1
|
Robb JL, Boisjoly F, Machuca-Parra AI, Coursan A, Manceau R, Majeur D, Rodaros D, Bouyakdan K, Greffard K, Bilodeau JF, Forest A, Daneault C, Ruiz M, Laurent C, Arbour N, Layé S, Fioramonti X, Madore C, Fulton S, Alquier T. Blockage of ATGL-mediated breakdown of lipid droplets in microglia alleviates neuroinflammatory and behavioural responses to lipopolysaccharides. Brain Behav Immun 2025; 123:315-333. [PMID: 39326768 DOI: 10.1016/j.bbi.2024.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 08/21/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024] Open
Abstract
Lipid droplets (LD) are triglyceride storing organelles that have emerged as an important component of cellular inflammatory responses. LD lipolysis via adipose triglyceride lipase (ATGL), the enzyme that catalyses the rate-limiting step of triglyceride lipolysis, regulates inflammation in peripheral immune and non-immune cells. ATGL elicits both pro- and anti-inflammatory responses in the periphery in a cell-type dependent manner. The present study determined the impact of ATGL inhibition and microglia-specific ATGL genetic loss-of-function on acute inflammatory and behavioural responses to pro-inflammatory insult. First, we evaluated the impact of lipolysis inhibition on lipopolysaccharide (LPS)-induced expression and secretion of cytokines and phagocytosis in mouse primary microglia cultures. Lipase inhibitors (ORlistat and ATGListatin) and LPS led to LD accumulation in microglia. Pan-lipase inhibition with ORlistat alleviated LPS-induced expression of IL-1β and IL-6. Specific inhibition of ATGL had a similar action on CCL2, IL-1β and IL-6 expression in both neonatal and adult microglia cultures. CCL2 and IL-6 secretion were also reduced by ATGListatin or knockdown of ATGL. ATGListatin increased phagocytosis in neonatal cultures independently from LPS treatment. Second, targeted and untargeted lipid profiling revealed that ATGListatin reduced LPS-induced generation of pro-inflammatory prostanoids and modulated ceramide species in neonatal microglia. Finally, the role of microglial ATGL in neuroinflammation was assessed using a novel microglia-specific and inducible ATGL knockout mouse model. Loss of microglial ATGL in adult male mice dampened LPS-induced expression of IL-6 and IL-1β and microglial density. LPS-induced sickness- and anxiety-like behaviours were also reduced in male mice with loss of ATGL in microglia. Together, our results demonstrate potent anti-inflammatory effects produced by pharmacological or genetic inhibition of ATGL-mediated triglyceride lipolysis and thereby propose that supressing microglial LD lipolysis has beneficial actions in acute neuroinflammatory conditions.
Collapse
Affiliation(s)
- Josephine Louise Robb
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC H3T 1J4, Canada; Département de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Frédérick Boisjoly
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC H3T 1J4, Canada; Département de Neurosciences, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Arturo Israel Machuca-Parra
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC H3T 1J4, Canada; Département de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Adeline Coursan
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - Romane Manceau
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC H3T 1J4, Canada; Département de Neurosciences, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Danie Majeur
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC H3T 1J4, Canada; Département de Neurosciences, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Demetra Rodaros
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Khalil Bouyakdan
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Karine Greffard
- Axe Endocrinologie et Néphrologie, CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada
| | - Jean-François Bilodeau
- Axe Endocrinologie et Néphrologie, CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada; Département de Médecine, Faculté de Médecine, Université Laval, Québec, QC, G1K 7P4, Canada
| | - Anik Forest
- Institut de Cardiologie de Montréal, Plateforme de métabolomique, Montréal, QC H1T1C8, Canada
| | - Caroline Daneault
- Institut de Cardiologie de Montréal, Plateforme de métabolomique, Montréal, QC H1T1C8, Canada
| | - Matthieu Ruiz
- Département de Nutrition, Université de Montréal, Montréal, QC H3T 1J4, Canada; Institut de Cardiologie de Montréal, Plateforme de métabolomique, Montréal, QC H1T1C8, Canada
| | - Cyril Laurent
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC H3T 1J4, Canada; Département de Neurosciences, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Nathalie Arbour
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC H3T 1J4, Canada; Département de Neurosciences, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Sophie Layé
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France; Food4BrainHealth France-Canada International Research Network, Bordeaux, France
| | - Xavier Fioramonti
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France; Food4BrainHealth France-Canada International Research Network, Bordeaux, France
| | - Charlotte Madore
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France; Food4BrainHealth France-Canada International Research Network, Bordeaux, France
| | - Stephanie Fulton
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC H3T 1J4, Canada; Département de Nutrition, Université de Montréal, Montréal, QC H3T 1J4, Canada; Food4BrainHealth France-Canada International Research Network, Bordeaux, France
| | - Thierry Alquier
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC H3T 1J4, Canada; Département de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada; Food4BrainHealth France-Canada International Research Network, Bordeaux, France.
| |
Collapse
|
2
|
Roberts JA, Radnoff AS, Bushueva A, Menard JA, Wasslen KV, Harley M, Manthorpe JM, Smith JC. Mobile Phase Contaminants Affect Neutral Lipid Analysis in LC-MS-Based Lipidomics Studies. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024. [PMID: 39373457 DOI: 10.1021/jasms.4c00320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Lipidomics is a well-established field, enabled by modern liquid chromatography mass spectrometry (LC-MS) technology, rapidly generating large amounts of data. Lipid extracts derived from biological samples are complex, and most spectral features in LC-MS lipidomics data sets remain unidentified. In-depth analyses of commercial triacylglycerol, diacylglycerol, and cholesterol ester standards revealed the expected ammoniated and sodiated ions as well as five additional unidentified higher mass peaks with relatively high intensities. The identities and origin of these unknown peaks were investigated by modifying the chromatographic mobile-phase components and LC-MS source parameters. Tandem MS (MS/MS) of each unknown adduct peak yielded no lipid structural information, producing only an intense ion of the adducted species. The unknown adducts were identified as low-mass contaminants originating from methanol and isopropanol in the mobile phase. Each contaminant was determined to be an alkylated amine species using their monoisotopic masses to calculate molecular formulas. Analysis of bovine liver extract identified 33 neutral lipids with an additional 73 alkyl amine adducts. Analysis of LC-MS-grade methanol and isopropanol from different vendors revealed substantial alkylated amine contamination in one out of three different brands that were tested. Substituting solvents for ones with lower levels of alkyl amine contamination increased lipid annotations by 36.5% or 27.4%, depending on the vendor, and resulted in >2.5-fold increases in peak area for neutral lipid species without affecting polar lipid analysis. These findings demonstrate the importance of solvent selection and disclosure for lipidomics protocols and highlight some of the major challenges when comparing data between experiments.
