundant and highly acetylated proteins, accounting for 40% to 75% of cellular protein acetylation. Notably, histone acetylation is sensitive to AcCoA availability, and nutrient replete conditions induce a substantial accumulation of acetylation on histones. Deacetylation releases acetate, which can be recycled to AcCoA, suggesting that deacetylation could be mobilized as an AcCoA source to feed downstream metabolic processes under nutrient depletion. While the notion of histones as a metabolic reservoir has been frequently proposed, experimental evidence has been lacking. Therefore, to test this concept directly, we used acetate-dependent, ATP citrate lyase-deficient mouse embryonic fibroblasts (Acly-/- MEFs), and designed a pulse-chase experimental system to trace deacetylation-derived acetate and its incorporation into AcCoA. We found that dynamic protein deacetylation in Acly-/- MEFs contributed carbons to AcCoA and proximal downstream metabolites. However, deacetylation had no significant effect on acyl-CoA pool sizes, and even at maximal acetylation, deacetylation transiently supplied less than 10% of cellular AcCoA. Together, our data reveal that although histone acetylation is dynamic and nutrient-sensitive, its potential for maintaining cellular AcCoA-dependent metabolic pathways is limited compared to cellular demand.
Collapse
Affiliation(s)
- Ioana Soaita
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Emily Megill
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, TempleUniversity, Philadelphia, Pennsylvania, USA
| | - Daniel Kantner
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, TempleUniversity, Philadelphia, Pennsylvania, USA
| | - Adam Chatoff
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, TempleUniversity, Philadelphia, Pennsylvania, USA
| | - Yuen Jian Cheong
- Epigenetics and Signalling Programs, Babraham Institute, Cambridge, UK
| | - Philippa Clarke
- Epigenetics and Signalling Programs, Babraham Institute, Cambridge, UK
| | - Zoltan Arany
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Nathaniel W Snyder
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, TempleUniversity, Philadelphia, Pennsylvania, USA.
| | - Kathryn E Wellen
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Sophie Trefely
- Epigenetics and Signalling Programs, Babraham Institute, Cambridge, UK.
| |
Collapse
|
5
|
Gong Y, Behera G, Erber L, Luo A, Chen Y. HypDB: A functionally annotated web-based database of the proline hydroxylation proteome. PLoS Biol 2022; 20:e3001757. [PMID: 36026437 PMCID: PMC9455854 DOI: 10.1371/journal.pbio.3001757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 09/08/2022] [Accepted: 07/13/2022] [Indexed: 01/16/2023] Open
Abstract
Proline hydroxylation (Hyp) regulates protein structure, stability, and protein-protein interaction. It is widely involved in diverse metabolic and physiological pathways in cells and diseases. To reveal functional features of the Hyp proteome, we integrated various data sources for deep proteome profiling of the Hyp proteome in humans and developed HypDB (https://www.HypDB.site), an annotated database and web server for Hyp proteome. HypDB provides site-specific evidence of modification based on extensive LC-MS analysis and literature mining with 14,413 nonredundant Hyp sites on 5,165 human proteins including 3,383 Class I and 4,335 Class II sites. Annotation analysis revealed significant enrichment of Hyp on key functional domains and tissue-specific distribution of Hyp abundance across 26 types of human organs and fluids and 6 cell lines. The network connectivity analysis further revealed a critical role of Hyp in mediating protein-protein interactions. Moreover, the spectral library generated by HypDB enabled data-independent analysis (DIA) of clinical tissues and the identification of novel Hyp biomarkers in lung cancer and kidney cancer. Taken together, our integrated analysis of human proteome with publicly accessible HypDB revealed functional diversity of Hyp substrates and provides a quantitative data source to characterize Hyp in pathways and diseases.
Collapse
Affiliation(s)
- Yao Gong
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota at Twin Cities, Minneapolis, Minnesota, United States of America
- Bioinformatics and Computational Biology Program, University of Minnesota at Twin Cities, Minneapolis, Minnesota, United States of America
| | - Gaurav Behera
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota at Twin Cities, Minneapolis, Minnesota, United States of America
| | - Luke Erber
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota at Twin Cities, Minneapolis, Minnesota, United States of America
| | - Ang Luo
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota at Twin Cities, Minneapolis, Minnesota, United States of America
| | - Yue Chen
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota at Twin Cities, Minneapolis, Minnesota, United States of America
- Bioinformatics and Computational Biology Program, University of Minnesota at Twin Cities, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
6
|
Shvedunova M, Akhtar A. Modulation of cellular processes by histone and non-histone protein acetylation. Nat Rev Mol Cell Biol 2022; 23:329-349. [PMID: 35042977 DOI: 10.1038/s41580-021-00441-y] [Citation(s) in RCA: 441] [Impact Index Per Article: 147.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2021] [Indexed: 12/12/2022]
Abstract
Lysine acetylation is a widespread and versatile protein post-translational modification. Lysine acetyltransferases and lysine deacetylases catalyse the addition or removal, respectively, of acetyl groups at both histone and non-histone targets. In this Review, we discuss several features of acetylation and deacetylation, including their diversity of targets, rapid turnover, exquisite sensitivity to the concentrations of the cofactors acetyl-CoA, acyl-CoA and NAD+, and tight interplay with metabolism. Histone acetylation and non-histone protein acetylation influence a myriad of cellular and physiological processes, including transcription, phase separation, autophagy, mitosis, differentiation and neural function. The activity of lysine acetyltransferases and lysine deacetylases can, in turn, be regulated by metabolic states, diet and specific small molecules. Histone acetylation has also recently been shown to mediate cellular memory. These features enable acetylation to integrate the cellular state with transcriptional output and cell-fate decisions.
Collapse
Affiliation(s)
- Maria Shvedunova
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Asifa Akhtar
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany.
| |
Collapse
|
7
|
基于精氨酸酶切的蛋白质C端肽段富集方法的优化及评估. Se Pu 2022; 40:17-27. [PMID: 34985212 PMCID: PMC9404053 DOI: 10.3724/sp.j.1123.2021.03030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
基于聚合物的蛋白质C端反向富集策略是用于研究蛋白质C端最为广泛的策略之一。目前,基于胰蛋白酶(trypsin)切割精氨酸残基C端(ArgC型酶切)的蛋白C端组学方法对蛋白质C端的鉴定深度仍有待提高。为解决这一问题,该研究对此方法进行了优化和评估:建立了基于“V型”过滤装置的“一锅法”富集流程,避免了副反应的干扰,缩短了样本的制备时间;优化了蛋白水平乙酰化反应条件,最大限度地降低了丝氨酸、苏氨酸、酪氨酸残基上的副反应,提高了肽段鉴定的可信性;优化了基于固相萃取枪头膜片过滤柱(StageTip柱)的样品分离过程,使C端肽段的鉴定深度增加至原来的4倍。通过以上优化,按照肽段水平错误发现率(FDR)<0.01、离子分数(ion score)≥20,且C端带有乙醇胺修饰的数据筛选标准,从人HEK 293T细胞中共鉴定出696个蛋白质C端。若仅要求肽段水平FDR<0.01,鉴定数目进一步增加到933个,这是基于聚合物富集策略的蛋白质C端组学方法所得的最大数据集之一。探索了胰蛋白酶镜像酶(LysargiNase)切割精氨酸残基N端(ArgN型酶切)与不同肽段N端衍生化修饰组合对蛋白质C端鉴定数目和种类的影响,“LysargiNase酶切+肽段N端乙酰化”新策略在原有“胰蛋白酶酶切+肽段N端二甲基化”策略的基础上将鉴定蛋白质C端的种类提升了47%。综上,该研究通过对基于Arg型酶切的蛋白C端组学方法的优化,提升了C端肽段的鉴定深度,扩大了C端肽段鉴定的覆盖范围。该方法将有望成为系统性表征蛋白质C端的有力工具。
Collapse
|
8
|
Figlia G, Willnow P, Teleman AA. Metabolites Regulate Cell Signaling and Growth via Covalent Modification of Proteins. Dev Cell 2021; 54:156-170. [PMID: 32693055 DOI: 10.1016/j.devcel.2020.06.036] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/15/2020] [Accepted: 06/28/2020] [Indexed: 02/07/2023]
Abstract
Metabolites affect cell growth in two different ways. First, they serve as building blocks for biomass accumulation. Second, metabolites regulate the activity of growth-relevant signaling pathways. They do so in part by covalently attaching to proteins, thereby generating post-translational modifications (PTMs) that affect protein function, the focus of this Perspective. Recent advances in mass spectrometry have revealed a wide variety of such metabolites, including lipids, amino acids, Coenzyme-A, acetate, malonate, and lactate to name a few. An active area of research is to understand which modifications affect protein function and how they do so. In many cases, the cellular levels of these metabolites affect the stoichiometry of the corresponding PTMs, providing a direct link between cell metabolism and the control of cell signaling, transcription, and cell growth.
