1
|
Li J, Zhou X, Chen J, Zhu S, Mateus A, Eliasson P, Kingham PJ, Backman LJ. Impact of Static Myoblast Loading on Protein Secretion Linked to Tenocyte Migration. J Proteome Res 2025. [PMID: 40202163 DOI: 10.1021/acs.jproteome.5c00068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Exercise has been shown to promote wound healing, including tendon repair. Myokines released from the exercised muscles are believed to play a significant role in this process. In our previous study, we used an in vitro coculture and loading model to demonstrate that 2% static loading of myoblasts increased the migration and proliferation of cocultured tenocytes─two crucial aspects of wound healing. IGF-1, released from myoblasts in response to 2% static loading, was identified as a contributor to the increased proliferation. However, the factors responsible for the enhanced migration remained unknown. In the current study, we subjected myoblasts in single culture conditions to 2, 5, and 10% static loading and performed proteomic analysis of the cell supernatants. Gene Ontology (GO) analysis revealed that 2% static loading induced the secretion of NBL1, C5, and EFEMP1, which is associated with cell migration and motility. Further investigation by adding exogenous recombinant proteins to human tenocytes showed that NBL1 increased tenocyte migration but not proliferation. This effect was not observed with treatments using C5 and EFEMP1.
Collapse
Affiliation(s)
- Junhong Li
- Department of Medical and Translational Biology, UmeÅ University, 90187 UmeÅ, Sweden
- Department of Community Medicine and Rehabilitation, Physiotherapy, UmeÅ University, 90187 UmeÅ, Sweden
| | - Xin Zhou
- Department of Medical and Translational Biology, UmeÅ University, 90187 UmeÅ, Sweden
| | - Jialin Chen
- School of Medicine, Southeast University, 210009 Nanjing, China
- Department of Ophthalmology, Zhongda Hospital, Southeast University, 210009 Nanjing, China
| | - Shaochun Zhu
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden
| | - Andre Mateus
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden, Umeå University, 90187 Umeå, Sweden
| | - Pernilla Eliasson
- Department of Orthopedics, Sahlgrenska University Hospital, 43180 Gothenburg, Sweden
| | - Paul J Kingham
- Department of Medical and Translational Biology, UmeÅ University, 90187 UmeÅ, Sweden
| | - Ludvig J Backman
- Department of Medical and Translational Biology, UmeÅ University, 90187 UmeÅ, Sweden
- Department of Community Medicine and Rehabilitation, Physiotherapy, UmeÅ University, 90187 UmeÅ, Sweden
| |
Collapse
|
2
|
Förster PM, Hogenkamp J, Pottgießer MF, Binsch C, Humpert AD, Brügge CL, Deatc MI, Ensenauer R, Chadt A, Thoresen GH, Ouwens DM, Hartwig S, Lehr S, Al-Hasani H. High-resolution analyses of the secretomes from murine C2C12 cells and primary human skeletal muscle cells reveal distinct differences in contraction-regulated myokine secretion. Front Physiol 2025; 16:1549316. [PMID: 40200984 PMCID: PMC11975866 DOI: 10.3389/fphys.2025.1549316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/24/2025] [Indexed: 04/10/2025] Open
Abstract
Myokines released by skeletal muscle in response to contraction may contribute to the health-promoting effects of exercise. Previous studies with cultured rodent and human myotubes have revealed highly complex patterns of myokine secretion. However, the commonalities and differences in the secretory response of the different cell models have not been explored, limiting the interpretation of these results. In the present study, we performed a comprehensive analysis of contraction-regulated secretomes using the most commonly used skeletal muscle cell models, cultured murine C2C12 myotubes and satellite cell-derived primary human myotubes (HSkMC). The cells were subjected to low-frequency electrical pulse stimulation (EPS) for 6 h followed by high-resolution mass spectrometry analysis of secreted proteins in the culture medium. We identified 5,710 and 3,285 proteins in the secretomes of C2C12 myotubes and HSkMC, with 80% of human myokines also detected in the murine secretome. Additionally, we found 518 and 336 secreted proteins that were differentially regulated during contraction in murine and human cells, respectively, along with 1,440 and 385 previously unknown potential myokines secreted by murine and human myotubes. Bioinformatic prediction analyses revealed that the majority of the newly identified myokines were secreted via unconventional protein secretion pathways (UPS) in the murine secretome, whereas most novel proteins in the human secretome were secreted via the classical endoplasmic reticulum (ER)-to-Golgi pathway. Moreover, ontology analysis indicates cell type-specific differences in cellular compartments involved in myokine secretion. Collectively, our results provide a comprehensive overview of the secretomes of two of the most commonly used cell models and may provide guidance for further studies of myokines.
Collapse
Affiliation(s)
- Pia Marlene Förster
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Düsseldorf, Germany
| | - Julian Hogenkamp
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Düsseldorf, Germany
| | - Moira Fee Pottgießer
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, Düsseldorf, Germany
| | - Christian Binsch
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Düsseldorf, Germany
| | - Awovi Didi Humpert
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Düsseldorf, Germany
| | - Carolin Laura Brügge
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, Düsseldorf, Germany
| | - Michelle Isabel Deatc
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, Düsseldorf, Germany
| | - Regina Ensenauer
- Institute of Child Nutrition, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - Alexandra Chadt
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Düsseldorf, Germany
| | - G. Hege Thoresen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - D. Margriet Ouwens
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Düsseldorf, Germany
- Department of Endocrinology, Ghent University Hospital, Ghent, Belgium
| | - Sonja Hartwig
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Düsseldorf, Germany
| | - Stefan Lehr
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Düsseldorf, Germany
| | - Hadi Al-Hasani
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Düsseldorf, Germany
| |
Collapse
|
3
|
Liu X, Yao Z, Zhang L, Shyh‐Chang N. Muscle-Derived Bioactive Factors: MyoEVs and Myokines. Cell Prolif 2025; 58:e13801. [PMID: 39737773 PMCID: PMC11882754 DOI: 10.1111/cpr.13801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/14/2024] [Accepted: 12/20/2024] [Indexed: 01/01/2025] Open
Abstract
Overview of the functions and applications of myokines and MyoEVs.
Collapse
Affiliation(s)
- Xupeng Liu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Institute for Stem Cell and Regeneration, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| | - Ziyue Yao
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Institute for Stem Cell and Regeneration, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| | - Liping Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Institute for Stem Cell and Regeneration, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| | - Ng Shyh‐Chang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Institute for Stem Cell and Regeneration, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| |
Collapse
|
4
|
Bu A, Afghah F, Castro N, Bawa M, Kohli S, Shah K, Rios B, Butty V, Raman R. Actuating Extracellular Matrices Decouple the Mechanical and Biochemical Effects of Muscle Contraction on Motor Neurons. Adv Healthc Mater 2025; 14:e2403712. [PMID: 39523700 PMCID: PMC11874633 DOI: 10.1002/adhm.202403712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/03/2024] [Indexed: 11/16/2024]
Abstract
Emerging in vivo evidence suggests that repeated muscle contraction, or exercise, impacts peripheral nerves. However, the difficulty of isolating the muscle-specific impact on motor neurons in vivo, as well as the inability to decouple the biochemical and mechanical impacts of muscle contraction in this setting, motivates investigating this phenomenon in vitro. This study demonstrates that tuning the mechanical properties of fibrin enables longitudinal culture of highly contractile skeletal muscle monolayers, enabling functional characterization of and long-term secretome harvesting from exercised tissues. Motor neurons stimulated with exercised muscle-secreted factors significantly upregulate neurite outgrowth and migration, with an effect size dependent on muscle contraction intensity. Actuating magnetic microparticles embedded within fibrin hydrogels enable dynamically stretching motor neurons and non-invasively mimicking the mechanical effects of muscle contraction. Interestingly, axonogenesis is similarly upregulated in both mechanically and biochemically stimulated motor neurons, but RNA sequencing reveals different transcriptomic signatures between groups, with biochemical stimulation having a greater impact on cell signaling related to axonogenesis and synapse maturation. This study leverages actuating extracellular matrices to robustly validate a previously hypothesized role for muscle contraction in regulating motor neuron growth and maturation from the bottom-up through both mechanical and biochemical signaling.
Collapse
Affiliation(s)
- Angel Bu
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Ferdows Afghah
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Nicolas Castro
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Maheera Bawa
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Sonika Kohli
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Karina Shah
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Brandon Rios
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Vincent Butty
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Ritu Raman
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| |
Collapse
|
5
|
Pinto JR, Deepika Bhat K, Bose B, Sudheer Shenoy P. Irisin: muscle's novel player in endoplasmic reticulum stress and disease. Mol Cell Biochem 2025:10.1007/s11010-025-05225-y. [PMID: 39984795 DOI: 10.1007/s11010-025-05225-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/02/2025] [Indexed: 02/23/2025]
Abstract
Irisin, an exercise-induced myokine, exhibits elevated levels during physical activity, yet its role in modulating the unfolded protein response (UPR) remains poorly understood. This comprehensive review pioneers an in-depth examination of irisin-mediated endoplasmic reticulum (ER) stress mitigation across various diseases. We provide a nuanced characterization of irisin's molecular profile, biological activity, and significance as a skeletal muscle-derived cytokine analogue. Our discussion elucidates the complex interplay between exercise, irisin signalling, and metabolic outcomes, highlighting key molecular interactions driving salutary effects. Moreover, we delineate the UPR's role as a critical ER stress countermeasure and underscore irisin's pivotal function in alleviating this stress, revealing potential therapeutic avenues for disease management. Exercise-induced release of irisin ameliorates ER stress through AMPK phosphorylation during various diseases (Icon image source: www.flaticon.com ).
Collapse
Affiliation(s)
- Joel Rimson Pinto
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya Deemed to be University, University Road, Deralakatte, Mangalore, Karnataka, 575018, India
| | - K Deepika Bhat
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya Deemed to be University, University Road, Deralakatte, Mangalore, Karnataka, 575018, India
| | - Bipasha Bose
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya Deemed to be University, University Road, Deralakatte, Mangalore, Karnataka, 575018, India
| | - P Sudheer Shenoy
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya Deemed to be University, University Road, Deralakatte, Mangalore, Karnataka, 575018, India.
| |
Collapse
|
6
|
Kocher F, Hegemann JH. The secreted host-cell protein clusterin interacts with PmpD and promotes Chlamydia trachomatis infection. Front Cell Infect Microbiol 2025; 14:1519883. [PMID: 39931630 PMCID: PMC11807975 DOI: 10.3389/fcimb.2024.1519883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/30/2024] [Indexed: 02/13/2025] Open
Abstract
Attachment and uptake into host cells are pivotal steps in the life cycle of the Chlamydiaceae, a family of obligate intracellular pathogens. Chlamydia trachomatis (Ctr) possesses a family of nine polymorphic membrane proteins (Pmps), which have been shown to be crucial for adhesion and internalization. However, the host-cell molecules involved have so far remained unknown. Here, we show that a fragment of Ctr PmpD, which forms high-molecular-weight oligomers in solution and adheres to epithelial cells, also binds to secreted clusterin (sCLU), a chaperone-like protein that is secreted into the extracellular space by the host cell, and forms part of the chaperone- and receptor-mediated extracellular protein degradation (CRED) pathway. Using in vitro assays, we demonstrate that sCLU interacts directly with soluble rPmpD. In infection experiments, depletion of sCLU from the culture medium leads to a significant decrease in Ctr infection. Thus, sCLU is the first host-cell interaction partner identified for a Ctr Pmp and the first case in which sCLU has been shown to be a vital component for the establishment of a bacterial infection.
Collapse
Affiliation(s)
| | - Johannes H. Hegemann
- Institute for Functional Microbial Genomics, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
7
|
Kravets E, Poschmann G, Hänsch S, Raba V, Weidtkamp-Peters S, Degrandi D, Stühler K, Pfeffer K. mGBP2 engages Galectin-9 for immunity against Toxoplasma gondii. PLoS One 2025; 20:e0316209. [PMID: 39854420 PMCID: PMC11761162 DOI: 10.1371/journal.pone.0316209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/06/2024] [Indexed: 01/26/2025] Open
Abstract
Guanylate binding proteins (GBPs) are large interferon-inducible GTPases, executing essential host defense activities against Toxoplasma gondii, an invasive intracellular apicomplexan protozoan parasite of global importance. T. gondii establishes a parasitophorous vacuole (PV) which shields the parasite from the host's intracellular defense mechanisms. Murine GBPs (mGBPs) recognize T. gondii PVs and assemble into supramolecular mGBP homo- and heterocomplexes that are required for the disruption of the membrane of PVs eventually resulting in the cell-autonomous immune control of vacuole-resident pathogens. We have previously shown that mGBP2 plays an important role in T. gondii immune control. Here, to unravel mGBP2 functions, we report Galectin-9 (Gal9) as a critical mGBP2 interaction partner engaged for immunity to T. gondii. Interestingly, Gal9 also accumulates and colocalizes with mGBP2 at the T. gondii PV. Furthermore, we could prove the requirement of Gal9 for growth control of T. gondii by CRISPR/Cas9 mediated gene editing. These discoveries clearly indicate that Gal9 is a crucial factor for the mGBP2-coordinated cell-autonomous host defense mechanism against T. gondii.