Collapse
Affiliation(s)
- Joshua A Roberts
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Angela S Radnoff
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Aleksandra Bushueva
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Jocelyn A Menard
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Karl V Wasslen
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
- Carleton Mass Spectrometry Centre, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Meaghan Harley
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Jeffrey M Manthorpe
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
- Carleton Mass Spectrometry Centre, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Jeffrey C Smith
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
- Carleton Mass Spectrometry Centre, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| |
Collapse
|
3
|
Rioux JD, Boucher G, Forest A, Bouchard B, Coderre L, Daneault C, Frayne IR, Legault JT, iGenoMed Consortium, Bitton A, Ananthakrishnan A, Lesage S, Xavier RJ, Des Rosiers C. A pilot study to identify blood-based markers associated with response to treatment with Vedolizumab in patients with Inflammatory Bowel Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.19.24314034. [PMID: 39371119 PMCID: PMC11451768 DOI: 10.1101/2024.09.19.24314034] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The inflammatory bowel diseases (IBD) known as Crohn's disease (CD) and ulcerative colitis (UC) are chronic inflammatory diseases of the gastrointestinal tract believed to arise because of an imbalance between the epithelial, immune and microbial systems. It has been shown that biological differences (genetic, epigenetic, microbial, environmental, etc.) exist between patients with IBD, with multiple risk factors been associated with disease susceptibility and IBD-related phenotypes (e.g. disease location). It is also known that there is heterogeneity in terms of response to therapy in patients with IBD, including to biological therapies that target very specific biological pathways (e.g. TNF-alpha signaling, IL-23R signaling, immune cell trafficking, etc.). It is hypothesized that the better the match between the biology targeted by these advanced therapies and the predominant disease-associated pathways at play in each patient will favor a beneficial response. The aim of this pilot study was to identify potential biological differences associated with differential treatment response to the anti α4β7 integrin therapy known as Vedolizumab. Our approach was to measure a broad range of analytes in the serum of patients prior to initiation of therapy and at the first clinical assessment visit, to identify potential markers of biological differences between patients at baseline and to see which biomarkers are most affected by treatment in responders. Our focus on early clinical response was to study the most proximal effects of therapy and to minimize confounders such as loss of response that occurs further distal to treatment initiation. Specifically, we performed targeted analyses of >150 proteins and metabolites, and untargeted analyses of >1100 lipid entities, in serum samples from 92 IBD patients (42 CD, 50 UC) immediately prior to initiation of therapy with vedolizumab (baseline samples) and at their first clinical assessment (14-week samples). We found lower levels of SDF-1a, but higher levels of PDGF-ββ, lactate, lysine, phenylalanine, branched chain amino acids, alanine, short/medium chain acylcarnitines, and triglycerides containing myristic acid in baseline serum samples of responders as compared to non-responders. We also observed an increase in serum levels of CXCL9 and citrate, as well as a decrease in IL-10, between baseline and week 14 samples. In addition, we observed that a group of metabolites and protein analytes was strongly associated with both treatment response and BMI status, although BMI status was not associated with treatment response.
Collapse
Affiliation(s)
- John D. Rioux
- Montreal Heart Institute Research Center, Montreal, Quebec, Canada
- Université de Montréal, Faculty of Medicine, Montreal, Quebec, Canada
| | | | - Anik Forest
- Montreal Heart Institute Research Center, Montreal, Quebec, Canada
| | | | - Lise Coderre
- Maisonneuve-Rosemont Hospital Research Center, Montréal, Québec, Canada
| | | | | | | | | | - Alain Bitton
- McGill University Health Centre, Division of Gastroenterology, Montreal, Quebec, Canada
| | - Ashwin Ananthakrishnan
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Sylvie Lesage
- Maisonneuve-Rosemont Hospital Research Center, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Ramnik J. Xavier
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Christine Des Rosiers
- Montreal Heart Institute Research Center, Montreal, Quebec, Canada
- Département de Nutrition, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
4
|
Manceau R, Majeur D, Cherian CM, Miller CJ, Wat LW, Fisher JD, Labarre A, Hollman S, Prakash S, Audet S, Chao CF, Depaauw-Holt L, Rogers B, Bosson A, Xi JJY, Callow CAS, Yoosefi N, Shahraki N, Xia YH, Hui A, VanderZwaag J, Bouyakdan K, Rodaros D, Kotchetkov P, Daneault C, Fallahpour G, Tetreault M, Tremblay MÈ, Ruiz M, Lacoste B, Parker JA, Murphy-Royal C, Huan T, Fulton S, Rideout EJ, Alquier T. Neuronal lipid droplets play a conserved and sex-biased role in maintaining whole-body energy homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613929. [PMID: 39345476 PMCID: PMC11429983 DOI: 10.1101/2024.09.19.613929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Lipids are essential for neuron development and physiology. Yet, the central hubs that coordinate lipid supply and demand in neurons remain unclear. Here, we combine invertebrate and vertebrate models to establish the presence and functional significance of neuronal lipid droplets (LD) in vivo. We find that LD are normally present in neurons in a non-uniform distribution across the brain, and demonstrate triglyceride metabolism enzymes and lipid droplet-associated proteins control neuronal LD formation through both canonical and recently-discovered pathways. Appropriate LD regulation in neurons has conserved and male-biased effects on whole-body energy homeostasis across flies and mice, specifically neurons that couple environmental cues with energy homeostasis. Mechanistically, LD-derived lipids support neuron function by providing phospholipids to sustain mitochondrial and endoplasmic reticulum homeostasis. Together, our work identifies a conserved role for LD as the organelle that coordinates lipid management in neurons, with implications for our understanding of mechanisms that preserve neuronal lipid homeostasis and function in health and disease.
Collapse
Affiliation(s)
- Romane Manceau
- Departments of Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Danie Majeur
- Departments of Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Celena M Cherian
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Colin J Miller
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Lianna W Wat
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Jasper D Fisher
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Audrey Labarre
- Departments of Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Serena Hollman
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Sanjana Prakash
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Sébastien Audet
- Departments of Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Charlotte F Chao
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Lewis Depaauw-Holt
- Departments of Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Benjamin Rogers
- Departments of Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Anthony Bosson
- Departments of Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Joyce J Y Xi
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Catrina A S Callow
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Niyoosha Yoosefi
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Niki Shahraki
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Yi Han Xia
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Alisa Hui
- Department of Chemistry, The University of British Columbia, Vancouver, BC, Canada
| | - Jared VanderZwaag
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Khalil Bouyakdan
- Departments of Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Demetra Rodaros
- Departments of Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Pavel Kotchetkov
- Neuroscience Program, The Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Caroline Daneault
- Montreal Heart Institute Research Centre, Montreal, Canada. QC, Canada
| | - Ghazal Fallahpour
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Martine Tetreault
- Departments of Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Matthieu Ruiz
- Department of Nutrition Université de Montréal, Montréal, QC, Canada
- Montreal Heart Institute Research Centre, Montreal, Canada. QC, Canada
| | - Baptiste Lacoste
- Neuroscience Program, The Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - J A Parker
- Departments of Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Ciaran Murphy-Royal
- Departments of Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Tao Huan
- Department of Chemistry, The University of British Columbia, Vancouver, BC, Canada
| | - Stephanie Fulton
- Departments of Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Nutrition Université de Montréal, Montréal, QC, Canada
| | - Elizabeth J Rideout
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Thierry Alquier
- Departments of Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
5
|
Weerd JCVD, Wegberg AMJV, Boer TS, Engelke UFH, Coene KLM, Wevers RA, Bakker SJL, Blaauw PD, Groen J, Spronsen FJV, Heiner-Fokkema MR. Impact of Phenylketonuria on the Serum Metabolome and Plasma Lipidome: A Study in Early-Treated Patients. Metabolites 2024; 14:479. [PMID: 39330486 PMCID: PMC11434371 DOI: 10.3390/metabo14090479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Data suggest that metabolites, other than blood phenylalanine (Phe), better and independently predict clinical outcomes in patients with phenylketonuria (PKU). METHODS To find new biomarkers, we compared the results of untargeted lipidomics and metabolomics in treated adult PKU patients to those of matched controls. Samples (lipidomics in EDTA-plasma (22 PKU and 22 controls) and metabolomics in serum (35 PKU and 20 controls)) were analyzed using ultra-high-performance liquid chromatography and high-resolution mass spectrometry. Data were subjected to multivariate (PCA, OPLS-DA) and univariate (Mann-Whitney U test, p < 0.05) analyses. RESULTS Levels of 33 (of 20,443) lipid features and 56 (of 5885) metabolite features differed statistically between PKU patients and controls. For lipidomics, findings include higher glycerolipids, glycerophospholipids, and sphingolipids species. Significantly lower values were found for sterols and glycerophospholipids species. Seven features had unknown identities. Total triglyceride content was higher. Higher Phe and Phe catabolites, tryptophan derivatives, pantothenic acid, and dipeptides were observed for metabolomics. Ornithine levels were lower. Twenty-six metabolite features were not annotated. CONCLUSIONS This study provides insight into the metabolic phenotype of PKU patients. Additional studies are required to establish whether the observed changes result from PKU itself, diet, and/or an unknown reason.