Collapse
Affiliation(s)
- Gianluca Figlia
- German Cancer Research Center (DKFZ), Heidelberg, Baden-Württemberg 69120, Germany; Heidelberg University, Heidelberg, Baden-Württemberg 69120, Germany
| | - Philipp Willnow
- German Cancer Research Center (DKFZ), Heidelberg, Baden-Württemberg 69120, Germany; Heidelberg University, Heidelberg, Baden-Württemberg 69120, Germany
| | - Aurelio A Teleman
- German Cancer Research Center (DKFZ), Heidelberg, Baden-Württemberg 69120, Germany; Heidelberg University, Heidelberg, Baden-Württemberg 69120, Germany.
| |
Collapse
|
9
|
Seiler CL, Song JUM, Kotandeniya D, Chen J, Kono TJY, Han Q, Colwell M, Auch B, Sarver AL, Upadhyaya P, Ren Y, Faulk C, De Flora S, La Maestra S, Chen Y, Kassie F, Tretyakova NY. Inhalation exposure to cigarette smoke and inflammatory agents induces epigenetic changes in the lung. Sci Rep 2020; 10:11290. [PMID: 32647312 PMCID: PMC7347915 DOI: 10.1038/s41598-020-67502-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/09/2020] [Indexed: 01/05/2023] Open
Abstract
Smoking-related lung tumors are characterized by profound epigenetic changes including scrambled patterns of DNA methylation, deregulated histone acetylation, altered gene expression levels, distorted microRNA profiles, and a global loss of cytosine hydroxymethylation marks. Here, we employed an enhanced version of bisulfite sequencing (RRBS/oxRRBS) followed by next generation sequencing to separately map DNA epigenetic marks 5-methyl-dC and 5-hydroxymethyl-dC in genomic DNA isolated from lungs of A/J mice exposed whole-body to environmental cigarette smoke for 10 weeks. Exposure to cigarette smoke significantly affected the patterns of cytosine methylation and hydroxymethylation in the lungs. Differentially hydroxymethylated regions were associated with inflammatory response/disease, organismal injury, and respiratory diseases and were involved in regulation of cellular development, function, growth, and proliferation. To identify epigenetic changes in the lung associated with exposure to tobacco carcinogens and inflammation, A/J mice were intranasally treated with the tobacco carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), the inflammatory agent lipopolysaccharide (LPS), or both. NNK alone caused minimal epigenetic alterations, while exposure either to LPS or NNK/LPS in combination led to increased levels of global cytosine methylation and formylation, reduced cytosine hydroxymethylation, decreased histone acetylation, and altered expression levels of multiple genes. Our results suggest that inflammatory processes are responsible for epigenetic changes contributing to lung cancer development.
Collapse
Affiliation(s)
- Christopher L Seiler
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
- Masonic Cancer Center, University of Minnesota, 2231 6th Street SE, 2-147 CCRB, Minneapolis, 55455, USA
| | - J Ung Min Song
- Department of Veterinary Medicine, University of Minnesota, Minneapolis, MN, 55455, USA
- Masonic Cancer Center, University of Minnesota, 2231 6th Street SE, 2-147 CCRB, Minneapolis, 55455, USA
| | - Delshanee Kotandeniya
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
- Masonic Cancer Center, University of Minnesota, 2231 6th Street SE, 2-147 CCRB, Minneapolis, 55455, USA
| | - Jianji Chen
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Thomas J Y Kono
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Qiyuan Han
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Mathia Colwell
- Department of Animal Science, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Benjamin Auch
- Genomics Center, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Aaron L Sarver
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, 55455, USA
- Masonic Cancer Center, University of Minnesota, 2231 6th Street SE, 2-147 CCRB, Minneapolis, 55455, USA
| | - Pramod Upadhyaya
- Masonic Cancer Center, University of Minnesota, 2231 6th Street SE, 2-147 CCRB, Minneapolis, 55455, USA
| | - Yanan Ren
- Biostatistics Core, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Christopher Faulk
- Department of Animal Science, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Silvio De Flora
- Department of Health Sciences, University of Genoa, 16132, Genoa, Italy
| | | | - Yue Chen
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Fekadu Kassie
- Department of Veterinary Medicine, University of Minnesota, Minneapolis, MN, 55455, USA
- Masonic Cancer Center, University of Minnesota, 2231 6th Street SE, 2-147 CCRB, Minneapolis, 55455, USA
| | - Natalia Y Tretyakova
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA.
- Masonic Cancer Center, University of Minnesota, 2231 6th Street SE, 2-147 CCRB, Minneapolis, 55455, USA.
| |
Collapse
|
10
|
Song B, Greco TM, Lum KK, Taber CE, Cristea IM. The DNA Sensor cGAS is Decorated by Acetylation and Phosphorylation Modifications in the Context of Immune Signaling. Mol Cell Proteomics 2020; 19:1193-1208. [PMID: 32345711 PMCID: PMC7338091 DOI: 10.1074/mcp.ra120.001981] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/23/2020] [Indexed: 12/25/2022] Open
Abstract
The cyclic GMP-AMP synthase (cGAS) protein is a pattern-recognition receptor of the mammalian innate immune system that is recognized as a main cytosolic sensor of pathogenic or damaged DNA. cGAS DNA binding initiates catalytic production of the second messenger, cyclic GMP-AMP, which activates the STING-TBK1-IRF3 signaling axis to induce cytokine expression. Post-translational modification (PTM) has started to be recognized as a critical component of cGAS regulation, yet the extent of these modifications remains unclear. Here, we report the identification and functional analysis of cGAS phosphorylations and acetylations in several cell types under basal and immune-stimulated conditions. cGAS was enriched by immunoaffinity purification from human primary fibroblasts prior to and after infection with herpes simplex virus type 1 (HSV-1), as well as from immune-stimulated STING-HEK293T cells. Six phosphorylations and eight acetylations were detected, of which eight PTMs were not previously documented. PTMs were validated by parallel reaction monitoring (PRM) mass spectrometry in fibroblasts, HEK293T cells, and THP-1 macrophage-like cells. Primary sequence and structural analysis of cGAS highlighted a subset of PTM sites with elevated surface accessibility and high evolutionary sequence conservation. To assess the functional relevance of each PTM, we generated a series of single-point cGAS mutations. Stable cell lines were constructed to express cGAS with amino acid substitutions that prevented phosphorylation (Ser-to-Ala) and acetylation (Lys-to-Arg) or that mimicked the modification state (Ser-to-Asp and Lys-to-Gln). cGAS-dependent apoptotic and immune signaling activities were then assessed for each mutation. Our results show that acetyl-mimic mutations at Lys384 and Lys414 inhibit the ability of cGAS to induce apoptosis. In contrast, the Lys198 acetyl-mimic mutation increased cGAS-dependent interferon signaling when compared with the unmodified charge-mimic. Moreover, targeted PRM quantification showed that Lys198 acetylation is decreased upon infections with two herpesviruses-HSV-1 and human cytomegalovirus (HCMV), highlighting this residue as a regulatory point during virus infection.
