1
|
Koster KP, Fyke Z, Nguyen TTA, Niqula A, Noriega-González LY, Woolfrey KM, Dell’Acqua ML, Cologna SM, Yoshii A. Akap5 links synaptic dysfunction to neuroinflammatory signaling in a mouse model of infantile neuronal ceroid lipofuscinosis. Front Synaptic Neurosci 2024; 16:1384625. [PMID: 38798824 PMCID: PMC11116793 DOI: 10.3389/fnsyn.2024.1384625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
Palmitoylation and depalmitoylation represent dichotomic processes by which a labile posttranslational lipid modification regulates protein trafficking and degradation. The depalmitoylating enzyme, palmitoyl-protein thioesterase 1 (PPT1), is associated with the devastating pediatric neurodegenerative condition, infantile neuronal ceroid lipofuscinosis (CLN1). CLN1 is characterized by the accumulation of autofluorescent lysosomal storage material (AFSM) in neurons and robust neuroinflammation. Converging lines of evidence suggest that in addition to cellular waste accumulation, the symptomology of CLN1 corresponds with disruption of synaptic processes. Indeed, loss of Ppt1 function in cortical neurons dysregulates the synaptic incorporation of the GluA1 AMPA receptor (AMPAR) subunit during a type of synaptic plasticity called synaptic scaling. However, the mechanisms causing this aberration are unknown. Here, we used the Ppt1-/- mouse model (both sexes) to further investigate how Ppt1 regulates synaptic plasticity and how its disruption affects downstream signaling pathways. To this end, we performed a palmitoyl-proteomic screen, which provoked the discovery that Akap5 is excessively palmitoylated at Ppt1-/- synapses. Extending our previous data, in vivo induction of synaptic scaling, which is regulated by Akap5, caused an excessive upregulation of GluA1 in Ppt1-/- mice. This synaptic change was associated with exacerbated disease pathology. Furthermore, the Akap5- and inflammation-associated transcriptional regulator, nuclear factor of activated T cells (NFAT), was sensitized in Ppt1-/- cortical neurons. Suppressing the upstream regulator of NFAT activation, calcineurin, with the FDA-approved therapeutic FK506 (Tacrolimus) modestly improved neuroinflammation in Ppt1-/- mice. These findings indicate that the absence of depalmitoylation stifles synaptic protein trafficking and contributes to neuroinflammation via an Akap5-associated mechanism.
Collapse
Affiliation(s)
- Kevin P. Koster
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Zach Fyke
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Thu T. A. Nguyen
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Amanda Niqula
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | | | - Kevin M. Woolfrey
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Mark L. Dell’Acqua
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Stephanie M. Cologna
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Akira Yoshii
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
- Department of Pediatrics, University of Illinois at Chicago, Chicago, IL, United States
- Department of Neurology, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
2
|
Gammaldi N, Doccini S, Bernardi S, Marchese M, Cecchini M, Ceravolo R, Rapposelli S, Ratto GM, Rocchiccioli S, Pezzini F, Santorelli FM. Dem-Aging: autophagy-related pathologies and the "two faces of dementia". Neurogenetics 2024; 25:39-46. [PMID: 38117343 DOI: 10.1007/s10048-023-00739-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023]
Abstract
Neuronal ceroid lipofuscinosis (NCL) is an umbrella term referring to the most frequent childhood-onset neurodegenerative diseases, which are also the main cause of childhood dementia. Although the molecular mechanisms underlying the NCLs remain elusive, evidence is increasingly pointing to shared disease pathways and common clinical features across the disease forms. The characterization of pathological mechanisms, disease modifiers, and biomarkers might facilitate the development of treatment strategies.The DEM-AGING project aims to define molecular signatures in NCL and expedite biomarker discovery with a view to identifying novel targets for monitoring disease status and progression and accelerating clinical trial readiness in this field. In this study, we fused multiomic assessments in established NCL models with similar data on the more common late-onset neurodegenerative conditions in order to test the hypothesis of shared molecular fingerprints critical to the underlying pathological mechanisms. Our aim, ultimately, is to combine data analysis, cell models, and omic strategies in an effort to trace new routes to therapies that might readily be applied in the most common forms of dementia.
Collapse
Affiliation(s)
- N Gammaldi
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, Pisa, Italy
| | - S Doccini
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, Pisa, Italy.
| | - S Bernardi
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, Pisa, Italy
- Department of Biology, University of Pisa, Pisa, Italy
| | - M Marchese
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, Pisa, Italy
| | - M Cecchini
- National Enterprise for nanoScience and nanoTechnology (NEST), Nanoscience Institute-National Research Council (CNR) and Scuola Normale Superiore, Pisa, Italy
- Scuola Normale Superiore, Pisa, Italy
| | - R Ceravolo
- Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - S Rapposelli
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - G M Ratto
- National Enterprise for nanoScience and nanoTechnology (NEST), Nanoscience Institute-National Research Council (CNR) and Scuola Normale Superiore, Pisa, Italy
| | - S Rocchiccioli
- Clinical Physiology-National Research Council (IFC-CNR), Pisa, Italy
| | - F Pezzini
- Department of Surgery, Dentistry, Pediatrics and Gynecology (Child Neurology and Psychiatry), University of Verona, Verona, Italy
| | - F M Santorelli
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, Pisa, Italy
| |
Collapse
|
3
|
Gammaldi N, Pezzini F, Michelucci E, Di Giorgi N, Simonati A, Rocchiccioli S, Santorelli FM, Doccini S. Integrative human and murine multi-omics: Highlighting shared biomarkers in the neuronal ceroid lipofuscinoses. Neurobiol Dis 2023; 189:106349. [PMID: 37952681 DOI: 10.1016/j.nbd.2023.106349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023] Open
Abstract
Neuronal ceroid lipofuscinosis (NCL) is a group of neurodegenerative disorders whose molecular mechanisms remain largely unknown. Omics approaches are among the methods that generate new information on modifying factors and molecular signatures. Moreover, omics data integration can address the need to progressively expand knowledge around the disease and pinpoint specific proteins to promote as candidate biomarkers. In this work, we integrated a total of 62 proteomic and transcriptomic datasets originating from humans and mice, employing a new approach able to define dysregulated processes across species, stages and NCL forms. Moreover, we selected a pool of differentially expressed proteins and genes as species- and form-related biomarkers of disease status/progression and evaluated local and spatial differences in most affected brain regions. Our results offer promising targets for potential new therapeutic strategies and reinforce the hypothesis of a connection between NCLs and other forms of dementia, particularly Alzheimer's disease.
Collapse
Affiliation(s)
- N Gammaldi
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy; Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation - Pisa, Italy
| | - F Pezzini
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, Verona, Italy
| | - E Michelucci
- Clinical Physiology-National Research Council (IFC-CNR), Pisa, Italy
| | - N Di Giorgi
- Clinical Physiology-National Research Council (IFC-CNR), Pisa, Italy
| | - A Simonati
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, Verona, Italy
| | - S Rocchiccioli
- Clinical Physiology-National Research Council (IFC-CNR), Pisa, Italy
| | - F M Santorelli
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation - Pisa, Italy
| | - S Doccini
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation - Pisa, Italy.
| |
Collapse
|
4
|
Kajana X, Spinelli S, Garbarino A, Balagura G, Bartolucci M, Petretto A, Pavanello M, Candiano G, Panfoli I, Bruschi M. Identification of Central Nervous System Oncologic Disease Biomarkers in EVs from Cerebrospinal Fluid (CSF) of Pediatric Patients: A Pilot Neuro-Proteomic Study. Biomolecules 2023; 13:1730. [PMID: 38136601 PMCID: PMC10741637 DOI: 10.3390/biom13121730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/17/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Cerebrospinal fluid (CSF) is a biochemical-clinical window into the brain. Unfortunately, its wide dynamic range, low protein concentration, and small sample quantity significantly limit the possibility of using it routinely. Extraventricular drainage (EVD) of CSF allows us to solve quantitative problems and to study the biological role of extracellular vesicles (EVs). In this study, we implemented bioinformatic analysis of our previous data of EVD of CSF and its EVs obtained from congenital hydrocephalus with the aim of identifying a comprehensive list of potential tumor and non-tumor biomarkers of central nervous system diseases. Among all proteins identified, those enriched in EVs are associated with synapses, synaptosomes, and nervous system diseases including gliomas, embryonal tumors, and epilepsy. Among these EV-enriched proteins, given the broad consensus present in the recent scientific literature, we validated syntaxin-binding protein 1 (STXBP1) as a marker of malignancy in EVD of CSF and its EVs from patients with pilocytic astrocytoma and medulloblastoma. Our results show that STXBP1 is negatively enriched in EVs compared to non-tumor diseases and its downregulation correlates with adverse outcomes. Further experiments are needed to validate this and other EV markers in the blood of pediatric patients for translational medicine applications.
Collapse
Affiliation(s)
- Xhuliana Kajana
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy (S.S.)
| | - Sonia Spinelli
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy (S.S.)
| | - Andrea Garbarino
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy (S.S.)
| | - Ganna Balagura
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, University of Genoa, 16132 Genoa, Italy
| | - Martina Bartolucci
- Proteomics and Clinical Metabolomics Unit at the Core Facilities, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (M.B.)
| | - Andrea Petretto
- Proteomics and Clinical Metabolomics Unit at the Core Facilities, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (M.B.)
| | - Marco Pavanello
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy (S.S.)
| | - Giovanni Candiano
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy (S.S.)
| | - Isabella Panfoli
- Department of Pharmacy (DIFAR), School of Medical and Pharmaceutical Sciences, University of Genoa, 16132 Genoa, Italy
| | - Maurizio Bruschi
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy (S.S.)