Collapse
Affiliation(s)
- Jorine C van der Weerd
- Department of Laboratory Medicine, Laboratory of Metabolic Disease, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Annemiek M J van Wegberg
- Division of Metabolic Diseases, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Theo S Boer
- Department of Laboratory Medicine, Laboratory of Metabolic Disease, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Udo F H Engelke
- Department of Human Genetics, Translational Metabolic Laboratory (TML), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Karlien L M Coene
- Department of Human Genetics, Translational Metabolic Laboratory (TML), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Laboratory of Clinical Chemistry and Hematology, Máxima Medical Centre, 5504 DB Veldhoven, The Netherlands
| | - Ron A Wevers
- Department of Human Genetics, Translational Metabolic Laboratory (TML), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Stephan J L Bakker
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Pim de Blaauw
- Department of Laboratory Medicine, Laboratory of Metabolic Disease, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Joost Groen
- Department of Laboratory Medicine, Laboratory of Metabolic Disease, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Francjan J van Spronsen
- Division of Metabolic Diseases, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - M Rebecca Heiner-Fokkema
- Department of Laboratory Medicine, Laboratory of Metabolic Disease, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| |
Collapse
|
6
|
Vachon L, Jean G, Milasan A, Babran S, Lacroix E, Guadarrama Bello D, Villeneuve L, Rak J, Nanci A, Mihalache-Avram T, Tardif JC, Finnerty V, Ruiz M, Boilard E, Tessier N, Martel C. Platelet extracellular vesicles preserve lymphatic endothelial cell integrity and enhance lymphatic vessel function. Commun Biol 2024; 7:975. [PMID: 39128945 PMCID: PMC11317532 DOI: 10.1038/s42003-024-06675-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 08/02/2024] [Indexed: 08/13/2024] Open
Abstract
Lymphatic vessels are essential for preventing the accumulation of harmful components within peripheral tissues, including the artery wall. Various endogenous mechanisms maintain adequate lymphatic function throughout life, with platelets being essential for preserving lymphatic vessel integrity. However, since lymph lacks platelets, their impact on the lymphatic system has long been viewed as restricted to areas where lymphatics intersect with blood vessels. Nevertheless, platelets can also exert long range effects through the release of extracellular vesicles (EVs) upon activation. We observed that platelet EVs (PEVs) are present in lymph, a compartment to which they could transfer regulatory effects of platelets. Here, we report that PEVs in lymph exhibit a distinct signature enabling them to interact with lymphatic endothelial cells (LECs). In vitro experiments show that the internalization of PEVs by LECs maintains their functional integrity. Treatment with PEVs improves lymphatic contraction capacity in atherosclerosis-prone mice. We suggest that boosting lymphatic pumping with exogenous PEVs offers a novel therapeutic approach for chronic inflammatory diseases characterized by defective lymphatics.
Collapse
Affiliation(s)
- Laurent Vachon
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Canada
- Montreal Heart Institute, Montreal, Canada
| | - Gabriel Jean
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Canada
- Montreal Heart Institute, Montreal, Canada
| | - Andreea Milasan
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Canada
- Montreal Heart Institute, Montreal, Canada
| | - Sara Babran
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Canada
- Montreal Heart Institute, Montreal, Canada
| | - Elizabeth Lacroix
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Canada
- Montreal Heart Institute, Montreal, Canada
| | | | | | - Janusz Rak
- McGill University and Research, Institute of the McGill University Health Centre, Montreal, Canada
- Department of Experimental Medicine, McGill University, Montreal, Canada
| | - Antonio Nanci
- Department of Stomatology, Faculty of Dental Medicine, Université de Montréal, Montreal, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montreal, Canada
| | | | - Jean-Claude Tardif
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Canada
- Montreal Heart Institute, Montreal, Canada
| | | | - Matthieu Ruiz
- Department of Nutrition, Faculty of Medicine, Université de Montréal, Montreal, Canada
- Montreal Heart Institute, Metabolomics platform, Montreal, Canada
| | - Eric Boilard
- Centre de Recherche ARThrite - Arthrite, Recherche, Traitements, Université Laval, Québec, Québec, Canada
- Infectious and Immune Diseases Axis, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, Québec, Canada
| | - Nolwenn Tessier
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Canada
- Montreal Heart Institute, Montreal, Canada
| | - Catherine Martel
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Canada.
- Montreal Heart Institute, Montreal, Canada.
| |
Collapse
|
7
|
Burelle C, Clapatiuc V, Deschênes S, Cuillerier A, De Loof M, Higgins MÈ, Boël H, Daneault C, Chouinard B, Clavet MÉ, Tessier N, Croteau I, Chabot G, Martel C, Sirois MG, Lesage S, Burelle Y, Ruiz M. A genetic mouse model of lean-NAFLD unveils sexual dimorphism in the liver-heart axis. Commun Biol 2024; 7:356. [PMID: 38519536 PMCID: PMC10959946 DOI: 10.1038/s42003-024-06035-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 03/11/2024] [Indexed: 03/25/2024] Open
Abstract
Lean patients with NAFLD may develop cardiac complications independently of pre-existent metabolic disruptions and comorbidities. To address the underlying mechanisms independent of the development of obesity, we used a murine model of hepatic mitochondrial deficiency. The liver-heart axis was studied as these mice develop microvesicular steatosis without obesity. Our results unveil a sex-dependent phenotypic remodeling beyond liver damage. Males, more than females, show fasting hypoglycemia and increased insulin sensitivity. They exhibit diastolic dysfunction, remodeling of the circulating lipoproteins and cardiac lipidome. Conversely, females do not manifest cardiac dysfunction but exhibit cardiometabolic impairments supported by impaired mitochondrial integrity and β-oxidation, remodeling of circulating lipoproteins and intracardiac accumulation of deleterious triglycerides. This study underscores metabolic defects in the liver resulting in significant sex-dependent cardiac abnormalities independent of obesity. This experimental model may prove useful to better understand the sex-related variability, notably in the heart, involved in the progression of lean-NAFLD.