Collapse
Affiliation(s)
- Elisabeth Kravets
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Gereon Poschmann
- Institute of Molecular Medicine, Proteome Research, Medical Faculty and University Hospital, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Sebastian Hänsch
- Center of Advanced Imaging, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Veronica Raba
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | | - Daniel Degrandi
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Kai Stühler
- Institute of Molecular Medicine, Proteome Research, Medical Faculty and University Hospital, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Molecular Proteomics Laboratory, Biological and Medical Research Centre (BMFZ), Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Klaus Pfeffer
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
8
|
Stephan A, Suhrmann JH, Skowron MA, Che Y, Poschmann G, Petzsch P, Kresbach C, Wruck W, Pongratanakul P, Adjaye J, Stühler K, Köhrer K, Schüller U, Nettersheim D. Molecular and epigenetic ex vivo profiling of testis cancer-associated fibroblasts and their interaction with germ cell tumor cells and macrophages. Matrix Biol 2024; 132:10-23. [PMID: 38851302 DOI: 10.1016/j.matbio.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/10/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Germ cell tumors (GCT) are the most common solid tumors in young men of age 15 - 40. In previous studies, we profiled the interaction of GCT cells with cells of the tumor microenvironment (TM), which showed that especially the 3D interaction of fibroblasts (FB) or macrophages with GCT cells influenced the growth behavior and cisplatin response as well as the transcriptome and secretome of the tumor cells, suggesting that the crosstalk of these cells with GCT cells is crucial for tumor progression and therapy outcome. In this study, we shed light on the mechanisms of activation of cancer-associated fibroblasts (CAF) in the GCT setting and their effects on GCT cells lines and the monocyte cell line THP-1. Ex vivo cultures of GCT-derived CAF were established and characterized molecularly and epigenetically by performing DNA methylation arrays, RNA sequencing, and mass spectrometry-based secretome analysis. We demonstrated that the activation state of CAF is influenced by their former prevailing tumor environment in which they have resided. Hereby, we postulate that seminoma (SE) and embryonal carcinoma (EC) activate CAF, while teratoma (TER) play only a minor role in CAF formation. In turn, CAF influence proliferation and the expression of cisplatin sensitivity-related factors in GCT cells lines as well as polarization of in vitro-induced macrophages by the identified effector molecules IGFBP1, LGALS3BP, LYVE1, and PTX3. Our data suggests that the vital interaction of CAF with GCT cells and with macrophages has a huge influence on shaping the extracellular matrix as well as on recruitment of immune cells to the TM. In conclusion, therapeutically interfering with CAF and / or macrophages in addition to the standard therapy might slow-down progression of GCT and re-shaping of the TM to a tumor-promoting environment. Significance: The interaction of CAF with GCT and macrophages considerably influences the microenvironment. Thus, therapeutically interfering with CAF might slow-down progression of GCT and re-shaping of the microenvironment to a tumor-promoting environment.
Collapse
Affiliation(s)
- Alexa Stephan
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jan-Henrik Suhrmann
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Margaretha A Skowron
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Yue Che
- Department of Urology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Gereon Poschmann
- Molecular Proteomics Laboratory (MPL), Biological and Medical Research Centre (BMFZ), Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Patrick Petzsch
- Genomics and Transcriptomics Laboratory, Biological and Medical Research Centre (BMFZ), Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Catena Kresbach
- Institute of Neuropathology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Wasco Wruck
- Institute for Stem cell Research and Regenerative Medicine, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Pailin Pongratanakul
- Department of Urology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - James Adjaye
- Institute for Stem cell Research and Regenerative Medicine, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory (MPL), Biological and Medical Research Centre (BMFZ), Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Karl Köhrer
- Genomics and Transcriptomics Laboratory, Biological and Medical Research Centre (BMFZ), Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ulrich Schüller
- Institute of Neuropathology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Daniel Nettersheim
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Center for Integrated Oncology Aachen, Bonn, Cologne, Düsseldorf (CIO ABCD), Germany.
| |
Collapse
|
9
|
Gianazza E, Brioschi M, Eligini S, Banfi C. Mass spectrometry for the study of adipocyte cell secretome in cardiovascular diseases. MASS SPECTROMETRY REVIEWS 2024; 43:752-781. [PMID: 36161723 DOI: 10.1002/mas.21812] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/04/2022] [Accepted: 09/03/2022] [Indexed: 06/16/2023]
Abstract
Adipose tissue is classically considered the primary site of lipid storage, but in recent years has garnered appreciation for its broad role as an endocrine organ, capable of remotely signaling to other tissues to alter their metabolic program. The adipose tissue is now recognized as a crucial regulator of cardiovascular health, mediated by the secretion of several bioactive products, with a wide range of endocrine and paracrine effects on the cardiovascular system. Thanks to the development and improvement of high-throughput mass spectrometry, the size and components of the human secretome have been characterized. In this review, we summarized the recent advances in mass spectrometry-based studies of the cell and tissue secretome for the understanding of adipose tissue biology, which may help to decipher the complex molecular mechanisms controlling the crosstalk between the adipose tissue and the cardiovascular system, and their possible clinical translation.
Collapse
Affiliation(s)
- Erica Gianazza
- Centro Cardiologico Monzino IRCCS, Unit of Functional Proteomics, Metabolomics and Network Analysis, Milan, Italy
| | - Maura Brioschi
- Centro Cardiologico Monzino IRCCS, Unit of Functional Proteomics, Metabolomics and Network Analysis, Milan, Italy
| | - Sonia Eligini
- Centro Cardiologico Monzino IRCCS, Unit of Functional Proteomics, Metabolomics and Network Analysis, Milan, Italy
| | - Cristina Banfi
- Centro Cardiologico Monzino IRCCS, Unit of Functional Proteomics, Metabolomics and Network Analysis, Milan, Italy
| |
Collapse
|
10
|
Rhymes ER, Simkin RL, Qu J, Villarroel-Campos D, Surana S, Tong Y, Shapiro R, Burgess RW, Yang XL, Schiavo G, Sleigh JN. Boosting BDNF in muscle rescues impaired axonal transport in a mouse model of DI-CMTC peripheral neuropathy. Neurobiol Dis 2024; 195:106501. [PMID: 38583640 PMCID: PMC11998923 DOI: 10.1016/j.nbd.2024.106501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024] Open
Abstract
Charcot-Marie-Tooth disease (CMT) is a genetic peripheral neuropathy caused by mutations in many functionally diverse genes. The aminoacyl-tRNA synthetase (ARS) enzymes, which transfer amino acids to partner tRNAs for protein synthesis, represent the largest protein family genetically linked to CMT aetiology, suggesting pathomechanistic commonalities. Dominant intermediate CMT type C (DI-CMTC) is caused by YARS1 mutations driving a toxic gain-of-function in the encoded tyrosyl-tRNA synthetase (TyrRS), which is mediated by exposure of consensus neomorphic surfaces through conformational changes of the mutant protein. In this study, we first showed that human DI-CMTC-causing TyrRSE196K mis-interacts with the extracellular domain of the BDNF receptor TrkB, an aberrant association we have previously characterised for several mutant glycyl-tRNA synthetases linked to CMT type 2D (CMT2D). We then performed temporal neuromuscular assessments of YarsE196K mice modelling DI-CMT. We determined that YarsE196K homozygotes display a selective, age-dependent impairment in in vivo axonal transport of neurotrophin-containing signalling endosomes, phenocopying CMT2D mice. This impairment is replicated by injection of recombinant TyrRSE196K, but not TyrRSWT, into muscles of wild-type mice. Augmenting BDNF in DI-CMTC muscles, through injection of recombinant protein or muscle-specific gene therapy, resulted in complete axonal transport correction. Therefore, this work identifies a non-cell autonomous pathomechanism common to ARS-related neuropathies, and highlights the potential of boosting BDNF levels in muscles as a therapeutic strategy.
Collapse
Affiliation(s)
- Elena R Rhymes
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Rebecca L Simkin
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Ji Qu
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - David Villarroel-Campos
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; UK Dementia Research Institute at University College London, London WC1N 3BG, UK
| | - Sunaina Surana
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; UK Dementia Research Institute at University College London, London WC1N 3BG, UK
| | - Yao Tong
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ryan Shapiro
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Xiang-Lei Yang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Giampietro Schiavo
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; UK Dementia Research Institute at University College London, London WC1N 3BG, UK
| | - James N Sleigh
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; UK Dementia Research Institute at University College London, London WC1N 3BG, UK.
| |
Collapse
|
11
|
Rhymes ER, Simkin RL, Qu J, Villarroel-Campos D, Surana S, Tong Y, Shapiro R, Burgess RW, Yang XL, Schiavo G, Sleigh JN. Boosting BDNF in muscle rescues impaired axonal transport in a mouse model of DI-CMTC peripheral neuropathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.09.536152. [PMID: 38559020 PMCID: PMC10979848 DOI: 10.1101/2023.04.09.536152] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Charcot-Marie-Tooth disease (CMT) is a genetic peripheral neuropathy caused by mutations in many functionally diverse genes. The aminoacyl-tRNA synthetase (ARS) enzymes, which transfer amino acids to partner tRNAs for protein synthesis, represent the largest protein family genetically linked to CMT aetiology, suggesting pathomechanistic commonalities. Dominant intermediate CMT type C (DI-CMTC) is caused by YARS1 mutations driving a toxic gain-of-function in the encoded tyrosyl-tRNA synthetase (TyrRS), which is mediated by exposure of consensus neomorphic surfaces through conformational changes of the mutant protein. In this study, we first showed that human DI-CMTC-causing TyrRSE196K mis-interacts with the extracellular domain of the BDNF receptor TrkB, an aberrant association we have previously characterised for several mutant glycyl-tRNA synthetases linked to CMT type 2D (CMT2D). We then performed temporal neuromuscular assessments of YarsE196K mice modelling DI-CMT. We determined that YarsE196K homozygotes display a selective, age-dependent impairment in in vivo axonal transport of neurotrophin-containing signalling endosomes, phenocopying CMT2D mice. This impairment is replicated by injection of recombinant TyrRSE196K, but not TyrRSWT, into muscles of wild-type mice. Augmenting BDNF in DI-CMTC muscles, through injection of recombinant protein or muscle-specific gene therapy, resulted in complete axonal transport correction. Therefore, this work identifies a non-cell autonomous pathomechanism common to ARS-related neuropathies, and highlights the potential of boosting BDNF levels in muscles as a therapeutic strategy.
Collapse
Affiliation(s)
- Elena R. Rhymes
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Rebecca L. Simkin
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Ji Qu
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - David Villarroel-Campos
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UK Dementia Research Institute at University College London, London WC1N 3BG, UK
| | - Sunaina Surana
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UK Dementia Research Institute at University College London, London WC1N 3BG, UK
| | - Yao Tong
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ryan Shapiro
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Xiang-Lei Yang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Giampietro Schiavo
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UK Dementia Research Institute at University College London, London WC1N 3BG, UK
| | - James N. Sleigh
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UK Dementia Research Institute at University College London, London WC1N 3BG, UK
| |
Collapse
|
12
|
Nielsen SDH, Sahebekhtiari N, Huang Z, Young JF, Rasmussen MK. Comparison of secreted miRNAs and proteins during proliferation and differentiation of bovine satellite cells in culture implies potential roles in regulating myogenesis. Gene 2024; 894:147979. [PMID: 37952749 DOI: 10.1016/j.gene.2023.147979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/01/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023]
Abstract
Cultivated meat is an emerging new technology to produce sustainable meat for the future. The common approach for cultivated meat, is the isolation of satellite cells from donor animals, followed by in vitro proliferation and differentiation into primitive muscle fibers. The transformation of satellite cells into myofibers is tightly orchestrated by intra-cellular signaling, while the inter-cellular signaling is less well understood. Thus, the current study was conducted to map the secretion of potential signaling molecules (MicroRNAs and proteins) during proliferation and differentiation. Primary cultures of satellite cells were grown to 50% and 80% confluence, representing the proliferative phase or serum-starved for 1 and 3 days to induce differentiation. Post incubation in FBS-free media, the media were collected and analyzed for miRNA and protein content using gene-arrays and LC-MS/MS, respectively. When comparing the miRNA secretome at 50% and 80% confluence, we observed four differentially expressed miRNA, while only five were differentially expressed when comparing Day 1 to Day 3. A subsequent in silico analysis suggested that pathways of importance for myogenesis, e.g., MAPK and AMPK signaling, could be regulated by the secreted miRNAs. In addition, >300 proteins were secreted, including insulin-like growth factor 1 binding proteins 2, 3, 4, 5 and 6. In conclusion, this study demonstrated differential secretion of several miRNAs and proteins during both proliferation and differentiation of bovine satellite cells in vitro.
Collapse
Affiliation(s)
| | - Navid Sahebekhtiari
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus N, Denmark
| | - Ziyu Huang
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus N, Denmark
| | - Jette Feveile Young
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus N, Denmark
| | | |
Collapse
|
13
|
Zhang J, Gao Y, Yan J. Roles of Myokines and Muscle-Derived Extracellular Vesicles in Musculoskeletal Deterioration under Disuse Conditions. Metabolites 2024; 14:88. [PMID: 38392980 PMCID: PMC10891558 DOI: 10.3390/metabo14020088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 02/25/2024] Open
Abstract
Prolonged inactivity and disuse conditions, such as those experienced during spaceflight and prolonged bedrest, are frequently accompanied by detrimental effects on the motor system, including skeletal muscle atrophy and bone loss, which greatly increase the risk of osteoporosis and fractures. Moreover, the decrease in glucose and lipid utilization in skeletal muscles, a consequence of muscle atrophy, also contributes to the development of metabolic syndrome. Clarifying the mechanisms involved in disuse-induced musculoskeletal deterioration is important, providing therapeutic targets and a scientific foundation for the treatment of musculoskeletal disorders under disuse conditions. Skeletal muscle, as a powerful endocrine organ, participates in the regulation of physiological and biochemical functions of local or distal tissues and organs, including itself, in endocrine, autocrine, or paracrine manners. As a motor organ adjacent to muscle, bone tissue exhibits a relative lag in degenerative changes compared to skeletal muscle under disuse conditions. Based on this phenomenon, roles and mechanisms involved in the communication between skeletal muscle and bone, especially from muscle to bone, under disuse conditions have attracted widespread attention. In this review, we summarize the roles and regulatory mechanisms of muscle-derived myokines and extracellular vesicles (EVs) in the occurrence of muscle atrophy and bone loss under disuse conditions, as well as discuss future perspectives based on existing research.
