1
|
Godzien J, Kalaska B, Rudzki L, Barbas-Bernardos C, Swieton J, Lopez-Gonzalvez A, Ostrowska L, Szulc A, Waszkiewicz N, Ciborowski M, García A, Kretowski A, Barbas C, Pawlak D. Probiotic Lactobacillus plantarum 299v supplementation in patients with major depression in a double-blind, randomized, placebo-controlled trial: A metabolomics study. J Affect Disord 2025; 368:180-190. [PMID: 39271063 DOI: 10.1016/j.jad.2024.09.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/19/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND Understanding the multifactorial nature of major depressive disorder (MDD) is crucial for tailoring treatments. However, the complex interplay of various factors underlying the development and progression of MDD poses significant challenges. Our previous study demonstrated improvements in cognitive functions in MDD patients undergoing treatment with selective serotonin reuptake inhibitors (SSRIs) supplemented with Lactobacillus plantarum 299v (LP299v). METHODS To elucidate the biochemical mechanisms underlying cognitive functions improvements, we explored underlying metabolic changes. We employed multi-platform metabolomics, including LC-QTOF-MS and CE-TOF-MS profiling, alongside chiral LC-QqQ-MS analysis for amino acids. RESULTS Supplementation of SSRI treatment with LP299v intensified the reduction of long-chain acylcarnitines, potentially indicating improved mitochondrial function. LP299v supplementation reduced N-acyl taurines more than four times compared to the placebo, suggesting a substantial impact on restoring biochemical balance. The LP299v-supplemented group showed increased levels of oxidized glycerophosphocholine (oxPC). Additionally, LP299v supplementation led to higher levels of sphingomyelins, L-histidine, D-valine, and p-cresol. LIMITATIONS This exploratory study suggests potential metabolic pathways influenced by LP299v supplementation. However, the need for further research hinders the ability to draw definitive conclusions. CONCLUSIONS Observed metabolic changes were linked to mitochondrial dysfunction, inflammation, oxidative stress, and gut microbiota disruption. Despite the subtle nature of this alterations, our research successfully detected these differences and connected them to the metabolic disruptions associated with MDD. Our findings emphasise the intricate relationship between metabolism, gut microbiota, and mental health prompting further research into the mechanisms of action of probiotics in MDD treatment.
Collapse
Affiliation(s)
- Joanna Godzien
- Metabolomics and Proteomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Bartlomiej Kalaska
- Department of Pharmacodynamics, Medical University of Bialystok, Bialystok, Poland.
| | - Leszek Rudzki
- Psychiatry-UK, 3b Fore Street, Camelford PL32 9PG, UK
| | - Cecilia Barbas-Bernardos
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain
| | - Justyna Swieton
- Department of Pharmacodynamics, Medical University of Bialystok, Bialystok, Poland
| | - Angeles Lopez-Gonzalvez
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain
| | - Lucyna Ostrowska
- Department of Dietetics and Clinical Nutrition, Medical University of Bialystok, Bialystok, Poland
| | - Agata Szulc
- Department of Psychiatry, Medical University of Warsaw, Warsaw, Poland
| | | | - Michal Ciborowski
- Metabolomics and Proteomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Antonia García
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain
| | - Adam Kretowski
- Metabolomics and Proteomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland; Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
2
|
Cardoso LHD, Cecatto C, Ozola M, Korzh S, Zvejniece L, Gukalova B, Doerrier C, Dambrova M, Makrecka-Kuka M, Gnaiger E, Liepinsh E. Fatty acid β-oxidation in brain mitochondria: Insights from high-resolution respirometry in mouse, rat and Drosophila brain, ischemia and aging models. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167544. [PMID: 39424161 DOI: 10.1016/j.bbadis.2024.167544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/04/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
Glucose is the main energy source of the brain, yet recent studies demonstrate that fatty acid oxidation (FAO) plays a relevant role in the pathogenesis of central nervous system disorders. We evaluated FAO in brain mitochondria under physiological conditions, in the aging brain, and after stroke. Using high-resolution respirometry we compared medium-chain (MC, octanoylcarnitine) and long-chain (LC, palmitoylcarnitine) acylcarnitines as substrates of β-oxidation in the brain. The protocols developed avoid FAO overestimation by malate-linked anaplerotic activity in brain mitochondria. The capacity of FA oxidative phosphorylation (F-OXPHOS) with palmitoylcarnitine was up to 4 times higher than respiration with octanoylcarnitine. The optimal concentration of palmitoylcarnitine was 10 μM which corresponds to the total concentration of LC acylcarnitines in the brain. Maximal respiration with octanoylcarnitine was reached at 20 μM, however, this concentration exceeds MC acylcarnitine concentrations in the brain 15 times. F-OXPHOS capacity was highest in mouse cerebellum, intermediate in cortex, prefrontal cortex, and hypothalamus, and hardly detectable in hippocampus. F-OXPHOS capacity was 2-fold lower and concentrations of LC acylcarnitines were 2-fold higher in brain of aged rats. A similar trend was observed in the rat model of endothelin-1-induced stroke, but reduction of OXPHOS capacity was not limited to FAO. In conclusion, although FAO is not a dominant pathway in brain bioenergetics, it deserves specific attention in studies of brain metabolism.
Collapse
Affiliation(s)
| | | | - Melita Ozola
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia; Faculty of Pharmacy, Riga Stradins University, Riga, Latvia
| | - Stanislava Korzh
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Liga Zvejniece
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Baiba Gukalova
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia; Faculty of Pharmacy, Riga Stradins University, Riga, Latvia
| | | | - Maija Dambrova
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia; Faculty of Pharmacy, Riga Stradins University, Riga, Latvia
| | - Marina Makrecka-Kuka
- Oroboros Instruments, Innsbruck, Austria; Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
| | | | - Edgars Liepinsh
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia; Faculty of Pharmacy, Riga Stradins University, Riga, Latvia
| |
Collapse
|
3
|
Villate A, Olivares M, Usobiaga A, Unzueta-Larrinaga P, Barrena-Barbadillo R, Callado LF, Etxebarria N, Urigüen L. Uncovering metabolic dysregulation in schizophrenia and cannabis use disorder through untargeted plasma lipidomics. Sci Rep 2024; 14:31492. [PMID: 39733019 PMCID: PMC11682106 DOI: 10.1038/s41598-024-83288-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/13/2024] [Indexed: 12/30/2024] Open
Abstract
Cannabis use disorder affects up to 42% of individuals with schizophrenia, correlating with earlier onset, increased positive symptoms, and more frequent hospitalizations. This study employed an untargeted lipidomics approach to identify biomarkers in plasma samples from subjects with schizophrenia, cannabis use disorder, or both (dual diagnosis), aiming to elucidate the metabolic underpinnings of cannabis abuse and schizophrenia development. The use of liquid chromatography-high resolution mass spectrometry enabled the annotation of 119 metabolites, with the highest identification confidence level achieved for 16 compounds. Notably, a marked reduction in acylcarnitines, including octanoylcarnitine and decanoylcarnitine, was observed across all patient groups compared to controls. In cannabis use disorder patients, N-acyl amino acids (NAAAs), particularly N-palmitoyl threonine and N-palmitoyl serine, showed a strong downregulation, a pattern also seen in schizophrenia and dual diagnosis patients. Conversely, elevated levels of 7-dehydrodesmosterol were detected in schizophrenia and dual diagnosis patients relative to controls. These findings suggest a potential link between metabolic disruptions and the pathophysiology of both disorders. The untargeted lipidomics approach offers a powerful tool to identify novel biomarkers, enhancing our understanding of the biological relationship between cannabis abuse and schizophrenia, and paving the way for future therapeutic strategies targeting metabolic pathways in these conditions.
Collapse
Affiliation(s)
- Aitor Villate
- Department of Analytical Chemistry, University of the Basque Country, UPV/EHU, Leioa, Bizkaia, Spain
- PiE-UPV/EHU. Plentzia Itsas Estazioa, Areatza Pasealekua, 48620, Plentzia , (Biscay), Basque Country, Spain
| | - Maitane Olivares
- Department of Analytical Chemistry, University of the Basque Country, UPV/EHU, Leioa, Bizkaia, Spain
- PiE-UPV/EHU. Plentzia Itsas Estazioa, Areatza Pasealekua, 48620, Plentzia , (Biscay), Basque Country, Spain
| | - Aresatz Usobiaga
- Department of Analytical Chemistry, University of the Basque Country, UPV/EHU, Leioa, Bizkaia, Spain
- PiE-UPV/EHU. Plentzia Itsas Estazioa, Areatza Pasealekua, 48620, Plentzia , (Biscay), Basque Country, Spain
| | - Paula Unzueta-Larrinaga
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Sarriena S/N, 48940, Leioa, Bizkaia, Spain
- BioBizkaia Health Research Institute, Bizkaia, Spain
| | - Rocío Barrena-Barbadillo
- BioBizkaia Health Research Institute, Bizkaia, Spain
- Department of Nursing, University of the Basque Country, UPV/EHU, Leioa, Bizkaia, Spain
| | - Luis Felipe Callado
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Sarriena S/N, 48940, Leioa, Bizkaia, Spain
- BioBizkaia Health Research Institute, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Madrid, Spain
| | - Nestor Etxebarria
- Department of Analytical Chemistry, University of the Basque Country, UPV/EHU, Leioa, Bizkaia, Spain
- PiE-UPV/EHU. Plentzia Itsas Estazioa, Areatza Pasealekua, 48620, Plentzia , (Biscay), Basque Country, Spain
| | - Leyre Urigüen
- Department of Pharmacology, University of the Basque Country, UPV/EHU, Sarriena S/N, 48940, Leioa, Bizkaia, Spain.
- BioBizkaia Health Research Institute, Bizkaia, Spain.
- Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Madrid, Spain.
| |
Collapse
|
4
|
Tkachev A, Stekolshchikova E, Golubova A, Serkina A, Morozova A, Zorkina Y, Riabinina D, Golubeva E, Ochneva A, Savenkova V, Petrova D, Andreyuk D, Goncharova A, Alekseenko I, Kostyuk G, Khaitovich P. Screening for depression in the general population through lipid biomarkers. EBioMedicine 2024; 110:105455. [PMID: 39571307 PMCID: PMC11617895 DOI: 10.1016/j.ebiom.2024.105455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 12/08/2024] Open
Abstract
BACKGROUND Anxiety and depression significantly contribute to the overall burden of mental disorders, with depression being one of the leading causes of disability. Despite this, no biochemical test has been implemented for the diagnosis of these mental disorders, while recent studies have highlighted lipids as potential biomarkers. METHODS Using a streamlined high-throughput lipidome analysis method, direct-infusion mass spectrometry, we evaluated blood plasma lipid levels in 604 individuals from a general urban population and analysed their association with self-reported anxiety and depression symptoms. We also assessed lipidome profiles in 32 patients with clinical depression, matched to 21 healthy controls. FINDINGS We found a significant correlation between lipid abundances and the severity of self-reported depression symptoms. Moreover, lipid alterations detected in high scoring volunteers mirrored the lipidome profiles identified in patients with clinical depression included in our study. Based on these findings, we developed a lipid-based predictive model distinguishing individuals reporting severe depressive symptoms from non-depressed subjects with high accuracy. INTERPRETATION This study demonstrates the possibility of generalizing lipid alterations from a clinical cohort to the general population and underscores the potential of lipid-based biomarkers in assessing depressive states. FUNDING This study was sponsored by the Moscow Center for Innovative Technologies in Healthcare, №2707-2, №2102-11.
Collapse
Affiliation(s)
- Anna Tkachev
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia; LLC NeurOmix, Moscow, 119571, Russia
| | - Elena Stekolshchikova
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| | - Anastasia Golubova
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| | - Anna Serkina
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| | - Anna Morozova
- Mental-health Clinic No. 1, Named After N.A. Alekseev, Moscow, 117152, Russia; Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034, Moscow, Russia
| | - Yana Zorkina
- Mental-health Clinic No. 1, Named After N.A. Alekseev, Moscow, 117152, Russia; Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034, Moscow, Russia
| | - Daria Riabinina
- Mental-health Clinic No. 1, Named After N.A. Alekseev, Moscow, 117152, Russia
| | - Elizaveta Golubeva
- Mental-health Clinic No. 1, Named After N.A. Alekseev, Moscow, 117152, Russia
| | - Aleksandra Ochneva
- Mental-health Clinic No. 1, Named After N.A. Alekseev, Moscow, 117152, Russia; Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034, Moscow, Russia
| | - Valeria Savenkova
- Mental-health Clinic No. 1, Named After N.A. Alekseev, Moscow, 117152, Russia
| | - Daria Petrova
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| | - Denis Andreyuk
- Mental-health Clinic No. 1, Named After N.A. Alekseev, Moscow, 117152, Russia; Economy Faculty, M.V. Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Anna Goncharova
- Moscow Center for Healthcare Innovations, Moscow, 123473, Russia
| | - Irina Alekseenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow Region, 142290, Russia
| | - Georgiy Kostyuk
- Mental-health Clinic No. 1, Named After N.A. Alekseev, Moscow, 117152, Russia.
| | - Philipp Khaitovich
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia; LLC NeurOmix, Moscow, 119571, Russia.
| |
Collapse
|
5
|
Kurkinen K, Kärkkäinen O, Lehto SM, Luoma I, Kraav SL, Kivimäki P, Therman S, Tolmunen T. An exploratory study of metabolomics in endogenous and cannabis-use-associated psychotic-like experiences in adolescence. Transl Psychiatry 2024; 14:466. [PMID: 39511135 PMCID: PMC11543670 DOI: 10.1038/s41398-024-03163-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 11/15/2024] Open
Abstract
In adolescence, psychotic-like experiences (PLE) may indicate potential prodromal symptoms preceding the onset of psychosis. Metabolomic studies have shown promise in providing valuable insights into predicting psychosis with enhanced precision compared to conventional clinical features. This study investigated metabolomic alterations associated with PLE in 76 depressed adolescents aged 14-20 years. Serum concentrations of 92 metabolites were analyzed with liquid chromatography-mass spectrometry. PLE were assessed using the Youth Experiences and Health (YEAH) questionnaire. The associations between PLE symptom dimensions (delusions, paranoia, hallucinations, negative symptoms, thought disorder, and dissociation) and metabolite concentrations were analyzed in linear regression models adjusted for different covariates. The symptom dimensions consistently correlated with the metabolome in different models, except those adjusted for cannabis use. Specifically, the hallucination dimension was associated with 13 metabolites (acetoacetic acid, allantoin, asparagine, decanoylcarnitine, D-glucuronic acid, guanidinoacetic acid, hexanoylcarnitine, homogentisic acid, leucine, NAD+, octanoylcarnitine, trimethylamine-N-oxide, and valine) in the various linear models. However, when adjusting for cannabis use, eight metabolites were associated with hallucinations (adenine, AMP, cAMP, chenodeoxycholic acid, cholic acid, L-kynurenine, neopterin, and D-ribose-5-phosphate). The results suggest diverse mechanisms underlying PLE in adolescence; hallucinatory experiences may be linked to inflammatory functions, while cannabis use may engage an alternative metabolic pathway related to increased energy demand and ketogenesis in inducing PLE. The limited sample of individuals with depression restricts the generalizability of these findings. Future research should explore whether various experiences and related metabolomic changes jointly predict the onset of psychoses and related disorders.
