1
|
Zhou X, Zhao X, Li Y, Zhang B. CIP2A promotes bronchiolitis obliterans by activating the NF‑κB pathway. Mol Med Rep 2025; 31:108. [PMID: 40017141 PMCID: PMC11881678 DOI: 10.3892/mmr.2025.13473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 01/20/2025] [Indexed: 03/01/2025] Open
Abstract
Bronchiolitis obliterans (BO) is a destructive fibrotic lung disease, which can be partly induced by 2,3‑butanedione [also known as diacetyl (DA)]; however, the mechanism underlying the effects of DA on BO is not clear. In the present study, a bioinformatics analysis was performed using DA‑treated or untreated lung tissues of rats, and it was observed that cell proliferation regulating inhibitor of protein phosphatase 2A (CIP2A) was significantly increased in samples from the DA group. CIP2A is associated with inflammation and epithelial‑mesenchymal transition (EMT), and facilitates lung injury; however, its effect on DA‑induced BO and the underlying mechanism remain unknown. To solve these issues, DA‑treated models of BO were established in rats and cells, and ethoxysanguinarine (a CIP2A inhibitor) was administered to induce a decrease in CIP2A. The pathological changes were detected by hematoxylin and eosin, Masson and Giemsa staining. Reverse transcription‑quantitative PCR, western blotting, immunohistochemistry, immunofluorescence and enzyme‑linked immunosorbent assay were used to measure CIP2A expression and levels of pathology‑related markers. Notably, inhibition of CIP2A ameliorated the pathological features of BO, including reduced intraluminal occlusion, inflammatory infiltration and fibrosis. The expression of inflammation, fibrosis and EMT markers was also decreased in samples with CIP2A inhibition. Furthermore, CIP2A inhibition was revealed to work through the nuclear factor‑κB (NF‑κB) pathway; phosphorylation of NF‑κB inhibitor α and nuclear translocation of p65 were reduced. In summary, these results demonstrated that CIP2A may promote BO development by increasing inflammation, fibrosis and EMT through activating the NF‑κB signaling pathway. Therefore, inhibition of CIP2A may be considered a potential strategy for BO treatment.
Collapse
Affiliation(s)
- Xu Zhou
- Department of Pediatrics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, P.R. China
| | - Xingyou Zhao
- The First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Yanning Li
- Department of Pediatrics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, P.R. China
| | - Baoqing Zhang
- Department of Pediatrics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, P.R. China
| |
Collapse
|
2
|
Schroeter JD, Kimbell JS, Asgharian B, Price OT, Bothelo D, Singal M, Sadekar N. Inhalation dosimetry and dose-response analysis of diacetyl, 2, 3-pentanedione, and acetoin using respiratory tract vapor uptake models. Inhal Toxicol 2025; 37:74-86. [PMID: 40015264 DOI: 10.1080/08958378.2025.2471086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 02/18/2025] [Indexed: 03/01/2025]
Abstract
OBJECTIVE The objectives are to develop inhalation dosimetry models of the flavoring agents diacetyl, 2, 3-pentanedione, and acetoin to predict uptake throughout the rat and human respiratory tracts and use the results with histopathology data from 2-week, nose-only inhalation exposures in Sprague-Dawley rats to assess relationships between predicted dose and in vivo responses. METHODS Computational fluid dynamics (CFD) models of the nasal passages were used to simulate inspiratory airflow and vapor uptake and mechanistic models of the lung airways were used to simulate vapor uptake during a breathing cycle. RESULTS Diacetyl and 2, 3-pentanedione demonstrated similar uptake and wall mass flux patterns throughout the respiratory tract. Acetoin, being more soluble, was rapidly absorbed in the nasal and upper lung airways. At a 10 ppm exposure concentration and resting breathing conditions, nasal uptake of diacetyl, 2, 3-pentanedione, and acetoin was 30.9, 30.3, and 73.6% in the rat, and 8.7, 9.3, and 32.5% in the human, respectively; total respiratory tract uptake was 76.5, 76.8, and 93.0% in the rat and 79.6, 81.1, and 85.9% in the human, respectively. Wall mass flux patterns aligned with previously reported in vivo observations of histopathological effects in the rat respiratory tract following 8.75, 17.5, or 35 ppm diacetyl or 2, 3-pentanedione exposure and can be used to evaluate dose-response behavior. CONCLUSIONS Dose-response assessment of inhaled vapors demonstrates the utility of dosimetry models for interspecies extrapolation and chemical comparisons and how their use is an important part of risk characterization as non-animal alternatives are more widely considered.
Collapse
Affiliation(s)
| | - Julia S Kimbell
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina, Chapel Hill, NC, USA
| | | | - Owen T Price
- Applied Research Associates, Inc, Raleigh, NC, USA
| | - Danielle Bothelo
- Research Institute for Fragrance Materials, Inc, Woodcliff Lake, NJ, USA
| | - Madhuri Singal
- Research Institute for Fragrance Materials, Inc, Woodcliff Lake, NJ, USA
- AeroTox Consulting Services, LLC, Montvale, NJ, USA
| | - Nikaeta Sadekar
- Research Institute for Fragrance Materials, Inc, Woodcliff Lake, NJ, USA
| |
Collapse
|
3
|
Chu CY, Kim SY, Pryhuber GS, Mariani TJ, McGraw MD. Single-cell resolution of human airway epithelial cells exposed to bronchiolitis obliterans-associated chemicals. Am J Physiol Lung Cell Mol Physiol 2024; 326:L135-L148. [PMID: 38084407 PMCID: PMC11279737 DOI: 10.1152/ajplung.00304.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/31/2023] [Accepted: 11/23/2023] [Indexed: 01/24/2024] Open
Abstract
Bronchiolitis obliterans (BO) is a fibrotic lung disease characterized by progressive luminal narrowing and obliteration of the small airways. In the nontransplant population, inhalation exposure to certain chemicals is associated with BO; however, the mechanisms contributing to disease induction remain poorly understood. This study's objective was to use single-cell RNA sequencing for the identification of transcriptomic signatures common to primary human airway epithelial cells after chemical exposure to BO-associated chemicals-diacetyl or nitrogen mustard-to help explain BO induction. Primary airway epithelial cells were cultured at air-liquid interface and exposed to diacetyl, nitrogen mustard, or control vapors. Cultures were dissociated and sequenced for single-cell RNA. Differential gene expression and functional pathway analyses were compared across exposures. In total, 75,663 single cells were captured and sequenced from all exposure conditions. Unbiased clustering identified 11 discrete phenotypes, including 5 basal, 2 ciliated, and 2 secretory cell clusters. With chemical exposure, the proportion of cells assigned to keratin 5+ basal cells decreased, whereas the proportion of cells aligned to secretory cell clusters increased compared with control exposures. Functional pathway analysis identified interferon signaling and antigen processing/presentation as pathways commonly upregulated after diacetyl or nitrogen mustard exposure in a ciliated cell cluster. Conversely, the response of airway basal cells differed significantly with upregulation of the unfolded protein response in diacetyl-exposed basal cells, not seen in nitrogen mustard-exposed cultures. These new insights provide early identification of airway epithelial signatures common to BO-associated chemical exposures.NEW & NOTEWORTHY Bronchiolitis obliterans (BO) is a devastating fibrotic lung disease of the small airways, or bronchioles. This original manuscript uses single-cell RNA sequencing for identifying common signatures of chemically exposed airway epithelial cells in BO induction. Chemical exposure reduced the proportion of keratin 5+ basal cells while increasing the proportion of keratin 4+ suprabasal cells. Functional pathways contributory to these shifts differed significantly across exposures. These new results highlight similarities and differences in BO induction across exposures.
Collapse
Affiliation(s)
- Chin-Yi Chu
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
| | - So-Young Kim
- Division of Pediatric Pulmonology, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, United States
| | - Gloria S Pryhuber
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, United States
| | - Thomas J Mariani
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, United States
| | - Matthew D McGraw
- Division of Pediatric Pulmonology, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, United States
| |
Collapse
|
4
|
Li J, Xue Y, Wang X, Smith LS, He B, Liu S, Zhu H. Tissue- and cell-expression of druggable host proteins provide insights into repurposing drugs for COVID-19. Clin Transl Sci 2022; 15:2796-2811. [PMID: 36259251 PMCID: PMC9747131 DOI: 10.1111/cts.13400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 01/26/2023] Open
Abstract
Several human host proteins play important roles in the lifecycle of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Many drugs targeting these host proteins have been investigated as potential therapeutics for coronavirus disease 2019 (COVID-19). The tissue-specific expressions of selected host proteins were summarized using proteomics data retrieved from the Human Protein Atlas, ProteomicsDB, Human Proteome Map databases, and a clinical COVID-19 study. Protein expression features in different cell lines were summarized based on recent proteomics studies. The half-maximal effective concentration or half-maximal inhibitory concentration values were collected from in vitro studies. The pharmacokinetic data were mainly from studies in healthy subjects or non-COVID-19 patients. Considerable tissue-specific expression patterns were observed for several host proteins. ACE2 expression in the lungs was significantly lower than in many other tissues (e.g., the kidneys and intestines); TMPRSS2 expression in the lungs was significantly lower than in other tissues (e.g., the prostate and intestines). The expression levels of endocytosis-associated proteins CTSL, CLTC, NPC1, and PIKfyve in the lungs were comparable to or higher than most other tissues. TMPRSS2 expression was markedly different between cell lines, which could be associated with the cell-dependent antiviral activities of several drugs. Drug delivery receptor ICAM1 and CTSB were expressed at a higher level in the lungs than in other tissues. In conclusion, the cell- and tissue-specific proteomics data could help interpret the in vitro antiviral activities of host-directed drugs in various cells and aid the transition of the in vitro findings to clinical research to develop safe and effective therapeutics for COVID-19.