Collapse
Affiliation(s)
- Jie Zhang
- Institute of Special Medicine, Shanxi Medical University, Jinzhong 030619, China;
| | - Yunfang Gao
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Jiangwei Yan
- Institute of Special Medicine, Shanxi Medical University, Jinzhong 030619, China;
| |
Collapse
|
14
|
Funk LM, Poschmann G, Rabe von Pappenheim F, Chari A, Stegmann KM, Dickmanns A, Wensien M, Eulig N, Paknia E, Heyne G, Penka E, Pearson AR, Berndt C, Fritz T, Bazzi S, Uranga J, Mata RA, Dobbelstein M, Hilgenfeld R, Curth U, Tittmann K. Multiple redox switches of the SARS-CoV-2 main protease in vitro provide opportunities for drug design. Nat Commun 2024; 15:411. [PMID: 38195625 PMCID: PMC10776599 DOI: 10.1038/s41467-023-44621-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 12/21/2023] [Indexed: 01/11/2024] Open
Abstract
Besides vaccines, the development of antiviral drugs targeting SARS-CoV-2 is critical for preventing future COVID outbreaks. The SARS-CoV-2 main protease (Mpro), a cysteine protease with essential functions in viral replication, has been validated as an effective drug target. Here, we show that Mpro is subject to redox regulation in vitro and reversibly switches between the enzymatically active dimer and the functionally dormant monomer through redox modifications of cysteine residues. These include a disulfide-dithiol switch between the catalytic cysteine C145 and cysteine C117, and generation of an allosteric cysteine-lysine-cysteine SONOS bridge that is required for structural stability under oxidative stress conditions, such as those exerted by the innate immune system. We identify homo- and heterobifunctional reagents that mimic the redox switching and inhibit Mpro activity. The discovered redox switches are conserved in main proteases from other coronaviruses, e.g. MERS-CoV and SARS-CoV, indicating their potential as common druggable sites.
Collapse
Affiliation(s)
- Lisa-Marie Funk
- Department of Molecular Enzymology, Göttingen Center of Molecular Biosciences, Georg-August University Göttingen, Julia-Lermontowa-Weg 3, D-37077, Göttingen, Germany
- Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077, Göttingen, Germany
| | - Gereon Poschmann
- Institute of Molecular Medicine, Proteome Research, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Fabian Rabe von Pappenheim
- Department of Molecular Enzymology, Göttingen Center of Molecular Biosciences, Georg-August University Göttingen, Julia-Lermontowa-Weg 3, D-37077, Göttingen, Germany
- Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077, Göttingen, Germany
| | - Ashwin Chari
- Department of Structural Dynamics, Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077, Göttingen, Germany
| | - Kim M Stegmann
- Institute of Molecular Oncology, University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Antje Dickmanns
- Institute of Molecular Oncology, University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Marie Wensien
- Department of Molecular Enzymology, Göttingen Center of Molecular Biosciences, Georg-August University Göttingen, Julia-Lermontowa-Weg 3, D-37077, Göttingen, Germany
- Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077, Göttingen, Germany
| | - Nora Eulig
- Department of Molecular Enzymology, Göttingen Center of Molecular Biosciences, Georg-August University Göttingen, Julia-Lermontowa-Weg 3, D-37077, Göttingen, Germany
- Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077, Göttingen, Germany
| | - Elham Paknia
- Department of Structural Dynamics, Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077, Göttingen, Germany
| | - Gabi Heyne
- Department of Structural Dynamics, Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077, Göttingen, Germany
| | - Elke Penka
- Department of Molecular Enzymology, Göttingen Center of Molecular Biosciences, Georg-August University Göttingen, Julia-Lermontowa-Weg 3, D-37077, Göttingen, Germany
- Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077, Göttingen, Germany
| | - Arwen R Pearson
- Institute for Nanostructure and Solid-State Physics, Hamburg Centre for Ultrafast Imaging, Hamburg University, HARBOR, Luruper Chaussee 149, Hamburg, 22761, Germany
| | - Carsten Berndt
- Department of Neurology, Medical Faculty, Heinrich-Heine University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Tobias Fritz
- Institute of Physical Chemistry, Georg-August University Göttingen, Tammannstraße 6, D-37077, Göttingen, Germany
| | - Sophia Bazzi
- Institute of Physical Chemistry, Georg-August University Göttingen, Tammannstraße 6, D-37077, Göttingen, Germany
| | - Jon Uranga
- Institute of Physical Chemistry, Georg-August University Göttingen, Tammannstraße 6, D-37077, Göttingen, Germany
| | - Ricardo A Mata
- Institute of Physical Chemistry, Georg-August University Göttingen, Tammannstraße 6, D-37077, Göttingen, Germany
| | - Matthias Dobbelstein
- Institute of Molecular Oncology, University Medical Center Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Rolf Hilgenfeld
- Institute for Biochemistry, Lübeck University, Ratzeburger Allee 160, 23562, Lübeck, Germany
- German Center for Infection Research, Hamburg - Lübeck-Borstel-Riems Site, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Ute Curth
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Kai Tittmann
- Department of Molecular Enzymology, Göttingen Center of Molecular Biosciences, Georg-August University Göttingen, Julia-Lermontowa-Weg 3, D-37077, Göttingen, Germany.
- Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077, Göttingen, Germany.
| |
Collapse
|
15
|
Tang VT, Abbineni PS, Veiga Leprevost FD, Basrur V, Khoriaty R, Emmer BT, Nesvizhskii AI, Ginsburg D. Identification of LMAN1- and SURF4-Dependent Secretory Cargoes. J Proteome Res 2023; 22:3439-3446. [PMID: 37844105 PMCID: PMC10629478 DOI: 10.1021/acs.jproteome.3c00259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Indexed: 10/18/2023]
Abstract
Most proteins secreted into the extracellular space are first recruited from the endoplasmic reticulum into coat protein complex II (COPII)-coated vesicles or tubules that facilitate their transport to the Golgi apparatus. Although several secreted proteins have been shown to be actively recruited into COPII vesicles and tubules by the cargo receptors LMAN1 and SURF4, the full cargo repertoire of these receptors is unknown. We now report mass spectrometry analysis of conditioned media and cell lysates from HuH7 cells CRISPR targeted to inactivate the LMAN1 or SURF4 gene. We found that LMAN1 has limited clients in HuH7 cells, whereas SURF4 traffics a broad range of cargoes. Analysis of putative SURF4 cargoes suggests that cargo recognition is governed by complex mechanisms rather than interaction with a universal binding motif..
Collapse
Affiliation(s)
- Vi T. Tang
- Department
of Molecular and Integrative Physiology and Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Prabhodh S. Abbineni
- Life
Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Microbiology and Immunology, Loyola University
Chicago Stritch School of Medicine, Maywood, Illinois 60153, United States
| | | | - Venkatesha Basrur
- Department
of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Rami Khoriaty
- Department
of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Cell and Developmental Biology, University
of Michigan, Ann Arbor, Michigan 48109, United States
| | - Brian T. Emmer
- Department
of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Alexey I. Nesvizhskii
- Department
of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - David Ginsburg
- Life
Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Human Genetics, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan 48109, United States
- Howard
Hughes Medical Institute, University of
Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
16
|
Knecht S, Eberl HC, Kreisz N, Ugwu UJ, Starikova T, Kuster B, Wilhelm S. An Introduction to Analytical Challenges, Approaches, and Applications in Mass Spectrometry-Based Secretomics. Mol Cell Proteomics 2023; 22:100636. [PMID: 37597723 PMCID: PMC10518356 DOI: 10.1016/j.mcpro.2023.100636] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/06/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023] Open
Abstract
The active release of proteins into the extracellular space and the proteolytic cleavage of cell surface proteins are key processes that coordinate and fine-tune a multitude of physiological functions. The entirety of proteins that fulfill these extracellular tasks are referred to as the secretome and are of special interest for the investigation of biomarkers of disease states and physiological processes related to cell-cell communication. LC-MS-based proteomics approaches are a valuable tool for the comprehensive and unbiased characterization of this important subproteome. This review discusses procedures, opportunities, and limitations of mass spectrometry-based secretomics to better understand and navigate the complex analytical landscape for studying protein secretion in biomedical science.
Collapse
Affiliation(s)
- Sascha Knecht
- Omics Sciences, Genomic Sciences, GlaxoSmithKline, Heidelberg, Germany; Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - H Christian Eberl
- Omics Sciences, Genomic Sciences, GlaxoSmithKline, Heidelberg, Germany
| | - Norbert Kreisz
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Ukamaka Juliet Ugwu
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Tatiana Starikova
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany.
| | - Stephanie Wilhelm
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany.
| |
Collapse
|
17
|
Spona D, Hanisch PT, Hegemann JH, Mölleken K. A single chlamydial protein reshapes the plasma membrane and serves as recruiting platform for central endocytic effector proteins. Commun Biol 2023; 6:520. [PMID: 37179401 PMCID: PMC10182996 DOI: 10.1038/s42003-023-04913-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Uptake of obligate intracellular bacterial pathogens into mammalian epithelial cells is critically dependent on modulation of the host's endocytic machinery. It is an open question how the invading pathogens generate a membrane-bound vesicle appropriate to their size. This requires extensive deformation of the host plasma membrane itself by pathogen-derived membrane-binding proteins, accompanied by substantial F-actin-based forces to further expand and finally pinch off the vesicle. Here we show that upon adhesion to the host cell, the human pathogenic bacterium Chlamydia pneumoniae secretes the scaffolding effector protein CPn0677, which binds to the inner leaflet of the invaginating host's PM, induces inwardly directed, negative membrane curvature, and forms a recruiting platform for the membrane-deforming BAR-domain containing proteins Pacsin and SNX9. In addition, while bound to the membrane, CPn0677 recruits monomeric G-actin, and its C-terminal region binds and activates N-WASP, which initiates branching actin polymerization via the Arp2/3 complex. Together, these membrane-bound processes enable the developing endocytic vesicle to engulf the infectious elementary body, while the associated actin network generates the forces required to reshape and detach the nascent vesicle from the PM. Thus, Cpn0677 (now renamed SemD) acts as recruiting platform for central components of the endocytic machinery during uptake of chlamydia.
Collapse
Affiliation(s)
- Dominik Spona
- Institute for Functional Microbial Genomics, Heinrich-Heine-University, Düsseldorf, Germany
| | - Philipp T Hanisch
- Institute for Functional Microbial Genomics, Heinrich-Heine-University, Düsseldorf, Germany
| | - Johannes H Hegemann
- Institute for Functional Microbial Genomics, Heinrich-Heine-University, Düsseldorf, Germany
| | - Katja Mölleken
- Institute for Functional Microbial Genomics, Heinrich-Heine-University, Düsseldorf, Germany.
| |
Collapse
|
18
|
Zakharova A, Tashyreva D, Butenko A, Morales J, Saura A, Svobodová M, Poschmann G, Nandipati S, Zakharova A, Noyvert D, Gahura O, Týč J, Stühler K, Kostygov AY, Nowack ECM, Lukeš J, Yurchenko V. A neo-functionalized homolog of host transmembrane protein controls localization of bacterial endosymbionts in the trypanosomatid Novymonas esmeraldas. Curr Biol 2023:S0960-9822(23)00542-0. [PMID: 37201521 DOI: 10.1016/j.cub.2023.04.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/27/2023] [Accepted: 04/25/2023] [Indexed: 05/20/2023]
Abstract
The stability of endosymbiotic associations between eukaryotes and bacteria depends on a reliable mechanism ensuring vertical inheritance of the latter. Here, we demonstrate that a host-encoded protein, located at the interface between the endoplasmic reticulum of the trypanosomatid Novymonas esmeraldas and its endosymbiotic bacterium Ca. Pandoraea novymonadis, regulates such a process. This protein, named TMP18e, is a product of duplication and neo-functionalization of the ubiquitous transmembrane protein 18 (TMEM18). Its expression level is increased at the proliferative stage of the host life cycle correlating with the confinement of bacteria to the nuclear vicinity. This is important for the proper segregation of bacteria into the daughter host cells as evidenced from the TMP18e ablation, which disrupts the nucleus-endosymbiont association and leads to greater variability of bacterial cell numbers, including an elevated proportion of aposymbiotic cells. Thus, we conclude that TMP18e is necessary for the reliable vertical inheritance of endosymbionts.