Collapse
Affiliation(s)
- Bokai Song
- Department of Molecular Biology, Princeton University, Princeton, New Jersey
| | - Todd M Greco
- Department of Molecular Biology, Princeton University, Princeton, New Jersey
| | - Krystal K Lum
- Department of Molecular Biology, Princeton University, Princeton, New Jersey
| | - Caroline E Taber
- Department of Molecular Biology, Princeton University, Princeton, New Jersey
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Princeton, New Jersey.
| |
Collapse
|
11
|
Baeza J, Lawton AJ, Fan J, Smallegan MJ, Lienert I, Gandhi T, Bernhardt OM, Reiter L, Denu JM. Revealing Dynamic Protein Acetylation across Subcellular Compartments. J Proteome Res 2020; 19:2404-2418. [PMID: 32290654 DOI: 10.1021/acs.jproteome.0c00088] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Protein acetylation is a widespread post-translational modification implicated in many cellular processes. Recent advances in mass spectrometry have enabled the cataloging of thousands of sites throughout the cell; however, identifying regulatory acetylation marks have proven to be a daunting task. Knowledge of the kinetics and stoichiometry of site-specific acetylation is an important factor to uncover function. Here, an improved method of quantifying acetylation stoichiometry was developed and validated, providing a detailed landscape of dynamic acetylation stoichiometry within cellular compartments. The dynamic nature of site-specific acetylation in response to serum stimulation was revealed. In two distinct human cell lines, growth factor stimulation led to site-specific, temporal acetylation changes, revealing diverse kinetic profiles that clustered into several groups. Overlap of dynamic acetylation sites among two different human cell lines suggested similar regulatory control points across major cellular pathways that include splicing, translation, and protein homeostasis. Rapid increases in acetylation on protein translational machinery suggest a positive regulatory role under progrowth conditions. Finally, higher median stoichiometry was observed in cellular compartments where active acetyltransferases are well described. Data sets can be accessed through ProteomExchange via the MassIVE repository (ProteomExchange: PXD014453; MassIVE: MSV000084029).
Collapse
Affiliation(s)
- Josue Baeza
- Biomolecular Chemistry Department, School of Medicine and Public Health, University of Wisconsin-Madison, 53706 Madison, Wisconsin, United States.,Wisconsin Institute for Discovery, University of Wisconsin-Madison, 53715 Madison, Wisconsin, United States
| | - Alexis J Lawton
- Biomolecular Chemistry Department, School of Medicine and Public Health, University of Wisconsin-Madison, 53706 Madison, Wisconsin, United States.,Wisconsin Institute for Discovery, University of Wisconsin-Madison, 53715 Madison, Wisconsin, United States
| | - Jing Fan
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, 53715 Madison, Wisconsin, United States.,Morgridge Institute for Research, University of Wisconsin-Madison, 53715 Madison, Wisconsin, United States
| | - Michael J Smallegan
- Biomolecular Chemistry Department, School of Medicine and Public Health, University of Wisconsin-Madison, 53706 Madison, Wisconsin, United States.,Wisconsin Institute for Discovery, University of Wisconsin-Madison, 53715 Madison, Wisconsin, United States
| | - Ian Lienert
- Biognosys AG, Wagistrasse 25, CH-8952 Schlieren, Switzerland
| | - Tejas Gandhi
- Biognosys AG, Wagistrasse 25, CH-8952 Schlieren, Switzerland
| | | | - Lukas Reiter
- Biognosys AG, Wagistrasse 25, CH-8952 Schlieren, Switzerland
| | - John M Denu
- Biomolecular Chemistry Department, School of Medicine and Public Health, University of Wisconsin-Madison, 53706 Madison, Wisconsin, United States.,Wisconsin Institute for Discovery, University of Wisconsin-Madison, 53715 Madison, Wisconsin, United States
| |
Collapse
|
12
|
Wassano NS, Leite AB, Reichert-Lima F, Schreiber AZ, Moretti NS, Damasio A. Lysine acetylation as drug target in fungi: an underexplored potential in Aspergillus spp. Braz J Microbiol 2020; 51:673-683. [PMID: 32170592 DOI: 10.1007/s42770-020-00253-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 02/28/2020] [Indexed: 12/18/2022] Open
Abstract
In recent years, the intensification of the use of immunosuppressive therapies has increased the incidence of invasive infections caused by opportunistic fungi. Considering that, the spread of azole resistance and amphotericin B (AmB) inefficiency against some clinical and environmental isolates has been described. Thus, to avoid a global problem when controlling fungal infections and critical failures in medicine, and food security, new approaches for drug target identification and for the development of new treatments that are more effective against pathogenic fungi are desired. Recent studies indicate that protein acetylation is present in hundreds of proteins of different cellular compartments and is involved in several biological processes, i.e., metabolism, translation, gene expression regulation, and oxidative stress response, from prokaryotes and eukaryotes, including fungi, demonstrating that lysine acetylation plays an important role in essential mechanisms. Lysine acetyltransferases (KATs) and lysine deacetylases (KDACs), the two enzyme families responsible for regulating protein acetylation levels, have been explored as drug targets for the treatment of several human diseases and infections. Aspergilli have on average 8 KAT genes and 11 KDAC genes in their genomes. This review aims to summarize the available knowledge about Aspergillus spp. azole resistance mechanisms and the role of lysine acetylation in the control of biological processes in fungi. We also want to discuss the lysine acetylation as a potential target for fungal infection treatment and drug target discovery.
Collapse
Affiliation(s)
- Natália Sayuri Wassano
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Ariely Barbosa Leite
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Franqueline Reichert-Lima
- Department of Clinical Pathology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Angelica Zaninelli Schreiber
- Department of Clinical Pathology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Nilmar S Moretti
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil.
| | - André Damasio
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil.
- Experimental Medicine Research Cluster (EMRC), University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
13
|
Advances and applications of stable isotope labeling-based methods for proteome relative quantitation. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115815] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Abstract
Nε-lysine acetylation was discovered more than half a century ago as a post-translational modification of histones and has been extensively studied in the context of transcription regulation. In the past decade, proteomic analyses have revealed that non-histone proteins are frequently acetylated and constitute a major portion of the acetylome in mammalian cells. Indeed, non-histone protein acetylation is involved in key cellular processes relevant to physiology and disease, such as gene transcription, DNA damage repair, cell division, signal transduction, protein folding, autophagy and metabolism. Acetylation affects protein functions through diverse mechanisms, including by regulating protein stability, enzymatic activity, subcellular localization and crosstalk with other post-translational modifications and by controlling protein-protein and protein-DNA interactions. In this Review, we discuss recent progress in our understanding of the scope, functional diversity and mechanisms of non-histone protein acetylation.
Collapse
|
15
|
Analysis and Interpretation of Protein Post-Translational Modification Site Stoichiometry. Trends Biochem Sci 2019; 44:943-960. [DOI: 10.1016/j.tibs.2019.06.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/03/2019] [Accepted: 06/07/2019] [Indexed: 12/17/2022]
|
16
|
Chen Y, Li Y. Site-specific determination of lysine acetylation stoichiometries on the proteome-scale. Methods Enzymol 2019; 626:115-132. [PMID: 31606072 DOI: 10.1016/bs.mie.2019.06.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Posttranslational modification of proteins (PTMs) offers a versatile mechanism to fine-tune the structure, activity, and interactions of the target proteins. Understanding the dynamics and prevalence of the PTM at the site-specific level will provide mechanistic insight into the physiological significance of the modification pathway in cells and diseases. In this chapter, we describe a highly efficient chemical proteomic workflow for the absolute quantification of lysine acetylation stoichiometry. The strategy is capable of measuring the site-specific prevalence of acetylation in a system-wide and untargeted manner. We highlight the importance of validating the workflow using standard proteins and synthetic peptides. Detailed protocols for global stoichiometric analysis of lysine acetylation from cell lysate are presented.