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
| |
Collapse
|
5
|
Rus CM, Polla DL, Di Bucchianico S, Fischer S, Hartkamp J, Hartmann G, Alpagu Y, Cozma C, Zimmermann R, Bauer P. Neuronal progenitor cells-based metabolomics study reveals dysregulated lipid metabolism and identifies putative biomarkers for CLN6 disease. Sci Rep 2023; 13:18550. [PMID: 37899458 PMCID: PMC10613621 DOI: 10.1038/s41598-023-45789-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 10/24/2023] [Indexed: 10/31/2023] Open
Abstract
Neuronal ceroid lipofuscinosis 6 (CLN6) is a rare and fatal autosomal recessive disease primarily affecting the nervous system in children. It is caused by a pathogenic mutation in the CLN6 gene for which no therapy is available. Employing an untargeted metabolomics approach, we analyzed the metabolic changes in CLN6 subjects to see if this system could potentially yield biomarkers for diagnosis and monitoring disease progression. Neuronal-like cells were derived from human fibroblast lines from CLN6-affected subjects (n = 3) and controls (wild type, n = 3). These were used to assess the potential of a neuronal-like cell-based metabolomics approach to identify CLN6 distinctive and specific biomarkers. The most impacted metabolic profile is associated with sphingolipids, glycerophospholipids metabolism, and calcium signaling. Over 2700 spectral features were screened, and fifteen metabolites were identified that differed significantly between both groups, including the sphingolipids C16 GlcCer, C24 GlcCer, C24:1 GlcCer and glycerophospholipids PG 40:6 and PG 40:7. Of note, these fifteen metabolites were downregulated in the CLN6 disease group. This study is the first to analyze the metabolome of neuronal-like cells with a pathogenic mutation in the CLN6 gene and to provide insights into their metabolomic alterations. This could allow for the development of novel biomarkers for monitoring CLN6 disease.
Collapse
Affiliation(s)
- Corina-Marcela Rus
- Centogene GmbH, Am Strande 7, 18057, Rostock, Germany.
- Joint Mass Spectrometry Center, Chair of Analytical Chemistry, University of Rostock, Albert-Einstein Straße 27, 18059, Rostock, Germany.
| | | | - Sebastiano Di Bucchianico
- Joint Mass Spectrometry Center, Chair of Analytical Chemistry, University of Rostock, Albert-Einstein Straße 27, 18059, Rostock, Germany
- Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- Department Life, Light & Matter, University of Rostock, Albert-Einstein Straße 25, 18059, Rostock, Germany
| | | | - Jörg Hartkamp
- Centogene GmbH, Am Strande 7, 18057, Rostock, Germany
| | | | - Yunus Alpagu
- Centogene GmbH, Am Strande 7, 18057, Rostock, Germany
| | - Claudia Cozma
- Centogene GmbH, Am Strande 7, 18057, Rostock, Germany
| | - Ralf Zimmermann
- Joint Mass Spectrometry Center, Chair of Analytical Chemistry, University of Rostock, Albert-Einstein Straße 27, 18059, Rostock, Germany
- Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- Department Life, Light & Matter, University of Rostock, Albert-Einstein Straße 25, 18059, Rostock, Germany
| | - Peter Bauer
- Centogene GmbH, Am Strande 7, 18057, Rostock, Germany
- Department of Medicine, Clinic III, Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany
| |
Collapse
|
6
|
Dang Do AN, Sleat DE, Campbell K, Johnson NL, Zheng H, Wassif CA, Dale RK, Porter FD. Cerebrospinal Fluid Protein Biomarker Discovery in CLN3. J Proteome Res 2023; 22:2493-2508. [PMID: 37338096 PMCID: PMC11095826 DOI: 10.1021/acs.jproteome.3c00199] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Syndromic CLN3-Batten is a fatal, pediatric, neurodegenerative disease caused by variants in CLN3, which encodes the endolysosomal transmembrane CLN3 protein. No approved treatment for CLN3 is currently available. The protracted and asynchronous disease presentation complicates the evaluation of potential therapies using clinical disease progression parameters. Biomarkers as surrogates to measure the progression and effect of potential therapeutics are needed. We performed proteomic discovery studies using cerebrospinal fluid (CSF) samples from 28 CLN3-affected and 32 age-similar non-CLN3 individuals. Proximal extension assay (PEA) of 1467 proteins and untargeted data-dependent mass spectrometry [MS; MassIVE FTP server (ftp://MSV000090147@massive.ucsd.edu)] were used to generate orthogonal lists of protein marker candidates. At an adjusted p-value of <0.1 and threshold CLN3/non-CLN3 fold-change ratio of 1.5, PEA identified 54 and MS identified 233 candidate biomarkers. Some of these (NEFL, CHIT1) have been previously linked with other neurologic conditions. Others (CLPS, FAM217B, QRICH2, KRT16, ZNF333) appear to be novel. Both methods identified 25 candidate biomarkers, including CHIT1, NELL1, and ISLR2 which had absolute fold-change ratios >2. NELL1 and ISLR2 regulate axonal development in neurons and are intriguing new candidates for further investigation in CLN3. In addition to identifying candidate proteins for CLN3 research, this study provides a comparison of two large-scale proteomic discovery methods in CSF.
Collapse
Affiliation(s)
- An N. Dang Do
- Unit on Cellular Stress in Development and Diseases, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - David E. Sleat
- Center for Advanced Biotechnology and Medicine, Rutgers Biomedical Health Sciences, Piscataway, New Jersey 08854, United States
- Department of Biochemistry and Molecular Biology, Robert-Wood Johnson Medical School, Rutgers Biomedical Health Sciences, Piscataway, New Jersey 08854, United States
| | - Kiersten Campbell
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Nicholas L. Johnson
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Haiyan Zheng
- Center for Advanced Biotechnology and Medicine, Rutgers Biomedical Health Sciences, Piscataway, New Jersey 08854, United States
| | - Christopher A. Wassif
- Section on Molecular Dysmorphology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Ryan K. Dale
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Forbes D. Porter
- Section on Molecular Dysmorphology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
7
|
Sleat DE, Banach-Petrosky W, Larrimore KE, Nemtsova Y, Wiseman JA, Najafi A, Johnson D, Poole TA, Takahashi K, Cooper JD, Lobel P. A mouse mutant deficient in both neuronal ceroid lipofuscinosis-associated proteins CLN3 and TPP1. J Inherit Metab Dis 2023; 46:720-734. [PMID: 37078466 PMCID: PMC10330656 DOI: 10.1002/jimd.12619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 04/21/2023]
Abstract
Late-infantile neuronal ceroid lipofuscinosis (LINCL) and juvenile neuronal ceroid lipofuscinosis (JNCL) are inherited neurodegenerative diseases caused by mutations in the genes encoding lysosomal proteins tripeptidyl peptidase 1 (TPP1) and CLN3 protein, respectively. TPP1 is well-understood and, aided by animal models that accurately recapitulate the human disease, enzyme replacement therapy has been approved and other promising therapies are emerging. In contrast, there are no effective treatments for JNCL, partly because the function of the CLN3 protein remains unknown but also because animal models have attenuated disease and lack robust survival phenotypes. Mouse models for LINCL and JNCL, with mutations in Tpp1 and Cln3, respectively, have been thoroughly characterized but the phenotype of a double Cln3/Tpp1 mutant remains unknown. We created this double mutant and find that its phenotype is essentially indistinguishable from the single Tpp1-/- mutant in terms of survival and brain pathology. Analysis of brain proteomic changes in the single Tpp1-/- and double Cln3-/- ;Tpp1-/- mutants indicates largely overlapping sets of altered proteins and reinforces earlier studies that highlight GPNMB, LYZ2, and SERPINA3 as promising biomarker candidates in LINCL while several lysosomal proteins including SMPD1 and NPC1 appear to be altered in the Cln3-/- animals. An unexpected finding was that Tpp1 heterozygosity significantly decreased lifespan of the Cln3-/- mouse. The truncated survival of this mouse model makes it potentially useful in developing therapies for JNCL using survival as an endpoint. In addition, this model may also provide insights into CLN3 protein function and its potential functional interactions with TPP1.