Collapse
Affiliation(s)
- Alexandra Zakharova
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic
| | - Daria Tashyreva
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice (Budweis), Czech Republic
| | - Anzhelika Butenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic; Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice (Budweis), Czech Republic; Faculty of Sciences, University of South Bohemia, 370 05 České Budějovice (Budweis), Czech Republic
| | - Jorge Morales
- Institute of Microbial Cell Biology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Andreu Saura
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic
| | - Michaela Svobodová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice (Budweis), Czech Republic
| | - Gereon Poschmann
- Institute of Molecular Medicine, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Satish Nandipati
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice (Budweis), Czech Republic; Faculty of Sciences, University of South Bohemia, 370 05 České Budějovice (Budweis), Czech Republic
| | - Alena Zakharova
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic
| | - David Noyvert
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic
| | - Ondřej Gahura
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice (Budweis), Czech Republic
| | - Jiří Týč
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice (Budweis), Czech Republic
| | - Kai Stühler
- Institute of Microbial Cell Biology, Heinrich Heine University, 40225 Düsseldorf, Germany; Institute of Molecular Medicine, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Alexei Y Kostygov
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic.
| | - Eva C M Nowack
- Institute of Microbial Cell Biology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice (Budweis), Czech Republic; Faculty of Sciences, University of South Bohemia, 370 05 České Budějovice (Budweis), Czech Republic
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic.
| |
Collapse
|
19
|
Hornbergs J, Montag K, Loschwitz J, Mohr I, Poschmann G, Schnake A, Gratz R, Brumbarova T, Eutebach M, Angrand K, Fink-Straube C, Stühler K, Zeier J, Hartmann L, Strodel B, Ivanov R, Bauer P. SEC14-GOLD protein PATELLIN2 binds IRON-REGULATED TRANSPORTER1 linking root iron uptake to vitamin E. PLANT PHYSIOLOGY 2023; 192:504-526. [PMID: 36493393 PMCID: PMC10152663 DOI: 10.1093/plphys/kiac563] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 09/23/2022] [Accepted: 12/07/2022] [Indexed: 05/03/2023]
Abstract
Organisms require micronutrients, and Arabidopsis (Arabidopsis thaliana) IRON-REGULATED TRANSPORTER1 (IRT1) is essential for iron (Fe2+) acquisition into root cells. Uptake of reactive Fe2+ exposes cells to the risk of membrane lipid peroxidation. Surprisingly little is known about how this is avoided. IRT1 activity is controlled by an intracellular variable region (IRT1vr) that acts as a regulatory protein interaction platform. Here, we describe that IRT1vr interacted with peripheral plasma membrane SEC14-Golgi dynamics (SEC14-GOLD) protein PATELLIN2 (PATL2). SEC14 proteins bind lipophilic substrates and transport or present them at the membrane. To date, no direct roles have been attributed to SEC14 proteins in Fe import. PATL2 affected root Fe acquisition responses, interacted with ROS response proteins in roots, and alleviated root lipid peroxidation. PATL2 had high affinity in vitro for the major lipophilic antioxidant vitamin E compound α-tocopherol. Molecular dynamics simulations provided insight into energetic constraints and the orientation and stability of the PATL2-ligand interaction in atomic detail. Hence, this work highlights a compelling mechanism connecting vitamin E with root metal ion transport at the plasma membrane with the participation of an IRT1-interacting and α-tocopherol-binding SEC14 protein.
Collapse
Affiliation(s)
- Jannik Hornbergs
- Institute of Botany, Heinrich Heine University, Düsseldorf 40225, Germany
| | - Karolin Montag
- Institute of Botany, Heinrich Heine University, Düsseldorf 40225, Germany
| | - Jennifer Loschwitz
- Institute of Theoretical Chemistry and Computer Chemistry, Heinrich Heine University, Düsseldorf 40225, Germany
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Inga Mohr
- Institute of Botany, Heinrich Heine University, Düsseldorf 40225, Germany
| | - Gereon Poschmann
- Institute of Molecular Medicine, Proteome Research, Medical Faculty and University Hospital, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Anika Schnake
- Institute for Molecular Ecophysiology of Plants, Heinrich Heine University, Düsseldorf 40225, Germany
| | - Regina Gratz
- Institute of Botany, Heinrich Heine University, Düsseldorf 40225, Germany
| | | | - Monique Eutebach
- Institute of Botany, Heinrich Heine University, Düsseldorf 40225, Germany
| | - Kalina Angrand
- Department of Biosciences-Plant Biology, Saarland University, Campus A2.4, D-66123 Saarbrücken, Germany
| | | | - Kai Stühler
- Institute of Molecular Medicine, Proteome Research, Medical Faculty and University Hospital, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
- Molecular Proteomics Laboratory, Heinrich Heine University, Düsseldorf 40225, Germany
| | - Jürgen Zeier
- Institute for Molecular Ecophysiology of Plants, Heinrich Heine University, Düsseldorf 40225, Germany
- Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Düsseldorf 40225, Germany
| | - Laura Hartmann
- Institute of Macromolecular Chemistry, Heinrich Heine University, Düsseldorf 40225, Germany
| | - Birgit Strodel
- Institute of Theoretical Chemistry and Computer Chemistry, Heinrich Heine University, Düsseldorf 40225, Germany
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Rumen Ivanov
- Institute of Botany, Heinrich Heine University, Düsseldorf 40225, Germany
| | - Petra Bauer
- Institute of Botany, Heinrich Heine University, Düsseldorf 40225, Germany
- Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Düsseldorf 40225, Germany
| |
Collapse
|
20
|
Caliskan M, Poschmann G, Gudzuhn M, Waldera-Lupa D, Molitor R, Strunk CH, Streit WR, Jaeger KE, Stühler K, Kovacic F. Pseudomonas aeruginosa responds to altered membrane phospholipid composition by adjusting the production of two-component systems, proteases and iron uptake proteins. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159317. [PMID: 37054907 DOI: 10.1016/j.bbalip.2023.159317] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 04/15/2023]
Abstract
Membrane protein and phospholipid (PL) composition changes in response to environmental cues and during infections. To achieve these, bacteria use adaptation mechanisms involving covalent modification and remodelling of the acyl chain length of PLs. However, little is known about bacterial pathways regulated by PLs. Here, we investigated proteomic changes in the biofilm of P. aeruginosa phospholipase mutant (∆plaF) with altered membrane PL composition. The results revealed profound alterations in the abundance of many biofilm-related two-component systems (TCSs), including accumulation of PprAB, a key regulator of the transition to biofilm. Furthermore, a unique phosphorylation pattern of transcriptional regulators, transporters and metabolic enzymes, as well as differential production of several proteases, in ∆plaF, indicate that PlaF-mediated virulence adaptation involves complex transcriptional and posttranscriptional response. Moreover, proteomics and biochemical assays revealed the depletion of pyoverdine-mediated iron uptake pathway proteins in ∆plaF, while proteins from alternative iron-uptake systems were accumulated. These suggest that PlaF may function as a switch between different iron-acquisition pathways. The observation that PL-acyl chain modifying and PL synthesis enzymes were overproduced in ∆plaF reveals the interconnection of degradation, synthesis and modification of PLs for proper membrane homeostasis. Although the precise mechanism by which PlaF simultaneously affects multiple pathways remains to be elucidated, we suggest that alteration of PL composition in ∆plaF plays a role for the global adaptive response in P. aeruginosa mediated by TCSs and proteases. Our study revealed the global regulation of virulence and biofilm by PlaF and suggests that targeting this enzyme may have therapeutic potential.
Collapse
Affiliation(s)
- Muttalip Caliskan
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Jülich, Germany
| | - Gereon Poschmann
- Institute of Molecular Medicine, Proteome Research, University Hospital and Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Mirja Gudzuhn
- Department of Microbiology and Biotechnology, University of Hamburg, Ohnhorststr. 18, 22609 Hamburg, Germany
| | - Daniel Waldera-Lupa
- Institute of Molecular Medicine, Proteome Research, University Hospital and Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Rebecka Molitor
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Jülich, Germany
| | | | - Wolfgang R Streit
- Department of Microbiology and Biotechnology, University of Hamburg, Ohnhorststr. 18, 22609 Hamburg, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Jülich, Germany; Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Kai Stühler
- Institute of Molecular Medicine, Proteome Research, University Hospital and Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Molecular Proteomics Laboratory, Biologisch-Medizinisches Forschungszentrum, Heinrich-Heine-University, Düsseldorf, Düsseldorf, Germany
| | - Filip Kovacic
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Jülich, Germany.
| |
Collapse
|
21
|
Tang VT, Abbineni PS, Leprevost FDV, Basrur V, Emmer BT, Nesvizhskii AI, Ginsburg D. Identification of LMAN1 and SURF4 dependent secretory cargoes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.06.535922. [PMID: 37066360 PMCID: PMC10104123 DOI: 10.1101/2023.04.06.535922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Most proteins secreted into the extracellular space are first recruited from the endoplasmic reticulum into coat protein complex II (COPII)-coated vesicles or tubules that facilitate their transport to the Golgi apparatus. Although several secreted proteins have been shown to be actively recruited into COPII vesicles/tubules by the cargo receptors LMAN1 and SURF4, the full cargo repertoire of these receptors is unknown. We now report mass spectrometry analysis of conditioned media and cell lysates from HuH7 cells CRISPR targeted to inactivate the LMAN1 or SURF4 gene. We found that LMAN1 has limited clients in HuH7 cells whereas SURF4 traffics a broad range of cargoes. Analysis of putative SURF4 cargoes suggests that cargo recognition is governed by complex mechanisms rather than interaction with a universal binding motif.
Collapse
Affiliation(s)
- Vi T. Tang
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
| | | | | | | | - Brian T. Emmer
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Alexey I. Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI
| | - David Ginsburg
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- Department of Human Genetics, University of Michigan, Ann Arbor, MI
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI
| |
Collapse
|
22
|
Morales J, Ehret G, Poschmann G, Reinicke T, Maurya AK, Kröninger L, Zanini D, Wolters R, Kalyanaraman D, Krakovka M, Bäumers M, Stühler K, Nowack ECM. Host-symbiont interactions in Angomonas deanei include the evolution of a host-derived dynamin ring around the endosymbiont division site. Curr Biol 2023; 33:28-40.e7. [PMID: 36480982 DOI: 10.1016/j.cub.2022.11.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/09/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022]
Abstract
The trypanosomatid Angomonas deanei is a model to study endosymbiosis. Each cell contains a single β-proteobacterial endosymbiont that divides at a defined point in the host cell cycle and contributes essential metabolites to the host metabolism. Additionally, one endosymbiont gene, encoding an ornithine cyclodeaminase (OCD), was transferred by endosymbiotic gene transfer (EGT) to the nucleus. However, the molecular mechanisms mediating the intricate host/symbiont interactions are largely unexplored. Here, we used protein mass spectrometry to identify nucleus-encoded proteins that co-purify with the endosymbiont. Expression of fluorescent fusion constructs of these proteins in A. deanei confirmed seven host proteins to be recruited to specific sites within the endosymbiont. These endosymbiont-targeted proteins (ETPs) include two proteins annotated as dynamin-like protein and peptidoglycan hydrolase that form a ring-shaped structure around the endosymbiont division site that remarkably resembles organellar division machineries. The EGT-derived OCD was not among the ETPs, but instead localizes to the glycosome, likely enabling proline production in the glycosome. We hypothesize that recalibration of the metabolic capacity of the glycosomes that are closely associated with the endosymbiont helps to supply the endosymbiont with metabolites it is auxotrophic for and thus supports the integration of host and endosymbiont metabolic networks. Hence, scrutiny of endosymbiosis-induced protein re-localization patterns in A. deanei yielded profound insights into how an endosymbiotic relationship can stabilize and deepen over time far beyond the level of metabolite exchange.
Collapse
Affiliation(s)
- Jorge Morales
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Georg Ehret
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Gereon Poschmann
- Institute of Molecular Medicine, Proteome Research, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Tobias Reinicke
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Anay K Maurya
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Lena Kröninger
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Davide Zanini
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Rebecca Wolters
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Dhevi Kalyanaraman
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Michael Krakovka
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Miriam Bäumers
- Center for Advanced Imaging, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Kai Stühler
- Institute of Molecular Medicine, Proteome Research, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany; Molecular Proteomics Laboratory, Biological and Medical Research Centre (BMFZ), Heinrich Heine University Düsseldorf, Universitätsstr 1, 40225 Düsseldorf, Germany
| | - Eva C M Nowack
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
23
|
Heterologously secreted MbxA from Moraxella bovis induces a membrane blebbing response of the human host cell. Sci Rep 2022; 12:17825. [PMID: 36280777 PMCID: PMC9592583 DOI: 10.1038/s41598-022-22480-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/14/2022] [Indexed: 01/20/2023] Open
Abstract
Many proteins of the Repeats in Toxins (RTX) protein family are toxins of Gram-negative pathogens including hemolysin A (HlyA) of uropathogenic E. coli. RTX proteins are secreted via Type I secretion systems (T1SS) and adopt their native conformation in the Ca2+-rich extracellular environment. Here we employed the E. coli HlyA T1SS as a heterologous surrogate system for the RTX toxin MbxA from the bovine pathogen Moraxella bovis. In E. coli the HlyA system successfully activates the heterologous MbxA substrate by acylation and secretes the precursor proMbxA and active MbxA allowing purification of both species in quantities sufficient for a variety of investigations. The activating E. coli acyltransferase HlyC recognizes the acylation sites in MbxA, but unexpectedly in a different acylation pattern as for its endogenous substrate HlyA. HlyC-activated MbxA shows host species-independent activity including a so-far unknown toxicity against human lymphocytes and epithelial cells. Using live-cell imaging, we show an immediate MbxA-mediated permeabilization and a rapidly developing blebbing of the plasma membrane in epithelial cells, which is associated with immediate cell death.