Collapse
Affiliation(s)
- Yue Chen
- Department of Biochemistry, Molecular Biology and Biophysics, The University of Minnesota at Twin Cities, Minneapolis, MN, United States.
| | - Yunan Li
- Department of Biochemistry, Molecular Biology and Biophysics, The University of Minnesota at Twin Cities, Minneapolis, MN, United States
| |
Collapse
|
17
|
Sebaa R, Johnson J, Pileggi C, Norgren M, Xuan J, Sai Y, Tong Q, Krystkowiak I, Bondy-Chorney E, Davey NE, Krogan N, Downey M, Harper ME. SIRT3 controls brown fat thermogenesis by deacetylation regulation of pathways upstream of UCP1. Mol Metab 2019; 25:35-49. [PMID: 31060926 PMCID: PMC6601363 DOI: 10.1016/j.molmet.2019.04.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 03/27/2019] [Accepted: 04/11/2019] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVE Brown adipose tissue (BAT) is important for thermoregulation in many mammals. Uncoupling protein 1 (UCP1) is the critical regulator of thermogenesis in BAT. Here we aimed to investigate the deacetylation control of BAT and to investigate a possible functional connection between UCP1 and sirtuin 3 (SIRT3), the master mitochondrial lysine deacetylase. METHODS We carried out physiological, molecular, and proteomic analyses of BAT from wild-type and Sirt3KO mice when BAT is activated. Mice were either cold exposed for 2 days or were injected with the β3-adrenergic agonist, CL316,243 (1 mg/kg; i.p.). Mutagenesis studies were conducted in a cellular model to assess the impact of acetylation lysine sites on UCP1 function. Cardiac punctures were collected for proteomic analysis of blood acylcarnitines. Isolated mitochondria were used for functional analysis of OXPHOS proteins. RESULTS Our findings showed that SIRT3 absence in mice resulted in impaired BAT lipid use, whole body thermoregulation, and respiration in BAT mitochondria, without affecting UCP1 expression. Acetylome profiling of BAT mitochondria revealed that SIRT3 regulates acetylation status of many BAT mitochondrial proteins including UCP1 and crucial upstream proteins. Mutagenesis work in cells suggested that UCP1 activity was independent of direct SIRT3-regulated lysine acetylation. However, SIRT3 impacted BAT mitochondrial proteins activities of acylcarnitine metabolism and specific electron transport chain complexes, CI and CII. CONCLUSIONS Our data highlight that SIRT3 likely controls BAT thermogenesis indirectly by targeting pathways upstream of UCP1.
Collapse
Affiliation(s)
- Rajaa Sebaa
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Department of Medical Laboratories, College of Applied Medical Sciences, University of Shaqra, Duwadimi, Saudi Arabia
| | - Jeff Johnson
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Chantal Pileggi
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Michaela Norgren
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Jian Xuan
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Yuka Sai
- Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Qiang Tong
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Izabella Krystkowiak
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Emma Bondy-Chorney
- Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Norman E Davey
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland; Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Nevan Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Michael Downey
- Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
18
|
Seiler CL, Song JM, Fernandez J, Abrahante JE, Kono TJY, Chen Y, Ren Y, Kassie F, Tretyakova NY. Epigenetic Changes in Alveolar Type II Lung Cells of A/J Mice Following Intranasal Treatment with Lipopolysaccharide. Chem Res Toxicol 2019; 32:831-839. [PMID: 30942577 DOI: 10.1021/acs.chemrestox.9b00015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lipopolysaccharide (LPS) is a bacterial endotoxin present in cigarette smoke. LPS is known to induce inflammation and to increase the size and the multiplicity of lung tumors induced by tobacco-specific nitrosamines. However, the means by which LPS contributes to pulmonary carcinogenesis are not known. One possible mechanism includes LPS-mediated epigenetic deregulation, which leads to aberrant expression of genes involved in DNA repair, tumor suppression, cell cycle progression, and cell growth. In the present work, epigenetic effects of LPS were examined in alveolar type II lung cells of A/J mice. Type II cells were selected because they serve as progenitors of lung adenocarcinomas in smoking induced lung cancer. A/J mice were intranasally treated with LPS, followed by isolation of alveolar type II cells from the lung using cell panning. Global levels of DNA methylation and histone acetylation were quantified by mass spectrometry, while genome-wide transcriptomic changes were characterized by RNA-Seq. LPS treatment was associated with epigenetic changes including decreased cytosine formylation and reduced histone H3K14 and H3K23 acetylation, as well as altered expression levels of genes involved in cell adhesion, inflammation, immune response, and epigenetic regulation. These results suggest that exposure to inflammatory agents in cigarette smoke leads to early epigenetic changes in the lung, which may collaborate with genetic changes to drive the development of lung cancer.
Collapse
|
19
|
Hansen BK, Gupta R, Baldus L, Lyon D, Narita T, Lammers M, Choudhary C, Weinert BT. Analysis of human acetylation stoichiometry defines mechanistic constraints on protein regulation. Nat Commun 2019; 10:1055. [PMID: 30837475 PMCID: PMC6401094 DOI: 10.1038/s41467-019-09024-0] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/11/2019] [Indexed: 12/21/2022] Open
Abstract
Lysine acetylation is a reversible posttranslational modification that occurs at thousands of sites on human proteins. However, the stoichiometry of acetylation remains poorly characterized, and is important for understanding acetylation-dependent mechanisms of protein regulation. Here we provide accurate, validated measurements of acetylation stoichiometry at 6829 sites on 2535 proteins in human cervical cancer (HeLa) cells. Most acetylation occurs at very low stoichiometry (median 0.02%), whereas high stoichiometry acetylation (>1%) occurs on nuclear proteins involved in gene transcription and on acetyltransferases. Analysis of acetylation copy numbers show that histones harbor the majority of acetylated lysine residues in human cells. Class I deacetylases target a greater proportion of high stoichiometry acetylation compared to SIRT1 and HDAC6. The acetyltransferases CBP and p300 catalyze a majority (65%) of high stoichiometry acetylation. This resource dataset provides valuable information for evaluating the impact of individual acetylation sites on protein function and for building accurate mechanistic models. Many human proteins are regulated by lysine acetylation, but the degree of acetylation at individual sites is poorly characterized. Here, the authors measure acetylation stoichiometry in the HeLa cell proteome, providing a resource to assess mechanistic constraints on acetylation-mediated protein regulation.
Collapse
Affiliation(s)
- Bogi Karbech Hansen
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark
| | - Rajat Gupta
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark
| | - Linda Baldus
- Institute of Biochemistry, Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, Greifswald, 17487, Germany.,Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, CECAD, University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
| | - David Lyon
- Disease Systems Biology Program, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark
| | - Takeo Narita
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark
| | - Michael Lammers
- Institute of Biochemistry, Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, Greifswald, 17487, Germany.,Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, CECAD, University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
| | - Chunaram Choudhary
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark.
| | - Brian T Weinert
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark.
| |
Collapse
|
20
|
Abstract
Posttranslational modifications of proteins control many complex biological processes, including genome expression, chromatin dynamics, metabolism, and cell division through a language of chemical modifications. Improvements in mass spectrometry-based proteomics have demonstrated protein acetylation is a widespread and dynamic modification in the cell; however, many questions remain on the regulation and downstream effects, and an assessment of the overall acetylation stoichiometry is needed. In this chapter, we describe the determination of acetylation stoichiometry using data-independent acquisition mass spectrometry to expand the number of acetylation sites quantified. However, the increased depth of data-independent acquisition is limited by the spectral library used to deconvolute fragmentation spectra. We describe a powerful approach of subcellular fractionation in conjunction with offline prefractionation to increase the depth of the spectral library. This deep interrogation of subcellular compartments provides essential insights into the compartment-specific regulation and downstream functions of protein acetylation.