Collapse
Affiliation(s)
- Charlotte Burelle
- Department of Medicine, Université de Montréal, Montreal, QC, Canada
- Research Center, Montreal Heart Institute, Montreal, QC, Canada
| | - Valentin Clapatiuc
- Department of Medicine, Université de Montréal, Montreal, QC, Canada
- Research Center, Montreal Heart Institute, Montreal, QC, Canada
| | - Sonia Deschênes
- Research Center, Montreal Heart Institute, Montreal, QC, Canada
| | - Alexanne Cuillerier
- Faculty of Health Sciences and Medicine, University of Ottawa, Ottawa, OC, Canada
| | - Marine De Loof
- Research Center, Montreal Heart Institute, Montreal, QC, Canada
| | | | - Hugues Boël
- Research Center, Montreal Heart Institute, Montreal, QC, Canada
| | | | | | | | - Nolwenn Tessier
- Department of Medicine, Université de Montréal, Montreal, QC, Canada
- Research Center, Montreal Heart Institute, Montreal, QC, Canada
| | | | - Geneviève Chabot
- Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC, Canada
| | - Catherine Martel
- Department of Medicine, Université de Montréal, Montreal, QC, Canada
- Research Center, Montreal Heart Institute, Montreal, QC, Canada
| | - Martin G Sirois
- Research Center, Montreal Heart Institute, Montreal, QC, Canada
- Department of Physiology and Pharmacology, Université de Montréal, Montreal, QC, Canada
| | - Sylvie Lesage
- Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC, Canada
| | - Yan Burelle
- Faculty of Health Sciences and Medicine, University of Ottawa, Ottawa, OC, Canada
| | - Matthieu Ruiz
- Research Center, Montreal Heart Institute, Montreal, QC, Canada.
- Department of Nutrition, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
8
|
Rund KM, Carpanedo L, Lauterbach R, Wermund T, West AL, Wende LM, Calder PC, Schebb NH. LC-ESI-HRMS - lipidomics of phospholipids : Characterization of extraction, chromatography and detection parameters. Anal Bioanal Chem 2024; 416:925-944. [PMID: 38214704 PMCID: PMC10800306 DOI: 10.1007/s00216-023-05080-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 01/13/2024]
Abstract
Lipids are a diverse class of molecules involved in many biological functions including cell signaling or cell membrane assembly. Owing to this relevance, LC-MS/MS-based lipidomics emerged as a major field in modern analytical chemistry. Here, we thoroughly characterized the influence of MS and LC settings - of a Q Exactive HF operated in Full MS/data-dependent MS2 TOP N acquisition mode - in order to optimize the semi-quantification of polar lipids. Optimization of MS-source settings improved the signal intensity by factor 3 compared to default settings. Polar lipids were separated on an ACQUITY Premier CSH C18 reversed-phase column (100 × 2.1 mm, 1.7 µm, 130 Å) during an elution window of 28 min, leading to a sufficient number of both data points across the chromatographic peaks, as well as MS2 spectra. Analysis was carried out in positive and negative ionization mode enabling the detection of a broader spectrum of lipids and to support the structural characterization of lipids. Optimal sample preparation of biological samples was achieved by liquid-liquid extraction using MeOH/MTBE resulting in an excellent extraction recovery > 85% with an intra-day and inter-day variability < 15%. The optimized method was applied on the investigation of changes in the phospholipid pattern in plasma from human subjects supplemented with n3-PUFA (20:5 and 22:6). The strongest increase was observed for lipids bearing 20:5, while 22:4 bearing lipids were lowered. Specifically, LPC 20:5_0:0 and PC 16:0_20:5 were found to be strongest elevated, while PE 18:0_22:4 and PC 18:2_18:2 were decreased by n3-PUFA supplementation. These results were confirmed by targeted LC-MS/MS using commercially available phospholipids as standards.
Collapse
Affiliation(s)
- Katharina M Rund
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaussstr. 20, 42119, Wuppertal, Germany
| | - Laura Carpanedo
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaussstr. 20, 42119, Wuppertal, Germany
| | - Robin Lauterbach
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaussstr. 20, 42119, Wuppertal, Germany
| | - Tim Wermund
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaussstr. 20, 42119, Wuppertal, Germany
| | - Annette L West
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Luca M Wende
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaussstr. 20, 42119, Wuppertal, Germany
| | - Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
| | - Nils Helge Schebb
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaussstr. 20, 42119, Wuppertal, Germany.
| |
Collapse
|
9
|
Vacy K, Thomson S, Moore A, Eisner A, Tanner S, Pham C, Saffery R, Mansell T, Burgner D, Collier F, Vuillermin P, O'Hely M, Boon WC, Meikle P, Burugupalli S, Ponsonby AL. Cord blood lipid correlation network profiles are associated with subsequent attention-deficit/hyperactivity disorder and autism spectrum disorder symptoms at 2 years: a prospective birth cohort study. EBioMedicine 2024; 100:104949. [PMID: 38199043 PMCID: PMC10825361 DOI: 10.1016/j.ebiom.2023.104949] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) are neurodevelopmental conditions with early life origins. Alterations in blood lipids have been linked to ADHD and ASD; however, prospective early life data are limited. This study examined (i) associations between the cord blood lipidome and ADHD/ASD symptoms at 2 years of age, (ii) associations between prenatal and perinatal predictors of ADHD/ASD symptoms and cord blood lipidome, and (iii) mediation by the cord blood lipidome. METHODS From the Barwon Infant Study cohort (1074 mother-child pairs, 52.3% male children), child circulating lipid levels at birth were analysed using ultra-high-performance liquid chromatography-tandem mass spectrometry. These were clustered into lipid network modules via Weighted Gene Correlation Network Analysis. Associations between lipid modules and ADHD/ASD symptoms at 2 years, assessed with the Child Behavior Checklist, were explored via linear regression analyses. Mediation analysis identified indirect effects of prenatal and perinatal risk factors on ADHD/ASD symptoms through lipid modules. FINDINGS The acylcarnitine lipid module is associated with both ADHD and ASD symptoms at 2 years of age. Risk factors of these outcomes such as low income, Apgar score, and maternal inflammation were partly mediated by higher birth acylcarnitine levels. Other cord blood lipid profiles were also associated with ADHD and ASD symptoms. INTERPRETATION This study highlights that elevated cord blood birth acylcarnitine levels, either directly or as a possible marker of disrupted cell energy metabolism, are on the causal pathway of prenatal and perinatal risk factors for ADHD and ASD symptoms in early life. FUNDING The foundational work and infrastructure for the BIS was sponsored by the Murdoch Children's Research Institute, Deakin University, and Barwon Health. Subsequent funding was secured from the Minderoo Foundation, the European Union's Horizon 2020 research and innovation programme (ENDpoiNTs: No 825759), National Health and Medical Research Council of Australia (NHMRC) and Agency for Science, Technology and Research Singapore [APP1149047], The William and Vera Ellen Houston Memorial Trust Fund (via HOMER Hack), The Shepherd Foundation, The Jack Brockhoff Foundation, the Scobie & Claire McKinnon Trust, the Shane O'Brien Memorial Asthma Foundation, the Our Women Our Children's Fund Raising Committee Barwon Health, the Rotary Club of Geelong, the Ilhan Food Allergy Foundation, Geelong Medical and Hospital Benefits Association, Vanguard Investments Australia Ltd, the Percy Baxter Charitable Trust, and Perpetual Trustees.