Collapse
Affiliation(s)
- Karoliina Kurkinen
- Institute of Clinical Medicine, University of Eastern Finland, Yliopistonranta 1, FI-70210, Kuopio, Finland.
| | - Olli Kärkkäinen
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, FI-70210, Kuopio, Finland
| | - Soili M Lehto
- Institute of Clinical Medicine, University of Oslo, P.O. Box 1171, Blindern, 0318, Oslo, Norway
- R&D Department, Division of Mental Health Services, Akershus University Hospital, PB 1000, 1478, Lørenskog, Norway
- Department of Psychiatry, Faculty of Medicine, University of Helsinki, Yliopistonkatu 3, 00014, Helsinki, Finland
| | - Ilona Luoma
- Institute of Clinical Medicine, University of Eastern Finland, Yliopistonranta 1, FI-70210, Kuopio, Finland
- Department of Child Psychiatry, Kuopio University Hospital, Kaartokatu 9, Kuopio, Finland
| | - Siiri-Liisi Kraav
- Department of Social Sciences, University of Eastern Finland, Yliopistonranta 1, 70210, Kuopio, Finland
| | - Petri Kivimäki
- Institute of Clinical Medicine, University of Eastern Finland, Yliopistonranta 1, FI-70210, Kuopio, Finland
| | - Sebastian Therman
- Mental Health Team, Finnish Institute for Health and Welfare, P.O. Box 30, FI-00271, Helsinki, Finland
| | - Tommi Tolmunen
- Institute of Clinical Medicine, University of Eastern Finland, Yliopistonranta 1, FI-70210, Kuopio, Finland
- Kuopio University Hospital, Department of Adolescent Psychiatry, Kaartokatu 9, Kuopio, Finland
| |
Collapse
|
6
|
Qiu H, Zhong Z, Wu T, Hu H, Zhou M, Feng Z. Evaluating the causal relationship of Levo-carnitine and risk of schizophrenia: a bidirectional two-sample mendelian randomization study. BMC Psychiatry 2024; 24:720. [PMID: 39438849 PMCID: PMC11515733 DOI: 10.1186/s12888-024-06177-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Schizophrenia is a debilitating mental disorder affecting about 1% of the global population, characterized by significant cognitive impairments and a strong hereditary component. Carnitine, particularly Levo-carnitine and its derivatives, plays a crucial role in cellular metabolism and mitochondrial function, with evidence suggesting a link between levo-carnitine deficiency and schizophrenia pathology. This study aims to investigate the causal relationship between different subtypes of levo-carnitine and the susceptibility to schizophrenia using Mendelian randomization analysis. METHODS Forward Mendelian randomization analysis was conducted using levo-carnitine and its derivatives as exposure and schizophrenia as the outcome. Candidate data were obtained from the Open-GWAS database. Instrumental variables were identified as single nucleotide polymorphisms closely associated with exposure and harmonized with the outcome data after removing confounders and outliers. Mendelian randomization analysis was performed using inverse variance weighting as the primary approach, and sensitivity analysis was conducted to assess the reliability and robustness of the results. Finally, a reverse Mendelian randomization analysis was carried out using the same analytical procedures. RESULTS The Mendelian randomization results indicate a significant negative causal relationship between isovaleryl-levo-carnitine and schizophrenia (P < 0.05), but no significant associations in other groups (P > 0.05). Additionally, the reverse Mendelian randomization analysis did not identify any causal relationship between schizophrenia and levo-carnitine related exposures (P > 0.05). Sensitivity analyses, including pleiotropy and heterogeneity analysis, did not reveal any potential bias in the Mendelian randomization results (P > 0.05). CONCLUSION The results suggest that elevated levels of isovaleryl-levo-carnitine may potentially mitigate the risk of developing schizophrenia, highlighting the prospective therapeutic and preventive implications of isovaleryl-levo-carnitine in the clinical management of schizophrenia.
Collapse
Affiliation(s)
- Haoyuan Qiu
- School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Zicheng Zhong
- School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Tianxing Wu
- Second Clinical Medical College, Southern Medical University, Guangzhou, 510515, China
| | - Haoran Hu
- School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Meijuan Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| | - Zhijun Feng
- Postdoctoral Innovation Practice Base, Jiangmen Central Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
7
|
Wu S, Panganiban KJ, Lee J, Li D, Smith EC, Maksyutynska K, Humber B, Ahmed T, Agarwal SM, Ward K, Hahn M. Peripheral Lipid Signatures, Metabolic Dysfunction, and Pathophysiology in Schizophrenia Spectrum Disorders. Metabolites 2024; 14:475. [PMID: 39330482 PMCID: PMC11434505 DOI: 10.3390/metabo14090475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/28/2024] Open
Abstract
Metabolic dysfunction is commonly observed in schizophrenia spectrum disorders (SSDs). The causes of metabolic comorbidity in SSDs are complex and include intrinsic or biological factors linked to the disorder, which are compounded by antipsychotic (AP) medications. The exact mechanisms underlying SSD pathophysiology and AP-induced metabolic dysfunction are unknown, but dysregulated lipid metabolism may play a role. Lipidomics, which detects lipid metabolites in a biological sample, represents an analytical tool to examine lipid metabolism. This systematic review aims to determine peripheral lipid signatures that are dysregulated among individuals with SSDs (1) with minimal exposure to APs and (2) during AP treatment. To accomplish this goal, we searched MEDLINE, Embase, and PsychINFO databases in February 2024 to identify all full-text articles written in English where the authors conducted lipidomics in SSDs. Lipid signatures reported to significantly differ in SSDs compared to controls or in relation to AP treatment and the direction of dysregulation were extracted as outcomes. We identified 46 studies that met our inclusion criteria. Most of the lipid metabolites that significantly differed in minimally AP-treated patients vs. controls comprised glycerophospholipids, which were mostly downregulated. In the AP-treated group vs. controls, the significantly different metabolites were primarily fatty acyls, which were dysregulated in conflicting directions between studies. In the pre-to-post AP-treated patients, the most impacted metabolites were glycerophospholipids and fatty acyls, which were found to be primarily upregulated and conflicting, respectively. These lipid metabolites may contribute to SSD pathophysiology and metabolic dysfunction through various mechanisms, including the modulation of inflammation, cellular membrane permeability, and metabolic signaling pathways.
Collapse
Affiliation(s)
- Sally Wu
- Schizophrenia Division, Centre for Addiction and Mental Health, Toronto, ON M6J 1H3, Canada (T.A.)
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Kristoffer J. Panganiban
- Schizophrenia Division, Centre for Addiction and Mental Health, Toronto, ON M6J 1H3, Canada (T.A.)
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Jiwon Lee
- Schizophrenia Division, Centre for Addiction and Mental Health, Toronto, ON M6J 1H3, Canada (T.A.)
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Dan Li
- Schizophrenia Division, Centre for Addiction and Mental Health, Toronto, ON M6J 1H3, Canada (T.A.)
| | - Emily C.C. Smith
- Schizophrenia Division, Centre for Addiction and Mental Health, Toronto, ON M6J 1H3, Canada (T.A.)
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Kateryna Maksyutynska
- Schizophrenia Division, Centre for Addiction and Mental Health, Toronto, ON M6J 1H3, Canada (T.A.)
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Bailey Humber
- Schizophrenia Division, Centre for Addiction and Mental Health, Toronto, ON M6J 1H3, Canada (T.A.)
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Tariq Ahmed
- Schizophrenia Division, Centre for Addiction and Mental Health, Toronto, ON M6J 1H3, Canada (T.A.)
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Sri Mahavir Agarwal
- Schizophrenia Division, Centre for Addiction and Mental Health, Toronto, ON M6J 1H3, Canada (T.A.)
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, ON M5G 2C4,Canada
| | - Kristen Ward
- Clinical Pharmacy Department, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pharmacy, Michigan Medicine Health System, Ann Arbor, MI 48109, USA
| | - Margaret Hahn
- Schizophrenia Division, Centre for Addiction and Mental Health, Toronto, ON M6J 1H3, Canada (T.A.)
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, ON M5G 2C4,Canada
| |
Collapse
|
8
|
Zorkina Y, Ushakova V, Ochneva A, Tsurina A, Abramova O, Savenkova V, Goncharova A, Alekseenko I, Morozova I, Riabinina D, Kostyuk G, Morozova A. Lipids in Psychiatric Disorders: Functional and Potential Diagnostic Role as Blood Biomarkers. Metabolites 2024; 14:80. [PMID: 38392971 PMCID: PMC10890164 DOI: 10.3390/metabo14020080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 02/25/2024] Open
Abstract
Lipids are a crucial component of the human brain, serving important structural and functional roles. They are involved in cell function, myelination of neuronal projections, neurotransmission, neural plasticity, energy metabolism, and neuroinflammation. Despite their significance, the role of lipids in the development of mental disorders has not been well understood. This review focused on the potential use of lipids as blood biomarkers for common mental illnesses, such as major depressive disorder, anxiety disorders, bipolar disorder, and schizophrenia. This review also discussed the impact of commonly used psychiatric medications, such as neuroleptics and antidepressants, on lipid metabolism. The obtained data suggested that lipid biomarkers could be useful for diagnosing psychiatric diseases, but further research is needed to better understand the associations between blood lipids and mental disorders and to identify specific biomarker combinations for each disease.
Collapse
Affiliation(s)
- Yana Zorkina
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| | - Valeria Ushakova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| | - Aleksandra Ochneva
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| | - Anna Tsurina
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
| | - Olga Abramova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| | - Valeria Savenkova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
| | - Anna Goncharova
- Moscow Center for Healthcare Innovations, 123473 Moscow, Russia;
| | - Irina Alekseenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academi of Science, 142290 Moscow, Russia
- Russia Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, 2, Kurchatov Square, 123182 Moscow, Russia
| | - Irina Morozova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
| | - Daria Riabinina
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
| | - Georgy Kostyuk
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
| | - Anna Morozova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| |
Collapse
|
9
|
Ait Tayeb AEK, Colle R, Chappell K, El-Asmar K, Acquaviva-Bourdain C, David DJ, Trabado S, Chanson P, Feve B, Becquemont L, Verstuyft C, Corruble E. Metabolomic profiles of 38 acylcarnitines in major depressive episodes before and after treatment. Psychol Med 2024; 54:289-298. [PMID: 37226550 DOI: 10.1017/s003329172300140x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
BACKGROUND Major depression is associated with changes in plasma L-carnitine and acetyl-L-carnitine. But its association with acylcarnitines remains unclear. The aim of this study was to assess metabolomic profiles of 38 acylcarnitines in patients with major depression before and after treatment compared to healthy controls (HCs). METHODS Metabolomic profiles of 38 plasma short-, medium-, and long-chain acylcarnitines were performed by liquid chromatography-mass spectrometry in 893 HCs from the VARIETE cohort and 460 depressed patients from the METADAP cohort before and after 6 months of antidepressant treatment. RESULTS As compared to HCs, depressed patients had lower levels of medium- and long-chain acylcarnitines. After 6 months of treatment, increased levels of medium- and long-chain acyl-carnitines were observed that no longer differed from those of controls. Accordingly, several medium- and long-chain acylcarnitines were negatively correlated with depression severity. CONCLUSIONS These medium- and long-chain acylcarnitine dysregulations argue for mitochondrial dysfunction through fatty acid β-oxidation impairment during major depression.