Collapse
Affiliation(s)
- Jiapeng Li
- Department of Clinical PharmacyUniversity of Michigan College of PharmacyAnn ArborMichiganUSA
| | - Yanling Xue
- Department of Clinical PharmacyUniversity of Michigan College of PharmacyAnn ArborMichiganUSA
| | - Xinwen Wang
- Department of Pharmaceutical SciencesNortheast Ohio Medical University College of PharmacyRootstownOhioUSA
| | - Logan S. Smith
- Department of Clinical PharmacyUniversity of Michigan College of PharmacyAnn ArborMichiganUSA
| | - Bing He
- Department of Computational Medicine and BioinformaticsUniversity of MichiganAnn ArborMichiganUSA
| | - Shuhan Liu
- Department of Clinical PharmacyUniversity of Michigan College of PharmacyAnn ArborMichiganUSA
| | - Hao‐Jie Zhu
- Department of Clinical PharmacyUniversity of Michigan College of PharmacyAnn ArborMichiganUSA
| |
Collapse
|
5
|
McGraw MD, Yee M, Kim SY, Dylag AM, Lawrence BP, O'Reilly MA. Diacetyl inhalation impairs airway epithelial repair in mice infected with influenza A virus. Am J Physiol Lung Cell Mol Physiol 2022; 323:L578-L592. [PMID: 36068185 PMCID: PMC9639765 DOI: 10.1152/ajplung.00124.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/12/2022] [Accepted: 08/29/2022] [Indexed: 01/11/2023] Open
Abstract
Bronchiolitis obliterans (BO) is a debilitating disease of the small airways that can develop following exposure to toxic chemicals as well as respiratory tract infections. BO development is strongly associated with diacetyl (DA) inhalation exposures at occupationally relevant concentrations or severe influenza A viral (IAV) infections. However, it remains unclear whether lower dose exposures or more mild IAV infections can result in similar pathology. In the current work, we combined these two common environmental exposures, DA and IAV, to test whether shorter DA exposures followed by sublethal IAV infection would result in similar airways disease. Adult mice exposed to DA vapors 1 h/day for 5 consecutive days followed by infection with the airway-tropic IAV H3N2 (HKx31) resulted in increased mortality, increased bronchoalveolar lavage (BAL) neutrophil percentage, mixed obstruction and restriction by lung function, and subsequent airway remodeling. Exposure to DA or IAV alone failed to result in significant pathology, whereas mice exposed to DA + IAV showed increased α-smooth muscle actin (αSMA) and epithelial cells coexpressing the basal cell marker keratin 5 (KRT5) with the club cell marker SCGB1A1. To test whether DA exposure impairs epithelial repair after IAV infection, mice were infected first with IAV and then exposed to DA during airway epithelial repair. Mice exposed to IAV + DA developed similar airway remodeling with increased subepithelial αSMA and epithelial cells coexpressing KRT5 and SCGB1A1. Our findings reveal an underappreciated concept that common environmental insults while seemingly harmless by themselves can have catastrophic implications on lung function and long-term respiratory health when combined.
Collapse
Affiliation(s)
- Matthew D McGraw
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York
| | - Min Yee
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York
| | - So-Young Kim
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York
| | - Andrew M Dylag
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York
| | - B Paige Lawrence
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York
| | - Michael A O'Reilly
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
6
|
Kim SY, McGraw MD. Post-translational modifications to hemidesmosomes in human airway epithelial cells following diacetyl exposure. Sci Rep 2022; 12:9738. [PMID: 35697719 PMCID: PMC9192738 DOI: 10.1038/s41598-022-14019-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 05/31/2022] [Indexed: 11/17/2022] Open
Abstract
Diacetyl (DA; 2,3-butanedione) is a highly reactive alpha (α)-diketone. Inhalation exposure to DA can cause significant airway epithelial cell injury, however, the mechanisms of toxicity remain poorly understood. The purpose of these experiments was to assess for changes in abundance and distribution of hemidesmosome-associated proteins following DA exposure that contribute to DA-induced epithelial toxicity. Human bronchial epithelial cells were grown in submerged cultures and exposed to three occupationally-relevant concentrations of DA (5.7, 8.6, or 11.4 mM) for 1 h. Following DA exposure, epithelial cells were cultured for 4 days to monitor for cell viability by MTT and WST-1 assays as well as for changes in cellular distribution and relative abundance of multiple hemidesmosome-associated proteins, including keratin 5 (KRT5), plectin (PLEC), integrin alpha 6 (ITGα6) and integrin beta 4 (ITGβ4). Significant toxicity developed in airway epithelial cells exposed to DA at concentrations ≥ 8.6 mM. DA exposure resulted in post-translational modifications to hemidesmosome-associated proteins with KRT5 crosslinking and ITGβ4 cleavage. Following DA exposure at 5.7 mM, these post-translational modifications to KRT5 resolved with time. Conversely, at DA concentrations ≥ 8.6 mM, modifications to KRT5 persisted in culture with decreased total abundance and perinuclear aggregation of hemidesmosome-associated proteins. Significant post-translational modifications to hemidesmosome-associated proteins develop in airway epithelial cells exposed to DA. At DA concentrations ≥ 8.6 mM, these hemidesmosome modifications persist in culture. Future work targeting hemidesmosome-associated protein modifications may prevent the development of lung disease following DA exposure.
Collapse
Affiliation(s)
- So-Young Kim
- Division of Pulmonary Medicine, Department of Pediatrics, University of Rochester Medical Center, 601 Elmwood Avenue, Box 850, Rochester, NY, 14642, USA
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Matthew D McGraw
- Division of Pulmonary Medicine, Department of Pediatrics, University of Rochester Medical Center, 601 Elmwood Avenue, Box 850, Rochester, NY, 14642, USA.
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
7
|
Langel SN, Kelly FL, Brass DM, Nagler AE, Carmack D, Tu JJ, Travieso T, Goswami R, Permar SR, Blasi M, Palmer SM. E-cigarette and food flavoring diacetyl alters airway cell morphology, inflammatory and antiviral response, and susceptibility to SARS-CoV-2. Cell Death Dis 2022; 8:64. [PMID: 35169120 PMCID: PMC8847558 DOI: 10.1038/s41420-022-00855-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/18/2022] [Accepted: 01/27/2022] [Indexed: 11/09/2022]
Abstract
Diacetyl (DA) is an α-diketone that is used to flavor microwave popcorn, coffee, and e-cigarettes. Occupational exposure to high levels of DA causes impaired lung function and obstructive airway disease. Additionally, lower levels of DA exposure dampen host defenses in vitro. Understanding DA’s impact on lung epithelium is important for delineating exposure risk on lung health. In this study, we assessed the impact of DA on normal human bronchial epithelial cell (NHBEC) morphology, transcriptional profiles, and susceptibility to SARS-CoV-2 infection. Transcriptomic analysis demonstrated cilia dysregulation, an increase in hypoxia and sterile inflammation associated pathways, and decreased expression of interferon-stimulated genes after DA exposure. Additionally, DA exposure resulted in cilia loss and increased hyaluronan production. After SARS-CoV-2 infection, both genomic and subgenomic SARS-CoV-2 RNA were increased in DA vapor- compared to vehicle-exposed NHBECs. This work suggests that transcriptomic and physiologic changes induced by DA vapor exposure damage cilia and increase host susceptibility to SARS-CoV-2.