Collapse
Affiliation(s)
- David E. Sleat
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, United States of America
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers Biomedical Health Sciences, Rutgers University, Piscataway, NJ, United States of America
| | - Whitney Banach-Petrosky
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, United States of America
| | - Katherine E. Larrimore
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, United States of America
| | - Yuliya Nemtsova
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, United States of America
| | - Jennifer A. Wiseman
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, United States of America
| | - Allison Najafi
- The Lundquist Institute (formerly Los Angeles Biomedical Research Institute), Harbor-UCLA Medical Center, and David Geffen School of Medicine, University of California, Los Angeles, Torrance, CA United States of America
| | - Dymonn Johnson
- Departments of Pediatrics, Division of Genetics and Genomic Medicine, Washington University in St Louis, School of Medicine, St Louis, MO, United States of America
| | - Timothy A. Poole
- Departments of Pediatrics, Division of Genetics and Genomic Medicine, Washington University in St Louis, School of Medicine, St Louis, MO, United States of America
| | - Keigo Takahashi
- Departments of Pediatrics, Division of Genetics and Genomic Medicine, Washington University in St Louis, School of Medicine, St Louis, MO, United States of America
| | - Jonathan D. Cooper
- The Lundquist Institute (formerly Los Angeles Biomedical Research Institute), Harbor-UCLA Medical Center, and David Geffen School of Medicine, University of California, Los Angeles, Torrance, CA United States of America
- Departments of Pediatrics, Division of Genetics and Genomic Medicine, Washington University in St Louis, School of Medicine, St Louis, MO, United States of America
- Genetics, Division of Genetics and Genomic Medicine, Washington University in St Louis, School of Medicine, St Louis, MO, United States of America
- Neurology, Division of Genetics and Genomic Medicine, Washington University in St Louis, School of Medicine, St Louis, MO, United States of America
| | - Peter Lobel
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, United States of America
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers Biomedical Health Sciences, Rutgers University, Piscataway, NJ, United States of America
| |
Collapse
|
8
|
Arora D, Hackenberg Y, Li J, Winter D. Updates on the study of lysosomal protein dynamics: possibilities for the clinic. Expert Rev Proteomics 2023; 20:47-55. [PMID: 36919490 DOI: 10.1080/14789450.2023.2190515] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
INTRODUCTION The lysosome is the main degradative organelle of almost all mammalian cells, fulfilling important functions in macromolecule recycling, metabolism, and signaling. Lysosomal dysfunction is connected to a continuously growing number of pathologic conditions, and lysosomal proteins present potential biomarkers for a variety of diseases. Therefore, there is an increasing interest in their analysis in patient samples. AREAS COVERED We provide an overview of OMICs studies which identified lysosomal proteins as potential biomarkers for pathological conditions, covering proteomics, genomics, and transcriptomics approaches, identified through PubMed searches. With respect to discovery proteomics analyses, mainly lysosomal luminal and associated proteins were detected, while membrane proteins were found less frequently. Comprehensive coverage of the lysosomal proteome was only achieved by ultra-deep-coverage studies, but targeted approaches allowed for the reproducible quantification of lysosomal proteins in diverse sample types. EXPERT OPINION The low abundance of lysosomal proteins complicates their reproducible analysis in patient samples. Whole proteome shotgun analyses fail in many instances to cover the lysosomal proteome, which is due to under-sampling and/or a lack of sensitivity. With the current state of the art, targeted proteomics assays provide the best performance for the characterization of lysosomal proteins in patient samples.
Collapse
Affiliation(s)
- Dhriti Arora
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Yannic Hackenberg
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Jiaran Li
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Dominic Winter
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
9
|
Chear S, Perry S, Wilson R, Bindoff A, Talbot J, Ware TL, Grubman A, Vickers JC, Pébay A, Ruddle JB, King AE, Hewitt AW, Cook AL. Lysosomal alterations and decreased electrophysiological activity in CLN3 disease patient-derived cortical neurons. Dis Model Mech 2022; 15:dmm049651. [PMID: 36453132 PMCID: PMC10655821 DOI: 10.1242/dmm.049651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 11/17/2022] [Indexed: 12/02/2022] Open
Abstract
CLN3 disease is a lysosomal storage disorder associated with fatal neurodegeneration that is caused by mutations in CLN3, with most affected individuals carrying at least one allele with a 966 bp deletion. Using CRISPR/Cas9, we corrected the 966 bp deletion mutation in human induced pluripotent stem cells (iPSCs) of a compound heterozygous patient (CLN3 Δ 966 bp and E295K). We differentiated these isogenic iPSCs, and iPSCs from an unrelated healthy control donor, to neurons and identified disease-related changes relating to protein synthesis, trafficking and degradation, and in neuronal activity, which were not apparent in CLN3-corrected or healthy control neurons. CLN3 neurons showed numerous membrane-bound vacuoles containing diverse storage material and hyperglycosylation of the lysosomal LAMP1 protein. Proteomic analysis showed increase in lysosomal-related proteins and many ribosomal subunit proteins in CLN3 neurons, accompanied by downregulation of proteins related to axon guidance and endocytosis. CLN3 neurons also had lower electrophysical activity as recorded using microelectrode arrays. These data implicate inter-related pathways in protein homeostasis and neurite arborization as contributing to CLN3 disease, and which could be potential targets for therapy.
Collapse
Affiliation(s)
- Sueanne Chear
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS 7001, Australia
| | - Sharn Perry
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS 7001, Australia
| | - Richard Wilson
- Central Science Laboratory, University of Tasmania, Hobart, TAS 7001, Australia
| | - Aidan Bindoff
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS 7001, Australia
| | - Jana Talbot
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS 7001, Australia
| | - Tyson L. Ware
- Department of Paediatrics, Royal Hobart Hospital, Hobart, TAS 7000, Australia
| | - Alexandra Grubman
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - James C. Vickers
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS 7001, Australia
| | - Alice Pébay
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Surgery, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC 3010, Australia
| | - Jonathan B. Ruddle
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia
| | - Anna E. King
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS 7001, Australia
| | - Alex W. Hewitt
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7001, Australia
| | - Anthony L. Cook
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS 7001, Australia
| |
Collapse
|
10
|
Werlen G, Li ML, Tottone L, da Silva-Diz V, Su X, Herranz D, Jacinto E. Dietary glucosamine overcomes the defects in αβ-T cell ontogeny caused by the loss of de novo hexosamine biosynthesis. Nat Commun 2022; 13:7404. [PMID: 36456551 PMCID: PMC9715696 DOI: 10.1038/s41467-022-35014-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 11/14/2022] [Indexed: 12/02/2022] Open
Abstract
T cell development requires the coordinated rearrangement of T cell receptor (TCR) gene segments and the expression of either αβ or γδ TCR. However, whether and how de novo synthesis of nutrients contributes to thymocyte commitment to either lineage remains unclear. Here, we find that T cell-specific deficiency in glutamine:fructose-6-phosphate aminotransferase 1 (GFAT1), the rate-limiting enzyme of the de novo hexosamine biosynthesis pathway (dn-HBP), attenuates hexosamine levels, blunts N-glycosylation of TCRβ chains, reduces surface expression of key developmental receptors, thus impairing αβ-T cell ontogeny. GFAT1 deficiency triggers defects in N-glycans, increases the unfolded protein response, and elevates γδ-T cell numbers despite reducing γδ-TCR diversity. Enhancing TCR expression or PI3K/Akt signaling does not reverse developmental defects. Instead, dietary supplementation with the salvage metabolite, glucosamine, and an α-ketoglutarate analogue partially restores αβ-T cell development in GFAT1T-/- mice, while fully rescuing it in ex vivo fetal thymic organ cultures. Thus, dn-HBP fulfils, while salvage nutrients partially satisfy, the elevated demand for hexosamines during early T cell development.
Collapse
Affiliation(s)
- Guy Werlen
- grid.430387.b0000 0004 1936 8796Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State Univ. of New Jersey, Piscataway, NJ 08854 USA
| | - Mei-Ling Li
- grid.430387.b0000 0004 1936 8796Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State Univ. of New Jersey, Piscataway, NJ 08854 USA
| | - Luca Tottone
- grid.430387.b0000 0004 1936 8796Dept. of Pharmacology and Pediatrics, Robert Wood Johnson Medical School, and Rutgers Cancer Institute of New Jersey, Rutgers, The State Univ. of New Jersey, New Brunswick, NJ 08901 USA ,grid.26790.3a0000 0004 1936 8606Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, FL Miami, 33136 USA
| | - Victoria da Silva-Diz
- grid.430387.b0000 0004 1936 8796Dept. of Pharmacology and Pediatrics, Robert Wood Johnson Medical School, and Rutgers Cancer Institute of New Jersey, Rutgers, The State Univ. of New Jersey, New Brunswick, NJ 08901 USA
| | - Xiaoyang Su
- grid.430387.b0000 0004 1936 8796Dept. of Medicine, Div. of Endocrinology, Child Health Inst. of New Jersey, Rutgers, The State Univ. of New Jersey, New Brunswick, NJ 08901 USA
| | - Daniel Herranz
- grid.430387.b0000 0004 1936 8796Dept. of Pharmacology and Pediatrics, Robert Wood Johnson Medical School, and Rutgers Cancer Institute of New Jersey, Rutgers, The State Univ. of New Jersey, New Brunswick, NJ 08901 USA
| | - Estela Jacinto
- grid.430387.b0000 0004 1936 8796Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State Univ. of New Jersey, Piscataway, NJ 08854 USA
| |
Collapse
|
11
|
An Optimized Comparative Proteomic Approach as a Tool in Neurodegenerative Disease Research. Cells 2022; 11:cells11172653. [PMID: 36078061 PMCID: PMC9454658 DOI: 10.3390/cells11172653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022] Open
Abstract
Recent advances in proteomic technologies now allow unparalleled assessment of the molecular composition of a wide range of sample types. However, the application of such technologies and techniques should not be undertaken lightly. Here, we describe why the design of a proteomics experiment itself is only the first step in yielding high-quality, translatable results. Indeed, the effectiveness and/or impact of the majority of contemporary proteomics screens are hindered not by commonly considered technical limitations such as low proteome coverage but rather by insufficient analyses. Proteomic experimentation requires a careful methodological selection to account for variables from sample collection, through to database searches for peptide identification to standardised post-mass spectrometry options directed analysis workflow, which should be adjusted for each study, from determining when and how to filter proteomic data to choosing holistic versus trend-wise analyses for biologically relevant patterns. Finally, we highlight and discuss the difficulties inherent in the modelling and study of the majority of progressive neurodegenerative conditions. We provide evidence (in the context of neurodegenerative research) for the benefit of undertaking a comparative approach through the application of the above considerations in the alignment of publicly available pre-existing data sets to identify potential novel regulators of neuronal stability.
Collapse
|
12
|
Brudvig JJ, Swier VJ, Johnson TB, Cain JC, Pratt M, Rechtzigel M, Leppert H, Dang Do AN, Porter FD, Weimer JM. Glycerophosphoinositol is Elevated in Blood Samples From CLN3Δex7-8 pigs, Cln3Δex7-8 Mice, and CLN3-Affected Individuals. Biomark Insights 2022; 17:11772719221107765. [PMID: 36212622 PMCID: PMC9535353 DOI: 10.1177/11772719221107765] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/01/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction: CLN3 Batten disease is a rare pediatric neurodegenerative lysosomal disorder
caused by biallelic disease-associated variants in CLN3.