Collapse
Affiliation(s)
- Abd El Kader Ait Tayeb
- CESP, MOODS Team, INSERM UMR 1018, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, Paris, F-94275, France
- Service Hospitalo-Universitaire de Psychiatrie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre, Paris, F-94275, France
| | - Romain Colle
- CESP, MOODS Team, INSERM UMR 1018, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, Paris, F-94275, France
- Service Hospitalo-Universitaire de Psychiatrie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre, Paris, F-94275, France
| | - Kenneth Chappell
- CESP, MOODS Team, INSERM UMR 1018, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, Paris, F-94275, France
| | - Khalil El-Asmar
- CESP, MOODS Team, INSERM UMR 1018, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, Paris, F-94275, France
- Department of Epidemiology and Population Health, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
| | - Cécile Acquaviva-Bourdain
- Service de Biochimie et Biologie Moléculaire; Unité Médicale Pathologies Héréditaires du Métabolisme et du Globule Rouge; Centre de Biologie et Pathologie Est; CHU de Lyon; F-69500 Bron, France
| | - Denis J David
- CESP, MOODS Team, INSERM UMR 1018, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, Paris, F-94275, France
| | - Séverine Trabado
- INSERM UMR-S U1185, Physiologie et Physiopathologie Endocriniennes, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, Paris, F-94275, France
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre, F-94275, France
| | - Philippe Chanson
- INSERM UMR-S U1185, Physiologie et Physiopathologie Endocriniennes, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, Paris, F-94275, France
- Université Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Service d'Endocrinologie et des Maladies de la Reproduction, Centre de Référence des Maladies Rares de l'Hypophyse, Hôpital de Bicêtre, Le Kremlin Bicêtre, F-94275, France
| | - Bruno Feve
- Sorbonne Université-INSERM, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire ICAN, Service d'Endocrinologie, CRMR PRISIS, Hôpital Saint-Antoine, Assistance Publique-Hôpitaux de Paris, Paris, F-75012, France
| | - Laurent Becquemont
- CESP, MOODS Team, INSERM UMR 1018, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, Paris, F-94275, France
- Centre de recherche clinique, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre, Paris, F-94275, France
| | - Céline Verstuyft
- CESP, MOODS Team, INSERM UMR 1018, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, Paris, F-94275, France
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre, F-94275, France
| | - Emmanuelle Corruble
- CESP, MOODS Team, INSERM UMR 1018, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, Paris, F-94275, France
- Service Hospitalo-Universitaire de Psychiatrie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre, Paris, F-94275, France
| |
Collapse
|
10
|
Burghardt KJ, Kajy M, Ward KM, Burghardt PR. Metabolomics, Lipidomics, and Antipsychotics: A Systematic Review. Biomedicines 2023; 11:3295. [PMID: 38137517 PMCID: PMC10741000 DOI: 10.3390/biomedicines11123295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/06/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Antipsychotics are an important pharmacotherapy option for the treatment of many mental illnesses. Unfortunately, selecting antipsychotics is often a trial-and-error process due to a lack of understanding as to which medications an individual patient will find most effective and best tolerated. Metabolomics, or the study of small molecules in a biosample, is an increasingly used omics platform that has the potential to identify biomarkers for medication efficacy and toxicity. This systematic review was conducted to identify metabolites and metabolomic pathways associated with antipsychotic use in humans. Ultimately, 42 studies were identified for inclusion in this review, with all but three studies being performed in blood sources such as plasma or serum. A total of 14 metabolite classes and 12 lipid classes were assessed across studies. Although the studies were highly heterogeneous in approach and mixed in their findings, increases in phosphatidylcholines, decreases in carboxylic acids, and decreases in acylcarnitines were most consistently noted as perturbed in patients exposed to antipsychotics. Furthermore, for the targeted metabolomic and lipidomic studies, seven metabolites and three lipid species had findings that were replicated. The most consistent finding for targeted studies was an identification of a decrease in aspartate with antipsychotic treatment. Studies varied in depth of detail provided for their study participants and in study design. For example, in some cases, there was a lack of detail on specific antipsychotics used or concomitant medications, and the depth of detail on sample handling and analysis varied widely. The conclusions here demonstrate that there is a large foundation of metabolomic work with antipsychotics that requires more complete reporting so that an objective synthesis such as a meta-analysis can take place. This will then allow for validation and clinical application of the most robust findings to move the field forward. Future studies should be carefully controlled to take advantage of the sensitivity of metabolomics while limiting potential confounders that may result from participant heterogeneity and varied analysis approaches.
Collapse
Affiliation(s)
- Kyle J. Burghardt
- Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University Detroit, Detroit, MI 48201, USA;
| | - Megan Kajy
- Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University Detroit, Detroit, MI 48201, USA;
| | - Kristen M. Ward
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan Ann Arbor, Detroit, MI 48109, USA;
| | - Paul R. Burghardt
- Department of Nutrition and Food Science, Wayne State University Detroit, Detroit, MI 48201, USA;
| |
Collapse
|
11
|
Zhao L, Liu H, Wang W, Wang Y, Xiu M, Li S. Carnitine metabolites and cognitive improvement in patients with schizophrenia treated with olanzapine: a prospective longitudinal study. Front Pharmacol 2023; 14:1255501. [PMID: 37663259 PMCID: PMC10470116 DOI: 10.3389/fphar.2023.1255501] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 08/04/2023] [Indexed: 09/05/2023] Open
Abstract
Objective: Cognitive impairment is one of the core symptoms of schizophrenia, which is stable and lifelong. L-carnitine has been shown to improve cognitive function and decrease the rate of cognitive deterioration in patients with Alzheimer's disease. However, it remains unclear regarding the role of L-carnitine and its metabolites in cognitive functions in schizophrenia after treatment with olanzapine. The purpose of this study was to evaluate the relationship between changes in plasma levels of L-carnitine metabolites and cognitive improvement after olanzapine treatment. Methods: This was a prospective longitudinal study. In this study, we recruited 25 female patients with first episode schizophrenia (FES) who were drug naïve at baseline and received 4 weeks of olanzapine monotherapy. Cognitive function was assessed at baseline and 4-week follow-up using the RBANS. Plasma L-carnitine metabolite levels were determined by a metabolomics technology based on untargeted ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). Results: We found that the immediate memory index, delayed memory index and RBANS composite score were significantly increased at the 4-week follow-up after treatment. A total of 7 differential L-carnitine metabolites were identified in FES patients after olanzapine monotherapy. In addition, we found that changes in butyrylcarnitine were positively correlated with improvements in language index and RBANS composite score. Further regression analyses confirmed the association between reduced butyrylcarnitine levels and cognitive improvement after olanzapine monotherapy in FES patients. Conclusion: Our study shows that cognitive improvement after olanzapine treatment was associated with changes in L-carnitine metabolite levels in patients with FES, suggesting a key role of L-carnitine in cognition in schizophrenia.
Collapse
Affiliation(s)
- Lei Zhao
- Qingdao Mental Health Center, Qingdao, Shandong, China
| | - Hua Liu
- Qingdao Mental Health Center, Qingdao, Shandong, China
| | - Wenjuan Wang
- Qingdao Mental Health Center, Qingdao, Shandong, China
| | - Youping Wang
- Department of Nutritional and Metabolic Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
| | - Meihong Xiu
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, China
| | - Shuyun Li
- Department of Nutritional and Metabolic Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
12
|
Tkachev A, Stekolshchikova E, Vanyushkina A, Zhang H, Morozova A, Zozulya S, Kurochkin I, Anikanov N, Egorova A, Yushina E, Vogl T, Senner F, Schaupp SK, Reich-Erkelenz D, Papiol S, Kohshour MO, Klöhn-Saghatolislam F, Kalman JL, Heilbronner U, Heilbronner M, Gade K, Comes AL, Budde M, Anderson-Schmidt H, Adorjan K, Wiltfang J, Reininghaus EZ, Juckel G, Dannlowski U, Fallgatter A, Spitzer C, Schmauß M, von Hagen M, Zorkina Y, Reznik A, Barkhatova A, Lisov R, Mokrov N, Panov M, Zubkov D, Petrova D, Zhou C, Liu Y, Pu J, Falkai P, Kostyuk G, Klyushnik T, Schulze TG, Xie P, Schulte EC, Khaitovich P. Lipid Alteration Signature in the Blood Plasma of Individuals With Schizophrenia, Depression, and Bipolar Disorder. JAMA Psychiatry 2023; 80:250-259. [PMID: 36696101 PMCID: PMC9878436 DOI: 10.1001/jamapsychiatry.2022.4350] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 10/31/2022] [Indexed: 01/26/2023]
Abstract
Importance No clinically applicable diagnostic test exists for severe mental disorders. Lipids harbor potential as disease markers. Objective To define a reproducible profile of lipid alterations in the blood plasma of patients with schizophrenia (SCZ) independent of demographic and environmental variables and to investigate its specificity in association with other psychiatric disorders, ie, major depressive disorder (MDD) and bipolar disorder (BPD). Design, Setting, and Participants This was a multicohort case-control diagnostic analysis involving plasma samples from psychiatric patients and control individuals collected between July 17, 2009, and May 18, 2018. Study participants were recruited as consecutive and volunteer samples at multiple inpatient and outpatient mental health hospitals in Western Europe (Germany and Austria [DE-AT]), China (CN), and Russia (RU). Individuals with DSM-IV or International Statistical Classification of Diseases and Related Health Problems, Tenth Revision diagnoses of SCZ, MDD, BPD, or a first psychotic episode, as well as age- and sex-matched healthy controls without a mental health-related diagnosis were included in the study. Samples and data were analyzed from January 2018 to September 2020. Main Outcomes and Measures Plasma lipidome composition was assessed using liquid chromatography coupled with untargeted mass spectrometry. Results Blood lipid levels were assessed in 980 individuals (mean [SD] age, 36 [13] years; 510 male individuals [52%]) diagnosed with SCZ, BPD, MDD, or those with a first psychotic episode and in 572 controls (mean [SD] age, 34 [13] years; 323 male individuals [56%]). A total of 77 lipids were found to be significantly altered between those with SCZ (n = 436) and controls (n = 478) in all 3 sample cohorts. Alterations were consistent between cohorts (CN and RU: [Pearson correlation] r = 0.75; DE-AT and CN: r = 0.78; DE-AT and RU: r = 0.82; P < 10-38). A lipid-based predictive model separated patients with SCZ from controls with high diagnostic ability (area under the receiver operating characteristic curve = 0.86-0.95). Lipidome alterations in BPD and MDD, assessed in 184 and 256 individuals, respectively, were found to be similar to those of SCZ (BPD: r = 0.89; MDD: r = 0.92; P < 10-79). Assessment of detected alterations in individuals with a first psychotic episode, as well as patients with SCZ not receiving medication, demonstrated only limited association with medication restricted to particular lipids. Conclusions and Relevance In this study, SCZ was accompanied by a reproducible profile of plasma lipidome alterations, not associated with symptom severity, medication, and demographic and environmental variables, and largely shared with BPD and MDD. This lipid alteration signature may represent a trait marker of severe psychiatric disorders, indicating its potential to be transformed into a clinically applicable testing procedure.
Collapse
Affiliation(s)
- Anna Tkachev
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, Russia
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Elena Stekolshchikova
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Anna Vanyushkina
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Hanping Zhang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Anna Morozova
- Department Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Moscow, Russia
- Moscow Psychiatric Hospital No. 1, named after N.A. Alekseev, Moscow, Russia
| | | | - Ilia Kurochkin
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Nickolay Anikanov
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Alina Egorova
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Ekaterina Yushina
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, Russia
- FSBSI N.P. Bochkov Research Center of Medical Genetics, Moscow, Russia
| | - Thomas Vogl
- Institute of Psychiatric Phenomics and Genomics, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Fanny Senner
- Institute of Psychiatric Phenomics and Genomics, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Sabrina K. Schaupp
- Institute of Psychiatric Phenomics and Genomics, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Daniela Reich-Erkelenz
- Institute of Psychiatric Phenomics and Genomics, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Sergi Papiol
- Institute of Psychiatric Phenomics and Genomics, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Mojtaba Oraki Kohshour
- Institute of Psychiatric Phenomics and Genomics, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Farahnaz Klöhn-Saghatolislam
- Institute of Psychiatric Phenomics and Genomics, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Janos L. Kalman
- Institute of Psychiatric Phenomics and Genomics, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Urs Heilbronner
- Institute of Psychiatric Phenomics and Genomics, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Maria Heilbronner
- Institute of Psychiatric Phenomics and Genomics, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Katrin Gade
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Ashley L. Comes
- Institute of Psychiatric Phenomics and Genomics, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Monika Budde
- Institute of Psychiatric Phenomics and Genomics, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Heike Anderson-Schmidt
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Kristina Adorjan
- Institute of Psychiatric Phenomics and Genomics, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
- German Center for Neurodegenerative Diseases, Göttingen, Germany
- Neurosciences and Signaling Group, Institute of Medicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Eva Z. Reininghaus
- Department of Psychiatry and Psychotherapeutic Medicine, Research Unit for Neurobiology and Anthropometrics in Bipolar Affective Disorder, Medical University of Graz, Graz, Austria
| | - Georg Juckel
- Department of Psychiatry, Ruhr University Bochum, LWL University Hospital, Bochum, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Andreas Fallgatter
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, University Tübingen, Tübingen, Germany
| | - Carsten Spitzer
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center Rostock, Rostock, Germany
| | - Max Schmauß
- Department of Psychiatry and Psychotherapy, Bezirkskrankenhaus Augsburg, Augsburg, Germany
| | - Martin von Hagen
- Clinic for Psychiatry and Psychotherapy, Clinical Center Werra-Meißner, Eschwege, Germany
| | - Yana Zorkina
- Department Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Moscow, Russia
- Moscow Psychiatric Hospital No. 1, named after N.A. Alekseev, Moscow, Russia
| | - Alexander Reznik
- Moscow Psychiatric Hospital No. 1, named after N.A. Alekseev, Moscow, Russia
- Moscow State University of Food Production, Moscow, Russia
| | | | - Roman Lisov
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Nikita Mokrov
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Center for Artificial Intelligence Technologies, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Maxim Panov
- Technology Innovation Institute, Abu Dhabi, United Arab Emirates
| | - Dmitri Zubkov
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Daria Petrova
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Chanjuan Zhou
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Yiyun Liu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Juncai Pu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Georgiy Kostyuk
- Moscow Psychiatric Hospital No. 1, named after N.A. Alekseev, Moscow, Russia
| | | | - Thomas G. Schulze
- Institute of Psychiatric Phenomics and Genomics, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, Maryland
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Eva C. Schulte
- Institute of Psychiatric Phenomics and Genomics, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, medical Faculty University of Bonn, Bonn, Germany
| | - Philipp Khaitovich
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, Russia
| |
Collapse
|
13
|
Parksepp M, Haring L, Kilk K, Taalberg E, Kangro R, Zilmer M, Vasar E. A Marked Low-Grade Inflammation and a Significant Deterioration in Metabolic Status in First-Episode Schizophrenia: A Five-Year Follow-Up Study. Metabolites 2022; 12:983. [PMID: 36295885 PMCID: PMC9610466 DOI: 10.3390/metabo12100983] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 08/31/2023] Open
Abstract
The objective of this study was to evaluate how schizophrenia spectrum disorders and applied long-term (5.1 years) antipsychotic (AP) treatment affect the serum level of acylcarnitines (ACs), cytokines and metabolic biomarkers and to characterize the dynamics of inflammatory and metabolic changes in the early course of the disorder. A total of 112 adults participated in the study (54 patients with first-episode psychosis (FEP) and 58 control subjects). Biomolecule profiles were measured at the onset of first-episode psychosis and 0.6 years and 5.1 years after the initiation of APs. The results of the present study confirmed that specific metabolic-inflammatory imbalance characterizes AP-naïve patients. Short-term (0.6-years) AP treatment has a favourable effect on psychotic symptoms, as well as the recovery of metabolic flexibility and resolution of low-level inflammation. However, 5.1 years of AP treatment resulted in weight gain and increased serum levels of interleukin (IL)-2, IL-4, IL-6, IL-10, interferon-γ, hexoses, acetylcarnitine, short-chain ACs (C3, C4) and long-chain ACs (C16:2, C18:1, C18:2). In conclusion, despite the improvement in psychotic symptoms, 5.1 years of AP treatment was accompanied by a pronounced metabolic-inflammatory imbalance, which was confirmed by the presence of enhanced pro-inflammatory activity and increased obesity with changes in the metabolism of carbohydrates, lipids, and their metabolites.