Collapse
Affiliation(s)
- Stephanie N Langel
- Duke Center for Human Systems Immunology and Department of Surgery, Durham, NC, USA
| | - Francine L Kelly
- Duke Clinical Research Institute and Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - David M Brass
- Duke Clinical Research Institute and Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Andrew E Nagler
- Duke Clinical Research Institute and Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Dylan Carmack
- Duke Clinical Research Institute and Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Joshua J Tu
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA.,Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Tatianna Travieso
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA.,Department of Medicine, Division of Infectious Diseases, Duke University Medical Center, Durham, NC, USA
| | - Ria Goswami
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Sallie R Permar
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Maria Blasi
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA. .,Department of Medicine, Division of Infectious Diseases, Duke University Medical Center, Durham, NC, USA.
| | - Scott M Palmer
- Duke Clinical Research Institute and Department of Medicine, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
8
|
Activation of Tenofovir Alafenamide and Sofosbuvir in the Human Lung and Its Implications in the Development of Nucleoside/Nucleotide Prodrugs for Treating SARS-CoV-2 Pulmonary Infection. Pharmaceutics 2021; 13:pharmaceutics13101656. [PMID: 34683949 PMCID: PMC8540046 DOI: 10.3390/pharmaceutics13101656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 11/16/2022] Open
Abstract
ProTide technology is a powerful tool for the design of nucleoside/nucleotide analog prodrugs. ProTide prodrug design improves cell permeability and enhances intracellular activation. The hydrolysis of the ester bond of a ProTide is a determinant of the intracellular activation efficiency and final antiviral efficacy of the prodrug. The hydrolysis is dictated by the catalytic activity and abundance of activating enzymes. The antiviral agents tenofovir alafenamide (TAF) and sofosbuvir (SBV) are typical ProTides. Both TAF and SBV have also been proposed to treat patients with COVID-19. However, the mechanisms underlying the activation of the two prodrugs in the lung remain inconclusive. In the present study, we profiled the catalytic activity of serine hydrolases in human lung S9 fractions using an activity-based protein profiling assay. We evaluated the hydrolysis of TAF and SBV using human lung and liver S9 fractions and purified enzymes. The results showed that CatA and CES1 were involved in the hydrolysis of the two prodrugs in the human lung. More specifically, CatA exhibited a nearly 4-fold higher hydrolytic activity towards TAF than SBV, whereas the CES1 activity on hydrolyzing TAF was slightly lower than that for SBV. Overall, TAF had a nearly 4-fold higher hydrolysis rate in human lung S9 than SBV. We further analyzed protein expression levels of CatA and CES1 in the human lung, liver, and primary cells of the two tissues using proteomics data extracted from the literature. The relative protein abundance of CatA to CES1 was considerably higher in the human lung and primary human airway epithelial cells than in the human liver and primary human hepatocytes. The findings demonstrated that the high susceptivity of TAF to CatA-mediated hydrolysis resulted in efficient TAF hydrolysis in the human lung, suggesting that CatA could be utilized as a target activating enzyme when designing antiviral ester prodrugs for the treatment of respiratory virus infection.
Collapse
|
9
|
Cao Y, Wu D, Ma Y, Ma X, Wang S, Li F, Li M, Zhang T. Toxicity of electronic cigarettes: A general review of the origins, health hazards, and toxicity mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:145475. [PMID: 33770885 DOI: 10.1016/j.scitotenv.2021.145475] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/24/2021] [Accepted: 01/24/2021] [Indexed: 06/12/2023]
Abstract
Electronic cigarettes (E-cigarette) are an alternative for traditional cigarette smokers to quit smoking. Based on the current understanding, electronic cigarettes have rapidly become popular among existing smokers and former non-smokers. However, increasing research at different levels reveals that e-cigarettes are unsafe. This review provides an overview of the toxicology of e-cigarettes based on existing in vivo and in vitro studies and compares their toxicity with that of traditional cigarettes. Moreover, we describe the associated toxicity components in e-cigarettes, as well as the potential mechanism by which e-cigarettes exert toxic effects. As is known to all, the nicotine in traditional cigarettes and e-cigarettes has certain toxicity. Besides, a few studies have shown that propylene glycol and vegetable glycerin mixture and flavoring agents in e-cigarettes also are the key components causing adverse effects in animals or cells. There is insufficient scientific evidence on the toxicity of e-cigarettes due to the lack of standardized research methods, prompting the need to conduct a comprehensive toxicity assessment of e-cigarette toxicity to elucidate the safety issues of e-cigarettes. Eventually, a basis for decision-making on whether people use e-cigarettes will be obtained.
Collapse
Affiliation(s)
- Yuna Cao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Daming Wu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Ying Ma
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Xinmo Ma
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Shile Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Fuxian Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Menghan Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
10
|
Wang J, Kim SY, House E, Olson HM, Johnston CJ, Chalupa D, Hernady E, Mariani TJ, Clair G, Ansong C, Qian WJ, Finkelstein JN, McGraw MD. Repetitive diacetyl vapor exposure promotes ubiquitin proteasome stress and precedes bronchiolitis obliterans pathology. Arch Toxicol 2021; 95:2469-2483. [PMID: 34031698 DOI: 10.1007/s00204-021-03076-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/06/2021] [Indexed: 12/01/2022]
Abstract
Bronchiolitis obliterans (BO) is a devastating lung disease seen commonly after lung transplant, following severe respiratory tract infection or chemical inhalation exposure. Diacetyl (DA; 2,3-butanedione) is a highly reactive alpha-diketone known to cause BO when inhaled, however, the mechanisms of how inhalation exposure leads to BO development remains poorly understood. In the current work, we combined two clinically relevant models for studying the pathogenesis of DA-induced BO: (1) an in vivo rat model of repetitive DA vapor exposures with recovery and (2) an in vitro model of primary human airway epithelial cells exposed to pure DA vapors. Rats exposed to 5 consecutive days 200 parts-per-million DA 6 h per day had worsening survival, persistent hypoxemia, poor weight gain, and histologic evidence of BO 14 days after DA exposure cessation. At the end of exposure, increased expression of the ubiquitin stress protein ubiquitin-C accumulated within DA-exposed rat lung homogenates and localized primarily to the airway epithelium, the primary site of BO development. Lung proteasome activity increased concurrently with ubiquitin-C expression after DA exposure, supportive of significant proteasome stress. In primary human airway cultures, global proteomics identified 519 significantly modified proteins in DA-exposed samples relative to controls with common pathways of the ubiquitin proteasome system, endosomal reticulum transport, and response to unfolded protein pathways being upregulated and cell-cell adhesion and oxidation-reduction pathways being downregulated. Collectively, these two models suggest that diacetyl inhalation exposure causes abundant protein damage and subsequent ubiquitin proteasome stress prior to the development of chemical-induced BO pathology.
Collapse
Affiliation(s)
- Juan Wang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - So-Young Kim
- Division of Pulmonology, Department of Pediatrics, University of Rochester Medical Center, 601 Elmwood Avenue, Box 667, Rochester, NY, 14642, USA
| | - Emma House
- Division of Pulmonology, Department of Pediatrics, University of Rochester Medical Center, 601 Elmwood Avenue, Box 667, Rochester, NY, 14642, USA.,Department of Pathology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Heather M Olson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Carl J Johnston
- Division of Pulmonology, Department of Pediatrics, University of Rochester Medical Center, 601 Elmwood Avenue, Box 667, Rochester, NY, 14642, USA.,Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - David Chalupa
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Eric Hernady
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Thomas J Mariani
- Division of Neonatology, Department of Pediatric Pulmonology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Gérémy Clair
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Charles Ansong
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Jacob N Finkelstein
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA.,Division of Neonatology, Department of Pediatric Pulmonology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Matthew D McGraw
- Division of Pulmonology, Department of Pediatrics, University of Rochester Medical Center, 601 Elmwood Avenue, Box 667, Rochester, NY, 14642, USA. .,Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
11
|
Mann M, Brasier AR. Evolution of proteomics technologies for understanding respiratory syncytial virus pathogenesis. Expert Rev Proteomics 2021; 18:379-394. [PMID: 34018899 PMCID: PMC8277732 DOI: 10.1080/14789450.2021.1931130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/14/2021] [Indexed: 10/21/2022]
Abstract
Introduction: Respiratory syncytial virus (RSV) is a major human pathogen associated with long term morbidity. RSV replication occurs primarily in the epithelium, producing a complex cellular response associated with acute inflammation and long-lived changes in pulmonary function and allergic disease. Proteomics approaches provide important insights into post-transcriptional regulatory processes including alterations in cellular complexes regulating the coordinated innate response and epigenome.Areas covered: Peer-reviewed proteomics studies of host responses to RSV infections and proteomics techniques were analyzed. Methodologies identified include 1)." bottom-up" discovery proteomics, 2). Organellar proteomics by LC-gel fractionation; 3). Dynamic changes in protein interaction networks by LC-MS; and 4). selective reaction monitoring MS. We introduce recent developments in single-cell proteomics, top-down mass spectrometry, and photo-cleavable surfactant chemistries that will have impact on understanding how RSV induces extracellular matrix (ECM) composition and airway remodeling.Expert opinion: RSV replication induces global changes in the cellular proteome, dynamic shifts in nuclear proteins, and remodeling of epigenetic regulatory complexes linked to the innate response. Pathways discovered by proteomics technologies have led to deeper mechanistic understanding of the roles of heat shock proteins, redox response, transcriptional elongation complex remodeling and ECM secretion remodeling in host responses to RSV infections and pathological sequelae.