Collapse
|
24
|
Skowron MA, Eul K, Stephan A, Ludwig GF, Wakileh GA, Bister A, Söhngen C, Raba K, Petzsch P, Poschmann G, Kuffour EO, Degrandi D, Ali S, Wiek C, Hanenberg H, Münk C, Stühler K, Köhrer K, Mass E, Nettersheim D. Profiling the 3D interaction between germ cell tumors and microenvironmental cells at the transcriptome and secretome level. Mol Oncol 2022; 16:3107-3127. [PMID: 35811571 PMCID: PMC9441004 DOI: 10.1002/1878-0261.13282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/30/2022] [Accepted: 07/07/2022] [Indexed: 11/05/2022] Open
Abstract
The tumor microenvironment (TM), consisting of the extracellular matrix (ECM), fibroblasts, endothelial cells, and immune cells, might affect tumor invasiveness and the outcome of standard chemotherapy. This study investigated the cross talk between germ cell tumors (GCT) and surrounding TM cells (macrophages, T-lymphocytes, endothelial cells, and fibroblasts) at the transcriptome and secretome level. Using high-throughput approaches of three-dimensional (3D) co-cultured cellular aggregates, this study offers newly identified pathways to be studied with regard to sensitivity toward cisplatin-based chemotherapy or tumor invasiveness as a consequence of the cross talk between tumor cells and TM components. Mass-spectrometry-based secretome analyses revealed that TM cells secreted factors involved in ECM organization, cell adhesion, angiogenesis, and regulation of insulin-like growth factor (IGF) transport. To evaluate direct cell-cell contacts, green fluorescent protein (GFP)-expressing GCT cells and mCherry-expressing TM cells were co-cultured in 3D. Afterward, cell populations were separated by flow cytometry and analyzed by RNA sequencing. Correlating the secretome with transcriptome data indicated molecular processes such as cell adhesion and components of the ECM being enriched in most cell populations. Re-analyses of secretome data with regard to lysine- and proline-hydroxylated peptides revealed a gain in proteins, such as collagens and fibronectin. Cultivation of GCT cells on collagen I/IV- or fibronectin-coated plates significantly elevated adhesive and migratory capacity, while decreasing cisplatin sensitivity of GCT cells. Correspondingly, cisplatin sensitivity was significantly reduced in GCT cells under the influence of conditioned medium from fibroblasts and endothelial cells. This study sheds light on the cross talk between GCT cells and their circumjacent TM, which results in deposition of the ECM and eventually promotes a pro-tumorigenic environment through enhanced migratory and adhesive capacity, as well as decreased cisplatin sensitivity. Hence, our observations indicate that targeting the ECM and its cellular components might be a novel therapeutic option in combination with cisplatin-based chemotherapy for GCT patients.
Collapse
Affiliation(s)
- Margaretha A. Skowron
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Katharina Eul
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Alexa Stephan
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Gillian F. Ludwig
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Gamal A. Wakileh
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
- Department of Urology and Paediatric UrologyUniversity Hospital UlmUlmGermany
| | - Arthur Bister
- Department of Otorhinolaryngology and Head/Neck Surgery, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Christian Söhngen
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Katharina Raba
- Institute for Transplantation Diagnostics and Cell TherapeuticsMedical Faculty and University Hospital Düsseldorf, Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Patrick Petzsch
- Genomics and Transcriptomics Laboratory, Biological and Medical Research Centre (BMFZ)Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Gereon Poschmann
- Molecular Proteomics Laboratory, Biological and Medical Research Centre (BMFZ)Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Edmund Osei Kuffour
- Clinic for Gastroenterology, Hepatology and Infectious DiseasesMedical Faculty and University Hospital Düsseldorf, Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Daniel Degrandi
- Institute of Medical Microbiology and Hospital HygieneMedical Faculty and University Hospital Düsseldorf, Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Shafaqat Ali
- Institute of Medical Microbiology and Hospital HygieneMedical Faculty and University Hospital Düsseldorf, Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Constanze Wiek
- Department of Otorhinolaryngology and Head/Neck Surgery, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Helmut Hanenberg
- Department of Otorhinolaryngology and Head/Neck Surgery, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
- Department of Pediatrics IIIUniversity Children's Hospital Essen, University of Duisburg‐EssenEssenGermany
| | - Carsten Münk
- Clinic for Gastroenterology, Hepatology and Infectious DiseasesMedical Faculty and University Hospital Düsseldorf, Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Kai Stühler
- Molecular Proteomics Laboratory, Biological and Medical Research Centre (BMFZ)Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Karl Köhrer
- Genomics and Transcriptomics Laboratory, Biological and Medical Research Centre (BMFZ)Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Elvira Mass
- Life and Medical Sciences (LIMES) Institute, Developmental Biology of the Immune SystemUniversity of BonnBonnGermany
| | - Daniel Nettersheim
- Department of Urology, Urological Research Laboratory, Translational UroOncology, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
| |
Collapse
|
25
|
Abbineni PS, Tang VT, da Veiga Leprevost F, Basrur V, Xiang J, Nesvizhskii AI, Ginsburg D. Identification of secreted proteins by comparison of protein abundance in conditioned media and cell lysates. Anal Biochem 2022; 655:114846. [PMID: 35973625 DOI: 10.1016/j.ab.2022.114846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 11/01/2022]
Abstract
Analysis of the full spectrum of secreted proteins in cell culture is complicated by leakage of intracellular proteins from damaged cells. To address this issue, we compared the abundance of individual proteins between the cell lysate and the conditioned medium, reasoning that secreted proteins should be relatively more abundant in the conditioned medium. Marked enrichment for signal-peptide-bearing proteins with increasing conditioned media to cell lysate ratio, as well loss of this signal following brefeldin A treatment, confirmed the sensitivity and specificity of this approach. The subset of proteins demonstrating increased conditioned media to cell lysate ratio in the presence of Brefeldin A identified candidates for unconventional secretion via a pathway independent of ER to Golgi trafficking.
Collapse
Affiliation(s)
| | - Vi T Tang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | | | | | - Jie Xiang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - David Ginsburg
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA; Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA; Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, USA; Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
26
|
Gentile GM, Gamarra JR, Engels NM, Blue RE, Hoerr I, Wiedner HJ, Hinkle ER, Cote JL, Leverence E, Mills CA, Herring LE, Tan X, Giudice J. The synaptosome-associated protein 23 (SNAP23) is necessary for proper myogenesis. FASEB J 2022; 36:e22441. [PMID: 35816155 PMCID: PMC9836321 DOI: 10.1096/fj.202101627rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 06/17/2022] [Accepted: 06/24/2022] [Indexed: 01/14/2023]
Abstract
Vesicle-mediated transport is necessary for maintaining cellular homeostasis and proper signaling. The synaptosome-associated protein 23 (SNAP23) is a member of the SNARE protein family and mediates the vesicle docking and membrane fusion steps of secretion during exocytosis. Skeletal muscle has been established as a secretory organ; however, the role of SNAP23 in the context of skeletal muscle development is still unknown. Here, we show that depletion of SNAP23 in C2C12 mouse myoblasts reduces their ability to differentiate into myotubes as a result of premature cell cycle exit and early activation of the myogenic transcriptional program. This effect is rescued when cells are seeded at a high density or when cultured in conditioned medium from wild type cells. Proteomic analysis of collected medium indicates that SNAP23 depletion leads to a misregulation of exocytosis, including decreased secretion of the insulin-like growth factor 1 (IGF1), a critical protein for muscle growth, development, and function. We further demonstrate that treatment of SNAP23-depleted cells with exogenous IGF1 rescues their myogenic capacity. We propose that SNAP23 mediates the secretion of specific proteins, such as IGF1, that are important for achieving proper differentiation of skeletal muscle cells during myogenesis. This work highlights the underappreciated role of skeletal muscle as a secretory organ and contributes to the understanding of factors necessary for myogenesis.
Collapse
Affiliation(s)
- Gabrielle M. Gentile
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jennifer R. Gamarra
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nichlas M. Engels
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - R. Eric Blue
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Isabel Hoerr
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hannah J. Wiedner
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Emma R. Hinkle
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jessica L. Cote
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Elise Leverence
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Christine A. Mills
- UNC Proteomics Core Facility, Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Laura E. Herring
- UNC Proteomics Core Facility, Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xianming Tan
- Department of Biostatistics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jimena Giudice
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
27
|
Kim BJ. Effects of Muscles on Bone Metabolism—with a Focus on Myokines. Ann Geriatr Med Res 2022; 26:63-71. [PMID: 35722780 PMCID: PMC9271391 DOI: 10.4235/agmr.22.0054] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/07/2022] [Indexed: 11/10/2022] Open
Abstract
Skeletal muscles and bones, the largest tissues in the body of a non-obese person, comprise the musculoskeletal system, which allows mobility and protects internal organs. Although muscles and bones are closely related throughout life, observations during development and aging and in human and animal disuse models have revealed the synchronization of tissue mass such that muscle phenotype changes precede alterations in bone mineral density and strength. This review discussed that mechanical forces, which have been the traditional research focus, are not the only mechanism by which muscle-derived signals may affect bone metabolism and emphasized the significance of skeletal muscles as an endocrine organ that secretes bone-regulatory factors. Consequently, both mechanical and biochemical aspects should be considered to fully understand muscle–bone crosstalk. This review also suggested that specific myokines could be ideal therapeutic targets for osteoporosis to both increase bone formation and reduce bone resorption; moreover, these myokines could also be potential circulating biomarkers to predict musculoskeletal health.
Collapse
Affiliation(s)
- Beom-Jun Kim
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Corresponding Authors: Beom-Jun Kim, MD, PhD Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Korea E-mail:
| |
Collapse
|
28
|
Jaguva Vasudevan AA, Hoffmann MJ, Poschmann G, Petzsch P, Wiek C, Stühler K, Köhrer K, Schulz WA, Niegisch G. Proteomic and transcriptomic profiles of human urothelial cancer cells with histone deacetylase 5 overexpression. Sci Data 2022; 9:240. [PMID: 35624179 PMCID: PMC9142574 DOI: 10.1038/s41597-022-01319-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 04/06/2022] [Indexed: 12/17/2022] Open
Abstract
Urothelial carcinoma (UC) of the urinary bladder is a prevalent cancer worldwide. Because histone deacetylases (HDACs) are important factors in cancer, targeting these epigenetic regulators is considered an attractive strategy to develop novel anticancer drugs. Whereas HDAC1 and HDAC2 promote UC, HDAC5 is often downregulated and only weakly expressed in UC cell lines, suggesting a tumor-suppressive function. We studied the effect of stable lentiviral-mediated HDAC5 overexpression in four UC cell lines with different phenotypes (RT112, VM-Cub-1, SW1710, and UM-UC-3, each with vector controls). In particular, comprehensive proteomics and RNA-seq transcriptomics analyses were performed on the four cell line pairs, which are described here. For comparison, the immortalized benign urothelial cell line HBLAK was included. These datasets will be a useful resource for researchers studying UC, and especially the influence of HDAC5 on epithelial-mesenchymal transition (EMT). Moreover, these data will inform studies on HDAC5 as a less studied member of the HDAC family in other cell types and diseases, especially fibrosis.
Collapse
Affiliation(s)
- Ananda Ayyappan Jaguva Vasudevan
- Department of Urology, University Hospital and Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany. .,Structural Cell Biology Group, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences (NIEHS), NIH, Research Triangle Park, NC, 27709, USA.
| | - Michèle J Hoffmann
- Department of Urology, University Hospital and Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Gereon Poschmann
- Institute for Molecular Medicine, Proteome Research, University Hospital and Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Patrick Petzsch
- Genomics & Transcriptomics Laboratory, Biological and Medical Research Centre (BMFZ), Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Constanze Wiek
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital and Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, 40225, Germany
| | - Kai Stühler
- Institute for Molecular Medicine, Proteome Research, University Hospital and Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.,Molecular Proteomics Laboratory, Biological and Medical Research Centre (BMFZ), Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Karl Köhrer
- Genomics & Transcriptomics Laboratory, Biological and Medical Research Centre (BMFZ), Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Wolfgang A Schulz
- Department of Urology, University Hospital and Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Günter Niegisch
- Department of Urology, University Hospital and Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.
| |
Collapse
|
29
|
Greco F, Beomonte Zobel B, Mallio CA. Decreased cross-sectional muscle area in male patients with clear cell renal cell carcinoma and peritumoral collateral vessels. World J Radiol 2022; 14:82-90. [PMID: 35646290 PMCID: PMC9124980 DOI: 10.4329/wjr.v14.i4.82] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/15/2021] [Accepted: 03/27/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Sarcopenia is the loss of skeletal muscle mass (SMM) and is a sign of cancer cachexia. Patients with advanced renal cell carcinoma (RCC) may show cachexia.
AIM To evaluate the amount of SMM in male clear cell RCC (ccRCC) patients with and without collateral vessels.
METHODS In this study, we included a total of 124 male Caucasian patients divided into two groups: ccRCCa group without collateral vessels (n = 54) and ccRCCp group with collateral vessels (n = 70). Total abdominal muscle area (TAMA) was measured in both groups using a computed tomography imaging-based approach. TAMA measures were also corrected for age in order to rule out age-related effects.
RESULTS There was a statistically significant difference between the two groups in terms of TAMA (P < 0.05) driven by a reduction in patients with peritumoral collateral vessels. The result was confirmed by repeating the analysis with values corrected for age (P < 0.05), indicating no age effect on our findings.
CONCLUSION This study showed a decreased TAMA in ccRCC patients with peritumoral collateral vessels. The presence of peritumoral collateral vessels adjacent to ccRCC might be a fine diagnostic clue to sarcopenia.
Collapse
Affiliation(s)
- Federico Greco
- Unità Operativa Complessa Diagnostica per Immagini Territoriale Aziendale, Cittadella della Salute Azienda Sanitaria Locale di Lecce, Lecce 73100, Italy
| | - Bruno Beomonte Zobel
- Unit of Diagnostic Imaging, Università Campus Bio-Medico di Roma, Rome 00128, Italy
| | - Carlo Augusto Mallio
- Unit of Diagnostic Imaging, Università Campus Bio-Medico di Roma, Rome 00128, Italy
| |
Collapse
|
30
|
Schrimpf A, Knappe O, Qvartskhava N, Poschmann G, Stühler K, Bidmon HJ, Luedde T, Häussinger D, Görg B. Hyperammonemia-induced changes in the cerebral transcriptome and proteome. Anal Biochem 2022; 641:114548. [DOI: 10.1016/j.ab.2022.114548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/10/2021] [Accepted: 01/06/2022] [Indexed: 02/07/2023]
|
31
|
Paluschinski M, Jin CJ, Qvartskhava N, Görg B, Wammers M, Lang J, Lang K, Poschmann G, Stühler K, Häussinger D. Characterization of the scavenger cell proteome in mouse and rat liver. Biol Chem 2021; 402:1073-1085. [PMID: 34333885 DOI: 10.1515/hsz-2021-0123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/04/2021] [Indexed: 01/20/2023]
Abstract
The structural-functional organization of ammonia and glutamine metabolism in the liver acinus involves highly specialized hepatocyte subpopulations like glutamine synthetase (GS) expressing perivenous hepatocytes (scavenger cells). However, this cell population has not yet been characterized extensively regarding expression of other genes and potential subpopulations. This was investigated in the present study by proteome profiling of periportal GS-negative and perivenous GS-expressing hepatocytes from mouse and rat. Apart from established markers of GS+ hepatocytes such as glutamate/aspartate transporter II (GLT1) or ammonium transporter Rh type B (RhBG), we identified novel scavenger cell-specific proteins like basal transcription factor 3 (BTF3) and heat-shock protein 25 (HSP25). Interestingly, BTF3 and HSP25 were heterogeneously distributed among GS+ hepatocytes in mouse liver slices. Feeding experiments showed that RhBG expression was increased in livers from mice fed with high protein diet compared to standard chow. While spatial distributions of GS and carbamoylphosphate synthetase 1 (CPS1) were unaffected, periportal areas constituted by glutaminase 2 (GLS2)-positive hepatocytes were enlarged or reduced in response to high or low protein diet, respectively. The data suggest that the population of perivenous GS+ scavenger cells is heterogeneous and not uniform as previously suggested which may reflect a functional heterogeneity, possibly relevant for liver regeneration.