Collapse
Affiliation(s)
- Madis Parksepp
- Institute of Clinical Medicine, University of Tartu, 50417 Tartu, Estonia
- Psychiatry Clinic of Viljandi Hospital, 71024 Viljandi, Estonia
| | - Liina Haring
- Institute of Clinical Medicine, University of Tartu, 50417 Tartu, Estonia
- Psychiatry Clinic of Tartu University Hospital, 50417 Tartu, Estonia
- Centre of Excellence for Genomics and Translational Medicine, Institute of Biomedicine and Translational Medicine, Univesignallingrsity of Tartu, 50090 Tartu, Estonia
| | - Kalle Kilk
- Centre of Excellence for Genomics and Translational Medicine, Institute of Biomedicine and Translational Medicine, Univesignallingrsity of Tartu, 50090 Tartu, Estonia
| | - Egon Taalberg
- Centre of Excellence for Genomics and Translational Medicine, Institute of Biomedicine and Translational Medicine, Univesignallingrsity of Tartu, 50090 Tartu, Estonia
| | - Raul Kangro
- Institute of Mathematics and Statistics, University of Tartu, 51009 Tartu, Estonia
| | - Mihkel Zilmer
- Centre of Excellence for Genomics and Translational Medicine, Institute of Biomedicine and Translational Medicine, Univesignallingrsity of Tartu, 50090 Tartu, Estonia
| | - Eero Vasar
- Centre of Excellence for Genomics and Translational Medicine, Institute of Biomedicine and Translational Medicine, Univesignallingrsity of Tartu, 50090 Tartu, Estonia
| |
Collapse
|
14
|
Grant CW, Wilton AR, Kaddurah-Daouk R, Skime M, Biernacka J, Mayes T, Carmody T, Wang L, Lazaridis K, Weinshilboum R, Bobo WV, Trivedi MH, Croarkin PE, Athreya AP. Network science approach elucidates integrative genomic-metabolomic signature of antidepressant response and lifetime history of attempted suicide in adults with major depressive disorder. Front Pharmacol 2022; 13:984383. [PMID: 36263124 PMCID: PMC9573988 DOI: 10.3389/fphar.2022.984383] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Individuals with major depressive disorder (MDD) and a lifetime history of attempted suicide demonstrate lower antidepressant response rates than those without a prior suicide attempt. Identifying biomarkers of antidepressant response and lifetime history of attempted suicide may help augment pharmacotherapy selection and improve the objectivity of suicide risk assessments. Towards this goal, this study sought to use network science approaches to establish a multi-omics (genomic and metabolomic) signature of antidepressant response and lifetime history of attempted suicide in adults with MDD. Methods: Single nucleotide variants (SNVs) which associated with suicide attempt(s) in the literature were identified and then integrated with a) p180-assayed metabolites collected prior to antidepressant pharmacotherapy and b) a binary measure of antidepressant response at 8 weeks of treatment using penalized regression-based networks in 245 'Pharmacogenomics Research Network Antidepressant Medication Study (PGRN-AMPS)' and 103 'Combining Medications to Enhance Depression Outcomes (CO-MED)' patients with major depressive disorder. This approach enabled characterization and comparison of biological profiles and associated antidepressant treatment outcomes of those with (N = 46) and without (N = 302) a self-reported lifetime history of suicide attempt. Results: 351 SNVs were associated with suicide attempt(s) in the literature. Intronic SNVs in the circadian genes CLOCK and ARNTL (encoding the CLOCK:BMAL1 heterodimer) were amongst the top network analysis features to differentiate patients with and without a prior suicide attempt. CLOCK and ARNTL differed in their correlations with plasma phosphatidylcholines, kynurenine, amino acids, and carnitines between groups. CLOCK and ARNTL-associated phosphatidylcholines showed a positive correlation with antidepressant response in individuals without a prior suicide attempt which was not observed in the group with a prior suicide attempt. Conclusion: Results provide evidence for a disturbance between CLOCK:BMAL1 circadian processes and circulating phosphatidylcholines, kynurenine, amino acids, and carnitines in individuals with MDD who have attempted suicide. This disturbance may provide mechanistic insights for differential antidepressant pharmacotherapy outcomes between patients with MDD with versus without a lifetime history of attempted suicide. Future investigations of CLOCK:BMAL1 metabolic regulation in the context of suicide attempts may help move towards biologically-augmented pharmacotherapy selection and stratification of suicide risk for subgroups of patients with MDD and a lifetime history of attempted suicide.
Collapse
Affiliation(s)
- Caroline W. Grant
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Angelina R. Wilton
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Department of Medicine, Duke Institute for Brain Sciences, Duke University, Durham, NC, United States
| | - Michelle Skime
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - Joanna Biernacka
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, United States
| | - Taryn Mayes
- Peter O’Donnell Jr. Brain Institute and the Department of Psychiatry at the University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Thomas Carmody
- Department Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Konstantinos Lazaridis
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - Richard Weinshilboum
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - William V. Bobo
- Department of Psychiatry and Psychology, Mayo Clinic, Jacksonville, FL, United States
| | - Madhukar H. Trivedi
- Peter O’Donnell Jr. Brain Institute and the Department of Psychiatry at the University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Paul E. Croarkin
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - Arjun P. Athreya
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
15
|
Mednova IA, Chernonosov AA, Kornetova EG, Semke AV, Bokhan NA, Koval VV, Ivanova SA. Levels of Acylcarnitines and Branched-Chain Amino Acids in Antipsychotic-Treated Patients with Paranoid Schizophrenia with Metabolic Syndrome. Metabolites 2022; 12:metabo12090850. [PMID: 36144254 PMCID: PMC9504797 DOI: 10.3390/metabo12090850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 11/25/2022] Open
Abstract
Several studies have shown that patients with schizophrenia are at high risk for metabolic syndrome (MetS) and bioenergetic dysfunction. Because acylcarnitines are involved in bioenergetic pathways and reflect the functioning of mitochondria, we hypothesized that these compounds are biomarkers of MetS in schizophrenia. The aim of this work was to quantify acylcarnitines and branched-chain amino acids in patients with schizophrenia comorbid with MetS. The study included 112 patients with paranoid schizophrenia treated with antipsychotics. Among them, 39 subjects met criteria of MetS. Concentrations of 30 acylcarnitines and three amino acids in dry serum spots were measured by liquid chromatography coupled with tandem mass spectrometry. MetS patients were found to have higher levels of valeryl carnitine (C5), leucine/isoleucine, and alanine as compared with patients without MetS, indicating possible participation of these compounds in the pathogenesis of metabolic disorders in schizophrenia. In patients with paranoid schizophrenia with or without MetS, lower levels of carnitines C10, C10:1, C12, and C18 were recorded as compared with the healthy individuals (n = 70), implying deterioration of energy metabolism. We believe that this finding can be explained by effects of antipsychotic medication on an enzyme called carnitine-palmitoyl transferase I.
Collapse
Affiliation(s)
- Irina A. Mednova
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Aleutskaya Str. 4, 634014 Tomsk, Russia
- Correspondence:
| | - Alexander A. Chernonosov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Lavrentyev Avenue 8, 630090 Novosibirsk, Russia
| | - Elena G. Kornetova
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Aleutskaya Str. 4, 634014 Tomsk, Russia
- Siberian State Medical University Hospital, Moskovsky Trakt 2, 634050 Tomsk, Russia
| | - Arkadiy V. Semke
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Aleutskaya Str. 4, 634014 Tomsk, Russia
| | - Nikolay A. Bokhan
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Aleutskaya Str. 4, 634014 Tomsk, Russia
- Department of Psychiatry, Addictology and Psychotherapy, Siberian State Medical University, Moskovsky Trakt 2, 634050 Tomsk, Russia
| | - Vladimir V. Koval
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Lavrentyev Avenue 8, 630090 Novosibirsk, Russia
| | - Svetlana A. Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Aleutskaya Str. 4, 634014 Tomsk, Russia
- Department of Psychiatry, Addictology and Psychotherapy, Siberian State Medical University, Moskovsky Trakt 2, 634050 Tomsk, Russia
| |
Collapse
|
16
|
Wang X, Xiu M, Wang K, Su X, Li X, Wu F. Plasma linoelaidyl carnitine levels positively correlated with symptom improvement in olanzapine-treated first-episode drug-naïve schizophrenia. Metabolomics 2022; 18:50. [PMID: 35819637 DOI: 10.1007/s11306-022-01909-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 06/15/2022] [Indexed: 10/17/2022]
Abstract
INTRODUCTION Olanzapine (OLA) is one of the most commonly used second-generation antipsychotics for the treatment of schizophrenia. However, the heterogeneity of therapeutic response to OLA among schizophrenia patients deserves further exploration. The role of carnitine in the clinical response to OLA monotherapy remains unclear. OBJECTIVES The current study was designed to investigate whether carnitine and its derivatives are linked to the response to OLA treatment. Drug-naïve first-episode patients with schizophrenia were recruited and treated with OLA for 4 weeks. Psychiatric symptoms were assessed using the Positive and Negative Syndrome Scale (PANSS) in pre and post treatment. RESULTS After treatment, we found a significant decrease in 2-Octenoylcarnitine levels and a significant increase in linoelaidyl carnitine, 11Z-Octadecenylcarnitine and 9-Decenoylcarnitine levels. Furthermore, baseline linoelaidyl carnitine levels were correlated with the reduction of PANSS positive symptom subscore. Linear regression and logistic regression analyses found that the baseline linoelaidyl carnitine level was a predictive marker for the therapeutic response to OLA monotherapy for 4 weeks. CONCLUSION Our pilot study suggests that linoelaidyl carnitine levels at baseline may have a predictive role for the improvement of positive symptoms after OLA monotherapy in the patients with schizophrenia.
Collapse
Affiliation(s)
- Xuan Wang
- Hebei Province Veterans Hospital, Baoding, China
| | - Meihong Xiu
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China
| | - Keqiang Wang
- Hebei Province Veterans Hospital, Baoding, China
| | - Xiuru Su
- Hebei Province Veterans Hospital, Baoding, China
| | - Xirong Li
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China
| | - Fengchun Wu
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Liwan District, Guangzhou, 510370, China.
- Department of Biomedical Engineering, Guangzhou Medical University, Liwan District, Guangzhou, 510370, China.
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Liwan District, Guangzhou, 510370, China.
| |
Collapse
|
17
|
Dambrova M, Makrecka-Kuka M, Kuka J, Vilskersts R, Nordberg D, Attwood MM, Smesny S, Sen ZD, Guo AC, Oler E, Tian S, Zheng J, Wishart DS, Liepinsh E, Schiöth HB. Acylcarnitines: Nomenclature, Biomarkers, Therapeutic Potential, Drug Targets, and Clinical Trials. Pharmacol Rev 2022; 74:506-551. [PMID: 35710135 DOI: 10.1124/pharmrev.121.000408] [Citation(s) in RCA: 241] [Impact Index Per Article: 80.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Acylcarnitines are fatty acid metabolites that play important roles in many cellular energy metabolism pathways. They have historically been used as important diagnostic markers for inborn errors of fatty acid oxidation and are being intensively studied as markers of energy metabolism, deficits in mitochondrial and peroxisomal β -oxidation activity, insulin resistance, and physical activity. Acylcarnitines are increasingly being identified as important indicators in metabolic studies of many diseases, including metabolic disorders, cardiovascular diseases, diabetes, depression, neurologic disorders, and certain cancers. The US Food and Drug Administration-approved drug L-carnitine, along with short-chain acylcarnitines (acetylcarnitine and propionylcarnitine), is now widely used as a dietary supplement. In light of their growing importance, we have undertaken an extensive review of acylcarnitines and provided a detailed description of their identity, nomenclature, classification, biochemistry, pathophysiology, supplementary use, potential drug targets, and clinical trials. We also summarize these updates in the Human Metabolome Database, which now includes information on the structures, chemical formulae, chemical/spectral properties, descriptions, and pathways for 1240 acylcarnitines. This work lays a solid foundation for identifying, characterizing, and understanding acylcarnitines in human biosamples. We also discuss the emerging opportunities for using acylcarnitines as biomarkers and as dietary interventions or supplements for many wide-ranging indications. The opportunity to identify new drug targets involved in controlling acylcarnitine levels is also discussed. SIGNIFICANCE STATEMENT: This review provides a comprehensive overview of acylcarnitines, including their nomenclature, structure and biochemistry, and use as disease biomarkers and pharmaceutical agents. We present updated information contained in the Human Metabolome Database website as well as substantial mapping of the known biochemical pathways associated with acylcarnitines, thereby providing a strong foundation for further clarification of their physiological roles.