Collapse
|
21
|
Li Y, Evers J, Luo A, Erber L, Postler Z, Chen Y. A Quantitative Chemical Proteomics Approach for Site-specific Stoichiometry Analysis of Ubiquitination. Angew Chem Int Ed Engl 2018; 58:537-541. [DOI: 10.1002/anie.201810569] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/07/2018] [Indexed: 02/02/2023]
Affiliation(s)
- Yunan Li
- Department of Biochemistry, Molecular Biology and Biophysics; University of Minnesota at Twin Cities; Minneapolis MN 55455 USA
| | - Jonathan Evers
- Department of Biochemistry, Molecular Biology and Biophysics; University of Minnesota at Twin Cities; Minneapolis MN 55455 USA
| | - Ang Luo
- Department of Biochemistry, Molecular Biology and Biophysics; University of Minnesota at Twin Cities; Minneapolis MN 55455 USA
| | - Luke Erber
- Department of Biochemistry, Molecular Biology and Biophysics; University of Minnesota at Twin Cities; Minneapolis MN 55455 USA
| | - Zachary Postler
- Department of Biochemistry, Molecular Biology and Biophysics; University of Minnesota at Twin Cities; Minneapolis MN 55455 USA
| | - Yue Chen
- Department of Biochemistry, Molecular Biology and Biophysics; University of Minnesota at Twin Cities; Minneapolis MN 55455 USA
| |
Collapse
|
22
|
Li Y, Evers J, Luo A, Erber L, Postler Z, Chen Y. A Quantitative Chemical Proteomics Approach for Site-specific Stoichiometry Analysis of Ubiquitination. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201810569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yunan Li
- Department of Biochemistry, Molecular Biology and Biophysics; University of Minnesota at Twin Cities; Minneapolis MN 55455 USA
| | - Jonathan Evers
- Department of Biochemistry, Molecular Biology and Biophysics; University of Minnesota at Twin Cities; Minneapolis MN 55455 USA
| | - Ang Luo
- Department of Biochemistry, Molecular Biology and Biophysics; University of Minnesota at Twin Cities; Minneapolis MN 55455 USA
| | - Luke Erber
- Department of Biochemistry, Molecular Biology and Biophysics; University of Minnesota at Twin Cities; Minneapolis MN 55455 USA
| | - Zachary Postler
- Department of Biochemistry, Molecular Biology and Biophysics; University of Minnesota at Twin Cities; Minneapolis MN 55455 USA
| | - Yue Chen
- Department of Biochemistry, Molecular Biology and Biophysics; University of Minnesota at Twin Cities; Minneapolis MN 55455 USA
| |
Collapse
|
23
|
Huang T, Armbruster MR, Coulton JB, Edwards JL. Chemical Tagging in Mass Spectrometry for Systems Biology. Anal Chem 2018; 91:109-125. [DOI: 10.1021/acs.analchem.8b04951] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Tianjiao Huang
- Department of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| | - Michael R. Armbruster
- Department of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| | - John B. Coulton
- Department of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| | - James L. Edwards
- Department of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| |
Collapse
|
24
|
Wei L, Meyer JG, Schilling B. Quantification of Site-specific Protein Lysine Acetylation and Succinylation Stoichiometry Using Data-independent Acquisition Mass Spectrometry. J Vis Exp 2018. [PMID: 29683460 PMCID: PMC5933372 DOI: 10.3791/57209] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Post-translational modification (PTM) of protein lysine residues by NƐ-acylation induces structural changes that can dynamically regulate protein functions, for example, by changing enzymatic activity or by mediating interactions. Precise quantification of site-specific protein acylation occupancy, or stoichiometry, is essential for understanding the functional consequences of both global low-level stoichiometry and individual high-level acylation stoichiometry of specific lysine residues. Other groups have reported measurement of lysine acetylation stoichiometry by comparing the ratio of peptide precursor isotopes from endogenous, natural abundance acylation and exogenous, heavy isotope-labeled acylation introduced after quantitative chemical acetylation of proteins using stable isotope-labeled acetic anhydride. This protocol describes an optimized approach featuring several improvements, including: (1) increased chemical acylation efficiency, (2) the ability to measure protein succinylation in addition to acetylation, and (3) improved quantitative accuracy due to reduced interferences using fragment ion quantification from data-independent acquisitions (DIA) instead of precursor ion signal from data-dependent acquisition (DDA). The use of extracted peak areas from fragment ions for quantification also uniquely enables differentiation of site-level acylation stoichiometry from proteolytic peptides containing more than one lysine residue, which is not possible using precursor ion signals for quantification. Data visualization in Skyline, an open source quantitative proteomics environment, allows for convenient data inspection and review. Together, this workflow offers unbiased, precise, and accurate quantification of site-specific lysine acetylation and succinylation occupancy of an entire proteome, which may reveal and prioritize biologically relevant acylation sites.
Collapse
Affiliation(s)
- Lei Wei
- Buck Institute for Research on Aging
| | | | | |
Collapse
|
25
|
Sun XL, Yang YH, Zhu L, Liu FY, Xu JP, Huang XW, Mo MH, Liu T, Zhang KQ. The lysine acetylome of the nematocidal bacterium Bacillus nematocida and impact of nematode on the acetylome. J Proteomics 2018; 177:31-39. [DOI: 10.1016/j.jprot.2018.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/31/2018] [Accepted: 02/03/2018] [Indexed: 10/18/2022]
|
26
|
Carrico C, Meyer JG, He W, Gibson BW, Verdin E. The Mitochondrial Acylome Emerges: Proteomics, Regulation by Sirtuins, and Metabolic and Disease Implications. Cell Metab 2018; 27. [PMID: 29514063 PMCID: PMC5863732 DOI: 10.1016/j.cmet.2018.01.016] [Citation(s) in RCA: 254] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Post-translational modification of lysine residues via reversible acylation occurs on proteins from diverse pathways, functions, and organisms. While nuclear protein acylation reflects the competing activities of enzymatic acyltransferases and deacylases, mitochondrial acylation appears to be driven mostly via a non-enzymatic mechanism. Three protein deacylases, SIRT3, SIRT4, and SIRT5, reside in the mitochondria and remove these modifications from targeted proteins in an NAD+-dependent manner. Recent proteomic surveys of mitochondrial protein acylation have identified the sites of protein acetylation, succinylation, glutarylation, and malonylation and their regulation by SIRT3 and SIRT5. Here, we review recent advances in this rapidly moving field, their biological significance, and their implications for mitochondrial function, metabolic regulation, and disease pathogenesis.
Collapse
Affiliation(s)
- Chris Carrico
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA; Gladstone Institutes and University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jesse G Meyer
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Wenjuan He
- Gladstone Institutes and University of California, San Francisco, San Francisco, CA 94158, USA
| | - Brad W Gibson
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Eric Verdin
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA; Gladstone Institutes and University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
27
|
Zhou T, Erber L, Liu B, Gao Y, Ruan HB, Chen Y. Proteomic analysis reveals diverse proline hydroxylation-mediated oxygen-sensing cellular pathways in cancer cells. Oncotarget 2018; 7:79154-79169. [PMID: 27764789 PMCID: PMC5346705 DOI: 10.18632/oncotarget.12632] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 09/25/2016] [Indexed: 12/28/2022] Open
Abstract
Proline hydroxylation is a critical cellular mechanism regulating oxygen-response pathways in tumor initiation and progression. Yet, its substrate diversity and functions remain largely unknown. Here, we report a system-wide analysis to characterize proline hydroxylation substrates in cancer cells using an immunoaffinity-purification assisted proteomics strategy. We identified 562 sites from 272 proteins in HeLa cells. Bioinformatic analysis revealed that proline hydroxylation substrates are significantly enriched with mRNA processing and stress-response cellular pathways with canonical and diverse flanking sequence motifs. Structural analysis indicates a significant enrichment of proline hydroxylation participating in the secondary structure of substrate proteins. Our study identified and validated Brd4, a key transcription factor, as a novel proline hydroxylation substrate. Functional analysis showed that the inhibition of proline hydroxylation pathway significantly reduced the proline hydroxylation abundance on Brd4 and affected Brd4-mediated transcriptional activity as well as cell proliferation in AML leukemia cells. Taken together, our study identified a broad regulatory role of proline hydroxylation in cellular oxygen-sensing pathways and revealed potentially new targets that dynamically respond to hypoxia microenvironment in tumor cells.