Collapse
Affiliation(s)
- Morgan Mann
- Department of Internal Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, USA
| | - Allan R Brasier
- Department of Internal Medicine and Institute for Clinical and Translational Research (ICTR), University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
12
|
Walejko JM, Christopher BA, Crown SB, Zhang GF, Pickar-Oliver A, Yoneshiro T, Foster MW, Page S, van Vliet S, Ilkayeva O, Muehlbauer MJ, Carson MW, Brozinick JT, Hammond CD, Gimeno RE, Moseley MA, Kajimura S, Gersbach CA, Newgard CB, White PJ, McGarrah RW. Branched-chain α-ketoacids are preferentially reaminated and activate protein synthesis in the heart. Nat Commun 2021; 12:1680. [PMID: 33723250 PMCID: PMC7960706 DOI: 10.1038/s41467-021-21962-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 02/18/2021] [Indexed: 12/20/2022] Open
Abstract
Branched-chain amino acids (BCAA) and their cognate α-ketoacids (BCKA) are elevated in an array of cardiometabolic diseases. Here we demonstrate that the major metabolic fate of uniformly-13C-labeled α-ketoisovalerate ([U-13C]KIV) in the heart is reamination to valine. Activation of cardiac branched-chain α-ketoacid dehydrogenase (BCKDH) by treatment with the BCKDH kinase inhibitor, BT2, does not impede the strong flux of [U-13C]KIV to valine. Sequestration of BCAA and BCKA away from mitochondrial oxidation is likely due to low levels of expression of the mitochondrial BCAA transporter SLC25A44 in the heart, as its overexpression significantly lowers accumulation of [13C]-labeled valine from [U-13C]KIV. Finally, exposure of perfused hearts to levels of BCKA found in obese rats increases phosphorylation of the translational repressor 4E-BP1 as well as multiple proteins in the MEK-ERK pathway, leading to a doubling of total protein synthesis. These data suggest that elevated BCKA levels found in obesity may contribute to pathologic cardiac hypertrophy via chronic activation of protein synthesis. Systemic modulation of branched-chain keto acid (BCKA) metabolism alters cardiac health. Here, the authors define the major fates of BCKA in the heart and demonstrate that acute exposure to BCKA levels found in obesity activates cardiac protein synthesis and markedly alters the heart phosphoproteome.
Collapse
Affiliation(s)
- Jacquelyn M Walejko
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Bridgette A Christopher
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA.,Department of Medicine, Division of Cardiology, Duke University School of Medicine, Durham, NC, USA
| | - Scott B Crown
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Guo-Fang Zhang
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA.,Department of Medicine, Division of Endocrinology, Metabolism and Nutrition, Duke University School of Medicine, Durham, NC, USA.,Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC, USA
| | - Adrian Pickar-Oliver
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.,Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | | | - Matthew W Foster
- Duke Proteomics and Metabolomics Shared Resource, Duke University School of Medicine, Durham, NC, USA
| | - Stephani Page
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Stephan van Vliet
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Olga Ilkayeva
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA.,Department of Medicine, Division of Endocrinology, Metabolism and Nutrition, Duke University School of Medicine, Durham, NC, USA.,Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC, USA
| | - Michael J Muehlbauer
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA.,Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC, USA
| | | | | | | | | | - M Arthur Moseley
- Duke Proteomics and Metabolomics Shared Resource, Duke University School of Medicine, Durham, NC, USA
| | | | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.,Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA.,Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Christopher B Newgard
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA.,Department of Medicine, Division of Endocrinology, Metabolism and Nutrition, Duke University School of Medicine, Durham, NC, USA.,Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC, USA.,Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Phillip J White
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA. .,Department of Medicine, Division of Endocrinology, Metabolism and Nutrition, Duke University School of Medicine, Durham, NC, USA. .,Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC, USA. .,Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA.
| | - Robert W McGarrah
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA. .,Department of Medicine, Division of Cardiology, Duke University School of Medicine, Durham, NC, USA. .,Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
13
|
Cao X, Coyle JP, Xiong R, Wang Y, Heflich RH, Ren B, Gwinn WM, Hayden P, Rojanasakul L. Invited review: human air-liquid-interface organotypic airway tissue models derived from primary tracheobronchial epithelial cells-overview and perspectives. In Vitro Cell Dev Biol Anim 2020; 57:104-132. [PMID: 33175307 PMCID: PMC7657088 DOI: 10.1007/s11626-020-00517-7] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023]
Abstract
The lung is an organ that is directly exposed to the external environment. Given the large surface area and extensive ventilation of the lung, it is prone to exposure to airborne substances, such as pathogens, allergens, chemicals, and particulate matter. Highly elaborate and effective mechanisms have evolved to protect and maintain homeostasis in the lung. Despite these sophisticated defense mechanisms, the respiratory system remains highly susceptible to environmental challenges. Because of the impact of respiratory exposure on human health and disease, there has been considerable interest in developing reliable and predictive in vitro model systems for respiratory toxicology and basic research. Human air-liquid-interface (ALI) organotypic airway tissue models derived from primary tracheobronchial epithelial cells have in vivo–like structure and functions when they are fully differentiated. The presence of the air-facing surface allows conducting in vitro exposures that mimic human respiratory exposures. Exposures can be conducted using particulates, aerosols, gases, vapors generated from volatile and semi-volatile substances, and respiratory pathogens. Toxicity data have been generated using nanomaterials, cigarette smoke, e-cigarette vapors, environmental airborne chemicals, drugs given by inhalation, and respiratory viruses and bacteria. Although toxicity evaluations using human airway ALI models require further standardization and validation, this approach shows promise in supplementing or replacing in vivo animal models for conducting research on respiratory toxicants and pathogens.
Collapse
Affiliation(s)
- Xuefei Cao
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd., AR, Jefferson, USA.
| | - Jayme P Coyle
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - Rui Xiong
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd., AR, Jefferson, USA
| | - Yiying Wang
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd., AR, Jefferson, USA
| | - Robert H Heflich
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd., AR, Jefferson, USA
| | - Baiping Ren
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd., AR, Jefferson, USA
| | - William M Gwinn
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Durham, NC, USA
| | | | - Liying Rojanasakul
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| |
Collapse
|
14
|
Aguiar JA, Tremblay BJM, Mansfield MJ, Woody O, Lobb B, Banerjee A, Chandiramohan A, Tiessen N, Cao Q, Dvorkin-Gheva A, Revill S, Miller MS, Carlsten C, Organ L, Joseph C, John A, Hanson P, Austin RC, McManus BM, Jenkins G, Mossman K, Ask K, Doxey AC, Hirota JA. Gene expression and in situ protein profiling of candidate SARS-CoV-2 receptors in human airway epithelial cells and lung tissue. Eur Respir J 2020; 56:2001123. [PMID: 32675206 PMCID: PMC7366180 DOI: 10.1183/13993003.01123-2020] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/01/2020] [Indexed: 12/21/2022]
Abstract
In December 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged, causing the coronavirus disease 2019 (COVID-19) pandemic. SARS-CoV, the agent responsible for the 2003 SARS outbreak, utilises angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) host molecules for viral entry. ACE2 and TMPRSS2 have recently been implicated in SARS-CoV-2 viral infection. Additional host molecules including ADAM17, cathepsin L, CD147 and GRP78 may also function as receptors for SARS-CoV-2.To determine the expression and in situ localisation of candidate SARS-CoV-2 receptors in the respiratory mucosa, we analysed gene expression datasets from airway epithelial cells of 515 healthy subjects, gene promoter activity analysis using the FANTOM5 dataset containing 120 distinct sample types, single cell RNA sequencing (scRNAseq) of 10 healthy subjects, proteomic datasets, immunoblots on multiple airway epithelial cell types, and immunohistochemistry on 98 human lung samples.We demonstrate absent to low ACE2 promoter activity in a variety of lung epithelial cell samples and low ACE2 gene expression in both microarray and scRNAseq datasets of epithelial cell populations. Consistent with gene expression, rare ACE2 protein expression was observed in the airway epithelium and alveoli of human lung, confirmed with proteomics. We present confirmatory evidence for the presence of TMPRSS2, CD147 and GRP78 protein in vitro in airway epithelial cells and confirm broad in situ protein expression of CD147 and GRP78 in the respiratory mucosa.Collectively, our data suggest the presence of a mechanism dynamically regulating ACE2 expression in human lung, perhaps in periods of SARS-CoV-2 infection, and also suggest that alternative receptors for SARS-CoV-2 exist to facilitate initial host cell infection.