Collapse
Affiliation(s)
- Martha Paluschinski
- Clinic for Gastroenterology, Hepatology and Infectiology, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Cheng Jun Jin
- Clinic for Gastroenterology, Hepatology and Infectiology, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Natalia Qvartskhava
- Clinic for Gastroenterology, Hepatology and Infectiology, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Boris Görg
- Clinic for Gastroenterology, Hepatology and Infectiology, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Marianne Wammers
- Clinic for Gastroenterology, Hepatology and Infectiology, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Judith Lang
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Hufelandstr. 55, 45122 Essen, Germany
| | - Karl Lang
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Hufelandstr. 55, 45122 Essen, Germany
| | - Gereon Poschmann
- Institute of Molecular Medicine, Proteome Research, Medical Faculty, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Kai Stühler
- Institute of Molecular Medicine, Proteome Research, Medical Faculty, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
- Molecular Proteomics Laboratory (MPL), Biomedical Research Center (BMFZ), Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology and Infectiology, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
32
|
Gonzalez-Franquesa A, Peijs L, Cervone DT, Koçana C, Zierath JR, Deshmukh AS. Insulin and 5-Aminoimidazole-4-Carboxamide Ribonucleotide (AICAR) Differentially Regulate the Skeletal Muscle Cell Secretome. Proteomes 2021; 9:37. [PMID: 34449730 PMCID: PMC8396280 DOI: 10.3390/proteomes9030037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/09/2021] [Accepted: 07/23/2021] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle is a major contributor to whole-body glucose homeostasis and is an important endocrine organ. To date, few studies have undertaken the large-scale identification of skeletal muscle-derived secreted proteins (myokines), particularly in response to stimuli that activate pathways governing energy metabolism in health and disease. Whereas the AMP-activated protein kinase (AMPK) and insulin-signaling pathways have received notable attention for their ability to independently regulate skeletal muscle substrate metabolism, little work has examined their ability to re-pattern the secretome. The present study coupled the use of high-resolution MS-based proteomics and bioinformatics analysis of conditioned media derived from 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR-an AMPK activator)- and insulin-treated differentiated C2C12 myotubes. We quantified 858 secreted proteins, including cytokines and growth factors such as fibroblast growth factor-21 (Fgf21). We identified 377 and 118 proteins that were significantly altered by insulin and AICAR treatment, respectively. Notably, the family of insulin growth factor binding-proteins (Igfbp) was differentially regulated by each treatment. Insulin- but not AICAR-induced conditioned media increased the mitochondrial respiratory capacity of myotubes, potentially via secreted factors. These findings may serve as an important resource to elucidate secondary metabolic effects of insulin and AICAR stimulation in skeletal muscle.
Collapse
Affiliation(s)
- Alba Gonzalez-Franquesa
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; (A.G.-F.); (L.P.); (D.T.C.); (C.K.); (J.R.Z.)
| | - Lone Peijs
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; (A.G.-F.); (L.P.); (D.T.C.); (C.K.); (J.R.Z.)
| | - Daniel T. Cervone
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; (A.G.-F.); (L.P.); (D.T.C.); (C.K.); (J.R.Z.)
| | - Ceren Koçana
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; (A.G.-F.); (L.P.); (D.T.C.); (C.K.); (J.R.Z.)
| | - Juleen R. Zierath
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; (A.G.-F.); (L.P.); (D.T.C.); (C.K.); (J.R.Z.)
- Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Atul S. Deshmukh
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; (A.G.-F.); (L.P.); (D.T.C.); (C.K.); (J.R.Z.)
- Clinical Proteomics, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
33
|
Quantitative MS Workflow for a High-Quality Secretome Analysis by a Quantitative Secretome-Proteome Comparison. Methods Mol Biol 2021. [PMID: 33950499 DOI: 10.1007/978-1-0716-1024-4_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2023]
Abstract
Cells secrete proteins to communicate with their environment. Therefore, it is interesting to characterize the proteins which are released from cells under certain experimental conditions the so-called secretome. Here, often proteins from conditioned medium of cultured cells are analyzed, but these additionally might include also contaminating proteins of serum that have not been sufficiently removed or proteins from dying cells. To provide high-quality secretome data and minimize potential contaminants, we describe a quantitative comparison of conditioned medium and the cellular proteome. The described workflow comprises cell cultivation, sample preparation, and final data analysis which is based on the comparison of data from label-free mass spectrometric quantification of proteins from the conditioned medium with corresponding cellular proteomes enabling the detection of bona fide secreted proteins.
Collapse
|
34
|
Blümke P, Schlegel J, Gonzalez-Ferrer C, Becher S, Pinto KG, Monaghan J, Simon R. Receptor-like cytoplasmic kinase MAZZA mediates developmental processes with CLAVATA1 family receptors in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4853-4870. [PMID: 33909893 DOI: 10.1093/jxb/erab183] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
The receptor-like kinases (RLKs) CLAVATA1 (CLV1) and BARELY ANY MERISTEMs (BAM1-BAM3) form the CLV1 family (CLV1f), which perceives peptides of the CLV3/EMBRYO SURROUNDING REGION (ESR)-related (CLE) family within various signaling pathways of Arabidopsis thaliana. CLE peptide signaling, which is required for meristem size control, vascular development, and pathogen responses, involves the formation of receptor complexes at the plasma membrane. These complexes comprise RLKs and co-receptors in varying compositions depending on the signaling context, and regulate expression of target genes, such as WUSCHEL (WUS). How the CLE signal is transmitted intracellularly after perception at the plasma membrane is not known in detail. Here, we found that the membrane-associated receptor-like cytoplasmic kinase (RLCK) MAZZA (MAZ) and additional members of the Pti1-like protein family interact in vivo with CLV1f receptors. MAZ, which is widely expressed throughout the plant, localizes to the plasma membrane via post-translational palmitoylation, potentially enabling stimulus-triggered protein re-localization. We identified a role for a CLV1-MAZ signaling module during stomatal and root development, and redundancy could potentially mask other phenotypes of maz mutants. We propose that MAZ, and related RLCKs, mediate CLV1f signaling in a variety of developmental contexts, paving the way towards understanding the intracellular processes after CLE peptide perception.
Collapse
Affiliation(s)
- Patrick Blümke
- Institute for Developmental Genetics, Heinrich Heine University, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Jenia Schlegel
- Institute for Developmental Genetics, Heinrich Heine University, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Carmen Gonzalez-Ferrer
- Department of Biology, Queen's University, 116 Barrie Street, Kingston ON K7L 3N6,Canada
| | - Sabine Becher
- Institute for Developmental Genetics, Heinrich Heine University, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Karine Gustavo Pinto
- Institute for Developmental Genetics, Heinrich Heine University, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Jacqueline Monaghan
- Department of Biology, Queen's University, 116 Barrie Street, Kingston ON K7L 3N6,Canada
| | - Rüdiger Simon
- Institute for Developmental Genetics, Heinrich Heine University, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
35
|
Cariati I, Bonanni R, Onorato F, Mastrogregori A, Rossi D, Iundusi R, Gasbarra E, Tancredi V, Tarantino U. Role of Physical Activity in Bone-Muscle Crosstalk: Biological Aspects and Clinical Implications. J Funct Morphol Kinesiol 2021; 6:55. [PMID: 34205747 PMCID: PMC8293201 DOI: 10.3390/jfmk6020055] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 02/06/2023] Open
Abstract
Bone and muscle tissues influence each other through the integration of mechanical and biochemical signals, giving rise to bone-muscle crosstalk. They are also known to secrete osteokines, myokines, and cytokines into the circulation, influencing the biological and pathological activities in local and distant organs and cells. In this regard, even osteoporosis and sarcopenia, which were initially thought to be two independent diseases, have recently been defined under the term "osteosarcopenia", to indicate a synergistic condition of low bone mass with muscle atrophy and hypofunction. Undoubtedly, osteosarcopenia is a major public health concern, being associated with high rates of morbidity and mortality. The best current defence against osteosarcopenia is prevention based on a healthy lifestyle and regular exercise. The most appropriate type, intensity, duration, and frequency of exercise to positively influence osteosarcopenia are not yet known. However, combined programmes of progressive resistance exercises, weight-bearing impact exercises, and challenging balance/mobility activities currently appear to be the most effective in optimising musculoskeletal health and function. Based on this evidence, the aim of our review was to summarize the current knowledge about the role of exercise in bone-muscle crosstalk, highlighting how it may represent an effective alternative strategy to prevent and/or counteract the onset of osteosarcopenia.
Collapse
Affiliation(s)
- Ida Cariati
- PhD in Medical-Surgical Biotechnologies and Translational Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy;
- Department of Clinical Sciences and Translational Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Roberto Bonanni
- Department of Systems Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (V.T.)
| | - Federica Onorato
- Department of Orthopaedics and Traumatology, “Policlinico Tor Vergata” Foundation, Viale Oxford 81, 00133 Rome, Italy; (F.O.); (A.M.); (D.R.); (R.I.); (E.G.)
| | - Ambra Mastrogregori
- Department of Orthopaedics and Traumatology, “Policlinico Tor Vergata” Foundation, Viale Oxford 81, 00133 Rome, Italy; (F.O.); (A.M.); (D.R.); (R.I.); (E.G.)
| | - Danilo Rossi
- Department of Orthopaedics and Traumatology, “Policlinico Tor Vergata” Foundation, Viale Oxford 81, 00133 Rome, Italy; (F.O.); (A.M.); (D.R.); (R.I.); (E.G.)
| | - Riccardo Iundusi
- Department of Orthopaedics and Traumatology, “Policlinico Tor Vergata” Foundation, Viale Oxford 81, 00133 Rome, Italy; (F.O.); (A.M.); (D.R.); (R.I.); (E.G.)
| | - Elena Gasbarra
- Department of Orthopaedics and Traumatology, “Policlinico Tor Vergata” Foundation, Viale Oxford 81, 00133 Rome, Italy; (F.O.); (A.M.); (D.R.); (R.I.); (E.G.)
| | - Virginia Tancredi
- Department of Systems Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (V.T.)
- Centre of Space Bio-Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Umberto Tarantino
- Department of Clinical Sciences and Translational Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
- Department of Orthopaedics and Traumatology, “Policlinico Tor Vergata” Foundation, Viale Oxford 81, 00133 Rome, Italy; (F.O.); (A.M.); (D.R.); (R.I.); (E.G.)
| |
Collapse
|
36
|
Ratnayake D, Nguyen PD, Rossello FJ, Wimmer VC, Tan JL, Galvis LA, Julier Z, Wood AJ, Boudier T, Isiaku AI, Berger S, Oorschot V, Sonntag C, Rogers KL, Marcelle C, Lieschke GJ, Martino MM, Bakkers J, Currie PD. Macrophages provide a transient muscle stem cell niche via NAMPT secretion. Nature 2021; 591:281-287. [PMID: 33568815 DOI: 10.1038/s41586-021-03199-7] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 01/07/2021] [Indexed: 01/30/2023]
Abstract
Skeletal muscle regenerates through the activation of resident stem cells. Termed satellite cells, these normally quiescent cells are induced to proliferate by wound-derived signals1. Identifying the source and nature of these cues has been hampered by an inability to visualize the complex cell interactions that occur within the wound. Here we use muscle injury models in zebrafish to systematically capture the interactions between satellite cells and the innate immune system after injury, in real time, throughout the repair process. This analysis revealed that a specific subset of macrophages 'dwell' within the injury, establishing a transient but obligate niche for stem cell proliferation. Single-cell profiling identified proliferative signals that are secreted by dwelling macrophages, which include the cytokine nicotinamide phosphoribosyltransferase (Nampt, which is also known as visfatin or PBEF in humans). Nampt secretion from the macrophage niche is required for muscle regeneration, acting through the C-C motif chemokine receptor type 5 (Ccr5), which is expressed on muscle stem cells. This analysis shows that in addition to their ability to modulate the immune response, specific macrophage populations also provide a transient stem-cell-activating niche, directly supplying proliferation-inducing cues that govern the repair process that is mediated by muscle stem cells. This study demonstrates that macrophage-derived niche signals for muscle stem cells, such as NAMPT, can be applied as new therapeutic modalities for skeletal muscle injury and disease.