Collapse
Affiliation(s)
- Tong Zhou
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| | - Luke Erber
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| | - Bing Liu
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Yankun Gao
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| | - Hai-Bin Ruan
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Yue Chen
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| |
Collapse
|
28
|
Smestad J, Hamidi O, Wang L, Holte MN, Khazal FA, Erber L, Chen Y, Maher LJ. Characterization and metabolic synthetic lethal testing in a new model of SDH-loss familial pheochromocytoma and paraganglioma. Oncotarget 2017; 9:6109-6127. [PMID: 29464059 PMCID: PMC5814199 DOI: 10.18632/oncotarget.23639] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 11/20/2017] [Indexed: 12/26/2022] Open
Abstract
Succinate dehydrogenase (SDH)-loss pheochromocytoma and paraganglioma (PPGL) are tumors driven by metabolic derangement. SDH loss leads to accumulation of intracellular succinate, which competitively inhibits dioxygenase enzymes, causing activation of pseudohypoxic signaling and hypermethylation of histones and DNA. The mechanisms by which these alterations lead to tumorigenesis are unclear, however. In an effort to fundamentally understand how SDH loss reprograms cell biology, we developed an immortalized mouse embryonic fibroblast cell line with conditional disruption of Sdhc and characterize the kinetics of Sdhc gene rearrangement, SDHC protein loss, succinate accumulation, and the resultant hypoproliferative phenotype. We further perform global transcriptomic, epigenomic, and proteomic characterization of changes resulting from SDHC loss, identifying specific perturbations at each biological level. We compare the observed patterns of epigenomic derangement to another previously-described immortalized mouse chromaffin cell model of SDHB loss, and compare both models to human SDH-loss tumors. Finally, we perform analysis of SDHC synthetic lethality with lactate dehydrogenase A (LDHA) and pyruvate carboxylase (PCX), which are important for regeneration of NAD+ and aspartate biosynthesis, respectively. Our data show that SDH-loss cells are selectively vulnerable to LDH genetic knock-down or chemical inhibition, suggesting that LDH inhibition may be an effective therapeutic strategy for SDH-loss PPGL.
Collapse
Affiliation(s)
- John Smestad
- Mayo Clinic Medical Scientist Training Program, Mayo Clinic College of Medicine and Science, Rochester, MN, USA.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Oksana Hamidi
- Division of Endocrinology, Diabetes, and Nutrition, Mayo Clinic, Rochester, MN, USA
| | - Lin Wang
- Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Molly Nelson Holte
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Fatimah Al Khazal
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Luke Erber
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota at Twin Cities, Minneapolis, MN, USA
| | - Yue Chen
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota at Twin Cities, Minneapolis, MN, USA
| | - L James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
29
|
Simithy J, Sidoli S, Yuan ZF, Coradin M, Bhanu NV, Marchione DM, Klein BJ, Bazilevsky GA, McCullough CE, Magin RS, Kutateladze TG, Snyder NW, Marmorstein R, Garcia BA. Characterization of histone acylations links chromatin modifications with metabolism. Nat Commun 2017; 8:1141. [PMID: 29070843 PMCID: PMC5656686 DOI: 10.1038/s41467-017-01384-9] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 09/14/2017] [Indexed: 12/30/2022] Open
Abstract
Over the last decade, numerous histone acyl post-translational modifications (acyl-PTMs) have been discovered, of which the functional significance is still under intense study. Here, we use high-resolution mass spectrometry to accurately quantify eight acyl-PTMs in vivo and after in vitro enzymatic assays. We assess the ability of seven histone acetyltransferases (HATs) to catalyze acylations on histones in vitro using short-chain acyl-CoA donors, proving that they are less efficient towards larger acyl-CoAs. We also observe that acyl-CoAs can acylate histones through non-enzymatic mechanisms. Using integrated metabolomic and proteomic approaches, we achieve high correlation (R 2 > 0.99) between the abundance of acyl-CoAs and their corresponding acyl-PTMs. Moreover, we observe a dose-dependent increase in histone acyl-PTM abundances in response to acyl-CoA supplementation in in nucleo reactions. This study represents a comprehensive profiling of scarcely investigated low-abundance histone marks, revealing that concentrations of acyl-CoAs affect histone acyl-PTM abundances by both enzymatic and non-enzymatic mechanisms.
Collapse
Affiliation(s)
- Johayra Simithy
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Simone Sidoli
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Zuo-Fei Yuan
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mariel Coradin
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Natarajan V Bhanu
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Dylan M Marchione
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Brianna J Klein
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Gleb A Bazilevsky
- Graduate Group in Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Cheryl E McCullough
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Robert S Magin
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Nathaniel W Snyder
- AJ Drexel Autism Institute, Drexel University, 3020 Market Street Suite 560, Philadelphia, PA, 19104, USA
| | - Ronen Marmorstein
- Department of Biochemistry and Biophysics, Abramson Family Cancer Research Institute, and the Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
30
|
Gil J, Ramírez-Torres A, Chiappe D, Luna-Peñaloza J, Fernandez-Reyes FC, Arcos-Encarnación B, Contreras S, Encarnación-Guevara S. Lysine acetylation stoichiometry and proteomics analyses reveal pathways regulated by sirtuin 1 in human cells. J Biol Chem 2017; 292:18129-18144. [PMID: 28893905 DOI: 10.1074/jbc.m117.784546] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 09/01/2017] [Indexed: 01/03/2023] Open
Abstract
Lysine acetylation is a widespread posttranslational modification affecting many biological pathways. Recent studies indicate that acetylated lysine residues mainly exhibit low acetylation occupancy, but challenges in sample preparation and analysis make it difficult to confidently assign these numbers, limiting understanding of their biological significance. Here, we tested three common sample preparation methods to determine their suitability for assessing acetylation stoichiometry in three human cell lines, identifying the acetylation occupancy in more than 1,300 proteins from each cell line. The stoichiometric analysis in combination with quantitative proteomics also enabled us to explore their functional roles. We found that higher abundance of the deacetylase sirtuin 1 (SIRT1) correlated with lower acetylation occupancy and lower levels of ribosomal proteins, including those involved in ribosome biogenesis and rRNA processing. Treatment with the SIRT1 inhibitor EX-527 confirmed SIRT1's role in the regulation of pre-rRNA synthesis and processing. Specifically, proteins involved in pre-rRNA transcription, including subunits of the polymerase I and SL1 complexes and the RNA polymerase I-specific transcription initiation factor RRN3, were up-regulated after SIRT1 inhibition. Moreover, many protein effectors and regulators of pre-rRNA processing needed for rRNA maturation were also up-regulated after EX-527 treatment with the outcome that pre-rRNA and 28S rRNA levels also increased. More generally, we found that SIRT1 inhibition down-regulates metabolic pathways, including glycolysis and pyruvate metabolism. Together, these results provide the largest data set thus far of lysine acetylation stoichiometry (available via ProteomeXchange with identifier PXD005903) and set the stage for further biological investigations of this central posttranslational modification.
Collapse
Affiliation(s)
- Jeovanis Gil
- From the Programa de Genómica Funcional de Procariotes and.,Programa de Doctorado en Ciencias Biomédicas, Centro de Ciencias Genómicas-Universidad Nacional Autónoma de México, Avenida Universidad s/n, Colonia Chamilpa, Cuernavaca, Morelos CP 62210, México
| | | | - Diego Chiappe
- Proteomics Core Facility, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland, and
| | | | - Francis C Fernandez-Reyes
- Centro de Investigación en Ciencia-Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos CP 62210, México
| | | | | | | |
Collapse
|
31
|
Weinert BT, Satpathy S, Hansen BK, Lyon D, Jensen LJ, Choudhary C. Accurate Quantification of Site-specific Acetylation Stoichiometry Reveals the Impact of Sirtuin Deacetylase CobB on the E. coli Acetylome. Mol Cell Proteomics 2017; 16:759-769. [PMID: 28254776 DOI: 10.1074/mcp.m117.067587] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/01/2017] [Indexed: 01/04/2023] Open
Abstract
Lysine acetylation is a protein posttranslational modification (PTM) that occurs on thousands of lysine residues in diverse organisms from bacteria to humans. Accurate measurement of acetylation stoichiometry on a proteome-wide scale remains challenging. Most methods employ a comparison of chemically acetylated peptides to native acetylated peptides, however, the potentially large differences in abundance between these peptides presents a challenge for accurate quantification. Stable isotope labeling by amino acids in cell culture (SILAC)-based mass spectrometry (MS) is one of the most widely used quantitative proteomic methods. Here we show that serial dilution of SILAC-labeled peptides (SD-SILAC) can be used to identify accurately quantified peptides and to estimate the quantification error rate. We applied SD-SILAC to determine absolute acetylation stoichiometry in exponentially-growing and stationary-phase wild-type and Sirtuin deacetylase CobB-deficient cells. To further analyze CobB-regulated sites under conditions of globally increased or decreased acetylation, we measured stoichiometry in phophotransacetylase (ptaΔ) and acetate kinase (ackAΔ) mutant strains in the presence and absence of the Sirtuin inhibitor nicotinamide. We measured acetylation stoichiometry at 3,669 unique sites and found that the vast majority of acetylation occurred at a low stoichiometry. Manipulations that cause increased nonenzymatic acetylation by acetyl-phosphate (AcP), such as stationary-phase arrest and deletion of ackA, resulted in globally increased acetylation stoichiometry. Comparison to relative quantification under the same conditions validated our stoichiometry estimates at hundreds of sites, demonstrating the accuracy of our method. Similar to Sirtuin deacetylase 3 (SIRT3) in mitochondria, CobB suppressed acetylation to lower than median stoichiometry in WT, ptaΔ, and ackAΔ cells. Together, our results provide a detailed view of acetylation stoichiometry in E. coli and suggest an evolutionarily conserved function of Sirtuin deacetylases in suppressing low stoichiometry acetylation.