Collapse
Affiliation(s)
| | | | - Michael J Mansfield
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| | - Owen Woody
- Faculty of Mathematics, University of Waterloo, Waterloo, ON, Canada
| | - Briallen Lobb
- Dept of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Arinjay Banerjee
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Abiram Chandiramohan
- Firestone Institute for Respiratory Health - Division of Respirology, Dept of Medicine, McMaster University, Hamilton, ON, Canada
| | - Nicholas Tiessen
- Firestone Institute for Respiratory Health - Division of Respirology, Dept of Medicine, McMaster University, Hamilton, ON, Canada
| | - Quynh Cao
- Firestone Institute for Respiratory Health - Division of Respirology, Dept of Medicine, McMaster University, Hamilton, ON, Canada
| | - Anna Dvorkin-Gheva
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Spencer Revill
- Firestone Institute for Respiratory Health - Division of Respirology, Dept of Medicine, McMaster University, Hamilton, ON, Canada
| | - Matthew S Miller
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
- Dept of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Christopher Carlsten
- Division of Respiratory Medicine, Dept of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Louise Organ
- Nottingham NIHR Biomedical Research Centre, Respiratory Research Unit, University of Nottingham, Nottingham, UK
| | - Chitra Joseph
- Nottingham NIHR Biomedical Research Centre, Respiratory Research Unit, University of Nottingham, Nottingham, UK
| | - Alison John
- Nottingham NIHR Biomedical Research Centre, Respiratory Research Unit, University of Nottingham, Nottingham, UK
| | - Paul Hanson
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC, Canada
| | - Richard C Austin
- Division of Nephrology, Dept of Medicine, McMaster University, Hamilton, ON, Canada
| | - Bruce M McManus
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC, Canada
| | - Gisli Jenkins
- Nottingham NIHR Biomedical Research Centre, Respiratory Research Unit, University of Nottingham, Nottingham, UK
| | - Karen Mossman
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Kjetil Ask
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Firestone Institute for Respiratory Health - Division of Respirology, Dept of Medicine, McMaster University, Hamilton, ON, Canada
| | - Andrew C Doxey
- Dept of Biology, University of Waterloo, Waterloo, ON, Canada
- Firestone Institute for Respiratory Health - Division of Respirology, Dept of Medicine, McMaster University, Hamilton, ON, Canada
- A.C. Doxey and J.A. Hirota contributed equally to this article as lead authors and supervised the work
| | - Jeremy A Hirota
- Dept of Biology, University of Waterloo, Waterloo, ON, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Firestone Institute for Respiratory Health - Division of Respirology, Dept of Medicine, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
- A.C. Doxey and J.A. Hirota contributed equally to this article as lead authors and supervised the work
| |
Collapse
|
15
|
Aguiar JA, Tremblay BJM, Mansfield MJ, Woody O, Lobb B, Banerjee A, Chandiramohan A, Tiessen N, Cao Q, Dvorkin-Gheva A, Revill S, Miller MS, Carlsten C, Organ L, Joseph C, John A, Hanson P, Austin RC, McManus BM, Jenkins G, Mossman K, Ask K, Doxey AC, Hirota JA. Gene expression and in situ protein profiling of candidate SARS-CoV-2 receptors in human airway epithelial cells and lung tissue. Eur Respir J 2020; 56. [PMID: 32675206 DOI: 10.1101/2020.04.07.030742] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/01/2020] [Indexed: 05/19/2023]
Abstract
In December 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged, causing the coronavirus disease 2019 (COVID-19) pandemic. SARS-CoV, the agent responsible for the 2003 SARS outbreak, utilises angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) host molecules for viral entry. ACE2 and TMPRSS2 have recently been implicated in SARS-CoV-2 viral infection. Additional host molecules including ADAM17, cathepsin L, CD147 and GRP78 may also function as receptors for SARS-CoV-2.To determine the expression and in situ localisation of candidate SARS-CoV-2 receptors in the respiratory mucosa, we analysed gene expression datasets from airway epithelial cells of 515 healthy subjects, gene promoter activity analysis using the FANTOM5 dataset containing 120 distinct sample types, single cell RNA sequencing (scRNAseq) of 10 healthy subjects, proteomic datasets, immunoblots on multiple airway epithelial cell types, and immunohistochemistry on 98 human lung samples.We demonstrate absent to low ACE2 promoter activity in a variety of lung epithelial cell samples and low ACE2 gene expression in both microarray and scRNAseq datasets of epithelial cell populations. Consistent with gene expression, rare ACE2 protein expression was observed in the airway epithelium and alveoli of human lung, confirmed with proteomics. We present confirmatory evidence for the presence of TMPRSS2, CD147 and GRP78 protein in vitro in airway epithelial cells and confirm broad in situ protein expression of CD147 and GRP78 in the respiratory mucosa.Collectively, our data suggest the presence of a mechanism dynamically regulating ACE2 expression in human lung, perhaps in periods of SARS-CoV-2 infection, and also suggest that alternative receptors for SARS-CoV-2 exist to facilitate initial host cell infection.
Collapse
Affiliation(s)
| | | | - Michael J Mansfield
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| | - Owen Woody
- Faculty of Mathematics, University of Waterloo, Waterloo, ON, Canada
| | - Briallen Lobb
- Dept of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Arinjay Banerjee
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Abiram Chandiramohan
- Firestone Institute for Respiratory Health - Division of Respirology, Dept of Medicine, McMaster University, Hamilton, ON, Canada
| | - Nicholas Tiessen
- Firestone Institute for Respiratory Health - Division of Respirology, Dept of Medicine, McMaster University, Hamilton, ON, Canada
| | - Quynh Cao
- Firestone Institute for Respiratory Health - Division of Respirology, Dept of Medicine, McMaster University, Hamilton, ON, Canada
| | - Anna Dvorkin-Gheva
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Spencer Revill
- Firestone Institute for Respiratory Health - Division of Respirology, Dept of Medicine, McMaster University, Hamilton, ON, Canada
| | - Matthew S Miller
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
- Dept of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Christopher Carlsten
- Division of Respiratory Medicine, Dept of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Louise Organ
- Nottingham NIHR Biomedical Research Centre, Respiratory Research Unit, University of Nottingham, Nottingham, UK
| | - Chitra Joseph
- Nottingham NIHR Biomedical Research Centre, Respiratory Research Unit, University of Nottingham, Nottingham, UK
| | - Alison John
- Nottingham NIHR Biomedical Research Centre, Respiratory Research Unit, University of Nottingham, Nottingham, UK
| | - Paul Hanson
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC, Canada
| | - Richard C Austin
- Division of Nephrology, Dept of Medicine, McMaster University, Hamilton, ON, Canada
| | - Bruce M McManus
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC, Canada
| | - Gisli Jenkins
- Nottingham NIHR Biomedical Research Centre, Respiratory Research Unit, University of Nottingham, Nottingham, UK
| | - Karen Mossman
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Kjetil Ask
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Firestone Institute for Respiratory Health - Division of Respirology, Dept of Medicine, McMaster University, Hamilton, ON, Canada
| | - Andrew C Doxey
- Dept of Biology, University of Waterloo, Waterloo, ON, Canada
- Firestone Institute for Respiratory Health - Division of Respirology, Dept of Medicine, McMaster University, Hamilton, ON, Canada
- A.C. Doxey and J.A. Hirota contributed equally to this article as lead authors and supervised the work
| | - Jeremy A Hirota
- Dept of Biology, University of Waterloo, Waterloo, ON, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Firestone Institute for Respiratory Health - Division of Respirology, Dept of Medicine, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
- A.C. Doxey and J.A. Hirota contributed equally to this article as lead authors and supervised the work
| |
Collapse
|
16
|
McGraw MD, Kim SY, Reed C, Hernady E, Rahman I, Mariani TJ, Finkelstein JN. Airway basal cell injury after acute diacetyl (2,3-butanedione) vapor exposure. Toxicol Lett 2020; 325:25-33. [PMID: 32112875 DOI: 10.1016/j.toxlet.2020.02.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/15/2020] [Accepted: 02/25/2020] [Indexed: 01/22/2023]
Abstract
RATIONALE Diacetyl (DA; 2,3-butanedione) is a chemical found commonly in foods and e-cigarettes. When inhaled, DA causes epithelial injury, though the mechanism of repair remain poorly understood. The objective of this study was to evaluate airway basal cell repair after DA vapor exposure. METHODS Primary human bronchial epithelial cells were exposed to DA or PBS for 1 h. Lactate dehydrogenase, cleaved caspase 3/7 and trans-epithelial electrical resistance were measured prior to and following exposure. Exposed cultures were analyzed for the airway basal cell markers keratin 5 and p63 as well as ubiquitin and proteasome activity. Cultures were also treated with a proteasome inhibitor (MG132). RESULTS DA vapor exposure caused a transient decrease in trans-epithelial electrical resistance in all DA-exposed cultures. Supernatant lactate dehydrogenase and cleaved caspase 3/7 increased significantly at the highest DA concentration but not at lower DA concentrations. Increased keratin 5 ubiquitination occurred after DA exposure but resolved by day 3. Damage to airway basal cells persisted at day 3 in the presence of MG132. CONCLUSIONS Diacetyl exposure results in airway basal cell injury with keratin 5 ubiquitination and decreased p63 expression. The ubiquitin-proteasome-pathway partially mediates airway basal cell repair after acute DA exposure.