Collapse
Affiliation(s)
- Kristina Vacy
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Australia; Melbourne School of Population and Global Health, University of Melbourne, Parkville 3010, Australia
| | - Sarah Thomson
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Australia
| | - Archer Moore
- Melbourne School of Mathematics and Statistics, University of Melbourne, Parkville 3010, Australia
| | - Alex Eisner
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Australia
| | - Sam Tanner
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Australia
| | - Cindy Pham
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville 3010, Australia; Department of Paediatrics, University of Melbourne, Parkville 3010, Australia
| | - Richard Saffery
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville 3010, Australia; Department of Paediatrics, University of Melbourne, Parkville 3010, Australia
| | - Toby Mansell
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville 3010, Australia; Department of Paediatrics, University of Melbourne, Parkville 3010, Australia
| | - David Burgner
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville 3010, Australia; Department of Paediatrics, University of Melbourne, Parkville 3010, Australia; Department of Paediatrics, Monash University, Clayton 3168, Australia
| | - Fiona Collier
- Child Health Research Unit, Barwon Health, Geelong 3220, Australia; School of Medicine, Deakin University, Geelong 3220, Australia
| | - Peter Vuillermin
- Child Health Research Unit, Barwon Health, Geelong 3220, Australia
| | - Martin O'Hely
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville 3010, Australia; School of Medicine, Deakin University, Geelong 3220, Australia
| | - Wah Chin Boon
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Australia
| | - Peter Meikle
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne 3004, Australia; Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Bundoora, VIC 3086, Australia
| | - Satvika Burugupalli
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne 3004, Australia
| | - Anne-Louise Ponsonby
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Parkville 3010, Australia; Department of Paediatrics, University of Melbourne, Parkville 3010, Australia.
| |
Collapse
|
10
|
Gadara D, Berka V, Spacil Z. High-Throughput Microbore LC-MS Lipidomics to Investigate APOE Phenotypes. Anal Chem 2024; 96:59-66. [PMID: 38113351 PMCID: PMC10782415 DOI: 10.1021/acs.analchem.3c02652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 12/21/2023]
Abstract
Microflow liquid chromatography interfaced with mass spectrometry (μLC-MS/MS) is increasingly applied for high-throughput profiling of biological samples and has been proven to have an acceptable trade-off between sensitivity and reproducibility. However, lipidomics applications are scarce. We optimized a μLC-MS/MS system utilizing a 1 mm inner diameter × 100 mm column coupled to a triple quadrupole mass spectrometer to establish a sensitive, high-throughput, and robust single-shot lipidomics workflow. Compared to conventional lipidomics methods, we achieve a ∼4-fold increase in response, facilitating quantification of 351 lipid species from a single iPSC-derived cerebral organoid during a 15 min LC-MS analysis. Consecutively, we injected 303 samples over ∼75 h to prove the robustness and reproducibility of the microflow separation. As a proof of concept, μLC-MS/MS analysis of Alzheimer's disease patient-derived iPSC cerebral organoid reveals differential lipid metabolism depending on APOE phenotype (E3/3 vs E4/4). Microflow separation proves to be an environmentally friendly and cost-effective method as it reduces the consumption of harmful solvents. Also, the data demonstrate robust, in-depth, high-throughput performance to enable routine clinical or biomedical applications.
Collapse
Affiliation(s)
- Darshak Gadara
- RECETOX
Centre, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Vratislav Berka
- RECETOX
Centre, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Zdenek Spacil
- RECETOX
Centre, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| |
Collapse
|
11
|
Liu Y, Fillebeen C, Forest A, Botta A, Varin TV, Marette A, Burelle Y, Des Rosiers C, Pantopoulos K, Sweeney G. Perturbations in lipid metabolism and gut microbiota composition precede cardiac dysfunction in a mouse model of thalassemia. FASEB J 2023; 37:e23257. [PMID: 37902616 DOI: 10.1096/fj.202301043r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/05/2023] [Accepted: 09/28/2023] [Indexed: 10/31/2023]
Abstract
Cardiomyopathy is a major complication of thalassemia, yet the precise underlying molecular mechanisms remain unclear. We examined whether altered lipid metabolism is an early driving factor in the development of cardiomyopathy using the Th3/+ mouse model of thalassemia. At age 20 weeks, male and female Th3/+ mice manifested anemia and iron overload; however, only males displayed metabolic defects and altered cardiac function. Untargeted lipidomics indicated that the circulating levels of 35 lipid species were significantly altered in Th3/+ mice compared to wild-type controls: triglycerides (TGs) with saturated fatty acids (FAs; TG42:0 and TG44:0) were elevated, while TGs with unsaturated FAs (TG(18:2_20:5_18:2 and TG54:8)) were reduced. Similarly, phosphatidylcholines (PCs) with long chain FAs (palmitic (16:0) or oleic (18:1)) were increased, while PCs with polyunsaturated FAs decreased. Circulating PC(16:0_14:0), GlcCer(d18:1/24:0) correlated significantly with iron overload and cardiac hypertrophy. 16S rRNA gene profiling revealed alterations in the intestinal microbiota of Th3/+ mice. Differentially abundant bacterial genera correlated with PC(39:6), PC(18:1_22:6), GlcCer(d18:1/24:1) and CE(14:0). These results provide new knowledge on perturbations in lipid metabolism and the gut microbiota of Th3/+ mice and identify specific factors which may represent early biomarkers or therapeutic targets to prevent development of cardiomyopathy in β-thalassemia.