Collapse
Affiliation(s)
- Brian Tate Weinert
- From the ‡The Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Shankha Satpathy
- From the ‡The Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Bogi Karbech Hansen
- From the ‡The Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - David Lyon
- From the ‡The Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Lars Juhl Jensen
- From the ‡The Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Chunaram Choudhary
- From the ‡The Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| |
Collapse
|
32
|
Tatham MH, Cole C, Scullion P, Wilkie R, Westwood NJ, Stark LA, Hay RT. A Proteomic Approach to Analyze the Aspirin-mediated Lysine Acetylome. Mol Cell Proteomics 2017; 16:310-326. [PMID: 27913581 PMCID: PMC5294217 DOI: 10.1074/mcp.o116.065219] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 11/23/2016] [Indexed: 12/14/2022] Open
Abstract
Aspirin, or acetylsalicylic acid is widely used to control pain, inflammation and fever. Important to this function is its ability to irreversibly acetylate cyclooxygenases at active site serines. Aspirin has the potential to acetylate other amino acid side-chains, leading to the possibility that aspirin-mediated lysine acetylation could explain some of its as-yet unexplained drug actions or side-effects. Using isotopically labeled aspirin-d3, in combination with acetylated lysine purification and LC-MS/MS, we identified over 12000 sites of lysine acetylation from cultured human cells. Although aspirin amplifies endogenous acetylation signals at the majority of detectable endogenous sites, cells tolerate aspirin mediated acetylation very well unless cellular deacetylases are inhibited. Although most endogenous acetylations are amplified by orders of magnitude, lysine acetylation site occupancies remain very low even after high doses of aspirin. This work shows that while aspirin has enormous potential to alter protein function, in the majority of cases aspirin-mediated acetylations do not accumulate to levels likely to elicit biological effects. These findings are consistent with an emerging model for cellular acetylation whereby stoichiometry correlates with biological relevance, and deacetylases act to minimize the biological consequences of nonspecific chemical acetylations.
Collapse
Affiliation(s)
- Michael H Tatham
- From the ‡Centre for Gene Regulation and Expression, Sir James Black Centre, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH. UK
| | - Christian Cole
- §Computational Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH. UK
| | - Paul Scullion
- ¶Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH. UK
| | - Ross Wilkie
- ‖School of Chemistry and Biomedical Sciences Research Complex, University of St Andrews and EaStCHEM, North Haugh, St Andrews, Fife. KY16 9ST. UK
| | - Nicholas J Westwood
- ‖School of Chemistry and Biomedical Sciences Research Complex, University of St Andrews and EaStCHEM, North Haugh, St Andrews, Fife. KY16 9ST. UK
| | - Lesley A Stark
- **Edinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, EH4 2XU UK
| | - Ronald T Hay
- From the ‡Centre for Gene Regulation and Expression, Sir James Black Centre, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH. UK;
| |
Collapse
|
33
|
Galligan JJ, Kingsley PJ, Wauchope OR, Mitchener MM, Camarillo JM, Wepy JA, Harris PS, Fritz KS, Marnett LJ. Quantitative Analysis and Discovery of Lysine and Arginine Modifications. Anal Chem 2017; 89:1299-1306. [PMID: 27982582 PMCID: PMC5309163 DOI: 10.1021/acs.analchem.6b04105] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Post-translational modifications (PTMs) affect protein function, localization, and stability, yet very little is known about the ratios of these modifications. Here, we describe a novel method to quantitate and assess the relative stoichiometry of Lys and Arg modifications (QuARKMod) in complex biological settings. We demonstrate the versatility of this platform in monitoring recombinant protein modification of peptide substrates, PTMs of individual histones, and the relative abundance of these PTMs as a function of subcellular location. Lastly, we describe a product ion scanning technique that offers the potential to discover unexpected and possibly novel Lys and Arg modifications. In summary, this approach yields accurate quantitation and discovery of protein PTMs in complex biological systems without the requirement of high mass accuracy instrumentation.
Collapse
Affiliation(s)
- James J. Galligan
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Philip J. Kingsley
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Orrette R. Wauchope
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Michelle M. Mitchener
- Department of Chemistry, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Jeannie M. Camarillo
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - James A. Wepy
- Department of Chemistry, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Peter S. Harris
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| | - Kristofer S. Fritz
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| | - Lawrence J. Marnett
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232
- Department of Chemistry, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
34
|
Mutations in the Chromatin Regulator Gene BRPF1 Cause Syndromic Intellectual Disability and Deficient Histone Acetylation. Am J Hum Genet 2017; 100:91-104. [PMID: 27939640 DOI: 10.1016/j.ajhg.2016.11.011] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/10/2016] [Indexed: 12/18/2022] Open
Abstract
Identification of over 500 epigenetic regulators in humans raises an interesting question regarding how chromatin dysregulation contributes to different diseases. Bromodomain and PHD finger-containing protein 1 (BRPF1) is a multivalent chromatin regulator possessing three histone-binding domains, one non-specific DNA-binding module, and several motifs for interacting with and activating three lysine acetyltransferases. Genetic analyses of fish brpf1 and mouse Brpf1 have uncovered an important role in skeletal, hematopoietic, and brain development, but it remains unclear how BRPF1 is linked to human development and disease. Here, we describe an intellectual disability disorder in ten individuals with inherited or de novo monoallelic BRPF1 mutations. Symptoms include infantile hypotonia, global developmental delay, intellectual disability, expressive language impairment, and facial dysmorphisms. Central nervous system and spinal abnormalities are also seen in some individuals. These clinical features overlap with but are not identical to those reported for persons with KAT6A or KAT6B mutations, suggesting that BRPF1 targets these two acetyltransferases and additional partners in humans. Functional assays showed that the resulting BRPF1 variants are pathogenic and impair acetylation of histone H3 at lysine 23, an abundant but poorly characterized epigenetic mark. We also found a similar deficiency in different lines of Brpf1-knockout mice. These data indicate that aberrations in the chromatin regulator gene BRPF1 cause histone H3 acetylation deficiency and a previously unrecognized intellectual disability syndrome.