Collapse
Affiliation(s)
- Maija Dambrova
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Marina Makrecka-Kuka
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Janis Kuka
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Reinis Vilskersts
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Didi Nordberg
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Misty M Attwood
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Stefan Smesny
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Zumrut Duygu Sen
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - An Chi Guo
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Eponine Oler
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Siyang Tian
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Jiamin Zheng
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - David S Wishart
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Edgars Liepinsh
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Helgi B Schiöth
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| |
Collapse
|
18
|
Grant CW, Barreto EF, Kumar R, Kaddurah-Daouk R, Skime M, Mayes T, Carmody T, Biernacka J, Wang L, Weinshilboum R, Trivedi MH, Bobo WV, Croarkin PE, Athreya AP. Multi-Omics Characterization of Early- and Adult-Onset Major Depressive Disorder. J Pers Med 2022; 12:jpm12030412. [PMID: 35330412 PMCID: PMC8949112 DOI: 10.3390/jpm12030412] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 01/14/2023] Open
Abstract
Age at depressive onset (AAO) corresponds to unique symptomatology and clinical outcomes. Integration of genome-wide association study (GWAS) results with additional “omic” measures to evaluate AAO has not been reported and may reveal novel markers of susceptibility and/or resistance to major depressive disorder (MDD). To address this gap, we integrated genomics with metabolomics using data-driven network analysis to characterize and differentiate MDD based on AAO. This study first performed two GWAS for AAO as a continuous trait in (a) 486 adults from the Pharmacogenomic Research Network-Antidepressant Medication Pharmacogenomic Study (PGRN-AMPS), and (b) 295 adults from the Combining Medications to Enhance Depression Outcomes (CO-MED) study. Variants from top signals were integrated with 153 p180-assayed metabolites to establish multi-omics network characterizations of early (<age 18) and adult-onset depression. The most significant variant (p = 8.77 × 10−8) localized to an intron of SAMD3. In silico functional annotation of top signals (p < 1 × 10−5) demonstrated gene expression enrichment in the brain and during embryonic development. Network analysis identified differential associations between four variants (in/near INTU, FAT1, CNTN6, and TM9SF2) and plasma metabolites (phosphatidylcholines, carnitines, biogenic amines, and amino acids) in early- compared with adult-onset MDD. Multi-omics integration identified differential biosignatures of early- and adult-onset MDD. These biosignatures call for future studies to follow participants from childhood through adulthood and collect repeated -omics and neuroimaging measures to validate and deeply characterize the biomarkers of susceptibility and/or resistance to MDD development.
Collapse
Grants
- R01 MH124655 NIMH NIH HHS
- R01 MH113700 NIMH NIH HHS
- K23 AI143882 NIAID NIH HHS
- U19GM61388, R01GM028157, R01AA027486, R01MH108348, R24GM078233, RC2GM092729, U19AG063744, N01MH90003, R01AG04617, U01AG061359, RF1AG051550, R01MH113700, R01MH124655, K23AI143882 NIH HHS
Collapse
Affiliation(s)
- Caroline W. Grant
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55901, USA; (C.W.G.); (L.W.); (R.W.)
| | - Erin F. Barreto
- Department of Pharmacy, Mayo Clinic, Rochester, MN 55901, USA;
| | - Rakesh Kumar
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55901, USA; (R.K.); (M.S.)
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC 27701, USA;
- Department of Medicine, Duke University, Durham, NC 27708, USA
- Duke Institute for Brain Sciences, Duke University, Durham, NC 27710, USA
| | - Michelle Skime
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55901, USA; (R.K.); (M.S.)
| | - Taryn Mayes
- Department of Psychiatry, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA; (T.M.); (M.H.T.)
| | - Thomas Carmody
- Department Population and Data Sciences, University of Texas Southwestern Medical Center in Dallas, Dallas, TX 75390, USA;
| | - Joanna Biernacka
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55901, USA;
| | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55901, USA; (C.W.G.); (L.W.); (R.W.)
| | - Richard Weinshilboum
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55901, USA; (C.W.G.); (L.W.); (R.W.)
| | - Madhukar H. Trivedi
- Department of Psychiatry, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA; (T.M.); (M.H.T.)
| | - William V. Bobo
- Department of Psychiatry and Psychology, Mayo Clinic, Jacksonville, FL 32224, USA;
| | - Paul E. Croarkin
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55901, USA; (R.K.); (M.S.)
- Correspondence: (P.E.C.); (A.P.A.); Tel.: +1-507-422-6073 (A.P.A.)
| | - Arjun P. Athreya
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55901, USA; (C.W.G.); (L.W.); (R.W.)
- Correspondence: (P.E.C.); (A.P.A.); Tel.: +1-507-422-6073 (A.P.A.)
| |
Collapse
|
19
|
Parksepp M, Haring L, Kilk K, Koch K, Uppin K, Kangro R, Zilmer M, Vasar E. The Expanded Endocannabinoid System Contributes to Metabolic and Body Mass Shifts in First-Episode Schizophrenia: A 5-Year Follow-Up Study. Biomedicines 2022; 10:biomedicines10020243. [PMID: 35203453 PMCID: PMC8869544 DOI: 10.3390/biomedicines10020243] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023] Open
Abstract
Alterations in the expanded endocannabinoid system (eECS) and cell membrane composition have been implicated in the pathophysiology of schizophrenia spectrum disorders. We enrolled 54 antipsychotic (AP)-naïve first-episode psychosis (FEP) patients and 58 controls and applied a targeted metabolomics approach followed by multivariate data analysis to investigate the profile changes in the serum levels of endocannabinoids: 2-arachidonoylglycerol (2-AG) and anandamide, endocannabinoids-like N-acylethanolamines (NAEs: linoleoylethanolamide, oleoylethanolamide, and palmitoylethanolamide), and their dominating lipid precursor’s phosphatidylcholines. Biomolecule profiles were measured at the onset of first-episode psychosis (FEP) and 0.6 years and 5.1 years after the initiation of AP treatment. The results indicated that FEP might be characterized by elevated concentrations of NAEs and by decreased 2-AG levels. At this stage of the disease, the NAE-mediated upregulation of peroxisome proliferator-activated receptors (PPARs) manifested themselves in energy expenditure. A 5-year disease progression and AP treatment adverse effects led to a robust increase in 2-AG levels, which contributed to strengthened cannabinoid (CB1) receptor-mediated effects, which manifested in obesity. Dynamic 2-AG, NAEs, and their precursors in terms of phosphatidylcholines are relevant to the description of the metabolic shifts resulting from the altered eECS function during and after FEP.
Collapse
Affiliation(s)
- Madis Parksepp
- Institute of Clinical Medicine, University of Tartu, 50406 Tartu, Estonia;
- Psychiatry Clinic of Viljandi Hospital, 71024 Viljandi, Estonia
| | - Liina Haring
- Institute of Clinical Medicine, University of Tartu, 50406 Tartu, Estonia;
- Psychiatry Clinic of Tartu University Hospital, 50406 Tartu, Estonia; (K.K.); (K.U.)
- Centre of Excellence for Genomics and Translational Medicine, Institute of Biomedicine and Translational Medicine, Univesignallingrsity of Tartu, 50090 Tartu, Estonia; (K.K.); (M.Z.); (E.V.)
- Correspondence: ; Tel.: +372-7318-767
| | - Kalle Kilk
- Centre of Excellence for Genomics and Translational Medicine, Institute of Biomedicine and Translational Medicine, Univesignallingrsity of Tartu, 50090 Tartu, Estonia; (K.K.); (M.Z.); (E.V.)
| | - Kadri Koch
- Psychiatry Clinic of Tartu University Hospital, 50406 Tartu, Estonia; (K.K.); (K.U.)
| | - Kärt Uppin
- Psychiatry Clinic of Tartu University Hospital, 50406 Tartu, Estonia; (K.K.); (K.U.)
| | - Raul Kangro
- Institute of Mathematics and Statistics, University of Tartu, 50090 Tartu, Estonia;
| | - Mihkel Zilmer
- Centre of Excellence for Genomics and Translational Medicine, Institute of Biomedicine and Translational Medicine, Univesignallingrsity of Tartu, 50090 Tartu, Estonia; (K.K.); (M.Z.); (E.V.)
| | - Eero Vasar
- Centre of Excellence for Genomics and Translational Medicine, Institute of Biomedicine and Translational Medicine, Univesignallingrsity of Tartu, 50090 Tartu, Estonia; (K.K.); (M.Z.); (E.V.)
| |
Collapse
|
20
|
Tkachev AI, Stekolshchikova EA, Morozova AY, Anikanov NA, Zorkina YA, Alekseyeva PN, Khobta EB, Andreyuk DS, Zozulya SA, Barkhatova AN, Klyushnik TP, Reznik AM, Kostyuk GP, Khaitovich PE. Ceramides: Shared Lipid Biomarkers of Cardiovascular Disease and Schizophrenia. CONSORTIUM PSYCHIATRICUM 2021; 2:35-43. [PMID: 39044755 PMCID: PMC11262249 DOI: 10.17816/cp101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/08/2021] [Indexed: 11/08/2022] Open
Abstract
INTRODUCTION Schizophrenia, although a debilitating mental illness, greatly affects individuals' physical health as well. One of the leading somatic comorbidities associated with schizophrenia is cardiovascular disease, which has been estimated to be one of the leading causes of excess mortality in patients diagnosed with schizophrenia. Although the shared susceptibility to schizophrenia and cardiovascular disease is well established, the mechanisms linking these two disorders are not well understood. Genetic studies have hinted toward shared lipid metabolism abnormalities co-occurring in the two disorders, while lipid compounds have emerged as prognostic markers for cardiovascular disease. In particular, three ceramide species in the blood plasma, Cer(d18:1/16:0), Cer(d18:1/18:0), and Cer(d18:1/24:1), have been robustly linked to the latter disorder. AIM We aimed to assess the differences in abundances of Cer(d18:1/16:0), Cer(d18:1/18:0), and Cer(d18:1/24:1) in the blood plasma of schizophrenia patients compared to healthy controls. METHODS We measured the abundances of Cer(d18:1/16:0), Cer(d18:1/18:0), and Cer(d18:1/24:1) in a cohort of 82 patients with schizophrenia and 138 controls without a psychiatric diagnosis and validated the results using an independent cohort of 26 patients with schizophrenia, 55 control individuals, and 19 patients experiencing a first psychotic episode. RESULTS We found significant alterations for all three ceramide species Cer(d18:1/16:0), Cer(d18:1/18:0), and Cer(d18:1/24:1) and a particularly strong difference in concentrations between psychiatric patients and controls for the ceramide species Cer(d18:1/18:0). CONCLUSIONS The alteration of Cer(d18:1/16:0), Cer(d18:1/18:0), and Cer(d18:1/24:1) levels in the blood plasma might be a manifestation of metabolic abnormalities common to both schizophrenia and cardiovascular disease.
Collapse
|
21
|
Lenski M, Sidibé J, Gholam M, Hennart B, Dubath C, Augsburger M, von Gunten A, Conus P, Allorge D, Thomas A, Eap CB. Metabolomic alteration induced by psychotropic drugs: Short-term metabolite profile as a predictor of weight gain evolution. Clin Transl Sci 2021; 14:2544-2555. [PMID: 34387942 PMCID: PMC8604229 DOI: 10.1111/cts.13122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/26/2021] [Accepted: 07/10/2021] [Indexed: 11/28/2022] Open
Abstract
Psychotropic drugs can induce strong metabolic adverse effects, potentially increasing morbidity and/or mortality of patients. Metabolomic profiling, by studying the levels of numerous metabolic intermediates and products in the blood, allows a more detailed examination of metabolism dysfunctions. We aimed to identify blood metabolomic markers associated with weight gain in psychiatric patients. Sixty-two patients starting a treatment known to induce weight gain were recruited. Two hundred and six selected metabolites implicated in various pathways were analyzed in plasma, at baseline and after 1 month of treatment. Additionally, 15 metabolites of the kynurenine pathway were quantified. This latter analysis was repeated in a confirmatory cohort of 24 patients. Among the 206 metabolites, a plasma metabolomic fingerprint after 1 month of treatment embedded 19 compounds from different chemical classes (amino acids, acylcarnitines, carboxylic acids, catecholamines, nucleosides, pyridine, and tetrapyrrole) potentially involved in metabolic disruption and inflammation processes. The predictive potential of such early metabolite changes on 3 months of weight evolution was then explored using a linear mixed-effects model. Of these 19 metabolites, short-term modifications of kynurenine, hexanoylcarnitine, and biliverdin, as well as kynurenine/tryptophan ratio at 1 month, were associated with 3 months weight evolution. Alterations of the kynurenine pathway were confirmed by quantification, in both exploratory and confirmatory cohorts. Our metabolomic study suggests a specific metabolic dysregulation after 1 month of treatment with psychotropic drugs known to induce weight gain. The identified metabolomic signature could contribute in the future to the prediction of weight gain in patients treated with psychotropic drugs.