Collapse
Affiliation(s)
- Matthew D McGraw
- Department of Pediatrics, Division of Pulmonology, Rochester, NY, United States; Department of Environmental Medicine, Rochester, NY, United States.
| | - So-Young Kim
- Department of Pediatrics, Division of Pulmonology, Rochester, NY, United States
| | - Christina Reed
- Department of Environmental Medicine, Rochester, NY, United States; Department of Pediatrics, Division of Neonatology, Rochester, NY, United States
| | - Eric Hernady
- Department of Environmental Medicine, Rochester, NY, United States
| | - Irfan Rahman
- Department of Environmental Medicine, Rochester, NY, United States
| | - Thomas J Mariani
- Department of Pediatrics, Division of Pulmonology, Rochester, NY, United States; Department of Pediatrics, Division of Neonatology, Rochester, NY, United States; Department of Pediatrics, Program in Pediatric Molecular and Personalized Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Jacob N Finkelstein
- Department of Environmental Medicine, Rochester, NY, United States; Department of Pediatrics, Division of Neonatology, Rochester, NY, United States
| |
Collapse
|
17
|
Glisinski KM, Schlobohm AJ, Paramore SV, Birukova A, Moseley MA, Foster MW, Barkauskas CE. Interleukin-13 disrupts type 2 pneumocyte stem cell activity. JCI Insight 2020; 5:131232. [PMID: 31941839 DOI: 10.1172/jci.insight.131232] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 12/04/2019] [Indexed: 12/28/2022] Open
Abstract
The T helper 2 (Th2) inflammatory cytokine interleukin-13 (IL-13) has been associated with both obstructive and fibrotic lung diseases; however, its specific effect on the epithelial stem cells in the gas exchange compartment of the lung (alveolar space) has not been explored. Here, we used in vivo lung models of homeostasis and repair, ex vivo organoid platforms, and potentially novel quantitative proteomic techniques to show that IL-13 disrupts the self-renewal and differentiation of both murine and human type 2 alveolar epithelial cells (AEC2s). Significantly, we find that IL-13 promotes ectopic expression of markers typically associated with bronchiolar airway cells and commonly seen in the alveolar region of lung tissue from patients with idiopathic pulmonary fibrosis. Furthermore, we identify a number of proteins that are differentially secreted by AEC2s in response to IL-13 and may provide biomarkers to identify subsets of patients with pulmonary disease driven by "Th2-high" biology.
Collapse
Affiliation(s)
- Kristen M Glisinski
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, and
| | - Adam J Schlobohm
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, and
| | - Sarah V Paramore
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, and
| | - Anastasiya Birukova
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, and
| | - M Arthur Moseley
- Duke Proteomics and Metabolomics Shared Resource, Duke University Medical Center, Durham, North Carolina, USA
| | - Matthew W Foster
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, and.,Duke Proteomics and Metabolomics Shared Resource, Duke University Medical Center, Durham, North Carolina, USA
| | | |
Collapse
|
18
|
Li H, Kittur FS, Hung CY, Li PA, Ge X, Sane DC, Xie J. Quantitative Proteomics Reveals the Beneficial Effects of Low Glucose on Neuronal Cell Survival in an in vitro Ischemic Penumbral Model. Front Cell Neurosci 2020; 14:272. [PMID: 33033473 PMCID: PMC7491318 DOI: 10.3389/fncel.2020.00272] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/31/2020] [Indexed: 01/04/2023] Open
Abstract
Understanding proteomic changes in the ischemic penumbra are crucial to rescue those salvageable cells and reduce the damage of an ischemic stroke. Since the penumbra region is dynamic with heterogeneous cells/tissues, tissue sampling from animal models of stroke for the molecular study is a challenge. In this study, cultured hippocampal HT22 cells under hypoxia treatment for 17.5 h with 0.69 mM low glucose (H+LG) could mimic ischemic penumbral cells since they had much higher cell viability and viable cell number compared to hypoxia without glucose (H-G) treatment. To validate established cell-based ischemic penumbral model and understand the beneficial effects of low glucose (LG), quantitative proteomics analysis was performed on H+LG, H-G, and normoxia with normal 22 mM glucose (N+G) treated cells. We identified 427 differentially abundant proteins (DAPs) between H-G and N+G and further identified 105 DAPs between H+LG and H-G. Analysis of 105 DAPs revealed that LG promotes cell survival by activating HIF1α to enhance glycolysis; preventing the dysregulations of extracellular matrix remodeling, cell cycle and division, and antioxidant and detoxification; as well as attenuating inflammatory reaction response, protein synthesis and neurotransmission activity. Our results demonstrated that this established cell-based system could mimic penumbral conditions and can be used for molecular studies.
Collapse
Affiliation(s)
- Hua Li
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, United States
| | - Farooqahmed S Kittur
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, United States
| | - Chiu-Yueh Hung
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, United States
| | - P Andy Li
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, United States
| | - Xinghong Ge
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, United States.,Department of Dermatology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - David C Sane
- Carilion Clinic, Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| | - Jiahua Xie
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, United States
| |
Collapse
|
19
|
Gibbs KD, Washington EJ, Jaslow SL, Bourgeois JS, Foster MW, Guo R, Brennan RG, Ko DC. The Salmonella Secreted Effector SarA/SteE Mimics Cytokine Receptor Signaling to Activate STAT3. Cell Host Microbe 2019; 27:129-139.e4. [PMID: 31901521 DOI: 10.1016/j.chom.2019.11.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/05/2019] [Accepted: 11/21/2019] [Indexed: 01/18/2023]
Abstract
Bacteria masterfully co-opt and subvert host signal transduction. As a paradigmatic example, Salmonella uses two type-3 secretion systems to inject effector proteins that facilitate Salmonella entry, establishment of an intracellular niche, and modulation of immune responses. We previously demonstrated that the Salmonella anti-inflammatory response activator SarA (Stm2585, GogC, PagJ, SteE) activates the host transcription factor STAT3 to drive expression of immunomodulatory STAT3-targets. Here, we demonstrate-by sequence, function, and biochemical measurement-that SarA mimics the cytoplasmic domain of glycoprotein 130 (gp130, IL6ST). SarA is phosphorylated at a YxxQ motif, facilitating binding to STAT3 with greater affinity than gp130. Departing from canonical gp130 signaling, SarA function is JAK-independent but requires GSK-3, a key regulator of metabolism and development. Our results reveal that SarA undergoes host phosphorylation to recruit a STAT3-activating complex, circumventing cytokine receptor activation. Effector mimicry of gp130 suggests GSK-3 can regulate normal cytokine signaling, potentially enabling metabolic and immune crosstalk.
Collapse
Affiliation(s)
- Kyle D Gibbs
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Erica J Washington
- Department of Biochemistry, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Sarah L Jaslow
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Jeffrey S Bourgeois
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC 27710, USA; Duke University Program in Genetics and Genomics, Duke University, Durham, NC 27710, USA
| | - Matthew W Foster
- Duke Proteomics and Metabolomics Shared Resource, Duke University Medical Center, Durham, NC 27710, USA
| | - Robyn Guo
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Richard G Brennan
- Department of Biochemistry, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Dennis C Ko
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC 27710, USA; Duke University Program in Genetics and Genomics, Duke University, Durham, NC 27710, USA; Division of Infectious Diseases, Department of Medicine, School of Medicine, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
20
|
Yang Z, Bochkov YA, Voelker DR, Foster MW, Que LG. Identification of a Novel Inhibitor of Human Rhinovirus Replication and Inflammation in Airway Epithelial Cells. Am J Respir Cell Mol Biol 2019; 60:58-67. [PMID: 30156431 DOI: 10.1165/rcmb.2018-0058oc] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Human rhinovirus (RV), the major cause of the common cold, triggers the majority of acute airway exacerbations in patients with asthma and chronic obstructive pulmonary disease. Nitric oxide, and the related metabolite S-nitrosoglutathione, are produced in the airway epithelium via nitric oxide synthase (NOS) 2 and have been shown to function in host defense against RV infection. We hypothesized that inhibitors of the S-nitrosoglutathione-metabolizing enzyme, S-nitrosoglutathione reductase (GSNOR), might potentiate the antiviral properties of airway-derived NOS2. Using in vitro models of RV-A serotype 16 (RV-A16) and mNeonGreen-H1N1pr8 infection of human airway epithelial cells, we found that treatment with a previously characterized GSNOR inhibitor (4-[[2-[[(3-cyanophenyl)methyl]thio]-4-oxothieno-[3,2-d]pyrimidin-3(4H)-yl]methyl]-benzoic acid; referred to as C3m) decreased RV-A16 replication and expression of downstream proinflammatory and antiviral mediators (e.g., RANTES [regulated upon activation, normal T cell expressed and secreted], CXCL10, and Mx1), and increased Nrf2 (nuclear factor erythroid 2-related factor 2)-dependent genes (e.g., SQSTM1 and TrxR1). In contrast, C3m had no effect on influenza virus H1N1pr8 replication. Moreover, a structurally dissimilar GSNOR inhibitor (N6022) did not alter RV replication, suggesting that the properties of C3m may be specific to rhinovirus owing to an off-target effect. Consistent with this, C3m antiviral effects were not blocked by either NOS inhibition or GSNOR knockdown but appeared to be mediated by reduced intercellular adhesion molecule 1 transcription and increased shedding of soluble intercellular adhesion molecule 1 protein. Collectively these data show that C3m has novel antirhinoviral properties that may synergize with, but are unrelated to, its GSNOR inhibitor activity.