Collapse
|
35
|
Meyer JG, D'Souza AK, Sorensen DJ, Rardin MJ, Wolfe AJ, Gibson BW, Schilling B. Quantification of Lysine Acetylation and Succinylation Stoichiometry in Proteins Using Mass Spectrometric Data-Independent Acquisitions (SWATH). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:1758-1771. [PMID: 27590315 PMCID: PMC5059418 DOI: 10.1007/s13361-016-1476-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/28/2016] [Accepted: 08/03/2016] [Indexed: 06/06/2023]
Abstract
Post-translational modification of lysine residues by NƐ-acylation is an important regulator of protein function. Many large-scale protein acylation studies have assessed relative changes of lysine acylation sites after antibody enrichment using mass spectrometry-based proteomics. Although relative acylation fold-changes are important, this does not reveal site occupancy, or stoichiometry, of individual modification sites, which is critical to understand functional consequences. Recently, methods for determining lysine acetylation stoichiometry have been proposed based on ratiometric analysis of endogenous levels to those introduced after quantitative per-acetylation of proteins using stable isotope-labeled acetic anhydride. However, in our hands, we find that these methods can overestimate acetylation stoichiometries because of signal interferences when endogenous levels of acylation are very low, which is especially problematic when using MS1 scans for quantification. In this study, we sought to improve the accuracy of determining acylation stoichiometry using data-independent acquisition (DIA). Specifically, we use SWATH acquisition to comprehensively collect both precursor and fragment ion intensity data. The use of fragment ions for stoichiometry quantification not only reduces interferences but also allows for determination of site-level stoichiometry from peptides with multiple lysine residues. We also demonstrate the novel extension of this method to measurements of succinylation stoichiometry using deuterium-labeled succinic anhydride. Proof of principle SWATH acquisition studies were first performed using bovine serum albumin for both acetylation and succinylation occupancy measurements, followed by the analysis of more complex samples of E. coli cell lysates. Although overall site occupancy was low (<1%), some proteins contained lysines with relatively high acetylation occupancy. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Jesse G Meyer
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | | | | | | | - Alan J Wolfe
- Department of Microbiology and Immunology, Stritch School of Medicine, Health Sciences Division, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Bradford W Gibson
- Buck Institute for Research on Aging, Novato, CA, 94945, USA.
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, 94143, USA.
| | | |
Collapse
|
36
|
You L, Li L, Zou J, Yan K, Belle J, Nijnik A, Wang E, Yang XJ. BRPF1 is essential for development of fetal hematopoietic stem cells. J Clin Invest 2016; 126:3247-62. [PMID: 27500495 DOI: 10.1172/jci80711] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 06/16/2016] [Indexed: 12/21/2022] Open
Abstract
Hematopoietic stem cells (HSCs) serve as a life-long reservoir for all blood cell types and are clinically useful for a variety of HSC transplantation-based therapies. Understanding the role of chromatin organization and regulation in HSC homeostasis may provide important insights into HSC development. Bromodomain- and PHD finger-containing protein 1 (BRPF1) is a multivalent chromatin regulator that possesses 4 nucleosome-binding domains and activates 3 lysine acetyltransferases (KAT6A, KAT6B, and KAT7), suggesting that this protein has the potential to stimulate crosstalk between different chromatin modifications. Here, we investigated the function of BRPF1 in hematopoiesis by selectively deleting its gene in murine blood cells. Brpf1-deficient pups experienced early lethality due to acute bone marrow failure and aplastic anemia. The mutant bone marrow and fetal liver exhibited severe deficiency in HSCs and hematopoietic progenitors, along with elevated reactive oxygen species, senescence, and apoptosis. BRPF1 deficiency also reduced the expression of multipotency genes, including Slamf1, Mecom, Hoxa9, Hlf, Gfi1, Egr, and Gata3. Furthermore, BRPF1 was required for acetylation of histone H3 at lysine 23, a highly abundant but not well-characterized epigenetic mark. These results identify an essential role of the multivalent chromatin regulator BRPF1 in definitive hematopoiesis and illuminate a potentially new avenue for studying epigenetic networks that govern HSC ontogeny.
Collapse
|
37
|
Drazic A, Myklebust LM, Ree R, Arnesen T. The world of protein acetylation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1372-401. [PMID: 27296530 DOI: 10.1016/j.bbapap.2016.06.007] [Citation(s) in RCA: 570] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 06/04/2016] [Accepted: 06/08/2016] [Indexed: 12/30/2022]
Abstract
Acetylation is one of the major post-translational protein modifications in the cell, with manifold effects on the protein level as well as on the metabolome level. The acetyl group, donated by the metabolite acetyl-coenzyme A, can be co- or post-translationally attached to either the α-amino group of the N-terminus of proteins or to the ε-amino group of lysine residues. These reactions are catalyzed by various N-terminal and lysine acetyltransferases. In case of lysine acetylation, the reaction is enzymatically reversible via tightly regulated and metabolism-dependent mechanisms. The interplay between acetylation and deacetylation is crucial for many important cellular processes. In recent years, our understanding of protein acetylation has increased significantly by global proteomics analyses and in depth functional studies. This review gives a general overview of protein acetylation and the respective acetyltransferases, and focuses on the regulation of metabolic processes and physiological consequences that come along with protein acetylation.
Collapse
Affiliation(s)
- Adrian Drazic
- Department of Molecular Biology, University of Bergen, N-5020 Bergen, Norway
| | - Line M Myklebust
- Department of Molecular Biology, University of Bergen, N-5020 Bergen, Norway
| | - Rasmus Ree
- Department of Molecular Biology, University of Bergen, N-5020 Bergen, Norway; Department of Surgery, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Thomas Arnesen
- Department of Molecular Biology, University of Bergen, N-5020 Bergen, Norway; Department of Surgery, Haukeland University Hospital, N-5021 Bergen, Norway.
| |
Collapse
|
38
|
Fang D, Gan H, Lee JH, Han J, Wang Z, Riester SM, Jin L, Chen J, Zhou H, Wang J, Zhang H, Yang N, Bradley EW, Ho TH, Rubin BP, Bridge JA, Thibodeau SN, Ordog T, Chen Y, van Wijnen AJ, Oliveira AM, Xu RM, Westendorf JJ, Zhang Z. The histone H3.3K36M mutation reprograms the epigenome of chondroblastomas. Science 2016; 352:1344-8. [PMID: 27229140 PMCID: PMC5460624 DOI: 10.1126/science.aae0065] [Citation(s) in RCA: 206] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 05/16/2016] [Indexed: 12/18/2022]
Abstract
More than 90% of chondroblastomas contain a heterozygous mutation replacing lysine-36 with methionine-36 (K36M) in the histone H3 variant H3.3. Here we show that H3K36 methylation is reduced globally in human chondroblastomas and in chondrocytes harboring the same genetic mutation, due to inhibition of at least two H3K36 methyltransferases, MMSET and SETD2, by the H3.3K36M mutant proteins. Genes with altered expression as well as H3K36 di- and trimethylation in H3.3K36M cells are enriched in cancer pathways. In addition, H3.3K36M chondrocytes exhibit several hallmarks of cancer cells, including increased ability to form colonies, resistance to apoptosis, and defects in differentiation. Thus, H3.3K36M proteins reprogram the H3K36 methylation landscape and contribute to tumorigenesis, in part through altering the expression of cancer-associated genes.
Collapse
Affiliation(s)
- Dong Fang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Haiyun Gan
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Jeong-Heon Lee
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA. Epigenomics Program, Center of Individualized Medicine, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Jing Han
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Zhiquan Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Scott M Riester
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Long Jin
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Jianji Chen
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| | - Hui Zhou
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Jinglong Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 5 Datun Road, Beijing 100101, China. University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Honglian Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Na Yang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 5 Datun Road, Beijing 100101, China
| | - Elizabeth W Bradley
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Thai H Ho
- Division of Hematology/Oncology, Mayo Clinic Arizona, 13400 East Shea B., Scottsdale, AZ 85259, USA
| | - Brian P Rubin
- Robert J. Tomsich Pathology and Laboratory Medicine Institute and Department of Cancer Biology, Cleveland Clinic and Lerner Research Institute, L2 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Julia A Bridge
- Departments of Pathology and Microbiology, Pediatrics, and Orthopaedic Surgery and Rehabilitation
| | - Stephen N Thibodeau
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Tamas Ordog
- Epigenomics Program, Center of Individualized Medicine, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA. Department of Physiology and Biomedical Engineering, Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA. Interdisciplinary Health Science Initiative, 1110 Micro and Nanotechnology Laboratory, M/C 249, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Yue Chen
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| | - Andre J van Wijnen
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA. Department of Orthopedic Surgery, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Andre M Oliveira
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA. Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Rui-Ming Xu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 5 Datun Road, Beijing 100101, China. University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Jennifer J Westendorf
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA. Department of Orthopedic Surgery, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Zhiguo Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA. Epigenomics Program, Center of Individualized Medicine, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|