Collapse
Affiliation(s)
- Marie Lenski
- Univ. LilleCHU LilleInstitut Pasteur de LilleULR 4483 – IMPECS – IMPact de l’Environnement Chimique sur la Santé humaineLilleFrance
| | - Jonathan Sidibé
- Unit of Forensic Toxicology and ChemistryCURMLLausanne University HospitalGeneva University HospitalsLausanne, GenevaSwitzerland
| | - Mehdi Gholam
- Department of PsychiatryCenter for Psychiatric Epidemiology and PsychopathologyLausanne University HospitalUniversity of LausannePrillySwitzerland
| | - Benjamin Hennart
- Univ. LilleCHU LilleInstitut Pasteur de LilleULR 4483 – IMPECS – IMPact de l’Environnement Chimique sur la Santé humaineLilleFrance
| | - Céline Dubath
- Unit of Pharmacogenetics and Clinical PsychopharmacologyDepartment of PsychiatryCenter for Psychiatric NeuroscienceLausanne University HospitalUniversity of LausannePrillySwitzerland
| | - Marc Augsburger
- Unit of Forensic Toxicology and ChemistryCURMLLausanne University HospitalGeneva University HospitalsLausanne, GenevaSwitzerland
| | - Armin von Gunten
- Service of Old Age PsychiatryDepartment of PsychiatryLausanne University HospitalUniversity of LausannePrillySwitzerland
| | - Philippe Conus
- Service of General PsychiatryDepartment of PsychiatryLausanne University HospitalUniversity of LausannePrillySwitzerland
| | - Delphine Allorge
- Univ. LilleCHU LilleInstitut Pasteur de LilleULR 4483 – IMPECS – IMPact de l’Environnement Chimique sur la Santé humaineLilleFrance
| | - Aurelien Thomas
- Unit of Forensic Toxicology and ChemistryCURMLLausanne University HospitalGeneva University HospitalsLausanne, GenevaSwitzerland
- Faculty Unit of ToxicologyFaculty of Biology and MedicineCURML, Lausanne University HospitalUniversity of LausanneLausanneSwitzerland
| | - Chin B. Eap
- Unit of Pharmacogenetics and Clinical PsychopharmacologyDepartment of PsychiatryCenter for Psychiatric NeuroscienceLausanne University HospitalUniversity of LausannePrillySwitzerland
- Center for Research and Innovation in Clinical Pharmaceutical SciencesUniversity of LausanneSwitzerland
- School of Pharmaceutical SciencesUniversity of GenevaGenevaSwitzerland
- Institute of Pharmaceutical Sciences of Western SwitzerlandUniversity of GenevaUniversity of LausanneLausanneSwitzerland
| |
Collapse
|
22
|
Molina JD, Avila S, Rubio G, López-Muñoz F. Metabolomic connections between schizophrenia, antipsychotic drugs and metabolic syndrome: A variety of players. Curr Pharm Des 2021; 27:4049-4061. [PMID: 34348619 DOI: 10.2174/1381612827666210804110139] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/02/2021] [Indexed: 12/08/2022]
Abstract
BACKGROUND Diagnosis of schizophrenia lacks of reliable medical diagnostic tests and robust biomarkers applied to clinical practice. Schizophrenic patients undergoing treatment with antipsychotics suffer a reduced life expectancy due to metabolic disarrangements that co-exist with their mental illness and predispose them to develop metabolic syndrome, also exacerbated by medication. Metabolomics is an emerging and potent technology able to accelerate this biomedical research. <P> Aim: This review focus on a detailed vision of the molecular mechanisms involved both in schizophrenia and antipsychotic-induced metabolic syndrome, based on innovative metabolites that consistently change in nascent metabolic syndrome, drug-naïve, first episode psychosis and/or schizophrenic patients compared to healthy subjects. <P> Main lines: Supported by metabolomic approaches, although not exclusively, noteworthy variations are reported mainly through serum samples of patients and controls in several scenes: 1) alterations in fatty acids, inflammatory response indicators, amino acids and biogenic amines, biometals and gut microbiota metabolites (schizophrenia); 2) alterations in metabolites involved in carbohydrate and gut microbiota metabolism, inflammation and oxidative stress (metabolic syndrome), some of them shared with the schizophrenia scene; 3) alterations of cytokines secreted by adipose tissue, phosphatidylcholines, acylcarnitines, Sirtuin 1, orexin-A and changes in microbiota composition (antipsychotic-induced metabolic syndrome). <P> Conclusion: Novel insights into the pathogenesis of schizophrenia and metabolic side-effects associated to its antipsychotic treatment, represent an urgent request for scientifics and clinicians. Leptin, carnitines, adiponectin, insulin or interleukin-6 represent some examples of candidate biomarkers. Cutting-edge technologies like metabolomics have the power of strengthen research for achieving preventive, diagnostic and therapeutical solutions for schizophrenia.
Collapse
Affiliation(s)
- Juan D Molina
- Clinical Management Area of Psychiatry and Mental Health, Psychiatric Service, 12 de Octubre University Hospital, Madrid. Spain
| | - Sonia Avila
- Department of Psychiatry, Faculty of Medicine, Complutense University of Madrid. Spain
| | - Gabriel Rubio
- Clinical Management Area of Psychiatry and Mental Health, Psychiatric Service, 12 de Octubre University Hospital, Madrid. Spain
| | | |
Collapse
|
23
|
Tkachev A, Stekolshchikova E, Anikanov N, Zozulya S, Barkhatova A, Klyushnik T, Petrova D. Shorter Chain Triglycerides Are Negatively Associated with Symptom Improvement in Schizophrenia. Biomolecules 2021; 11:biom11050720. [PMID: 34064997 PMCID: PMC8151512 DOI: 10.3390/biom11050720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 04/30/2021] [Accepted: 05/08/2021] [Indexed: 12/29/2022] Open
Abstract
Schizophrenia is a serious mental disorder requiring lifelong treatment. While medications are available that are effective in treating some patients, individual treatment responses can vary, with some patients exhibiting resistance to one or multiple drugs. Currently, little is known about the causes of the difference in treatment response observed among individuals with schizophrenia, and satisfactory markers of poor response are not available for clinical practice. Here, we studied the changes in the levels of 322 blood plasma lipids between two time points assessed in 92 individuals diagnosed with schizophrenia during their inpatient treatment and their association with the extent of symptom improvement. We found 20 triglyceride species increased in individuals with the least improvement in Positive and Negative Syndrome Scale (PANSS) scores, but not in those with the largest reduction in PANSS scores. These triglyceride species were distinct from the rest of the triglyceride species present in blood plasma. They contained a relatively low number of carbons in their fatty acid residues and were relatively low in abundance compared to the principal triglyceride species of blood plasma.
Collapse
Affiliation(s)
- Anna Tkachev
- V. Zelman Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia; (E.S.); (N.A.); (D.P.)
- Correspondence:
| | - Elena Stekolshchikova
- V. Zelman Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia; (E.S.); (N.A.); (D.P.)
| | - Nickolay Anikanov
- V. Zelman Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia; (E.S.); (N.A.); (D.P.)
| | - Svetlana Zozulya
- Mental Health Research Center, 115522 Moscow, Russia; (S.Z.); (A.B.); (T.K.)
| | | | - Tatiana Klyushnik
- Mental Health Research Center, 115522 Moscow, Russia; (S.Z.); (A.B.); (T.K.)
| | - Daria Petrova
- V. Zelman Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia; (E.S.); (N.A.); (D.P.)
| |
Collapse
|
24
|
MahmoudianDehkordi S, Ahmed AT, Bhattacharyya S, Han X, Baillie RA, Arnold M, Skime MK, John-Williams LS, Moseley MA, Thompson JW, Louie G, Riva-Posse P, Craighead WE, McDonald W, Krishnan R, Rush AJ, Frye MA, Dunlop BW, Weinshilboum RM, Kaddurah-Daouk R. Alterations in acylcarnitines, amines, and lipids inform about the mechanism of action of citalopram/escitalopram in major depression. Transl Psychiatry 2021; 11:153. [PMID: 33654056 PMCID: PMC7925685 DOI: 10.1038/s41398-020-01097-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 10/01/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022] Open
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are the first-line treatment for major depressive disorder (MDD), yet their mechanisms of action are not fully understood and their therapeutic benefit varies among individuals. We used a targeted metabolomics approach utilizing a panel of 180 metabolites to gain insights into mechanisms of action and response to citalopram/escitalopram. Plasma samples from 136 participants with MDD enrolled into the Mayo Pharmacogenomics Research Network Antidepressant Medication Pharmacogenomic Study (PGRN-AMPS) were profiled at baseline and after 8 weeks of treatment. After treatment, we saw increased levels of short-chain acylcarnitines and decreased levels of medium-chain and long-chain acylcarnitines, suggesting an SSRI effect on β-oxidation and mitochondrial function. Amines-including arginine, proline, and methionine sulfoxide-were upregulated while serotonin and sarcosine were downregulated, suggesting an SSRI effect on urea cycle, one-carbon metabolism, and serotonin uptake. Eighteen lipids within the phosphatidylcholine (PC aa and ae) classes were upregulated. Changes in several lipid and amine levels correlated with changes in 17-item Hamilton Rating Scale for Depression scores (HRSD17). Differences in metabolic profiles at baseline and post-treatment were noted between participants who remitted (HRSD17 ≤ 7) and those who gained no meaningful benefits (<30% reduction in HRSD17). Remitters exhibited (a) higher baseline levels of C3, C5, alpha-aminoadipic acid, sarcosine, and serotonin; and (b) higher week-8 levels of PC aa C34:1, PC aa C34:2, PC aa C36:2, and PC aa C36:4. These findings suggest that mitochondrial energetics-including acylcarnitine metabolism, transport, and its link to β-oxidation-and lipid membrane remodeling may play roles in SSRI treatment response.
Collapse
Affiliation(s)
- Siamak MahmoudianDehkordi
- grid.26009.3d0000 0004 1936 7961Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, Durham, NC USA
| | - Ahmed T. Ahmed
- grid.66875.3a0000 0004 0459 167XDepartment of Neurology, Mayo Clinic, Rochester, MN USA
| | - Sudeepa Bhattacharyya
- grid.252381.f0000 0001 2169 5989Department of Biological Sciences and Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR USA
| | - Xianlin Han
- grid.267309.90000 0001 0629 5880University of Texas Health Science Center at San Antonio, San Antonio, TX USA
| | | | - Matthias Arnold
- grid.26009.3d0000 0004 1936 7961Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, Durham, NC USA ,grid.4567.00000 0004 0483 2525Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Michelle K. Skime
- grid.66875.3a0000 0004 0459 167XDepartment of Psychiatry and Psychology, Mayo Clinic, Rochester, MN USA
| | - Lisa St. John-Williams
- grid.26009.3d0000 0004 1936 7961Proteomics and Metabolomics Shared Resource, Center for Genomic and Computational Biology, Duke University, Durham, NC 27710 USA
| | - M. Arthur Moseley
- grid.26009.3d0000 0004 1936 7961Proteomics and Metabolomics Shared Resource, Center for Genomic and Computational Biology, Duke University, Durham, NC 27710 USA
| | - J. Will Thompson
- grid.26009.3d0000 0004 1936 7961Proteomics and Metabolomics Shared Resource, Center for Genomic and Computational Biology, Duke University, Durham, NC 27710 USA
| | - Gregory Louie
- grid.26009.3d0000 0004 1936 7961Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, Durham, NC USA
| | - Patricio Riva-Posse
- grid.189967.80000 0001 0941 6502Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA USA
| | - W. Edward Craighead
- grid.189967.80000 0001 0941 6502Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA USA
| | - William McDonald
- grid.189967.80000 0001 0941 6502Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA USA
| | - Ranga Krishnan
- grid.262743.60000000107058297Department of Psychiatry, Rush Medical College, Chicago, IL USA
| | - A. John Rush
- grid.26009.3d0000 0004 1936 7961Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, Durham, NC USA ,grid.26009.3d0000 0004 1936 7961Professor Emeritus, Department of Pediatrics, Duke University School of Medicine, Durham, NC USA ,grid.416992.10000 0001 2179 3554Department of Psychiatry, Texas Tech University, Health Sciences Center, Permian Basin, TX USA
| | - Mark A. Frye
- grid.66875.3a0000 0004 0459 167XDepartment of Psychiatry and Psychology, Mayo Clinic, Rochester, MN USA
| | - Boadie W. Dunlop
- grid.189967.80000 0001 0941 6502Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA USA
| | - Richard M. Weinshilboum
- grid.66875.3a0000 0004 0459 167XDepartment of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN USA
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, Durham, NC, USA. .,Department of Medicine, Duke University, Durham, NC, USA. .,Duke Institute of Brain Sciences, Duke University, Durham, NC, USA.
| | | |
Collapse
|
25
|
Amino Acid and Acylcarnitine Levels in Chronic Patients with Schizophrenia: A Preliminary Study. Metabolites 2021; 11:metabo11010034. [PMID: 33466490 PMCID: PMC7824812 DOI: 10.3390/metabo11010034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 11/16/2022] Open
Abstract
Amino acids and acylcarnitines play an important role as substrates and intermediate products in most of pathways involved in schizophrenia development such as mitochondrial dysfunction, inflammation, lipid oxidation, DNA damage, oxidative stress, and apoptosis. It seems relevant to use an integrated approach with 'omics' technology to study their contribution. The aim of our study was to investigate serum amino acid and acylcarnitine levels in antipsychotics-treated patients with chronic schizophrenia compared with healthy donors. We measured serum levels of 15 amino acids and 30 acylcarnitines in 37 patients with schizophrenia and 36 healthy donors by means of tandem mass spectrometry. In summary, patients with chronic schizophrenia had an altered concentration of a few amino acids and acylcarnitines in comparison to the healthy probands. Further research is needed to assess and understand the identified changes.