Collapse
Affiliation(s)
- Ying Liu
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Carine Fillebeen
- Lady Davis Institute for Medical Research and Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Anik Forest
- Montreal Heart Institute Research Center, Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
| | - Amy Botta
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Thibault V Varin
- Department of Medicine, Heart and lung Institute, University of Laval, Quebec City, Quebec, Canada
| | - André Marette
- Department of Medicine, Heart and lung Institute, University of Laval, Quebec City, Quebec, Canada
| | - Yan Burelle
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Christine Des Rosiers
- Montreal Heart Institute Research Center, Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
| | - Kostas Pantopoulos
- Lady Davis Institute for Medical Research and Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Gary Sweeney
- Department of Biology, York University, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Lefort B, Gélinas R, Forest A, Bouchard B, Daneault C, Robillard Frayne I, Roy J, Oger C, Greffard K, Galano JM, Durand T, Labarthe F, Bilodeau JF, Ruiz M, Des Rosiers C. Remodeling of lipid landscape in high fat fed very-long chain acyl-CoA dehydrogenase null mice favors pro-arrhythmic polyunsaturated fatty acids and their downstream metabolites. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166843. [PMID: 37558007 DOI: 10.1016/j.bbadis.2023.166843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/20/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023]
Abstract
Very-long chain acyl-CoA dehydrogenase (VLCAD) catalyzes the initial step of mitochondrial long chain (LC) fatty acid β-oxidation (FAO). Inherited VLCAD deficiency (VLCADD) predisposes to neonatal arrhythmias whose pathophysiology is still not understood. We hypothesized that VLCADD results in global disruption of cardiac complex lipid homeostasis, which may set conditions predisposing to arrhythmia. To test this, we assessed the cardiac lipidome and related molecular markers in seven-month-old VLCAD-/- mice, which mimic to some extent the human cardiac phenotype. Mice were sacrificed in the fed or fasted state after receiving for two weeks a chow or a high-fat diet (HFD), the latter condition being known to worsen symptoms in human VLCADD. Compared to their littermate counterparts, HFD/fasted VLCAD-/- mouse hearts displayed the following lipid alterations: (1) Lower LC, but higher VLC-acylcarnitines accumulation, (2) higher levels of arachidonic acid (AA) and lower docosahexaenoic acid (DHA) contents in glycerophospholipids (GPLs), as well as (3) corresponding changes in pro-arrhythmogenic AA-derived isoprostanes and thromboxane B2 (higher), and anti-arrythmogenic DHA-derived neuroprostanes (lower). These changes were associated with remodeling in the expression of gene or protein markers of (1) GPLs remodeling: higher calcium-dependent phospholipase A2 and lysophosphatidylcholine-acyltransferase 2, (2) calcium handling perturbations, and (3) endoplasmic reticulum stress. Altogether, these results highlight global lipid dyshomeostasis beyond FAO in VLCAD-/- mouse hearts, which may set conditions predisposing the hearts to calcium mishandling and endoplasmic reticulum stress and thereby may contribute to the pathogenesis of arrhythmias in VLCADD in mice as well as in humans.
Collapse
Affiliation(s)
- Bruno Lefort
- Montreal Heart Institute Research Centre, Montreal, Canada; Institut des Cardiopathies Congénitales de Tours et FHU Precicare, CHU Tours, Tours, France; INSERM UMR 1069 et Université François Rabelais, Tours, France
| | - Roselle Gélinas
- Montreal Heart Institute Research Centre, Montreal, Canada; Present address: CHU Ste-Justine Research Center, Montreal, Quebec, Canada
| | - Anik Forest
- Montreal Heart Institute Research Centre, Montreal, Canada
| | | | | | | | - Jérôme Roy
- Institut des Biomolécules Max Mousseron, Pôle Chimie Balard Recherche, UMR 5247, Université de Montpellier, CNRS, ENSCM, Montpellier, France; INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310 Saint-Pée-sur-Nivelle, France
| | - Camille Oger
- Institut des Biomolécules Max Mousseron, Pôle Chimie Balard Recherche, UMR 5247, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Karine Greffard
- Axe endocrinologie et néphrologie, CHU de Québec, Université Laval, Québec, Canada
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron, Pôle Chimie Balard Recherche, UMR 5247, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, Pôle Chimie Balard Recherche, UMR 5247, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | | | - Jean-François Bilodeau
- Axe endocrinologie et néphrologie, CHU de Québec, Université Laval, Québec, Canada; Department of Nutrition, Faculty of medicine, Université Laval, Quebec, Canada
| | - Matthieu Ruiz
- Montreal Heart Institute Research Centre, Montreal, Canada; Department of Nutrition, Faculty of medicine, Université de Montréal, Montreal, Canada.
| | - Christine Des Rosiers
- Montreal Heart Institute Research Centre, Montreal, Canada; Department of Nutrition, Faculty of medicine, Université de Montréal, Montreal, Canada.
| |
Collapse
|
13
|
Issa J, Lodewyckx P, Blasco H, Benz‐de‐Bretagne I, Labarthe F, Lefort B. Increased acylcarnitines in infant heart failure indicate fatty acid oxidation inhibition: towards therapeutic options? ESC Heart Fail 2023; 10:3114-3122. [PMID: 37614055 PMCID: PMC10567663 DOI: 10.1002/ehf2.14449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 08/25/2023] Open
Abstract
AIMS Heart failure in adults is characterized by reduction of long-chain fatty acid oxidation in favour of carbohydrate metabolism. This adaptive phenomenon becomes maladaptive because energy conversion decreases and lipid toxic derivatives known to impair cardiac function are accumulating. No data are available concerning metabolic modification in heart failure in children. METHODS AND RESULTS In order to evaluate the fatty acid oxidation in children suffering from heart failure, acylcarnitine profiles on dried blood spots were obtained from children under 16 years old with dilated cardiomyopathy and clinical heart failure (DCM-HF) and control children. Nine children were included in the DCM-HF group and eight in the control group. Acylcarnitine profiles revealed a significant 3.1-fold increase of total acylcarnitines (sum of C3 to C18 acylcarnitine species) in DCM-HF children compared with controls. This result persisted considering the sum of long-chain acylcarnitines (sum of C14 to C18 species), medium-chain acylcarnitines (sum of C8 to C12 species), and short-chain acylcarnitines (sum of C3 to C6 species), respectively, 2.0-, 2.6-, and 1.9-fold increase compared with the control group. A significant linear correlation was found between left ventricular dilatation or ejection fraction and acylcarnitines accumulation. Finally, acylcarnitine ratio C16OH/C16 and C18OH/C18 enhanced in the DCM-HF group, suggesting a diminution of the long-chain hydroxyl acyl-CoA dehydrogenase activity. CONCLUSIONS Our results suggest down-regulation of fatty acid oxidation in children with heart failure. Such lipidomic alteration could worsen heart function and may suggest considering a metabolic treatment of heart failure in children.
Collapse
Affiliation(s)
- Jean Issa
- Institut des Cardiopathies Congénitales de Tours, Hôpital Gatien de ClochevilleCHU Tours49 Boulevard BérangerTours37000France
- Université François RabelaisToursFrance
| | - Pierre Lodewyckx
- Institut des Cardiopathies Congénitales de Tours, Hôpital Gatien de ClochevilleCHU Tours49 Boulevard BérangerTours37000France
- Université François RabelaisToursFrance
| | - Hélène Blasco
- Université François RabelaisToursFrance
- Service de Biochimie et Biologie MoléculaireCHU ToursToursFrance
| | | | - François Labarthe
- Université François RabelaisToursFrance
- Département de PédiatrieCHU de ToursToursFrance
- INSERM UMR 1069ToursFrance
| | - Bruno Lefort
- Institut des Cardiopathies Congénitales de Tours, Hôpital Gatien de ClochevilleCHU Tours49 Boulevard BérangerTours37000France
- Université François RabelaisToursFrance
- INSERM UMR 1069ToursFrance
- FHU PreciCareToursFrance
| |
Collapse
|
14
|
Yamashita A, Ignatenko O, Nguyen M, Lambert R, Watt K, Daneault C, Robillard-Frayne I, Topisirovic I, Rosiers CD, McBride HM. Depletion of LONP2 unmasks differential requirements for peroxisomal function between cell types and in cholesterol metabolism. Biol Direct 2023; 18:60. [PMID: 37736739 PMCID: PMC10515011 DOI: 10.1186/s13062-023-00416-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023] Open
Abstract
Peroxisomes play a central role in tuning metabolic and signaling programs in a tissue- and cell-type-specific manner. However, the mechanisms by which the status of peroxisomes is communicated and integrated into cellular signaling pathways are not yet understood. Herein, we report the cellular responses to peroxisomal proteotoxic stress upon silencing the peroxisomal protease/chaperone LONP2. Depletion of LONP2 triggered the accumulation of its substrate TYSND1 protease, while the overall expression of peroxisomal proteins, as well as TYSND1-dependent ACOX1 processing appeared normal, reflecting early stages of peroxisomal proteotoxic stress. Consequently, the alteration of peroxisome size and numbers, and luminal protein import failure was coupled with induction of cell-specific cellular stress responses. Specific to COS-7 cells was a strong activation of the integrated stress response (ISR) and upregulation of ribosomal biogenesis gene expression levels. Common changes between COS-7 and U2OS cell lines included repression of the retinoic acid signaling pathway and upregulation of sphingolipids. Cholesterol accumulated in the endomembrane compartments in both cell lines, consistent with evidence that peroxisomes are required for cholesterol flux out of late endosomes. These unexpected consequences of peroxisomal stress provide an important insight into our understanding of the tissue-specific responses seen in peroxisomal disorders.