Despite decades of intense research, specific biofluid biomarkers of disease
status have not been reported, hindering clinical development of therapies.
Thus, we sought to determine whether individuals with CLN3 Batten disease
have elevated levels of specific metabolites in blood. Methods: We performed an exhaustive metabolomic screen using serum samples from a
novel minipig model of CLN3 Batten disease and validated findings in
CLN3 pig serum and CSF and Cln3 mouse
serum. We further validate biomarker candidates with a retrospective
analysis of plasma and CSF samples collected from participants in a natural
history study. Plasma samples were evaluated from 22 phenotyped individuals
with CLN3 disease, 15 heterozygous carriers, and 6 non-affected non-carriers
(NANC). Results: CLN3 pig serum samples from 4 ages exhibited large elevations in 4
glycerophosphodiester species: glycerophosphoinositol (GPI),
glycerophosphoethanolamine (GPE), glycerophosphocholine (GPC), and
glycerophosphoserine (GPS). GPI and GPE exhibited the largest elevations,
with similar elevations found in CLN3 pig CSF and
Cln3 mouse serum. In plasma samples from individuals
with CLN3 disease, glycerophosphoethanolamine and glycerophosphoinositol
were significantly elevated with glycerophosphoinositol exhibiting the
clearest separation (mean 0.1338 vs 0.04401 nmol/mL for non-affected
non-carriers). Glycerophosphoinositol demonstrated excellent sensitivity and
specificity as a biomarker, with a receiver operating characteristic area
under the curve of 0.9848 (P = .0003). Conclusions: GPE and GPI could have utility as biomarkers of CLN3 disease status. GPI, in
particular, shows consistent elevations across a diverse cohort of
individuals with CLN3. This raises the potential to use these biomarkers as
a blood-based diagnostic test or as an efficacy measure for
disease-modifying therapies.
Collapse
Affiliation(s)
- Jon J Brudvig
- Pediatrics & Rare Diseases, Sanford Research, Sioux Falls, SD, USA
- Pediatrics, University of South Dakota Sanford School of Medicine, Vermillion, SD, USA
- Discovery Science, Amicus Therapeutics, Philadelphia, PA, USA
| | - Vicki J Swier
- Pediatrics & Rare Diseases, Sanford Research, Sioux Falls, SD, USA
| | - Tyler B Johnson
- Pediatrics & Rare Diseases, Sanford Research, Sioux Falls, SD, USA
- Discovery Science, Amicus Therapeutics, Philadelphia, PA, USA
| | - Jacob C Cain
- Pediatrics & Rare Diseases, Sanford Research, Sioux Falls, SD, USA
- Discovery Science, Amicus Therapeutics, Philadelphia, PA, USA
| | - Melissa Pratt
- Pediatrics & Rare Diseases, Sanford Research, Sioux Falls, SD, USA
| | - Mitch Rechtzigel
- Pediatrics & Rare Diseases, Sanford Research, Sioux Falls, SD, USA
| | - Hannah Leppert
- Pediatrics & Rare Diseases, Sanford Research, Sioux Falls, SD, USA
| | - An N Dang Do
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Forbes D Porter
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Jill M Weimer
- Pediatrics & Rare Diseases, Sanford Research, Sioux Falls, SD, USA
- Pediatrics, University of South Dakota Sanford School of Medicine, Vermillion, SD, USA
- Discovery Science, Amicus Therapeutics, Philadelphia, PA, USA
| |
Collapse
|
13
|
Li W, Cologna SM. Mass spectrometry-based proteomics in neurodegenerative lysosomal storage disorders. Mol Omics 2022; 18:256-278. [PMID: 35343995 PMCID: PMC9098683 DOI: 10.1039/d2mo00004k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The major function of the lysosome is to degrade unwanted materials such as lipids, proteins, and nucleic acids; therefore, deficits of the lysosomal system can result in improper degradation and trafficking of these biomolecules. Diseases associated with lysosomal failure can be lethal and are termed lysosomal storage disorders (LSDs), which affect 1 in 5000 live births collectively. LSDs are inherited metabolic diseases caused by mutations in single lysosomal and non-lysosomal proteins and resulting in the subsequent accumulation of macromolecules within. Most LSD patients present with neurodegenerative clinical symptoms, as well as damage in other organs. The discovery of new biomarkers is necessary to understand and monitor these diseases and to track therapeutic progress. Over the past ten years, mass spectrometry (MS)-based proteomics has flourished in the biomarker studies in many diseases, including neurodegenerative, and more specifically, LSDs. In this review, biomarkers of disease pathophysiology and monitoring of LSDs revealed by MS-based proteomics are discussed, including examples from Niemann-Pick disease type C, Fabry disease, neuronal ceroid-lipofuscinoses, mucopolysaccharidosis, Krabbe disease, mucolipidosis, and Gaucher disease.
Collapse
Affiliation(s)
- Wenping Li
- Department of Chemistry, University of Illinois at Chicago, USA.
| | | |
Collapse
|
14
|
Gorenberg EL, Massaro Tieze S, Yücel B, Zhao HR, Chou V, Wirak GS, Tomita S, Lam TT, Chandra SS. Identification of substrates of palmitoyl protein thioesterase 1 highlights roles of depalmitoylation in disulfide bond formation and synaptic function. PLoS Biol 2022; 20:e3001590. [PMID: 35358180 PMCID: PMC9004782 DOI: 10.1371/journal.pbio.3001590] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 04/12/2022] [Accepted: 03/02/2022] [Indexed: 12/30/2022] Open
Abstract
Loss-of-function mutations in the depalmitoylating enzyme palmitoyl protein thioesterase 1 (PPT1) cause neuronal ceroid lipofuscinosis (NCL), a devastating neurodegenerative disease. The substrates of PPT1 are largely undescribed, posing a limitation on molecular dissection of disease mechanisms and therapeutic development. Here, we provide a resource identifying >100 novel PPT1 substrates. We utilized Acyl Resin-Assisted Capture (Acyl RAC) and mass spectrometry to identify proteins with increased in vivo palmitoylation in PPT1 knockout (KO) mouse brains. We then validated putative substrates through direct depalmitoylation with recombinant PPT1. This stringent screen elucidated diverse PPT1 substrates at the synapse, including channels and transporters, G-protein–associated molecules, endo/exocytic components, synaptic adhesion molecules, and mitochondrial proteins. Cysteine depalmitoylation sites in transmembrane PPT1 substrates frequently participate in disulfide bonds in the mature protein. We confirmed that depalmitoylation plays a role in disulfide bond formation in a tertiary screen analyzing posttranslational modifications (PTMs). Collectively, these data highlight the role of PPT1 in mediating synapse functions, implicate molecular pathways in the etiology of NCL and other neurodegenerative diseases, and advance our basic understanding of the purpose of depalmitoylation.
Collapse
Affiliation(s)
- Erica L. Gorenberg
- Departments of Neurology and Neuroscience, Yale University, New Haven, Connecticut, United States of America
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut, United States of America
| | - Sofia Massaro Tieze
- Departments of Neurology and Neuroscience, Yale University, New Haven, Connecticut, United States of America
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut, United States of America
| | - Betül Yücel
- Departments of Neurology and Neuroscience, Yale University, New Haven, Connecticut, United States of America
| | - Helen R. Zhao
- Departments of Neurology and Neuroscience, Yale University, New Haven, Connecticut, United States of America
| | - Vicky Chou
- Departments of Neurology and Neuroscience, Yale University, New Haven, Connecticut, United States of America
| | - Gregory S. Wirak
- Departments of Neurology and Neuroscience, Yale University, New Haven, Connecticut, United States of America
| | - Susumu Tomita
- Departments of Neuroscience and of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut, United States of America
| | - TuKiet T. Lam
- Departments of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
- Keck MS & Proteomics Resource, WM Keck Biotechnology Resource Laboratory, New Haven, Connecticut, United States of America
| | - Sreeganga S. Chandra
- Departments of Neurology and Neuroscience, Yale University, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
15
|
Dansu DK, Liang J, Selcen I, Zheng H, Moore DF, Casaccia P. PRMT5 Interacting Partners and Substrates in Oligodendrocyte Lineage Cells. Front Cell Neurosci 2022; 16:820226. [PMID: 35370564 PMCID: PMC8968030 DOI: 10.3389/fncel.2022.820226] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/04/2022] [Indexed: 11/23/2022] Open
Abstract
The protein arginine methyl transferase PRMT5 is an enzyme expressed in oligodendrocyte lineage cells and responsible for the symmetric methylation of arginine residues on histone tails. Previous work from our laboratory identified PRMT5 as critical for myelination, due to its transcriptional regulation of genes involved in survival and early stages of differentiation. However, besides its nuclear localization, PRMT5 is found at high levels in the cytoplasm of several cell types, including oligodendrocyte progenitor cells (OPCs) and yet, its interacting partners in this lineage, remain elusive. By using mass spectrometry on protein eluates from extracts generated from primary oligodendrocyte lineage cells and immunoprecipitated with PRMT5 antibodies, we identified 1196 proteins as PRMT5 interacting partners. These proteins were related to molecular functions such as RNA binding, ribosomal structure, cadherin and actin binding, nucleotide and protein binding, and GTP and GTPase activity. We then investigated PRMT5 substrates using iTRAQ-based proteomics on cytosolic and nuclear protein extracts from CRISPR-PRMT5 knockdown immortalized oligodendrocyte progenitors compared to CRISPR-EGFP controls. This analysis identified a similar number of peptides in the two subcellular fractions and a total number of 57 proteins with statistically decreased symmetric methylation of arginine residues in the CRISPR-PRMT5 knockdown compared to control. Several PRMT5 substrates were in common with cancer cell lines and related to RNA processing, splicing and transcription. In addition, we detected ten oligodendrocyte lineage specific substrates, corresponding to proteins with high expression levels in neural tissue. They included: PRC2C, a proline-rich protein involved in methyl-RNA binding, HNRPD an RNA binding protein involved in regulation of RNA stability, nuclear proteins involved in transcription and other proteins related to migration and actin cytoskeleton. Together, these results highlight a cell-specific role of PRMT5 in OPC in regulating several other cellular processes, besides RNA splicing and metabolism.