Collapse
Affiliation(s)
- Dhanushika Ratnayake
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia.,EMBL Australia, Monash University, Clayton, Victoria, Australia
| | - Phong D Nguyen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Fernando J Rossello
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia.,University of Melbourne Centre for Cancer Research, The University of Melbourne, Melbourne, Victoria, Australia
| | - Verena C Wimmer
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Jean L Tan
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia.,EMBL Australia, Monash University, Clayton, Victoria, Australia
| | - Laura A Galvis
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia.,Institut NeuroMyoGène (INMG), University Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Lyon, France
| | - Ziad Julier
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia.,EMBL Australia, Monash University, Clayton, Victoria, Australia
| | - Alasdair J Wood
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia.,EMBL Australia, Monash University, Clayton, Victoria, Australia
| | - Thomas Boudier
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Abdulsalam I Isiaku
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Silke Berger
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia.,EMBL Australia, Monash University, Clayton, Victoria, Australia
| | - Viola Oorschot
- Monash Ramaciotti Centre for Cryo Electron Microscopy, Monash University, Melbourne, Victoria, Australia.,European Molecular Biology Laboratory, Electron Microscopy Core Facility, Heidelberg, Germany
| | - Carmen Sonntag
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia.,EMBL Australia, Monash University, Clayton, Victoria, Australia
| | - Kelly L Rogers
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Christophe Marcelle
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia.,Institut NeuroMyoGène (INMG), University Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Lyon, France
| | - Graham J Lieschke
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Mikaël M Martino
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia.,EMBL Australia, Monash University, Clayton, Victoria, Australia
| | - Jeroen Bakkers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia. .,EMBL Australia, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
37
|
Sanwald JL, Dobner J, Simons IM, Poschmann G, Stühler K, Üffing A, Hoffmann S, Willbold D. Lack of GABARAP-Type Proteins Is Accompanied by Altered Golgi Morphology and Surfaceome Composition. Int J Mol Sci 2020; 22:E85. [PMID: 33374830 PMCID: PMC7795684 DOI: 10.3390/ijms22010085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
GABARAP (γ-aminobutyric acid type A receptor-associated protein) and its paralogues GABARAPL1 and GABARAPL2 comprise a subfamily of autophagy-related Atg8 proteins. They are studied extensively regarding their roles during autophagy. Originally, however, especially GABARAPL2 was discovered to be involved in intra-Golgi transport and homotypic fusion of post-mitotic Golgi fragments. Recently, a broader function of mammalian Atg8s on membrane trafficking through interaction with various soluble N-ethylmaleimide-sensitive factor-attachment protein receptors SNAREs was suggested. By immunostaining and microscopic analysis of the Golgi network, we demonstrate the importance of the presence of individual GABARAP-type proteins on Golgi morphology. Furthermore, triple knockout (TKO) cells lacking the whole GABARAP subfamily showed impaired Golgi-dependent vesicular trafficking as assessed by imaging of fluorescently labelled ceramide. With the Golgi apparatus being central within the secretory pathway, we sought to investigate the role of the GABARAP-type proteins for cell surface protein trafficking. By analysing the surfaceome compositionofTKOs, we identified a subset of cell surface proteins with altered plasma membrane localisation. Taken together, we provide novel insights into an underrated aspect of autophagy-independent functions of the GABARAP subfamily and recommend considering the potential impact of GABARAP subfamily proteins on a plethora of processes during experimental analysis of GABARAP-deficient cells not only in the autophagic context.
Collapse
Affiliation(s)
- Julia L. Sanwald
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany; (J.L.S.); (J.D.); (I.M.S.); (A.Ü.)
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Leo-Brandt-Straße, 52428 Jülich, Germany
| | - Jochen Dobner
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany; (J.L.S.); (J.D.); (I.M.S.); (A.Ü.)
| | - Indra M. Simons
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany; (J.L.S.); (J.D.); (I.M.S.); (A.Ü.)
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Leo-Brandt-Straße, 52428 Jülich, Germany
| | - Gereon Poschmann
- Institute of Molecular Medicine I, Proteome Research, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany; (G.P.); (K.S.)
| | - Kai Stühler
- Institute of Molecular Medicine I, Proteome Research, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany; (G.P.); (K.S.)
- Molecular Proteomics Laboratory, Biologisch-Medizinisches Forschungszentrum (BMFZ), Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Alina Üffing
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany; (J.L.S.); (J.D.); (I.M.S.); (A.Ü.)
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Leo-Brandt-Straße, 52428 Jülich, Germany
| | - Silke Hoffmann
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Leo-Brandt-Straße, 52428 Jülich, Germany
| | - Dieter Willbold
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany; (J.L.S.); (J.D.); (I.M.S.); (A.Ü.)
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Leo-Brandt-Straße, 52428 Jülich, Germany
| |
Collapse
|
38
|
He C, He W, Hou J, Chen K, Huang M, Yang M, Luo X, Li C. Bone and Muscle Crosstalk in Aging. Front Cell Dev Biol 2020; 8:585644. [PMID: 33363144 PMCID: PMC7758235 DOI: 10.3389/fcell.2020.585644] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
Osteoporosis and sarcopenia are two age-related diseases that affect the quality of life in the elderly. Initially, they were thought to be two independent diseases; however, recently, increasing basic and clinical data suggest that skeletal muscle and bone are both spatially and metabolically connected. The term "osteosarcopenia" is used to define a condition of synergy of low bone mineral density with muscle atrophy and hypofunction. Bone and muscle cells secrete several factors, such as cytokines, myokines, and osteokines, into the circulation to influence the biological and pathological activities in local and distant organs and cells. Recent studies reveal that extracellular vesicles containing microRNAs derived from senescent skeletal muscle and bone cells can also be transported and aid in regulating bone-muscle crosstalk. In this review, we summarize the age-related changes in the secretome and extracellular vesicle-microRNAs secreted by the muscle and bone, and discuss their interactions between muscle and bone cells during aging.
Collapse
Affiliation(s)
- Chen He
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Wenzhen He
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Jing Hou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Kaixuan Chen
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Mei Huang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Mi Yang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Xianghang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Changjun Li
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| |
Collapse
|
39
|
Poschmann G, Brenig K, Lenz T, Stühler K. Comparative Secretomics Gives Access to High Confident Secretome Data: Evaluation of Different Methods for the Determination of Bona Fide Secreted Proteins. Proteomics 2020; 21:e2000178. [PMID: 33015975 DOI: 10.1002/pmic.202000178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/23/2020] [Indexed: 12/16/2022]
Abstract
Secretome analysis is broadly applied to understand the interplay between cells and their microenvironment. In particular, the unbiased analysis by mass spectrometry-based proteomics of conditioned medium has been successfully applied. In this context, several approaches have been developed allowing to distinguish proteins actively secreted by cells from proteins derived from culture medium or proteins released from dying cells. Here, three different methods comparing conditioned medium and lysate by quantitative mass spectrometry-based proteomics to identify bona fide secreted proteins are evaluated. Evaluation in three different human cell lines reveals that all three methods give access to a similar set of bona fide secreted proteins covering a broad abundance range. In the analyzed primary cells, that is, mesenchymal stromal cells and normal human dermal fibroblasts, more than 70% of the identified proteins are linked to classical secretion pathways. Furthermore, 4-12% are predicted to be released by unconventional secretion pathways. Interestingly, evidence of release by ectodomain shedding in a large number of the remaining candidate proteins is found. In summary, it is convinced that comparative secretomics is currently the method of choice to obtain high-confident secretome data and to identify novel candidates for unconventional protein secretion which have been neglected so far.
Collapse
Affiliation(s)
- Gereon Poschmann
- Proteome Research, Institute of Molecular Medicine, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, 40225, Germany
| | - Katrin Brenig
- Proteome Research, Institute of Molecular Medicine, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, 40225, Germany
| | - Thomas Lenz
- Molecular Proteomics Laboratory, Biologisch-Medizinisches Forschungszentrum, Heinrich Heine University Düsseldorf, Düsseldorf, 40225, Germany
| | - Kai Stühler
- Proteome Research, Institute of Molecular Medicine, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, 40225, Germany.,Molecular Proteomics Laboratory, Biologisch-Medizinisches Forschungszentrum, Heinrich Heine University Düsseldorf, Düsseldorf, 40225, Germany
| |
Collapse
|
40
|
Stühler K. The secrets of protein secretion: what are the key features of comparative secretomics? Expert Rev Proteomics 2020; 17:785-787. [PMID: 33491497 DOI: 10.1080/14789450.2020.1881890] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/22/2021] [Indexed: 12/17/2022]
Affiliation(s)
- Kai Stühler
- Institute for Molecular Medicine I, Proteome Research , Medical Faculty Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Molecular Proteomics Laboratory, Biological Medical Research Center, Heinrich-Heine-University Düsseldorf , Düsseldorf, Germany
| |
Collapse
|
41
|
Secretome Analysis of Mesenchymal Stem Cell Factors Fostering Oligodendroglial Differentiation of Neural Stem Cells In Vivo. Int J Mol Sci 2020; 21:ijms21124350. [PMID: 32570968 PMCID: PMC7352621 DOI: 10.3390/ijms21124350] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stem cell (MSC)-secreted factors have been shown to significantly promote oligodendrogenesis from cultured primary adult neural stem cells (aNSCs) and oligodendroglial precursor cells (OPCs). Revealing underlying mechanisms of how aNSCs can be fostered to differentiate into a specific cell lineage could provide important insights for the establishment of novel neuroregenerative treatment approaches aiming at myelin repair. However, the nature of MSC-derived differentiation and maturation factors acting on the oligodendroglial lineage has not been identified thus far. In addition to missing information on active ingredients, the degree to which MSC-dependent lineage instruction is functional in vivo also remains to be established. We here demonstrate that MSC-derived factors can indeed stimulate oligodendrogenesis and myelin sheath generation of aNSCs transplanted into different rodent central nervous system (CNS) regions, and furthermore, we provide insights into the underlying mechanism on the basis of a comparative mass spectrometry secretome analysis. We identified a number of secreted proteins known to act on oligodendroglia lineage differentiation. Among them, the tissue inhibitor of metalloproteinase type 1 (TIMP-1) was revealed to be an active component of the MSC-conditioned medium, thus validating our chosen secretome approach.
Collapse
|
42
|
The GABARAP Co-Secretome Identified by APEX2-GABARAP Proximity Labelling of Extracellular Vesicles. Cells 2020; 9:cells9061468. [PMID: 32560054 PMCID: PMC7349886 DOI: 10.3390/cells9061468] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/05/2020] [Accepted: 06/12/2020] [Indexed: 01/07/2023] Open
Abstract
The autophagy-related ATG8 protein GABARAP has not only been shown to be involved in the cellular self-degradation process called autophagy but also fulfils functions in intracellular trafficking processes such as receptor transport to the plasma membrane. Notably, available mass spectrometry data suggest that GABARAP is also secreted into extracellular vesicles (EVs). Here, we confirm this finding by the immunoblotting of EVs isolated from cell culture supernatants and human blood serum using specific anti-GABARAP antibodies. To investigate the mechanism by which GABARAP is secreted, we applied proximity labelling, a method for studying the direct environment of a protein of interest in a confined cellular compartment. By expressing an engineered peroxidase (APEX2)-tagged variant of GABARAP—which, like endogenous GABARAP, was present in EVs prepared from HEK293 cells—we demonstrate the applicability of APEX2-based proximity labelling to EVs. The biotinylated protein pool which contains the APEX2-GABARAP co-secretome contained not only known GABARAP interaction partners but also proteins that were found in APEX2-GABARAP’s proximity inside of autophagosomes in an independent study. All in all, we not only introduce a versatile tool for co-secretome analysis in general but also uncover the first details about autophagy-based pathways as possible biogenesis mechanisms of GABARAP-containing EVs.
Collapse
|
43
|
Rohn F, Kordes C, Buschmann T, Reichert D, Wammers M, Poschmann G, Stühler K, Benk AS, Geiger F, Spatz JP, Häussinger D. Impaired integrin α 5 /β 1 -mediated hepatocyte growth factor release by stellate cells of the aged liver. Aging Cell 2020; 19:e13131. [PMID: 32157808 PMCID: PMC7189994 DOI: 10.1111/acel.13131] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/20/2020] [Accepted: 02/16/2020] [Indexed: 02/06/2023] Open
Abstract
Hepatic blood flow and sinusoidal endothelial fenestration decrease during aging. Consequently, fluid mechanical forces are reduced in the space of Disse where hepatic stellate cells (HSC) have their niche. We provide evidence that integrin α5 /β1 is an important mechanosensor in HSC involved in shear stress-induced release of hepatocyte growth factor (HGF), an essential inductor of liver regeneration which is impaired during aging. The expression of the integrin subunits α5 and β1 decreases in liver and HSC from aged rats. CRISPR/Cas9-mediated integrin α5 and β1 knockouts in isolated HSC lead to lowered HGF release and impaired cellular adhesion. Fluid mechanical forces increase integrin α5 and laminin gene expression whereas integrin β1 remains unaffected. In the aged liver, laminin β2 and γ1 protein chains as components of laminin-521 are lowered. The integrin α5 knockout in HSC reduces laminin expression via mechanosensory mechanisms. Culture of HSC on nanostructured surfaces functionalized with laminin-521 enhances Hgf expression in HSC, demonstrating that these ECM proteins are critically involved in HSC function. During aging, HSC acquire a senescence-associated secretory phenotype and lower their growth factor expression essential for tissue repair. Our findings suggest that impaired mechanosensing via integrin α5 /β1 in HSC contributes to age-related reduction of ECM and HGF release that could affect liver regeneration.