Collapse
Affiliation(s)
- Akihiro Yamashita
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada
| | - Olesia Ignatenko
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Mai Nguyen
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Raphaëlle Lambert
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Kathleen Watt
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | | | | | - Ivan Topisirovic
- Lady Davis Institute, McGill University, Montreal, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montréal, QC, Canada
- Department of Biochemistry, McGill University, Montréal, QC, Canada
- Division of Experimental Medicine, McGill University, Montréal, QC, Canada
| | | | - Heidi M McBride
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada.
| |
Collapse
|
15
|
Ferru-Clément R, Boucher G, Forest A, Bouchard B, Bitton A, Lesage S, Schumm P, Lazarev M, Brant S, Duerr RH, McGovern DPB, Silverberg M, Cho JH, NIDDK IBD Genetics Consortium, iGenoMed Consortium, Ananthakrishnan A, Xavier RJ, Rioux JD, Des Rosiers C. Serum Lipidomic Screen Identifies Key Metabolites, Pathways, and Disease Classifiers in Crohn's Disease. Inflamm Bowel Dis 2023; 29:1024-1037. [PMID: 36662167 PMCID: PMC10320374 DOI: 10.1093/ibd/izac281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Indexed: 01/21/2023]
Abstract
BACKGROUND There is an unmet medical need for biomarkers that capture host and environmental contributions in inflammatory bowel diseases (IBDs). This study aimed at testing the potential of circulating lipids as disease classifiers given their major roles in inflammation. METHODS We applied a previously validated comprehensive high-resolution liquid chromatography-mass spectrometry-based untargeted lipidomic workflow covering 25 lipid subclasses to serum samples from 100 Crohn's disease (CD) patients and 100 matched control subjects. Findings were replicated and expanded in another 200 CD patients and 200 control subjects. Key metabolites were tested for associations with disease behavior and location, and classification models were built and validated. Their association with disease activity was tested using an independent cohort of 42 CD patients. RESULTS We identified >70 metabolites with strong association (P < 1 × 10-4, q < 5 × 10-4) to CD. Highly performing classification models (area under the curve > 0.84-0.97) could be built with as few as 5 to 9 different metabolites, representing 6 major correlated lipid clusters. These classifiers included a phosphatidylethanolamine ether (O-16:0/20:4), a sphingomyelin (d18:1/21:0) and a cholesterol ester (14:1), a very long-chain dicarboxylic acid [28:1(OH)] and sitosterol sulfate. These classifiers and correlated lipids indicate a dysregulated metabolism in host cells, notably in peroxisomes, as well as dysbiosis, oxidative stress, compromised inflammation resolution, or intestinal membrane integrity. A subset of these were associated with disease behavior or location. CONCLUSIONS Untargeted lipidomic analyses uncovered perturbations in the circulating human CD lipidome, likely resulting from multiple pathogenic mechanisms. Models using as few as 5 biomarkers had strong disease classifier characteristics, supporting their potential use in diagnosis or prognosis.
Collapse
Affiliation(s)
- Romain Ferru-Clément
- Research Center, Montreal Heart Institute, Montreal, QC, Canada
- Laboratoire Histocompatibilité et Immunogénétique, Établissement français du sang–Nouvelle-Aquitaine, site de Poitiers, Poitiers, France
| | | | - Anik Forest
- Research Center, Montreal Heart Institute, Montreal, QC, Canada
| | | | - Alain Bitton
- Division of Gastroenterology, McGill University Health Centre, Montreal, QC, Canada
| | - Sylvie Lesage
- Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
| | - Phil Schumm
- Department of Public Health Sciences, University of Chicago, IL, USA
| | - Mark Lazarev
- Harvey M. and Lyn P. Meyerhoff Inflammatory Bowel Disease Center, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Steve Brant
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Richard H Duerr
- Department of Medicine, University of Pittsburgh, Pennsylvania, PA, USA
| | - Dermot P B McGovern
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Mark Silverberg
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Judy H Cho
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Ashwin Ananthakrishnan
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Ramnik J Xavier
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Brigham and Women’s Hospital, Boston, MA, USA
| | - John D Rioux
- Research Center, Montreal Heart Institute, Montreal, QC, Canada
- Département de Médicine, Université de Montréal, Montreal, QC, Canada
| | - Christine Des Rosiers
- Research Center, Montreal Heart Institute, Montreal, QC, Canada
- Département de Nutrition, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
16
|
Ahmadi A, Begue G, Valencia AP, Norman JE, Lidgard B, Bennett BJ, Van Doren MP, Marcinek DJ, Fan S, Prince DK, Gamboa J, Himmelfarb J, de Boer IH, Kestenbaum BR, Roshanravan B. Randomized crossover clinical trial of coenzyme Q10 and nicotinamide riboside in chronic kidney disease. JCI Insight 2023; 8:e167274. [PMID: 37159264 PMCID: PMC10393227 DOI: 10.1172/jci.insight.167274] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/03/2023] [Indexed: 05/10/2023] Open
Abstract
BackgroundCurrent studies suggest mitochondrial dysfunction is a major contributor to impaired physical performance and exercise intolerance in chronic kidney disease (CKD). We conducted a clinical trial of coenzyme Q10 (CoQ10) and nicotinamide riboside (NR) to determine their impact on exercise tolerance and metabolic profile in patients with CKD.MethodsWe conducted a randomized, placebo-controlled, double-blind, crossover trial comparing CoQ10, NR, and placebo in 25 patients with an estimated glomerular filtration rate (eGFR) of less than 60mL/min/1.73 m2. Participants received NR (1,000 mg/day), CoQ10 (1,200 mg/day), or placebo for 6 weeks each. The primary outcomes were aerobic capacity measured by peak rate of oxygen consumption (VO2 peak) and work efficiency measured using graded cycle ergometry testing. We performed semitargeted plasma metabolomics and lipidomics.ResultsParticipant mean age was 61.0 ± 11.6 years and mean eGFR was 36.9 ± 9.2 mL/min/1.73 m2. Compared with placebo, we found no differences in VO2 peak (P = 0.30, 0.17), total work (P = 0.47, 0.77), and total work efficiency (P = 0.46, 0.55) after NR or CoQ10 supplementation. NR decreased submaximal VO2 at 30 W (P = 0.03) and VO2 at 60 W (P = 0.07) compared with placebo. No changes in eGFR were observed after NR or CoQ10 treatment (P = 0.14, 0.88). CoQ10 increased free fatty acids and decreased complex medium- and long-chain triglycerides. NR supplementation significantly altered TCA cycle intermediates and glutamate that were involved in reactions that exclusively use NAD+ and NADP+ as cofactors. NR decreased a broad range of lipid groups including triglycerides and ceramides.ConclusionsSix weeks of treatment with NR or CoQ10 improved markers of systemic mitochondrial metabolism and lipid profiles but did not improve VO2 peak or total work efficiency.Trial registrationClinicalTrials.gov NCT03579693.FundingNational Institutes of Diabetes and Digestive and Kidney Diseases (grants R01 DK101509, R03 DK114502, R01 DK125794, and R01 DK101509).