Collapse
|
26
|
Veru-Lesmes F, Guay S, Shah JL, Schmitz N, Giguère CÉ, Joober R, Iyer SN, Malla AK. Adipose tissue dysregulation at the onset of psychosis: Adipokines and social determinants of health. Psychoneuroendocrinology 2021; 123:104915. [PMID: 33130407 DOI: 10.1016/j.psyneuen.2020.104915] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/25/2020] [Accepted: 10/04/2020] [Indexed: 12/11/2022]
Abstract
Recent evidence suggests that patients with psychotic disorders have metabolic disturbances (e.g., insulin resistance, dyslipidemia) at the onset of the disease and before antipsychotic exposure. Such disturbances are strongly associated with adipose tissue dysregulation. Measuring adipokines, the molecular mediators of adipose function, could provide a picture of the state of metabolic regulation at the onset of psychosis. The present study explores adipokine changes in a population of first-episode psychosis (FEP) patients with minimal prior exposure to antipsychotics. The effects of social determinants of health (childhood trauma and minority status) associated with both metabolic and psychotic disorders were studied as potential determinants of this phenomenon. Data was collected through the Signature project, a biobank of clinical, socio-demographic, and biological markers. Adipokines (leptin, adiponectin, resistin and chemerin) were measured in serum of FEP patients with minimal exposure to antipsychotics (N = 48) and controls (N = 39). Data were analyzed with univariate (t-tests) and multivariate (linear regression) statistical methods. Patients, compared to controls, had significantly higher levels of adiponectin and resistin, and significantly lower levels of leptin and chemerin. These results persisted after controlling for sex, waist-to-height ratio, childhood trauma, and visible minority status. Adiponectin and chemerin retained their effects after further controlling for tobacco and depression. Resistin increased with childhood trauma scores; chemerin was higher in visible minority patients. Adipose tissue dysfunction is present in FEP patients, before exposure to antipsychotics. Social determinants of health contribute to adipose (and metabolic) dysregulation in FEP, but may not be the main determinants of this relationship.
Collapse
Affiliation(s)
- Franz Veru-Lesmes
- Department of Psychiatry, McGill University, Montreal, Canada; Douglas Mental Health University Institute, Montreal, Canada; Prevention and Early Intervention Program for Psychosis, Montreal, Canada.
| | - Stéphane Guay
- Institut Universitaire en Santé Mentale de Montréal, Canada.
| | - Jai L Shah
- Department of Psychiatry, McGill University, Montreal, Canada; Douglas Mental Health University Institute, Montreal, Canada; Prevention and Early Intervention Program for Psychosis, Montreal, Canada
| | - Norbert Schmitz
- Department of Psychiatry, McGill University, Montreal, Canada; Douglas Mental Health University Institute, Montreal, Canada; Prevention and Early Intervention Program for Psychosis, Montreal, Canada
| | | | - Ridha Joober
- Department of Psychiatry, McGill University, Montreal, Canada; Douglas Mental Health University Institute, Montreal, Canada; Prevention and Early Intervention Program for Psychosis, Montreal, Canada
| | - Srividya N Iyer
- Department of Psychiatry, McGill University, Montreal, Canada; Douglas Mental Health University Institute, Montreal, Canada; Prevention and Early Intervention Program for Psychosis, Montreal, Canada
| | - Ashok K Malla
- Department of Psychiatry, McGill University, Montreal, Canada; Douglas Mental Health University Institute, Montreal, Canada; Prevention and Early Intervention Program for Psychosis, Montreal, Canada
| |
Collapse
|
27
|
A metabolome-wide association study in the general population reveals decreased levels of serum laurylcarnitine in people with depression. Mol Psychiatry 2021; 26:7372-7383. [PMID: 34088979 PMCID: PMC8873015 DOI: 10.1038/s41380-021-01176-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 05/07/2021] [Accepted: 05/17/2021] [Indexed: 02/05/2023]
Abstract
Depression constitutes a leading cause of disability worldwide. Despite extensive research on its interaction with psychobiological factors, associated pathways are far from being elucidated. Metabolomics, assessing the final products of complex biochemical reactions, has emerged as a valuable tool for exploring molecular pathways. We conducted a metabolome-wide association analysis to investigate the link between the serum metabolome and depressed mood (DM) in 1411 participants of the KORA (Cooperative Health Research in the Augsburg Region) F4 study (discovery cohort). Serum metabolomics data comprised 353 unique metabolites measured by Metabolon. We identified 72 (5.1%) KORA participants with DM. Linear regression tests were conducted modeling each metabolite value by DM status, adjusted for age, sex, body-mass index, antihypertensive, cardiovascular, antidiabetic, and thyroid gland hormone drugs, corticoids and antidepressants. Sensitivity analyses were performed in subcohorts stratified for sex, suicidal ideation, and use of antidepressants. We replicated our results in an independent sample of 968 participants of the SHIP-Trend (Study of Health in Pomerania) study including 52 (5.4%) individuals with DM (replication cohort). We found significantly lower laurylcarnitine levels in KORA F4 participants with DM after multiple testing correction according to Benjamini/Hochberg. This finding was replicated in the independent SHIP-Trend study. Laurylcarnitine remained significantly associated (p value < 0.05) with depression in samples stratified for sex, suicidal ideation, and antidepressant medication. Decreased blood laurylcarnitine levels in depressed individuals may point to impaired fatty acid oxidation and/or mitochondrial function in depressive disorders, possibly representing a novel therapeutic target.
Collapse
|
28
|
Cao B, Chen Y, McIntyre RS, Yan L. Acyl-Carnitine plasma levels and their association with metabolic syndrome in individuals with schizophrenia. Psychiatry Res 2020; 293:113458. [PMID: 32977055 DOI: 10.1016/j.psychres.2020.113458] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/13/2020] [Indexed: 02/06/2023]
Abstract
The metabolic syndrome (MetS) affects individuals with schizophrenia at a higher rate when compared to individuals in the general population. Accumulating evidence indicated that subjects with MetS generally manifest elevated levels of acyl-carnitines, which are important carriers for transporting fatty acyl group. Abnormalities of acyl-carnitines in individuals with schizophrenia with or without MetS had not been sufficiently characterized. We conducted this post-hoc analysis with our published data to further evaluate the differences of 29 acyl-carnitines in 46 individuals with schizophrenia with MetS and 123 without MetS. The rate of MetS was 27.2% (46/169) in the individuals with schizophrenia. After FDR correction, the individuals with schizophrenia and MetS showed significantly higher levels of 17 plasma acyl-carnitines, compared to individuals without MetS. Eight acyl-carnitines (i.e., C3, C4, C5, C6: 1, C10: 1, C10: 2, C14: 2-OH, C16: 2-OH) were significantly different between two groups after adjusting for age and sex. The correlation analysis reported that acyl-carnitine concentrations have potential correlations with certain metabolic parameters. Our findings provide valuable new clues for exploring the roles of acyl-carnitines in the diagnosis and treatment of schizophrenia. More data and molecular biology evidences are needed to replicate our findings and elucidate relevant mechanisms.
Collapse
Affiliation(s)
- Bing Cao
- School of Psychology and Key Laboratory of Cognition and Personality (Ministry of Education), Southwest University, Chongqing 400715, China; National Demonstration Center for Experimental Psychology Education, Southwest University, Chongqing 400715, China.
| | - Yan Chen
- Dalla Lana School of Public Health, University of Toronto. 155 College St., Toronto, ON, Canada
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, Toronto Western Hospital, University Health Network, Toronto, ON, Canada; Brain and Cognition Discovery Foundation, Toronto, ON, Canada
| | - Lailai Yan
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing 100191, P. R. China; Medical and Health Analysis Center, Peking University, Beijing 100191, P. R. China; Vaccine Research Center, School of Public Health, Peking University, Beijing 100191, P. R. China.
| |
Collapse
|
29
|
Lis M, Stańczykiewicz B, Liśkiewicz P, Misiak B. Impaired hormonal regulation of appetite in schizophrenia: A narrative review dissecting intrinsic mechanisms and the effects of antipsychotics. Psychoneuroendocrinology 2020; 119:104744. [PMID: 32534330 DOI: 10.1016/j.psyneuen.2020.104744] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/25/2020] [Accepted: 05/30/2020] [Indexed: 12/14/2022]
Abstract
Cardiometabolic diseases are the main contributor of reduced life expectancy in patients with schizophrenia. It is now widely accepted that antipsychotic treatment plays an important role in the development of obesity and its consequences. However, some intrinsic mechanisms need to be taken into consideration. One of these mechanisms might be related to impaired hormonal regulation of appetite in this group of patients. In this narrative review, we aimed to dissect impairments of appetite-regulating hormones attributable to intrinsic mechanisms and those related to medication effects. Early hormonal alterations that might be associated with intrinsic mechanisms include low levels of leptin and glucagon-like peptide-1 (GLP-1) together with elevated insulin levels in first-episode psychosis (FEP) patients. However, evidence regarding low GLP-1 levels in FEP patients is based on one large study. In turn, multiple-episode schizophrenia patients show elevated levels of insulin, leptin and orexin A together with decreased levels of adiponectin. In addition, patients receiving olanzapine may present with low ghrelin levels. Post mortem studies have also demonstrated reduced number of neuropeptide Y neurons in the prefrontal cortex of patients with schizophrenia. Treatment with certain second-generation antipsychotics may also point to these alterations. Although our understanding of hormonal regulation of appetite in schizophrenia has largely been improved, several limitations and directions for future studies need to be addressed. This is of particular importance since several novel pharmacological interventions for obesity and diabetes have already been developed and translation of these developments to the treatment of cardiometabolic comorbidities in schizophrenia patients is needed.
Collapse
Affiliation(s)
- Michał Lis
- Clinical Department of Internal Diseases, Endocrinology and Diabetology, The Central Clinical Hospital of the Ministry of the Interior in Warsaw, Wołoska 137 Street, 02-507 Warsaw, Poland
| | - Bartłomiej Stańczykiewicz
- Department of Nervous System Diseases, Wroclaw Medical University, Bartla 5 Street, 51-618, Wroclaw, Poland
| | - Paweł Liśkiewicz
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26 Street, 71-460, Szczecin, Poland
| | - Błażej Misiak
- Department of Genetics, Wroclaw Medical University, Marcinkowskiego 1 Street, 50-368 Wroclaw, Poland.
| |
Collapse
|
30
|
Seabra G, de Almeida V, Reis-de-Oliveira G, Crunfli F, Antunes ASLM, Martins-de-Souza D. Ubiquitin-proteasome system, lipid metabolism and DNA damage repair are triggered by antipsychotic medication in human oligodendrocytes: implications in schizophrenia. Sci Rep 2020; 10:12655. [PMID: 32724114 PMCID: PMC7387551 DOI: 10.1038/s41598-020-69543-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/14/2020] [Indexed: 12/14/2022] Open
Abstract
Schizophrenia is a chronic, severe and disabling psychiatric disorder, whose treatment is based on psychosocial interventions and the use of antipsychotic drugs. While the effects of these drugs are well elucidated in neuronal cells, they are still not so clear in oligodendrocytes, which play a vital role in schizophrenia. Thus, we aimed to characterize biochemical profiles by proteomic analyses of human oligodendrocytes (MO3.13) which were matured using a protocol we developed and treated with either haloperidol (a typical antipsychotic), clozapine (an atypical antipsychotic) or a clozapine + D-serine co-treatment, which has emerged lately as an alternative type of treatment. This was accomplished by employing shotgun proteomics, using nanoESI-LC-MS/MS label-free quantitation. Proteomic analysis revealed biochemical pathways commonly affected by all tested antipsychotics were mainly associated to ubiquitination, proteasome degradation, lipid metabolism and DNA damage repair. Clozapine and haloperidol treatments also affected proteins involved with the actin cytoskeleton and with EIF2 signaling. In turn, metabolic processes, especially the metabolism of nitrogenous compounds, were a predominant target of modulation of clozapine + D-serine treatment. In this context, we seek to contribute to the understanding of the biochemical and molecular mechanisms involved in the action of antipsychotics on oligodendrocytes, along with their possible implications in schizophrenia.
Collapse
Affiliation(s)
- Gabriela Seabra
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas, SP, 13083-862, Brazil
| | - Valéria de Almeida
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas, SP, 13083-862, Brazil
| | - Guilherme Reis-de-Oliveira
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas, SP, 13083-862, Brazil
| | - Fernanda Crunfli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas, SP, 13083-862, Brazil
| | - André Saraiva Leão Marcelo Antunes
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas, SP, 13083-862, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas, SP, 13083-862, Brazil.
- Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, SP, Brazil.
- D'Or Institute for Research and Education (IDOR), São Paulo, Brazil.
| |
Collapse
|
31
|
Piirsalu M, Taalberg E, Lilleväli K, Tian L, Zilmer M, Vasar E. Treatment With Lipopolysaccharide Induces Distinct Changes in Metabolite Profile and Body Weight in 129Sv and Bl6 Mouse Strains. Front Pharmacol 2020; 11:371. [PMID: 32292347 PMCID: PMC7118216 DOI: 10.3389/fphar.2020.00371] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/11/2020] [Indexed: 12/19/2022] Open
Abstract
Mouse strains differ significantly in their behaviors and responses to pathogenic and pharmacological agents. This study seeks to characterize behavioral and metabolomic profiles of two widely used mouse lines, 129S6/SvEvTac (129Sv) and C57BL/6NTac (Bl6), to acute administration of lipopolysaccharide (LPS). LPS caused a significant suppression of locomotor activity and a decline in body weight (BW) in both strains within 24 h. However, the BW loss was more pronounced in Bl6 than in 129Sv. Comparison of strains revealed clear differences between their metabolomic profiles. According to the general linear model analysis (GLM), the 1.5 h LPS challenge in Bl6 caused a decrease of propionylcarnitine (C3), glucogenic amino acids, and acetylornithine (Ac-Orn), whereas the response of 129Sv included decreased concentrations of short-chain acylcarnitines (SCACs), citrulline, and elevation of glycerophospholipid (PCaa C42:0) and sphingolipid [SM(OH)C16:1]. 24 h after LPS administration, robust alterations in lipid profile were observed in both strains. LPS treatment caused elevation of sphingolipids, phosphatidylcholine diacyls (PCaa) as well as a decrease in lysophosphatidylcholines (LysoPC). However, the number of elevated PCaa and sphingolipids was considerably higher in 129Sv. In addition to lipids, 24 h LPS challenge in Bl6 mice induced increased levels of kynurenine (KYN), putrescine and decreased levels of citrulline, hexoses, Ac-Orn, and PC acyl-alkyl (PCae 38:2) as well as severe BW loss. In contrast, the 24 h LPS challenge in 129Sv mice induced increased levels of KYN, long-chain acylcarnitines (LCACs) and decreased levels of citrulline as well as moderate BW loss. Altogether, our study revealed both similarities and differences in response to LPS in Bl6 and 129Sv strains. For major differences, Bl6 mice showed stronger reduction of BW 24 h after LPS treatment, accompanied by significantly reduced levels of hexoses, the ratio between LysoPC16:1/LysoPC16:0, and elevated levels of neuroprotective putrescine. In 129Sv mice, the BW loss was milder, accompanied by increased levels of hydroxylated LCACs, probably reflecting shifts in oxidative metabolism of fatty acids. One may suggest that LPS caused stronger hypometabolic state in the Bl6 mice than in the 129Sv strain. Altogether, this study confirms that Bl6 and 129Sv mice display vastly distinct adaptation capacities independent from the nature of stressful challenge.