Collapse
Affiliation(s)
- Friederike Rohn
- Clinic of Gastroenterology, Hepatology and Infectious Diseases Heinrich Heine University Düsseldorf Germany
| | - Claus Kordes
- Clinic of Gastroenterology, Hepatology and Infectious Diseases Heinrich Heine University Düsseldorf Germany
| | - Tobias Buschmann
- Clinic of Gastroenterology, Hepatology and Infectious Diseases Heinrich Heine University Düsseldorf Germany
| | - Doreen Reichert
- Clinic of Gastroenterology, Hepatology and Infectious Diseases Heinrich Heine University Düsseldorf Germany
| | - Marianne Wammers
- Clinic of Gastroenterology, Hepatology and Infectious Diseases Heinrich Heine University Düsseldorf Germany
| | - Gereon Poschmann
- Institute for Molecular Medicine Heinrich Heine University Düsseldorf Germany
| | - Kai Stühler
- Institute for Molecular Medicine Heinrich Heine University Düsseldorf Germany
- Molecular Proteomics Laboratory BMFZ Heinrich Heine University Düsseldorf Düsseldorf Germany
| | - Amelie S. Benk
- Department of Cellular Biophysics Max‐Planck‐Institute for Medical Research Heidelberg Germany
- Department of Biophysical Chemistry University of Heidelberg Heidelberg Germany
| | - Fania Geiger
- Department of Cellular Biophysics Max‐Planck‐Institute for Medical Research Heidelberg Germany
- Department of Biophysical Chemistry University of Heidelberg Heidelberg Germany
| | - Joachim P. Spatz
- Department of Cellular Biophysics Max‐Planck‐Institute for Medical Research Heidelberg Germany
- Department of Biophysical Chemistry University of Heidelberg Heidelberg Germany
| | - Dieter Häussinger
- Clinic of Gastroenterology, Hepatology and Infectious Diseases Heinrich Heine University Düsseldorf Germany
| |
Collapse
|
44
|
Bergerhausen L, Grosche J, Meißner J, Hecker C, Caliandro MF, Westerhausen C, Kamenac A, Rezaei M, Mörgelin M, Poschmann G, Vestweber D, Hanschmann EM, Eble JA. Extracellular Redox Regulation of α7β Integrin-Mediated Cell Migration Is Signaled via a Dominant Thiol-Switch. Antioxidants (Basel) 2020; 9:antiox9030227. [PMID: 32164274 PMCID: PMC7139957 DOI: 10.3390/antiox9030227] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/06/2020] [Accepted: 03/08/2020] [Indexed: 12/21/2022] Open
Abstract
While adhering to extracellular matrix (ECM) proteins, such as laminin-111, cells temporarily produce hydrogen peroxide at adhesion sites. To study the redox regulation of α7β1 integrin-mediated cell adhesion to laminin-111, a conserved cysteine pair within the α-subunit hinge region was replaced for alanines. The molecular and cellular effects were analyzed by electron and atomic force microscopy, impedance-based migration assays, flow cytometry and live cell imaging. This cysteine pair constitutes a thiol-switch, which redox-dependently governs the equilibrium between an extended and a bent integrin conformation with high and low ligand binding activity, respectively. Hydrogen peroxide oxidizes the cysteines to a disulfide bond, increases ligand binding and promotes cell migration toward laminin-111. Inversely, extracellular thioredoxin-1 reduces the disulfide, thereby decreasing laminin binding. Mutation of this cysteine pair into the non-oxidizable hinge-mutant shows molecular and cellular effects similar to the reduced wild-type integrin, but lacks redox regulation. This proves the existence of a dominant thiol-switch within the α subunit hinge of α7β1 integrin, which is sufficient to implement activity regulation by extracellular redox agents in a redox-regulatory circuit. Our data reveal a novel and physiologically relevant thiol-based regulatory mechanism of integrin-mediated cell-ECM interactions, which employs short-lived hydrogen peroxide and extracellular thioredoxin-1 as signaling mediators.
Collapse
Affiliation(s)
- Lukas Bergerhausen
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany; (L.B.); (J.G.); (J.M.); (M.F.C.); (M.R.)
| | - Julius Grosche
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany; (L.B.); (J.G.); (J.M.); (M.F.C.); (M.R.)
| | - Juliane Meißner
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany; (L.B.); (J.G.); (J.M.); (M.F.C.); (M.R.)
| | - Christina Hecker
- Department of Neurology, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (C.H.); (E.-M.H.)
| | - Michele F. Caliandro
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany; (L.B.); (J.G.); (J.M.); (M.F.C.); (M.R.)
| | - Christoph Westerhausen
- Biophysics Group, Department of Experimental Physics, Institute of Physics, University of Augsburg, 86159 Augsburg, Germany (A.K.)
- Institute of Theoretical Medicine, University of Augsburg, 86159 Augsburg, Germany
| | - Andrej Kamenac
- Biophysics Group, Department of Experimental Physics, Institute of Physics, University of Augsburg, 86159 Augsburg, Germany (A.K.)
| | - Maryam Rezaei
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany; (L.B.); (J.G.); (J.M.); (M.F.C.); (M.R.)
| | | | - Gereon Poschmann
- Institute of Molecular Medicine I, Functional Redox Proteomics, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Dietmar Vestweber
- Department of Vascular Cell Biology, Max Planck-Institute of Molecular Biomedicine, 48149 Münster, Germany;
| | - Eva-Maria Hanschmann
- Department of Neurology, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (C.H.); (E.-M.H.)
| | - Johannes A. Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany; (L.B.); (J.G.); (J.M.); (M.F.C.); (M.R.)
- Correspondence: ; Tel.: +49-251-835-5591
| |
Collapse
|
45
|
Florin A, Lambert C, Sanchez C, Zappia J, Durieux N, Tieppo AM, Mobasheri A, Henrotin Y. The secretome of skeletal muscle cells: A systematic review. OSTEOARTHRITIS AND CARTILAGE OPEN 2020; 2:100019. [DOI: 10.1016/j.ocarto.2019.100019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/18/2019] [Indexed: 12/18/2022] Open
|
46
|
Dowling P, Gargan S, Zweyer M, Swandulla D, Ohlendieck K. Proteomic profiling of fatty acid binding proteins in muscular dystrophy. Expert Rev Proteomics 2020; 17:137-148. [PMID: 32067530 DOI: 10.1080/14789450.2020.1732214] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Duchenne muscular dystrophy is a neuromuscular disorder, which is caused by abnormalities in the DMD gene that encodes the membrane cytoskeletal protein dystrophin. Besides progressive skeletal muscle wasting, dystrophinopathy also affects non-skeletal muscle tissues, including cells in the cardio-respiratory system, the central nervous system, the liver and the kidney.Areas covered: This review summarizes the proteomic characterization of a key class of lipid chaperones, the large family of fatty acid binding proteins, and their potential role in muscular dystrophy. Recent proteomic surveys using animal models and patient specimens are reviewed. Pathobiochemical changes in specific proteoforms of fatty acid binding protein in the multi-system pathology of dystrophinopathy are discussed.Expert opinion: The mass spectrometric identification of distinct changes in fatty acid binding proteins in muscle, heart, liver, kidney and serum demonstrates that considerable alterations occur in key steps of metabolite transport and fat metabolism in muscular dystrophy. These new findings might be helpful to further develop a comprehensive biomarker signature of metabolic changes in X-linked muscular dystrophy, which should improve (i) our understanding of complex pathobiochemical changes due to dystrophin deficiency, (ii) the identification of novel therapeutic targets, and (iii) the design of differential diagnostic, prognostic and therapy-monitoring approaches.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Margit Zweyer
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany
| | | | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
47
|
OutCyte: a novel tool for predicting unconventional protein secretion. Sci Rep 2019; 9:19448. [PMID: 31857603 PMCID: PMC6923414 DOI: 10.1038/s41598-019-55351-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 11/21/2019] [Indexed: 12/03/2022] Open
Abstract
The prediction of protein localization, such as in the extracellular space, from high-throughput data is essential for functional downstream inference. It is well accepted that some secreted proteins go through the classic endoplasmic reticulum-Golgi pathway with the guidance of a signal peptide. However, a large number of proteins have been found to reach the extracellular space by following unconventional secretory pathways. There remains a demand for reliable prediction of unconventional protein secretion (UPS). Here, we present OutCyte, a fast and accurate tool for the prediction of UPS, which for the first time has been built upon experimentally determined UPS proteins. OutCyte mediates the prediction of protein secretion in two steps: first, proteins with N-terminal signals are accurately filtered out; second, proteins without N-terminal signals are classified as UPS or intracellular proteins based on physicochemical features directly generated from their amino acid sequences. We are convinced that OutCyte will play a relevant role in the annotation of experimental data and will therefore contribute to further characterization of the extracellular nature of proteins by considering the commonly neglected UPS proteins. OutCyte has been implemented as a web server atwww.outcyte.com.
Collapse
|
48
|
Schira-Heinen J, Grube L, Waldera-Lupa DM, Baberg F, Langini M, Etemad-Parishanzadeh O, Poschmann G, Stühler K. Pitfalls and opportunities in the characterization of unconventionally secreted proteins by secretome analysis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:140237. [DOI: 10.1016/j.bbapap.2019.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 06/04/2019] [Accepted: 06/06/2019] [Indexed: 02/07/2023]
|
49
|
Kanonenberg K, Royes J, Kedrov A, Poschmann G, Angius F, Solgadi A, Spitz O, Kleinschrodt D, Stühler K, Miroux B, Schmitt L. Shaping the lipid composition of bacterial membranes for membrane protein production. Microb Cell Fact 2019; 18:131. [PMID: 31400768 PMCID: PMC6689329 DOI: 10.1186/s12934-019-1182-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/30/2019] [Indexed: 12/29/2022] Open
Abstract
Background The overexpression and purification of membrane proteins is a bottleneck in biotechnology and structural biology. E. coli remains the host of choice for membrane protein production. To date, most of the efforts have focused on genetically tuning of expression systems and shaping membrane composition to improve membrane protein production remained largely unexplored. Results In E. coli C41(DE3) strain, we deleted two transporters involved in fatty acid metabolism (OmpF and AcrB), which are also recalcitrant contaminants crystallizing even at low concentration. Engineered expression hosts presented an enhanced fitness and improved folding of target membrane proteins, which correlated with an altered membrane fluidity. We demonstrated the scope of this approach by overproducing several membrane proteins (4 different ABC transporters, YidC and SecYEG). Conclusions In summary, E. coli membrane engineering unprecedentedly increases the quality and yield of membrane protein preparations. This strategy opens a new field for membrane protein production, complementary to gene expression tuning. Electronic supplementary material The online version of this article (10.1186/s12934-019-1182-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kerstin Kanonenberg
- Institute of Biochemistry, Heinrich-Heine-University Duesseldorf, Universitaetsstr. 1, 40225, Duesseldorf, Germany.,CNRS, UMR5086 "Molecular Microbiology and Structural Biochemistry", Université de Lyon, 7 Passage du vercors, 69007, Lyon, France
| | - Jorge Royes
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, UMR7099, CNRS, IBPC, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Alexej Kedrov
- Institute of Biochemistry, Heinrich-Heine-University Duesseldorf, Universitaetsstr. 1, 40225, Duesseldorf, Germany
| | - Gereon Poschmann
- Molecular Proteomics Laboratory, Biologisch Medizinisches Forschungszentrum (BMFZ), Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Federica Angius
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, UMR7099, CNRS, IBPC, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005, Paris, France.,Department of Microbiology, Institute for Water and Wetland Research, Heyendaalseweg 135, 6525, Nijmegen, The Netherlands
| | - Audrey Solgadi
- Institut Paris Saclay d'Innovation Thérapeutique, INSERM, CNRS, - Plateforme SAMM, Université Paris-Saclay, Châtenay-Malabry, France
| | - Olivia Spitz
- Institute of Biochemistry, Heinrich-Heine-University Duesseldorf, Universitaetsstr. 1, 40225, Duesseldorf, Germany
| | - Diana Kleinschrodt
- Institute of Biochemistry, Heinrich-Heine-University Duesseldorf, Universitaetsstr. 1, 40225, Duesseldorf, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory, Biologisch Medizinisches Forschungszentrum (BMFZ), Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Bruno Miroux
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, UMR7099, CNRS, IBPC, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005, Paris, France.
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich-Heine-University Duesseldorf, Universitaetsstr. 1, 40225, Duesseldorf, Germany.
| |
Collapse
|
50
|
Romagnoli C, Pampaloni B, Brandi ML. Muscle endocrinology and its relation with nutrition. Aging Clin Exp Res 2019; 31:783-792. [PMID: 30977083 DOI: 10.1007/s40520-019-01188-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 03/30/2019] [Indexed: 01/04/2023]
Abstract
Recent years have demonstrated clear evidence that skeletal muscle is an active endocrine organ. During contraction of muscle fibers, the skeletal muscle produces and releases, into the blood stream, cytokines and other peptides, called myokines, thanks to which it can both communicate with cells locally within the muscle, in an autocrine and paracrine fashion, or with other distant tissues, exerting its endocrine effects. With the progress of sophisticated technologies, the interest towards the skeletal muscle secretome is rapidly grown and the discovery of new myokines represents a prolific field for the identification of new pharmacological approaches for the management and treatment of many clinical diseases. Considering the importance of the muscle proteome and the cross-talk with other organs, the preservation of a skeletal muscle in good health represents a fundamental aspect in life, especially in ageing. Sarcopenia is the age-dependent loss of skeletal muscle mass and strength, bringing to increases of the risk of adverse outcomes, such as physical disability and poor quality of life, as well as alteration of several hormonal networks. For that reasons, the scientific community has risen its interest to find new interventions to prevent and manage the sarcopenia. Adequate nutrition during ages plays a fundamental role in the health and function of the skeletal muscle and it can represents, alone or in combination with physical exercise, a possible preventive measure against sarcopenia. This review will overview the endocrinology of the skeletal muscle, making a focus on food intake as a strategy for preventing skeletal muscle decay.
Collapse
Affiliation(s)
- Cecilia Romagnoli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Pieraccini 6, Florence, Italy
| | - Barbara Pampaloni
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Pieraccini 6, Florence, Italy
| | - Maria Luisa Brandi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Pieraccini 6, Florence, Italy.
| |
Collapse
|