Collapse
Affiliation(s)
- David K. Dansu
- Neuroscience Initiative, Advanced Science Research Center, CUNY, New York, NY, United States,Graduate Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY, United States
| | - Jialiang Liang
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ipek Selcen
- Neuroscience Initiative, Advanced Science Research Center, CUNY, New York, NY, United States,Graduate Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY, United States
| | - Haiyan Zheng
- Center for Advanced Biotechnology and Medicine, Piscataway, NJ, United States,Department of Biochemistry and Molecular Biology, Robert-Wood Johnson Medical School, Rutgers Biomedical and Health Sciences, Piscataway, NJ, United States
| | - Dirk F. Moore
- Department of Biostatistics, School of Public Health, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Patrizia Casaccia
- Neuroscience Initiative, Advanced Science Research Center, CUNY, New York, NY, United States,Graduate Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY, United States,*Correspondence: Patrizia Casaccia,
| |
Collapse
|
16
|
Pluvinage JV, Sun J, Claes C, Flynn RA, Haney MS, Iram T, Meng X, Lindemann R, Riley NM, Danhash E, Chadarevian JP, Tapp E, Gate D, Kondapavulur S, Cobos I, Chetty S, Pașca AM, Pașca SP, Berry-Kravis E, Bertozzi CR, Blurton-Jones M, Wyss-Coray T. The CD22-IGF2R interaction is a therapeutic target for microglial lysosome dysfunction in Niemann-Pick type C. Sci Transl Med 2021; 13:eabg2919. [PMID: 34851695 PMCID: PMC9067636 DOI: 10.1126/scitranslmed.abg2919] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Lysosome dysfunction is a shared feature of rare lysosomal storage diseases and common age-related neurodegenerative diseases. Microglia, the brain-resident macrophages, are particularly vulnerable to lysosome dysfunction because of the phagocytic stress of clearing dying neurons, myelin, and debris. CD22 is a negative regulator of microglial homeostasis in the aging mouse brain, and soluble CD22 (sCD22) is increased in the cerebrospinal fluid of patients with Niemann-Pick type C disease (NPC). However, the role of CD22 in the human brain remains unknown. In contrast to previous findings in mice, here, we show that CD22 is expressed by oligodendrocytes in the human brain and binds to sialic acid–dependent ligands on microglia. Using unbiased genetic and proteomic screens, we identify insulin-like growth factor 2 receptor (IGF2R) as the binding partner of sCD22 on human myeloid cells. Targeted truncation of IGF2R revealed that sCD22 docks near critical mannose 6-phosphate–binding domains, where it disrupts lysosomal protein trafficking. Interfering with the sCD22-IGF2R interaction using CD22 blocking antibodies ameliorated lysosome dysfunction in human NPC1 mutant induced pluripotent stem cell–derived microglia-like cells without harming oligodendrocytes in vitro. These findings reinforce the differences between mouse and human microglia and provide a candidate microglia-directed immunotherapeutic to treat NPC.
Collapse
Affiliation(s)
- John V. Pluvinage
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Jerry Sun
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Christel Claes
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA
| | - Ryan A. Flynn
- Stem Cell Program, Children’s Hospital Boston, Boston, MA 02115, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Michael S. Haney
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Tal Iram
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Xiangling Meng
- Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Rachel Lindemann
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Nicholas M. Riley
- Department of Chemistry and ChEM-H, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94304, USA
| | - Emma Danhash
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Jean Paul Chadarevian
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA
| | - Emma Tapp
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - David Gate
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Sravani Kondapavulur
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Inma Cobos
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Sundari Chetty
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Anca M. Pașca
- Division of Neonatology, Department of Pediatrics, Stanford University, Stanford, CA 94304, USA
| | - Sergiu P. Pașca
- Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA
| | | | - Carolyn R. Bertozzi
- Department of Chemistry and ChEM-H, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94304, USA
| | - Mathew Blurton-Jones
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA
- Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA 94304, USA
- Wu Tsai Neurosciences Institute, Stanford, CA, 94305, USA
| |
Collapse
|
17
|
Abstract
The neuronal ceroid lipofuscinoses (NCLs), collectively known as Batten disease, are a group of neurological diseases that affect all ages and ethnicities worldwide. There are 13 different subtypes of NCL, each caused by a mutation in a distinct gene. The NCLs are characterized by the accumulation of undigestible lipids and proteins in various cell types. This leads to progressive neurodegeneration and clinical symptoms including vision loss, progressive motor and cognitive decline, seizures, and premature death. These diseases have commonly been characterized by lysosomal defects leading to the accumulation of undigestible material but further research on the NCLs suggests that altered protein secretion may also play an important role. This has been strengthened by recent work in biomedical model organisms, including Dictyostelium discoideum, mice, and sheep. Research in D. discoideum has reported the extracellular localization of some NCL-related proteins and the effects of NCL-related gene loss on protein secretion during unicellular growth and multicellular development. Aberrant protein secretion has also been observed in mammalian models of NCL, which has allowed examination of patient-derived cerebrospinal fluid and urine for potential diagnostic and prognostic biomarkers. Accumulated evidence links seven of the 13 known NCL-related genes to protein secretion, suggesting that altered secretion is a common hallmark of multiple NCL subtypes. This Review highlights the impact of altered protein secretion in the NCLs, identifies potential biomarkers of interest and suggests that future work in this area can provide new therapeutic insight. Summary: This Review discusses work in different model systems and humans, examining the impact of altered protein secretion in the neuronal ceroid lipofuscinoses group of diseases to provide novel therapeutic insights.
Collapse
Affiliation(s)
- Robert J Huber
- Department of Biology, Trent University, Life & Health Sciences Building, 1600 West Bank Drive, Peterborough, Ontario K9L 0G2, Canada
| |
Collapse
|
18
|
Iwan K, Clayton R, Mills P, Csanyi B, Gissen P, Mole SE, Palmer DN, Mills K, Heywood WE. Urine proteomics analysis of patients with neuronal ceroid lipofuscinoses. iScience 2021; 24:102020. [PMID: 33532713 PMCID: PMC7822952 DOI: 10.1016/j.isci.2020.102020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/11/2020] [Accepted: 12/29/2020] [Indexed: 01/18/2023] Open
Abstract
The neuronal ceroid lipofuscinoses (NCL) are a group of 13 rare neurodegenerative disorders characterized by accumulation of cellular storage bodies. There are few therapeutic options, and existing tests do not monitor disease progression and treatment response. However, urine biomarkers could address this need. Proteomic analysis of CLN2 patient urine revealed activation of immune response pathways and pathways associated with the unfolded protein response. Analysis of CLN5 and CLN6 sheep model urine showed subtle changes. To confirm and investigate the relevance of candidate biomarkers a targeted LC-MS/MS proteomic assay was created. We applied this assay to additional CLN2 samples as well as other patients with NCL (CLN1, CLN3, CLN5, CLN6, and CLN7) and demonstrated that hexosaminidase-A, aspartate aminotransferase-1, and LAMP1 are increased in NCL samples and betaine-homocysteine S-methyltransferase-1 was specifically increased in patients with CLN2. These proteins could be used to monitor the effectiveness of future therapies aimed at treating systemic NCL disease. The urine proteome is altered in humans and animals with NCL Hexosaminidase A and LAMP1 are increased in patients with NCL Betaine-homocysteine S-methyltransferase 1 is elevated in CLN2 patients Proteins altered in CLN5 and CLN6 sheep models are not affected in humans
Collapse
Affiliation(s)
- Katharina Iwan
- Inborn Errors of Metabolism Section, Genetics & Genomic Medicine Unit, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Robert Clayton
- Inborn Errors of Metabolism Section, Genetics & Genomic Medicine Unit, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Philippa Mills
- Inborn Errors of Metabolism Section, Genetics & Genomic Medicine Unit, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
| | | | - Paul Gissen
- Inborn Errors of Metabolism Section, Genetics & Genomic Medicine Unit, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK.,Great Ormond Street Hospital for Children, London, UK
| | - Sara E Mole
- Inborn Errors of Metabolism Section, Genetics & Genomic Medicine Unit, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK.,MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - David N Palmer
- Department of Molecular Biosciences, Agriculture and Life Sciences Faculty, University Lincoln 7647, Canterbury, New Zealand
| | - Kevin Mills
- Inborn Errors of Metabolism Section, Genetics & Genomic Medicine Unit, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
| | - Wendy E Heywood
- Inborn Errors of Metabolism Section, Genetics & Genomic Medicine Unit, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
| |
Collapse
|
19
|
Tang F, Xiao D, Chen L, Gao H, Li X. Role of Munc18-1 in the biological functions and pathogenesis of neurological disorders (Review). Mol Med Rep 2021; 23:198. [PMID: 33495808 PMCID: PMC7821349 DOI: 10.3892/mmr.2021.11837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/30/2020] [Indexed: 11/06/2022] Open
Abstract
The release of neurotransmitters following the fusion of synaptic vesicles and the presynaptic membrane is an important process in the transmission of neuronal information. Syntaxin-binding protein 1 (Munc18-1) is a synaptic fusion protein binding protein, which mainly regulates synaptic vesicle fusion and neurotransmitter release by interacting with soluble N-ethylmaleimide sensitive factor attachment protein receptor. In addition to affecting neurotransmitter transmission, Munc18-1 is also involved in regulating neurosynaptic plasticity, neurodevelopment and neuroendocrine cell release functions (including thyroxine and insulin release). A number of previous studies have demonstrated that Munc18-1 has diverse and vital biological functions, and that its abnormal expression serves an important role in the pathogenesis of a variety of neurological diseases, including epileptic encephalopathy, schizophrenia, autism, Parkinsons disease, Alzheimers disease, multiple sclerosis, Duchennes muscular dystrophy and neuronal ceroid lipofuscinosis. The present review summarizes the function of Munc18-1 and its possible relationship to the pathogenesis of various neurological diseases.