Collapse
Affiliation(s)
- Zhonghui Yang
- 1 Department of Medicine, Duke University Health System, Durham, North Carolina
| | - Yury A Bochkov
- 2 Department of Pediatrics, University of Wisconsin, Madison, Madison, Wisconsin; and
| | - Dennis R Voelker
- 3 Department of Medicine, National Jewish Health, Denver, Colorado
| | - Matthew W Foster
- 1 Department of Medicine, Duke University Health System, Durham, North Carolina
| | - Loretta G Que
- 1 Department of Medicine, Duke University Health System, Durham, North Carolina
| |
Collapse
|
21
|
Hubbs AF, Kreiss K, Cummings KJ, Fluharty KL, O'Connell R, Cole A, Dodd TM, Clingerman SM, Flesher JR, Lee R, Pagel S, Battelli LA, Cumpston A, Jackson M, Kashon M, Orandle MS, Fedan JS, Sriram K. Flavorings-Related Lung Disease: A Brief Review and New Mechanistic Data. Toxicol Pathol 2019; 47:1012-1026. [PMID: 31645208 DOI: 10.1177/0192623319879906] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Flavorings-related lung disease is a potentially disabling and sometimes fatal lung disease of workers making or using flavorings. First identified almost 20 years ago in microwave popcorn workers exposed to butter-flavoring vapors, flavorings-related lung disease remains a concern today. In some cases, workers develop bronchiolitis obliterans, a severe form of fixed airways disease. Affected workers have been reported in microwave popcorn, flavorings, and coffee production workplaces. Volatile α-dicarbonyl compounds, particularly diacetyl (2,3-butanedione) and 2,3-pentanedione, are implicated in the etiology. Published studies on diacetyl and 2,3-pentanedione document their ability to cause airway epithelial necrosis, damage biological molecules, and perturb protein homeostasis. With chronic exposure in rats, they produce airway fibrosis resembling bronchiolitis obliterans. To add to this knowledge, we recently evaluated airway toxicity of the 3-carbon α-dicarbonyl compound, methylglyoxal. Methylglyoxal inhalation causes epithelial necrosis at even lower concentrations than diacetyl. In addition, we investigated airway toxicity of mixtures of diacetyl, acetoin, and acetic acid, common volatiles in butter flavoring. At ratios comparable to workplace scenarios, the mixtures or diacetyl alone, but not acetic acid or acetoin, cause airway epithelial necrosis. These new findings add to existing data to implicate α-dicarbonyl compounds in airway injury and flavorings-related lung disease.
Collapse
Affiliation(s)
- Ann F Hubbs
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - Kathleen Kreiss
- Respiratory Health Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - Kristin J Cummings
- Respiratory Health Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - Kara L Fluharty
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - Ryan O'Connell
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA.,West Virginia University, Morgantown, WV, USA. Cummings is now with California Department of Public Health, Richmond, CA, USA. O'Connell is now with Department of Biochemistry, West Virginia, University, Morgantown, WV, USA. Flesher is now with Department of Biology, West Virginia University, Morgantown, WV, USA. Cole is now with Department of Pediatrics-Hematology/Oncology, University of Colorado School of Medicine, Aurora, CO, USA. Kreiss (retired) is in Sitka, AK, USA
| | - Allison Cole
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA.,Respiratory Health Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - Tiana M Dodd
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - Sidney M Clingerman
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA.,West Virginia University, Morgantown, WV, USA. Cummings is now with California Department of Public Health, Richmond, CA, USA. O'Connell is now with Department of Biochemistry, West Virginia, University, Morgantown, WV, USA. Flesher is now with Department of Biology, West Virginia University, Morgantown, WV, USA. Cole is now with Department of Pediatrics-Hematology/Oncology, University of Colorado School of Medicine, Aurora, CO, USA. Kreiss (retired) is in Sitka, AK, USA
| | - Jordan R Flesher
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA.,West Virginia University, Morgantown, WV, USA. Cummings is now with California Department of Public Health, Richmond, CA, USA. O'Connell is now with Department of Biochemistry, West Virginia, University, Morgantown, WV, USA. Flesher is now with Department of Biology, West Virginia University, Morgantown, WV, USA. Cole is now with Department of Pediatrics-Hematology/Oncology, University of Colorado School of Medicine, Aurora, CO, USA. Kreiss (retired) is in Sitka, AK, USA
| | - Rebecca Lee
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA.,West Virginia University, Morgantown, WV, USA. Cummings is now with California Department of Public Health, Richmond, CA, USA. O'Connell is now with Department of Biochemistry, West Virginia, University, Morgantown, WV, USA. Flesher is now with Department of Biology, West Virginia University, Morgantown, WV, USA. Cole is now with Department of Pediatrics-Hematology/Oncology, University of Colorado School of Medicine, Aurora, CO, USA. Kreiss (retired) is in Sitka, AK, USA
| | - Samantha Pagel
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA.,West Virginia University, Morgantown, WV, USA. Cummings is now with California Department of Public Health, Richmond, CA, USA. O'Connell is now with Department of Biochemistry, West Virginia, University, Morgantown, WV, USA. Flesher is now with Department of Biology, West Virginia University, Morgantown, WV, USA. Cole is now with Department of Pediatrics-Hematology/Oncology, University of Colorado School of Medicine, Aurora, CO, USA. Kreiss (retired) is in Sitka, AK, USA
| | - Lori A Battelli
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - Amy Cumpston
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - Mark Jackson
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - Michael Kashon
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - Marlene S Orandle
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - Jeffrey S Fedan
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - Krishnan Sriram
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| |
Collapse
|
22
|
Thimraj TA, Sompa SI, Ganguly K, Ernstgård L, Johanson G, Palmberg L, Upadhyay S. Evaluation of diacetyl mediated pulmonary effects in physiologically relevant air-liquid interface models of human primary bronchial epithelial cells. Toxicol In Vitro 2019; 61:104617. [PMID: 31381966 DOI: 10.1016/j.tiv.2019.104617] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 07/03/2019] [Accepted: 08/01/2019] [Indexed: 12/17/2022]
Abstract
Diacetyl is an artificial flavouring agent, known to cause bronchiolitis obliterans. Diacetyl-induced pulmonary effects were assessed in human primary bronchial epithelial cells (PBEC) cultured at air-liquid interface (ALI). The PBEC-ALI models were exposed to clean air (sham) and diacetyl vapour (1, 3, 10 and 30 ppm) for 30 min. At 6 and 24 h post-exposure, cell medium was sampled for assessment of cytotoxicity measurement, and CXCL8, MMP9 secretion by ELISA. Pro-inflammatory, oxidative stress, tissue injury/repair, anti-protease and beta-defensin markers were assessed using qRT-PCR. Additionally, epidermal growth factor receptor ligands (amphiregulin) and anti-protease (SLPI) were analysed at 6 h, 8 h and 24 h post exposure to 1 and 10 ppm diacetyl. No significant cytotoxicity was observed at any exposure level. MMP9 was significantly increased in both apical and basal media at 24 h. Both SLPI and amphiregulin secretion were significantly increased following exposure to 10 ppm diacetyl. Exposure of PBEC-ALI model to diacetyl vapour resulted in significantly altered transcript expression of pro-inflammatory, oxidative stress, anti-protease, tissue injury/repair markers. Changes in transcript expression of significantly altered markers were more prominent 24 h post-exposure compared to 6 h. This study warrants further mechanistic investigations to elucidate the pulmonary effects of inhaled diacetyl vapour using physiologically relevant in vitro models.