Collapse
Affiliation(s)
- Maria Piirsalu
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.,Center of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Egon Taalberg
- Center of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia.,Department of Biochemistry, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Kersti Lilleväli
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.,Center of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Li Tian
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.,Center of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Mihkel Zilmer
- Center of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia.,Department of Biochemistry, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Eero Vasar
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.,Center of Excellence for Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
32
|
Profiling of lipidomics before and after antipsychotic treatment in first-episode psychosis. Eur Arch Psychiatry Clin Neurosci 2020; 270:59-70. [PMID: 30604052 DOI: 10.1007/s00406-018-0971-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 12/19/2018] [Indexed: 12/20/2022]
Abstract
Alterations in complex lipids may be involved in pathophysiology of schizophrenia spectrum disorders. Previously, we demonstrated importance of detecting lipid metabolism dysregulation by acylcarnitine (ACs) profile analysis in patients with first-episode psychosis (FEP). The aim of this study was to adopt lipidomics to identify serum glycerophospholipids (GPLs) and sphingomyelins (SMs) for describing FEP status before and after 7-month antipsychotic treatment. Using mass spectrometry and liquid chromatography technique, we profiled 105 individual lipids [14 lysophosphatidylcholines (LysoPCs), 76 phosphatidylcholines (PCs) and 15 SMs] in serum samples from 53 antipsychotic-naïve FEP patients, 44 of them were studied longitudinally and from 37 control subjects (CSs). Among the identified and quantified metabolites one LysoPC was elevated, and contrary the levels of 16 PCs as well as the level of one SM were significantly (p ≤ 0.0005) reduced in antipsychotic-naïve FEP patients compared to CSs. Comparison of serum lipids profiles of FEP patients before and after 7-month antipsychotic treatment revealed that 11 GPLs (2 LysoPCs, 9 PCs), and 2 SMs were found to be significantly changed (p ≤ 0.0005) in which GPLs were up-regulated, and SMs were down-regulated. However, no significant differences were noted when treated patient's serum lipid profiles were compared with CSs. Our findings suggest that complex lipid profile abnormalities are specifically associated with FEP and these discrepancies reflect two different disease-related pathways. Our findings provide insight into lipidomic information that may be used for monitoring FEP status and impact of the treatment in the early stage of the schizophrenia spectrum disorder.
Collapse
|
33
|
Misiak B, Bartoli F, Stramecki F, Samochowiec J, Lis M, Kasznia J, Jarosz K, Stańczykiewicz B. Appetite regulating hormones in first-episode psychosis: A systematic review and meta-analysis. Neurosci Biobehav Rev 2019; 102:362-370. [PMID: 31121198 DOI: 10.1016/j.neubiorev.2019.05.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 05/13/2019] [Accepted: 05/18/2019] [Indexed: 12/13/2022]
Abstract
We aimed to perform a systematic review and meta-analysis of appetite regulating hormones in patients with first-episode psychosis (FEP). Meta-analyses were conducted using random-effects models with Hedges' g as the effect size estimate. We identified 31 eligible studies, investigating the levels of 7 appetite regulating hormones (adiponectin, insulin, leptin, ghrelin, orexin, resistin and visfatin) in 1792 FEP patients and 1364 controls. The insulin levels in FEP patients were higher than in controls (g = 0.34, 95%CI: 0.19 - 0.49, p < 0.001), even considering only antipsychotic-naïve patients (g = 0.39, 95%CI: 0.12 - 0.66, p = 0.005). The severity of negative symptoms was positively associated with the effect size estimates (β = 0.08, 95%CI: 0.01 - 0.16, p = 0.030). Moreover, we found lower levels of leptin in antipsychotic-naïve FEP patients (g = -0.62, 95%CI: -1.11 - 0.12, p = 0.015). Impaired appetite regulation, in terms of elevated insulin levels and decreased leptin levels, occurs in early psychosis, before antipsychotic treatment. Hyperinsulinemia might be related to negative symptoms.
Collapse
Affiliation(s)
- Błażej Misiak
- Department of Genetics, Wroclaw Medical University, Marcinkowskiego 1 Street, 50-368 Wroclaw, Poland.
| | - Francesco Bartoli
- Department of Medicine and Surgery, University of Milano Bicocca, Monza, Italy; Department of Mental Health, ASST Nord Milano, Milano, Italy
| | - Filip Stramecki
- Department of Psychiatry, Wroclaw Medical University, Pasteura 10 Street, 50-367 Wroclaw, Poland
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26 Street, 71-460 Szczecin, Poland
| | - Michał Lis
- Clinical Department of Internal Diseases, Endocrinology and Diabetology, The Central Clinical Hospital of the Ministry of the Interior in Warsaw, Wołoska 137 Street, 02-507 Warsaw, Poland
| | - Justyna Kasznia
- Inpatient Psychiatric Unit, Municipal General Hospital, Limanowskiego 20/22 Street, 63-400 Ostrów Wielkopolski, Poland
| | - Konrad Jarosz
- Department of Clinical Nursing, Pomeranian Medical University, Żołnierska 48 Street, 71-210 Szczecin, Poland
| | - Bartłomiej Stańczykiewicz
- Department of Nervous System Diseases, Wroclaw Medical University, Bartla 5 Street, 51-618 Wroclaw, Poland
| |
Collapse
|
34
|
Li S, Gao D, Jiang Y. Function, Detection and Alteration of Acylcarnitine Metabolism in Hepatocellular Carcinoma. Metabolites 2019; 9:E36. [PMID: 30795537 PMCID: PMC6410233 DOI: 10.3390/metabo9020036] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/07/2019] [Accepted: 02/14/2019] [Indexed: 01/01/2023] Open
Abstract
Acylcarnitines play an essential role in regulating the balance of intracellular sugar and lipid metabolism. They serve as carriers to transport activated long-chain fatty acids into mitochondria for β-oxidation as a major source of energy for cell activities. The liver is the most important organ for endogenous carnitine synthesis and metabolism. Hepatocellular carcinoma (HCC), a primary malignancy of the live with poor prognosis, may strongly influence the level of acylcarnitines. In this paper, the function, detection and alteration of acylcarnitine metabolism in HCC were briefly reviewed. An overview was provided to introduce the metabolic roles of acylcarnitines involved in fatty acid β-oxidation. Then different analytical platforms and methodologies were also briefly summarised. The relationship between HCC and acylcarnitine metabolism was described. Many of the studies reported that short, medium and long-chain acylcarnitines were altered in HCC patients. These findings presented current evidence in support of acylcarnitines as new candidate biomarkers for studies on the pathogenesis and development of HCC. Finally we discussed the challenges and perspectives of exploiting acylcarnitine metabolism and its related metabolic pathways as a target for HCC diagnosis and prognosis.
Collapse
Affiliation(s)
- Shangfu Li
- State Key Laboratory of Chemical Oncogenomics, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
- National & Local United Engineering Lab for Personalized Anti-tumour Drugs, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
| | - Dan Gao
- State Key Laboratory of Chemical Oncogenomics, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
- National & Local United Engineering Lab for Personalized Anti-tumour Drugs, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
- Key Laboratory of Metabolomics at Shenzhen, Shenzhen 518055, China.
| | - Yuyang Jiang
- State Key Laboratory of Chemical Oncogenomics, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
35
|
Characterizing acyl-carnitine biosignatures for schizophrenia: a longitudinal pre- and post-treatment study. Transl Psychiatry 2019; 9:19. [PMID: 30655505 PMCID: PMC6336814 DOI: 10.1038/s41398-018-0353-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/18/2018] [Accepted: 11/08/2018] [Indexed: 12/21/2022] Open
Abstract
Subjects with schizophrenia have high risks of metabolic abnormalities and bioenergetic dysfunction. Acyl-carnitines involved in bioenergetic pathways provide potential biomarker targets for identifying early changes and onset characteristics in subjects with schizophrenia. We measured 29 acyl-carnitine levels within well-characterized plasma samples of adults with schizophrenia and healthy controls using liquid chromatography-mass spectrometry (LC-MS). Subjects with schizophrenia were measured at baseline and after 8 weeks of treatment. A total of 225 subjects with schizophrenia and 175 age- and gender-matched healthy controls were enrolled and 156 subjects completed the 8-week follow-up. With respect to plasma acyl-carnitines, the individuals with schizophrenia at baseline showed significantly higher levels of C4-OH (C3-DC) and C16:1, but lower concentrations of C3, C8, C10, C10:1, C10:2, C12, C14:1-OH, C14:2, and C14:2-OH when compared with healthy controls after controlling for age, sex, body mass index (BMI), smoking, and drinking. For the comparison between pretreatment and posttreatment subjects, all detected acyl-carnitines were significantly different between the two groups. Only the concentration of C3 and C4 were increased after selection by variable importance in projection (VIP) value >1.0 and false discovery rate (FDR) q value <0.05. A panel of acyl-carnitines were selected for the ability to differentiate subjects of schizophrenia at baseline from controls, pre- from post-treatment, and posttreatment from controls. Our data implicated acyl-carnitines with abnormalities in cellular bioenergetics of schizophrenia. Therefore, acyl-carnitines can be potential targets for future investigations into their roles in the pathoetiology of schizophrenia.
Collapse
|
36
|
Li S, Gao D, Song C, Tan C, Jiang Y. Isotope Labeling Strategies for Acylcarnitines Profile in Biological Samples by Liquid Chromatography–Mass Spectrometry. Anal Chem 2019; 91:1701-1705. [DOI: 10.1021/acs.analchem.8b05120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shangfu Li
- State Key Laboratory of Chemical Oncogenomics, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong 518055, China
- National & Local United Engineering Lab for Personalized Anti-tumor Drugs, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong 518055, PR China
| | - Dan Gao
- State Key Laboratory of Chemical Oncogenomics, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong 518055, China
- National & Local United Engineering Lab for Personalized Anti-tumor Drugs, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong 518055, PR China
- Key Laboratory of Metabolomics at Shenzhen, Shenzhen, Guangdong 518055, China
| | - Chao Song
- State Key Laboratory of Chemical Oncogenomics, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong 518055, China
- National & Local United Engineering Lab for Personalized Anti-tumor Drugs, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong 518055, PR China
| | - Chunyan Tan
- State Key Laboratory of Chemical Oncogenomics, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong 518055, China
- National & Local United Engineering Lab for Personalized Anti-tumor Drugs, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong 518055, PR China
| | - Yuyang Jiang
- State Key Laboratory of Chemical Oncogenomics, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong 518055, China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
37
|
Leppik L, Kriisa K, Koido K, Koch K, Kajalaid K, Haring L, Vasar E, Zilmer M. Profiling of Amino Acids and Their Derivatives Biogenic Amines Before and After Antipsychotic Treatment in First-Episode Psychosis. Front Psychiatry 2018; 9:155. [PMID: 29740359 PMCID: PMC5928450 DOI: 10.3389/fpsyt.2018.00155] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 04/06/2018] [Indexed: 12/13/2022] Open
Abstract
Schizophrenia (SCH) is a heterogeneous disorder, deriving from a potential multitude of etiopathogenetic factors. During the past few years there has been an increasing interest in the role of circulating amino acids (AAs) and biogenic amines (BAs) in the pathophysiology of SCH. In the present study, we aimed to provide an insight into the potential role of alterations in levels of AAs and BAs as well as examine their more specific metabolic shifts in relation to early stage of SCH. We measured 21 AAs and 17 BAs in serum samples of patients with first-episode psychosis (FEP) before and after 7-month antipsychotic treatment in comparison to control subjects (CSs). According to multivariate analysis, antipsychotic-naïve FEP patients had significantly higher levels of taurine and spermine, whereas values of proline (Pro), alpha-aminoadipic acid (alpha-AAA), kynurenine (Kyn), valine (Val), tyrosine (Tyr), citrulline (Citr), tryptophan (Trp), and histidine (His) were diminished compared to CSs. Increased levels of taurine and spermine, as well as reduced levels of alpha-AAA and Kyn probably reflect the compromised function of N-methyl-D-aspartate (NMDA) receptors in patients. The decreased levels of Pro (AA modulating the function of glutamate decarboxylase) likely reflect the imbalanced function of gamma-aminobutyric acid (GABA) system in the brain of FEP patients. The alterations in ratio between Tyr and phenylalanine (Phe) can be taken as a sign of compromised function of dopaminergic system. These metabolic shifts were reinstated by 7-month antipsychotic treatment. Serum metabolic profiles can be regarded as important indicators to investigate clinical course of SCH and treatment response.
Collapse
Affiliation(s)
- Liisa Leppik
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
- Psychiatry Clinic of Tartu University Hospital, Tartu, Estonia
| | - Kärt Kriisa
- Department of Biochemistry, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Kati Koido
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Kadri Koch
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
- Psychiatry Clinic of Tartu University Hospital, Tartu, Estonia
| | - Kärolin Kajalaid
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
- Psychiatry Clinic of Tartu University Hospital, Tartu, Estonia
| | - Liina Haring
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
- Psychiatry Clinic of Tartu University Hospital, Tartu, Estonia
| | - Eero Vasar
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Mihkel Zilmer
- Department of Biochemistry, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|