Collapse
Affiliation(s)
- Fajuan Tang
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Dongqiong Xiao
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Lin Chen
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Hu Gao
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xihong Li
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
20
|
Vardi A, Pri-Or A, Wigoda N, Grishchuk Y, Futerman AH. Proteomics analysis of a human brain sample from a mucolipidosis type IV patient reveals pathophysiological pathways. Orphanet J Rare Dis 2021; 16:39. [PMID: 33478506 PMCID: PMC7818904 DOI: 10.1186/s13023-021-01679-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/06/2021] [Indexed: 12/29/2022] Open
Abstract
Background Mucolipidosis type IV (MLIV), an ultra-rare neurodevelopmental and neurodegenerative disorder, is caused by mutations in the MCOLN1 gene, which encodes the late endosomal/lysosomal transient receptor potential channel TRPML1 (mucolipin 1). The precise pathophysiogical pathways that cause neurological disease in MLIV are poorly understood. Recently, the first post-mortem brain sample became available from a single MLIV patient, and in the current study we performed mass spectrometry (MS)-based proteomics on this tissue with a view to delineating pathological pathways, and to compare with previously-published data on MLIV, including studies using the Mcoln1−/− mouse. Results A number of pathways were altered in two brain regions from the MLIV patient, including those related to the lysosome, lipid metabolism, myelination, cellular trafficking and autophagy, mTOR and calmodulin, the complement system and interferon signaling. Of these, levels of some proteins not known previously to be associated with MLIV were altered, including APOD, PLIN4, ATG and proteins related to interferon signaling. Moreover, when proteins detected by proteomics in the human brain were compared with their orthologs detected in the Mcoln1−/− mouse by RNAseq, the results were remarkably similar. Finally, analysis of proteins in human and mouse CSF suggest that calbindin 1 and calbindin 2 might be useful as biomarkers to help chart the course of disease development. Conclusions Despite the sample size limitations, our findings are consistent with the relatively general changes in lysosomal function previously reported in MLIV, and shed light on new pathways of disease pathophysiology, which is required in order to understand the course of disease development and to determine the efficacy of therapies when they become available for this devastating disease.
Collapse
Affiliation(s)
- Ayelet Vardi
- Department of Biomolecular Sciences, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Amir Pri-Or
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Noa Wigoda
- The Life Sciences Core Facilities, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Yulia Grishchuk
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital Research Institute, Harvard Medical School, 185 Cambridge St., Boston, MA, 02114, USA
| | - Anthony H Futerman
- Department of Biomolecular Sciences, Weizmann Institute of Science, 76100, Rehovot, Israel.
| |
Collapse
|
21
|
Abstract
Neuronal ceroid lipofuscinosis (NCLs) is a group of inherited neurodegenerative lysosomal storage diseases that together represent the most common cause of dementia in children. Phenotypically, patients have visual impairment, cognitive and motor decline, epilepsy, and premature death. A primary challenge is to halt and/or reverse these diseases, towards which developments in potential effective therapies are encouraging. Many treatments, including enzyme replacement therapy (for CLN1 and CLN2 diseases), stem-cell therapy (for CLN1, CLN2, and CLN8 diseases), gene therapy vector (for CLN1, CLN2, CLN3, CLN5, CLN6, CLN7, CLN10, and CLN11 diseases), and pharmacological drugs (for CLN1, CLN2, CLN3, and CLN6 diseases) have been evaluated for safety and efficacy in pre-clinical and clinical studies. Currently, cerliponase alpha for CLN2 disease is the only approved therapy for NCL. Lacking is any study of potential treatments for CLN4, CLN9, CLN12, CLN13 or CLN14 diseases. This review provides an overview of genetics for each CLN disease, and we discuss the current understanding from pre-clinical and clinical study of potential therapeutics. Various therapeutic interventions have been studied in many experimental animal models. Combination of treatments may be useful to slow or even halt disease progression; however, few therapies are unlikely to even partially reverse the disease and a complete reversal is currently improbable. Early diagnosis to allow initiation of therapy, when indicated, during asymptomatic stages is more important than ever.
Collapse
|
22
|
Morena F, Argentati C, Acquati S, DeWall S, Kelly F, Calbi V, Fumagalli F, Zancan S, Biffi A, Aiuti A, Martino S. Toward Reference Intervals of ARSA Activity in the Cerebrospinal Fluid: Implication for the Clinical Practice of Metachromatic Leukodystrophy. J Appl Lab Med 2020; 6:354-366. [PMID: 32910180 DOI: 10.1093/jalm/jfaa108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/15/2020] [Indexed: 01/15/2023]
Abstract
BACKGROUND Cerebrospinal fluid (CSF) has emerged as a sensitive matrix for the screening of biomarkers for diagnosis and clinical follow-up of diseases with neurological manifestations, including some lysosomal storage disorders. In this study, we assessed the range of values of arylsulfatase A (ARSA) activity in the CSF of pediatric and adult donors, and in pediatric patients who underwent gene therapy for metachromatic leukodystrophy (MLD). METHODS A cohort of 56 CSF samples was included in the study: pediatric donors (n = 36), adult donors (n = 9), and MLD patients (n = 11) at different timepoints [pre-gene therapy (GT), post-GT + 1 Year, post-GT + 2 Years, post-GT + 3 Years]. We have used our fluorometric assay for the determination of ARSA activity. The total protein content in the samples was also evaluated. RESULTS We discovered that ARSA activity was higher in pediatric donors (geometric mean: 1.039 nmol/mg/h; 95% range: 0.859-1.258 nmol/mg/h) compared to adults (geometric mean: 0.305 nmol/mg/h; 95% range: 0.214-0.435 nmol/mg/h). No ARSA activity was detected in the CSF of MLD patients pre-GT, whereas ARSA activity was stably expressed and almost restored to range of values of pediatric donors in MLD patients post-GT + 3 Years with a geometric mean of 0.822 nmol/mg/h (95% range: 0.580-1.165 nmol/mg/h). CONCLUSIONS This study establishes range of values of ARSA activity in the CSF for MLD clinical practice. The observed ranges of ARSA activities in CSF exhibited an unpredicted age dependence and, in turn, revealed the need of using pediatric ARSA activity for evaluating the restoration of the enzyme activity during the therapy of MLD.
Collapse
Affiliation(s)
- Francesco Morena
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy.,San Raffaele, Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Argentati
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Serena Acquati
- San Raffaele, Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | | | - Valeria Calbi
- San Raffaele, Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Fumagalli
- San Raffaele, Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefano Zancan
- San Raffaele, Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandra Biffi
- Division of Pediatric Hematology, Oncology and Stem Cell Transplant, Department of Women and Child Health, Padua University, Padova, Italy
| | - Alessandro Aiuti
- San Raffaele, Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sabata Martino
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| |
Collapse
|
23
|
Huber RJ. Molecular networking in the neuronal ceroid lipofuscinoses: insights from mammalian models and the social amoeba Dictyostelium discoideum. J Biomed Sci 2020; 27:64. [PMID: 32430003 PMCID: PMC7238602 DOI: 10.1186/s12929-020-00653-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/22/2020] [Indexed: 12/26/2022] Open
Abstract
The neuronal ceroid lipofuscinoses (NCLs), commonly known as Batten disease, belong to a family of neurological disorders that cause blindness, seizures, loss of motor function and cognitive ability, and premature death. There are 13 different subtypes of NCL that are associated with mutations in 13 genetically distinct genes (CLN1-CLN8, CLN10-CLN14). Similar clinical and pathological profiles of the different NCL subtypes suggest that common disease mechanisms may be involved. As a result, there have been many efforts to determine how NCL proteins are connected at the cellular level. A main driving force for NCL research has been the utilization of mammalian and non-mammalian cellular models to study the mechanisms underlying the disease. One non-mammalian model that has provided significant insight into NCL protein function is the social amoeba Dictyostelium discoideum. Accumulated data from Dictyostelium and mammalian cells show that NCL proteins display similar localizations, have common binding partners, and regulate the expression and activities of one another. In addition, genetic models of NCL display similar phenotypes. This review integrates findings from Dictyostelium and mammalian models of NCL to highlight our understanding of the molecular networking of NCL proteins. The goal here is to help set the stage for future work to reveal the cellular mechanisms underlying the NCLs.