Collapse
Affiliation(s)
- Tania A Thimraj
- Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Shanzina I Sompa
- Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Koustav Ganguly
- Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Lena Ernstgård
- Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Gunnar Johanson
- Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Lena Palmberg
- Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Swapna Upadhyay
- Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
23
|
Kelleher ZT, Wang C, Forrester MT, Foster MW, Marshall HE. ERK-dependent proteasome degradation of Txnip regulates thioredoxin oxidoreductase activity. J Biol Chem 2019; 294:13336-13343. [PMID: 31320475 DOI: 10.1074/jbc.ra119.007733] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 06/26/2019] [Indexed: 12/14/2022] Open
Abstract
Dynamic control of thioredoxin (Trx) oxidoreductase activity is essential for balancing the need of cells to rapidly respond to oxidative/nitrosative stress and to temporally regulate thiol-based redox signaling. We have previously shown that cytokine stimulation of the respiratory epithelium induces a precipitous decline in cell S-nitrosothiol, which depends upon enhanced Trx activity and proteasome-mediated degradation of Txnip (thioredoxin-interacting protein). We now show that tumor necrosis factor-α-induced Txnip degradation in A549 respiratory epithelial cells is regulated by the extracellular signal-regulated protein kinase (ERK) mitogen-activated protein kinase pathway and that ERK inhibition augments both intracellular reactive oxygen species and S-nitrosothiol. ERK-dependent Txnip ubiquitination and proteasome degradation depended upon phosphorylation of a PXTP motif threonine (Thr349) located within the C-terminal α-arrestin domain and proximal to a previously characterized E3 ubiquitin ligase-binding site. Collectively, these findings demonstrate the ERK mitogen-activated protein kinase pathway to be integrally involved in regulating Trx oxidoreductase activity and that the regulation of Txnip lifetime via ERK-dependent phosphorylation is an important mediator of this effect.
Collapse
Affiliation(s)
- Zachary T Kelleher
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, Durham, North Carolina 27710
| | - Chunbo Wang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, Durham, North Carolina 27710
| | - Michael T Forrester
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Matthew W Foster
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, Durham, North Carolina 27710; Division of Proteomics and Metabolomics Shared Resource, Duke University Medical Center, Durham, North Carolina 27710
| | - Harvey E Marshall
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, Durham, North Carolina 27710.
| |
Collapse
|
24
|
Gwinn WM, Flake GP, Bousquet RW, Taylor GJ, Morgan DL. Airway injury in an in vitro human epithelium-fibroblast model of diacetyl vapor exposure: diacetyl-induced basal/suprabasal spongiosis. Inhal Toxicol 2018; 29:310-321. [PMID: 28984536 DOI: 10.1080/08958378.2017.1369604] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Inhalation exposure to diacetyl (DA) is associated with obliterative bronchiolitis (OB) in workers and induces OB-like fibrotic airway lesions in rats. The pathogenesis of OB is poorly understood in part due to complex interactions between airway epithelial, mesenchymal and blood-derived inflammatory cells. DA-induced airway toxicity in the absence of recruited-inflammatory/immune cells was characterized using an air-liquid interface (ALI) model consisting of human airway epithelium with (Epi/FT) and without (Epi) a mesenchymal component. ALI cultures were exposed to 25 mM DA-derived vapors (using vapor cups) for 1 h on day 0, 2 and 4. In some experiments, the tissues were exposed to 2,3-hexanedione (Hex) which is structurally-similar, but much less fibrogenic than DA. Lactate dehydrogenase activity and day 6 histopathologic changes associated with epithelial injury, including basal/suprabasal spongiosis, were increased following exposure of Epi/FT tissues to DA but not control or Hex vapors. IL-1a, IL-6, IL-8, sIL-1Ra, TGFa, MCP-3 and TNFa proteins were increased following DA exposure of Epi/FT tissues; only IL-1a, IL-8, sIL-1Ra and TGFa were increased following exposure of Epi tissues. MMP-1, MMP-3 and TIMP-1 proteins were increased following DA exposure of Epi/FT tissues; whereas MMP-2, MMP-7 and TIMP-2 were decreased, and production was largely dependent upon the presence of sub-epithelial stromal matrix/fibroblasts. Hex-induced protein changes were minimal. This in vitro study demonstrated that exposure of human airways to DA vapors induced epithelial injury (with the histopathologic feature of basal/suprabasal spongiosis) and increased release of pro-inflammatory and pro-fibrotic cytokines/chemokines as well as MMPs/TIMPs in the absence of recruited-inflammatory cells.
Collapse
Affiliation(s)
- William M Gwinn
- a NTP Laboratory, Division of the National Toxicology Program (DNTP) , National Institute of Environmental Health Sciences (NIEHS) , Durham , NC , USA
| | - Gordon P Flake
- b Cell and Molecular Pathology Branch, DNTP, NIEHS , Durham , NC , USA
| | - Ronald W Bousquet
- c Alion Science and Technology Corporation , Research Triangle Park, Durham , NC , USA
| | - Genie J Taylor
- c Alion Science and Technology Corporation , Research Triangle Park, Durham , NC , USA
| | - Daniel L Morgan
- a NTP Laboratory, Division of the National Toxicology Program (DNTP) , National Institute of Environmental Health Sciences (NIEHS) , Durham , NC , USA
| |
Collapse
|
25
|
Bowler RP, Wendt CH, Fessler MB, Foster MW, Kelly RS, Lasky-Su J, Rogers AJ, Stringer KA, Winston BW. New Strategies and Challenges in Lung Proteomics and Metabolomics. An Official American Thoracic Society Workshop Report. Ann Am Thorac Soc 2017; 14:1721-1743. [PMID: 29192815 PMCID: PMC5946579 DOI: 10.1513/annalsats.201710-770ws] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
This document presents the proceedings from the workshop entitled, "New Strategies and Challenges in Lung Proteomics and Metabolomics" held February 4th-5th, 2016, in Denver, Colorado. It was sponsored by the National Heart Lung Blood Institute, the American Thoracic Society, the Colorado Biological Mass Spectrometry Society, and National Jewish Health. The goal of this workshop was to convene, for the first time, relevant experts in lung proteomics and metabolomics to discuss and overcome specific challenges in these fields that are unique to the lung. The main objectives of this workshop were to identify, review, and/or understand: (1) emerging technologies in metabolomics and proteomics as applied to the study of the lung; (2) the unique composition and challenges of lung-specific biological specimens for metabolomic and proteomic analysis; (3) the diverse informatics approaches and databases unique to metabolomics and proteomics, with special emphasis on the lung; (4) integrative platforms across genetic and genomic databases that can be applied to lung-related metabolomic and proteomic studies; and (5) the clinical applications of proteomics and metabolomics. The major findings and conclusions of this workshop are summarized at the end of the report, and outline the progress and challenges that face these rapidly advancing fields.
Collapse
|
26
|
Brass DM, Gwinn WM, Valente AM, Kelly FL, Brinkley CD, Nagler AE, Moseley MA, Morgan DL, Palmer SM, Foster MW. The Diacetyl-Exposed Human Airway Epithelial Secretome: New Insights into Flavoring-Induced Airways Disease. Am J Respir Cell Mol Biol 2017; 56:784-795. [PMID: 28248570 DOI: 10.1165/rcmb.2016-0372oc] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Bronchiolitis obliterans (BO) is an increasingly important lung disease characterized by fibroproliferative airway lesions and decrements in lung function. Occupational exposure to the artificial food flavoring ingredient diacetyl, commonly used to impart a buttery flavor to microwave popcorn, has been associated with BO development. In the occupational setting, diacetyl vapor is first encountered by the airway epithelium. To better understand the effects of diacetyl vapor on the airway epithelium, we used an unbiased proteomic approach to characterize both the apical and basolateral secretomes of air-liquid interface cultures of primary human airway epithelial cells from four unique donors after exposure to an occupationally relevant concentration (∼1,100 ppm) of diacetyl vapor or phosphate-buffered saline as a control on alternating days. Basolateral and apical supernatants collected 48 h after the third exposure were analyzed using one-dimensional liquid chromatography tandem mass spectrometry. Paired t tests adjusted for multiple comparisons were used to assess differential expression between diacetyl and phosphate-buffered saline exposure. Of the significantly differentially expressed proteins identified, 61 were unique to the apical secretome, 81 were unique to the basolateral secretome, and 11 were present in both. Pathway enrichment analysis using publicly available databases revealed that proteins associated with matrix remodeling, including degradation, assembly, and new matrix organization, were overrepresented in the data sets. Similarly, protein modifiers of epidermal growth factor receptor signaling were significantly altered. The ordered changes in protein expression suggest that the airway epithelial response to diacetyl may contribute to BO pathogenesis.
Collapse
Affiliation(s)
- David M Brass
- 1 Division of Pulmonary, Allergy, and Critical Care Medicine
| | - William M Gwinn
- 2 National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | | | | | | | - Andrew E Nagler
- 1 Division of Pulmonary, Allergy, and Critical Care Medicine
| | - M Arthur Moseley
- 4 Proteomics and Metabolomics Shared Resource, Duke University Medical Center, Durham, North Carolina; and
| | - Daniel L Morgan
- 2 National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Scott M Palmer
- 1 Division of Pulmonary, Allergy, and Critical Care Medicine
| | - Matthew W Foster
- 1 Division of Pulmonary, Allergy, and Critical Care Medicine.,4 Proteomics and Metabolomics Shared Resource, Duke University Medical Center, Durham, North Carolina; and
| |
Collapse
|