Collapse
Affiliation(s)
- Robert J Huber
- Department of Biology, Trent University, 1600 West Bank Drive, Peterborough, Ontario, K9L 0G2, Canada.
| |
Collapse
|
24
|
Johnson TB, Brudvig JJ, Lehtimäki KK, Cain JT, White KA, Bragge T, Rytkönen J, Huhtala T, Timm D, Vihma M, Puoliväli JT, Poutiainen P, Nurmi A, Weimer JM. A multimodal approach to identify clinically relevant biomarkers to comprehensively monitor disease progression in a mouse model of pediatric neurodegenerative disease. Prog Neurobiol 2020; 189:101789. [PMID: 32198061 DOI: 10.1016/j.pneurobio.2020.101789] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 01/21/2020] [Accepted: 03/13/2020] [Indexed: 12/24/2022]
Abstract
While research has accelerated the development of new treatments for pediatric neurodegenerative disorders, the ability to demonstrate the long-term efficacy of these therapies has been hindered by the lack of convincing, noninvasive methods for tracking disease progression both in animal models and in human clinical trials. Here, we unveil a new translational platform for tracking disease progression in an animal model of a pediatric neurodegenerative disorder, CLN6-Batten disease. Instead of looking at a handful of parameters or a single "needle in a haystack", we embrace the idea that disease progression, in mice and patients alike, is a diverse phenomenon best characterized by a combination of relevant biomarkers. Thus, we employed a multi-modal quantitative approach where 144 parameters were longitudinally monitored to allow for individual variability. We use a range of noninvasive neuroimaging modalities and kinematic gait analysis, all methods that parallel those commonly used in the clinic, followed by a powerful statistical platform to identify key progressive anatomical and metabolic changes that correlate strongly with the progression of pathological and behavioral deficits. This innovative, highly sensitive platform can be used as a powerful tool for preclinical studies on neurodegenerative diseases, and provides proof-of-principle for use as a potentially translatable tool for clinicians in the future.
Collapse
Affiliation(s)
- Tyler B Johnson
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Jon J Brudvig
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | | | - Jacob T Cain
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Katherine A White
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Timo Bragge
- Discovery Research Services, Charles River, Kuopio, Finland
| | - Jussi Rytkönen
- Discovery Research Services, Charles River, Kuopio, Finland
| | - Tuulia Huhtala
- Discovery Research Services, Charles River, Kuopio, Finland
| | - Derek Timm
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Maria Vihma
- Discovery Research Services, Charles River, Kuopio, Finland
| | | | - Pekka Poutiainen
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Antti Nurmi
- Discovery Research Services, Charles River, Kuopio, Finland.
| | - Jill M Weimer
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA; Department of Pediatrics, Sanford School of Medicine at the University of South Dakota, Sioux Falls, SD, USA.
| |
Collapse
|
25
|
Ru Y, Corado C, Soon RK, Melton AC, Harris A, Yu GK, Pryer N, Sinclair JR, Katz ML, Ajayi T, Jacoby D, Russell CB, Chandriani S. Neurofilament light is a treatment-responsive biomarker in CLN2 disease. Ann Clin Transl Neurol 2019; 6:2437-2447. [PMID: 31814335 PMCID: PMC6917340 DOI: 10.1002/acn3.50942] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 10/11/2019] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Neuronal ceroid lipofuscinosis type 2 (CLN2 disease) is a rare, progressive, fatal neurodegenerative pediatric disorder resulting from deficiencies of the lysosomal enzyme tripeptidyl peptidase 1 that are caused by mutations in TPP1. Identifying biomarkers of CLN2 disease progression will be important in assessing the efficacy of therapeutic interventions for this disorder. Neurofilament light is an intrinsic component of healthy neurons; elevated circulating extracellular neurofilament light is a biomarker of neuropathology in several adult-onset neurological diseases. Our objective was to assess whether circulating neurofilament light is a biomarker that is responsive to enzyme replacement therapy (ERT) in CLN2 disease. METHODS Using an ultrasensitive immunoassay, we assessed plasma neurofilament light changes during disease progression in a canine model of CLN2 disease and in ERT clinical trial CLN2 disease patients. RESULTS In tripeptidyl peptidase 1 (TPP1)-null dogs (N = 11), but not in control dogs [N = 6 (TPP1+/- ) and N = 27 (WT)], neurofilament light levels increased more than tenfold above initial low baseline levels during disease progression. Before treatment in 21 human subjects with CLN2 disease (age range: 1.72-6.85 years), neurofilament light levels were 48-fold higher (P < 0.001) than in 7 pediatric controls (age range: 8-11 years). Pretreatment neurofilament light did not significantly correlate with disease severity or age. In CLN2 disease subjects receiving ERT, neurofilament light levels decreased by 50% each year over more than 3 years of treatment. INTERPRETATION Our data indicate that circulating neurofilament light is a treatment-responsive biomarker in CLN2 disease and could contribute to understanding of the pathophysiology of this devastating pediatric disorder.
Collapse
Affiliation(s)
- Yuanbin Ru
- Research, BioMarin Pharmaceutical Inc., Novato, California, 94949
| | - Carley Corado
- Pharmacological Sciences, BioMarin Pharmaceutical Inc., Novato, California, 94949
| | - Russell K Soon
- Translational Sciences, BioMarin Pharmaceutical Inc., Novato, California, 94949
| | - Andrew C Melton
- Translational Sciences, BioMarin Pharmaceutical Inc., Novato, California, 94949
| | - Adam Harris
- Translational Sciences, BioMarin Pharmaceutical Inc., Novato, California, 94949
| | - Guoying K Yu
- Research, BioMarin Pharmaceutical Inc., Novato, California, 94949
| | - Nancy Pryer
- Translational Sciences, BioMarin Pharmaceutical Inc., Novato, California, 94949
| | - John R Sinclair
- Pharmacological Sciences, BioMarin Pharmaceutical Inc., Novato, California, 94949
| | - Martin L Katz
- Department of Ophthalmology, School of Medicine, University of Missouri, Columbia, Missouri, 65212
| | - Temitayo Ajayi
- Clinical Sciences, BioMarin Pharmaceutical Inc., Novato, California, 94949
| | - David Jacoby
- Clinical Sciences, BioMarin Pharmaceutical Inc., Novato, California, 94949
| | - Chris B Russell
- Translational Sciences, BioMarin Pharmaceutical Inc., Novato, California, 94949
| | | |
Collapse
|
26
|
Rosenberg JB, Chen A, Kaminsky SM, Crystal RG, Sondhi D. Advances in the Treatment of Neuronal Ceroid Lipofuscinosis. Expert Opin Orphan Drugs 2019; 7:473-500. [PMID: 33365208 PMCID: PMC7755158 DOI: 10.1080/21678707.2019.1684258] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/21/2019] [Indexed: 12/27/2022]
Abstract
Neuronal ceroid lipofuscinoses (NCL) represent a class of neurodegenerative disorders involving defective lysosomal processing enzymes or receptors, leading to lysosomal storage disorders, typically characterized by observation of cognitive and visual impairments, epileptic seizures, ataxia, and deterioration of motor skills. Recent success of a biologic (Brineura®) for the treatment of neurologic manifestations of the central nervous system (CNS) has led to renewed interest in therapeutics for NCL, with the goal of ablating or reversing the impact of these devastating disorders. Despite complex challenges associated with CNS therapy, many treatment modalities have been evaluated, including enzyme replacement therapy, gene therapy, stem cell therapy, and small molecule pharmacotherapy. Because the clinical endpoints for the evaluation of candidate therapies are complex and often reliant on subjective clinical scales, the development of quantitative biomarkers for NCLs has become an apparent necessity for the validation of potential treatments. We will discuss the latest findings in the search for relevant biomarkers for assessing disease progression. For this review, we will focus primarily on recent pre-clinical and clinical developments for treatments to halt or cure these NCL diseases. Continued development of current therapies and discovery of newer modalities will be essential for successful therapeutics for NCL. AREAS COVERED The reader will be introduced to the NCL subtypes, natural histories, experimental animal models, and biomarkers for NCL progression; challenges and different therapeutic approaches, and the latest pre-clinical and clinical research for therapeutic development for the various NCLs. This review corresponds to the literatures covering the years from 1968 to mid-2019, but primarily addresses pre-clinical and clinical developments for the treatment of NCL disease in the last decade and as a follow-up to our 2013 review of the same topic in this journal. EXPERT OPINION Much progress has been made in the treatment of neurologic diseases, such as the NCLs, including better animal models and improved therapeutics with better survival outcomes. Encouraging results are being reported at symposiums and in the literature, with multiple therapeutics reaching the clinical trial stage for the NCLs. The potential for a cure could be at hand after many years of trial and error in the preclinical studies. The clinical development of enzyme replacement therapy (Brineura® for CLN2), immunosuppression (CellCept® for CLN3), and gene therapy vectors (for CLN1, CLN2, CLN3, and CLN6) are providing encouragement to families that have a child afflicted with NCL. We believe that successful therapies in the future may involve the combination of two or more therapeutic modalities to provide therapeutic benefit especially as the patients grow older.
Collapse
Affiliation(s)
- Jonathan B Rosenberg
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| | - Alvin Chen
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| | - Stephen M Kaminsky
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| | - Dolan Sondhi
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| |
Collapse
|
27
|
Huber RJ, Hughes SM, Liu W, Morgan A, Tuxworth RI, Russell C. The contribution of multicellular model organisms to neuronal ceroid lipofuscinosis research. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165614. [PMID: 31783156 DOI: 10.1016/j.bbadis.2019.165614] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 02/07/2023]
Abstract
The NCLs (neuronal ceroid lipofuscinosis) are forms of neurodegenerative disease that affect people of all ages and ethnicities but are most prevalent in children. Commonly known as Batten disease, this debilitating neurological disorder is comprised of 13 different subtypes that are categorized based on the particular gene that is mutated (CLN1-8, CLN10-14). The pathological mechanisms underlying the NCLs are not well understood due to our poor understanding of the functions of NCL proteins. Only one specific treatment (enzyme replacement therapy) is approved, which is for the treating the brain in CLN2 disease. Hence there remains a desperate need for further research into disease-modifying treatments. In this review, we present and evaluate the genes, proteins and studies performed in the social amoeba, nematode, fruit fly, zebrafish, mouse and large animals pertinent to NCL. In particular, we highlight the use of multicellular model organisms to study NCL protein function, pathology and pathomechanisms. Their use in testing novel therapeutic approaches is also presented. With this information, we highlight how future research in these systems may be able to provide new insight into NCL protein functions in human cells and aid in the development of new therapies.
Collapse
Affiliation(s)
- Robert J Huber
- Department of Biology, Trent University, Peterborough, Ontario K9L 0G2, Canada
| | - Stephanie M Hughes
- Department of Biochemistry, School of Biomedical Sciences, Brain Health Research Centre and Genetics Otago, University of Otago, Dunedin, New Zealand
| | - Wenfei Liu
- School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Alan Morgan
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown St., Liverpool L69 3BX, UK
| | - Richard I Tuxworth
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Claire Russell
- Dept. Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, UK.
| |
Collapse
|
28
|
Sleat DE, Wiseman JA, El-Banna M, Zheng H, Zhao C, Soherwardy A, Moore DF, Lobel P. Analysis of Brain and Cerebrospinal Fluid from Mouse Models of the Three Major Forms of Neuronal Ceroid Lipofuscinosis Reveals Changes in the Lysosomal Proteome. Mol Cell Proteomics 2019; 18:2244-2261. [PMID: 31501224 PMCID: PMC6823856 DOI: 10.1074/mcp.ra119.001587] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/06/2019] [Indexed: 01/06/2023] Open
Abstract
Treatments are emerging for the neuronal ceroid lipofuscinoses (NCLs), a group of similar but genetically distinct lysosomal storage diseases. Clinical ratings scales measure long-term disease progression and response to treatment but clinically useful biomarkers have yet to be identified in these diseases. We have conducted proteomic analyses of brain and cerebrospinal fluid (CSF) from mouse models of the most frequently diagnosed NCL diseases: CLN1 (infantile NCL), CLN2 (classical late infantile NCL) and CLN3 (juvenile NCL). Samples were obtained at different stages of disease progression and proteins quantified using isobaric labeling. In total, 8303 and 4905 proteins were identified from brain and CSF, respectively. We also conduced label-free analyses of brain proteins that contained the mannose 6-phosphate lysosomal targeting modification. In general, we detect few changes at presymptomatic timepoints but later in disease, we detect multiple proteins whose expression is significantly altered in both brain and CSF of CLN1 and CLN2 animals. Many of these proteins are lysosomal in origin or are markers of neuroinflammation, potentially providing clues to underlying pathogenesis and providing promising candidates for further validation.
Collapse
Affiliation(s)
- David E Sleat
- Center for Advanced Biotechnology and Medicine, Piscataway, NJ 08854; Department of Biochemistry and Molecular Biology, Robert-Wood Johnson Medical School, Rutgers Biomedical Health Sciences, Piscataway, NJ 08854.
| | | | - Mukarram El-Banna
- Center for Advanced Biotechnology and Medicine, Piscataway, NJ 08854
| | - Haiyan Zheng
- Center for Advanced Biotechnology and Medicine, Piscataway, NJ 08854
| | - Caifeng Zhao
- Center for Advanced Biotechnology and Medicine, Piscataway, NJ 08854
| | - Amenah Soherwardy
- Center for Advanced Biotechnology and Medicine, Piscataway, NJ 08854
| | - Dirk F Moore
- Department of Biostatistics, School of Public Health, Rutgers - The State University of New Jersey, Piscataway, NJ 08854
| | - Peter Lobel
- Center for Advanced Biotechnology and Medicine, Piscataway, NJ 08854; Department of Biochemistry and Molecular Biology, Robert-Wood Johnson Medical School, Rutgers Biomedical Health Sciences, Piscataway, NJ 08854.
| |
Collapse
|
29
|
Kline RA, Wishart TM, Mills K, Heywood WE. Applying modern Omic technologies to the Neuronal Ceroid Lipofuscinoses. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165498. [PMID: 31207290 DOI: 10.1016/j.bbadis.2019.06.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/30/2019] [Accepted: 06/07/2019] [Indexed: 11/27/2022]
Abstract
The Neuronal Ceroid Lipofuscinoses are a group of severe and progressive neurodegenerative disorders, which generally present during childhood. With new treatments emerging on the horizon, there is a growing need to understand the specific disease mechanisms as well as identify prospective biomarkers for use to stratify patients and monitor treatment. The use of Omics technologies to NCLs has the potential to address this need. We discuss the recent use and outcomes of Omics to various forms of NCL including identification of interactomes, affected biological pathways and potential biomarker candidates. We also identify common pathways affected in NCL across the reviewed studies.
Collapse
Affiliation(s)
- Rachel A Kline
- Roslin Institute and Royal (Dick), School of Veterinary Studies, University of Edinburgh, Edinburgh, UK; The Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, Edinburgh, UK
| | - Thomas M Wishart
- Roslin Institute and Royal (Dick), School of Veterinary Studies, University of Edinburgh, Edinburgh, UK; The Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, Edinburgh, UK
| | - Kevin Mills
- Inborn Errors of Metabolism Section, Genetics & Genomic Medicine Unit, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK; NIHR Great Ormond Street Biomedical Research Centre, Great Ormond Street Hospital, UCL Great Ormond Street Institute of Child Health, UK
| | - Wendy E Heywood
- Inborn Errors of Metabolism Section, Genetics & Genomic Medicine Unit, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK; NIHR Great Ormond Street Biomedical Research Centre, Great Ormond Street Hospital, UCL Great Ormond Street Institute of Child Health, UK.
| |
Collapse
|
30
|
McLaren MD, Mathavarajah S, Huber RJ. Recent Insights into NCL Protein Function Using the Model Organism Dictyostelium discoideum. Cells 2019; 8:cells8020115. [PMID: 30717401 PMCID: PMC6406579 DOI: 10.3390/cells8020115] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 01/26/2019] [Accepted: 01/30/2019] [Indexed: 12/16/2022] Open
Abstract
The neuronal ceroid lipofuscinoses (NCLs) are a group of devastating neurological disorders that have a global distribution and affect people of all ages. Commonly known as Batten disease, this form of neurodegeneration is linked to mutations in 13 genetically distinct genes. The precise mechanisms underlying the disease are unknown, in large part due to our poor understanding of the functions of NCL proteins. The social amoeba Dictyostelium discoideum has proven to be an exceptional model organism for studying a wide range of neurological disorders, including the NCLs. The Dictyostelium genome contains homologs of 11 of the 13 NCL genes. Its life cycle, comprised of both single-cell and multicellular phases, provides an excellent system for studying the effects of NCL gene deficiency on conserved cellular and developmental processes. In this review, we highlight recent advances in NCL research using Dictyostelium as a biomedical model.
Collapse
Affiliation(s)
- Meagan D McLaren
- Department of Biology, Trent University, 1600 West Bank Drive, Peterborough, ON K9L 0G2, Canada.
| | - Sabateeshan Mathavarajah
- Department of Biology, Trent University, 1600 West Bank Drive, Peterborough, ON K9L 0G2, Canada.
| | - Robert J Huber
- Department of Biology, Trent University, 1600 West Bank Drive, Peterborough, ON K9L 0G2, Canada.
| |
Collapse
|
31
|
Mukherjee AB, Appu AP, Sadhukhan T, Casey S, Mondal A, Zhang Z, Bagh MB. Emerging new roles of the lysosome and neuronal ceroid lipofuscinoses. Mol Neurodegener 2019; 14:4. [PMID: 30651094 PMCID: PMC6335712 DOI: 10.1186/s13024-018-0300-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 12/04/2018] [Indexed: 12/04/2022] Open
Abstract
Neuronal Ceroid Lipofuscinoses (NCLs), commonly known as Batten disease, constitute a group of the most prevalent neurodegenerative lysosomal storage disorders (LSDs). Mutations in at least 13 different genes (called CLNs) cause various forms of NCLs. Clinically, the NCLs manifest early impairment of vision, progressive decline in cognitive and motor functions, seizures and a shortened lifespan. At the cellular level, all NCLs show intracellular accumulation of autofluorescent material (called ceroid) and progressive neuron loss. Despite intense studies the normal physiological functions of each of the CLN genes remain poorly understood. Consequently, the development of mechanism-based therapeutic strategies remains challenging. Endolysosomal dysfunction contributes to pathogenesis of virtually all LSDs. Studies within the past decade have drastically changed the notion that the lysosomes are merely the terminal degradative organelles. The emerging new roles of the lysosome include its central role in nutrient-dependent signal transduction regulating metabolism and cellular proliferation or quiescence. In this review, we first provide a brief overview of the endolysosomal and autophagic pathways, lysosomal acidification and endosome-lysosome and autophagosome-lysosome fusions. We emphasize the importance of these processes as their dysregulation leads to pathogenesis of many LSDs including the NCLs. We also describe what is currently known about each of the 13 CLN genes and their products and how understanding the emerging new roles of the lysosome may clarify the underlying pathogenic mechanisms of the NCLs. Finally, we discuss the current and emerging therapeutic strategies for various NCLs.
Collapse
Affiliation(s)
- Anil B. Mukherjee
- Section on Developmental Genetics, Program on Endocrinology and Molecular Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland 20892-1830 USA
| | - Abhilash P. Appu
- Section on Developmental Genetics, Program on Endocrinology and Molecular Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland 20892-1830 USA
| | - Tamal Sadhukhan
- Section on Developmental Genetics, Program on Endocrinology and Molecular Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland 20892-1830 USA
| | - Sydney Casey
- Section on Developmental Genetics, Program on Endocrinology and Molecular Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland 20892-1830 USA
| | - Avisek Mondal
- Section on Developmental Genetics, Program on Endocrinology and Molecular Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland 20892-1830 USA
| | - Zhongjian Zhang
- Section on Developmental Genetics, Program on Endocrinology and Molecular Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland 20892-1830 USA
- Present address: Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003 Henan China
| | - Maria B. Bagh
- Section on Developmental Genetics, Program on Endocrinology and Molecular Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland 20892-1830 USA
| |
Collapse
|