Collapse
Affiliation(s)
- Armin Ahmadi
- Department of Medicine, Division of Nephrology, UCD, Davis, California, USA
| | - Gwenaelle Begue
- Kinesiology Department, California State University, Sacramento, California, USA
| | - Ana P. Valencia
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Jennifer E. Norman
- Department of Internal Medicine, Division of Cardiovascular Medicine, UCD, Davis, California, USA
| | - Benjamin Lidgard
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Brian J. Bennett
- Obesity and Metabolism Research Unit, Western Human Nutrition Research Center, USDA, ARS, Davis, California, USA
| | | | - David J. Marcinek
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Sili Fan
- Department of Biostatistics, UCD, Davis, California, USA
| | - David K. Prince
- Department of Medicine, Division of Nephrology, Kidney Research Institute, University of Washington, Seattle, Washington, USA
| | - Jorge Gamboa
- School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Jonathan Himmelfarb
- Department of Medicine, Division of Nephrology, Kidney Research Institute, University of Washington, Seattle, Washington, USA
| | - Ian H. de Boer
- Department of Medicine, Division of Nephrology, Kidney Research Institute, University of Washington, Seattle, Washington, USA
| | - Bryan R. Kestenbaum
- Department of Medicine, Division of Nephrology, Kidney Research Institute, University of Washington, Seattle, Washington, USA
| | - Baback Roshanravan
- Department of Medicine, Division of Nephrology, UCD, Davis, California, USA
| |
Collapse
|
17
|
Ryan MJ, Grant-St James A, Lawler NG, Fear MW, Raby E, Wood FM, Maker GL, Wist J, Holmes E, Nicholson JK, Whiley L, Gray N. Comprehensive Lipidomic Workflow for Multicohort Population Phenotyping Using Stable Isotope Dilution Targeted Liquid Chromatography-Mass Spectrometry. J Proteome Res 2023; 22:1419-1433. [PMID: 36828482 PMCID: PMC10167688 DOI: 10.1021/acs.jproteome.2c00682] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Dysregulated lipid metabolism underpins many chronic diseases including cardiometabolic diseases. Mass spectrometry-based lipidomics is an important tool for understanding mechanisms of lipid dysfunction and is widely applied in epidemiology and clinical studies. With ever-increasing sample numbers, single batch acquisition is often unfeasible, requiring advanced methods that are accurate and robust to batch-to-batch and interday analytical variation. Herein, an optimized comprehensive targeted workflow for plasma and serum lipid quantification is presented, combining stable isotope internal standard dilution, automated sample preparation, and ultrahigh performance liquid chromatography-tandem mass spectrometry with rapid polarity switching to target 1163 lipid species spanning 20 subclasses. The resultant method is robust to common sources of analytical variation including blood collection tubes, hemolysis, freeze-thaw cycles, storage stability, analyte extraction technique, interinstrument variation, and batch-to-batch variation with 820 lipids reporting a relative standard deviation of <30% in 1048 replicate quality control plasma samples acquired across 16 independent batches (total injection count = 6142). However, sample hemolysis of ≥0.4% impacted lipid concentrations, specifically for phosphatidylethanolamines (PEs). Low interinstrument variability across two identical LC-MS systems indicated feasibility for intra/inter-lab parallelization of the assay. In summary, we have optimized a comprehensive lipidomic protocol to support rigorous analysis for large-scale, multibatch applications in precision medicine. The mass spectrometry lipidomics data have been deposited to massIVE: data set identifiers MSV000090952 and 10.25345/C5NP1WQ4S.
Collapse
Affiliation(s)
- Monique J Ryan
- Australian National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia.,Centre for Computational and Systems Medicine, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia
| | - Alanah Grant-St James
- Australian National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia.,Centre for Computational and Systems Medicine, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia
| | - Nathan G Lawler
- Australian National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia.,Centre for Computational and Systems Medicine, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia
| | - Mark W Fear
- Burn Injury Research Unit, University of Western Australia, Perth, Western Australia 6009, Australia.,Fiona Wood Foundation, Perth, Western Australia 6150, Australia
| | - Edward Raby
- Department of Microbiology, PathWest Laboratory Medicine, Perth, Western Australia 6009, Australia.,Department of Infectious Diseases, Fiona Stanley Hospital, Perth, Western Australia 6150, Australia
| | - Fiona M Wood
- Burn Injury Research Unit, University of Western Australia, Perth, Western Australia 6009, Australia.,WA Department of Health, Burns Service WA, Perth, Western Australia 6009, Australia.,Fiona Wood Foundation, Perth, Western Australia 6150, Australia
| | - Garth L Maker
- Australian National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia
| | - Julien Wist
- Australian National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia.,Centre for Computational and Systems Medicine, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia
| | - Elaine Holmes
- Australian National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia.,Centre for Computational and Systems Medicine, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia
| | - Jeremy K Nicholson
- Australian National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia.,Centre for Computational and Systems Medicine, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia
| | - Luke Whiley
- Australian National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia.,Centre for Computational and Systems Medicine, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia.,Perron Institute for Neurological and Translational Science, Nedlands, Western Australia 6009, Australia
| | - Nicola Gray
- Australian National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia.,Centre for Computational and Systems Medicine, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia
| |
Collapse
|
18
|
Fatty acids derived from the probiotic Lacticaseibacillus rhamnosus HA-114 suppress age-dependent neurodegeneration. Commun Biol 2022; 5:1340. [PMID: 36477191 PMCID: PMC9729297 DOI: 10.1038/s42003-022-04295-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
The human microbiota is believed to influence health. Microbiome dysbiosis may be linked to neurological conditions like Alzheimer's disease, amyotrophic lateral sclerosis, and Huntington's disease. We report the ability of a probiotic bacterial strain in halting neurodegeneration phenotypes. We show that Lacticaseibacillus rhamnosus HA-114 is neuroprotective in C. elegans models of amyotrophic lateral sclerosis and Huntington's disease. Our results show that neuroprotection from L. rhamnosus HA-114 is unique from other L. rhamnosus strains and resides in its fatty acid content. Neuroprotection by L. rhamnosus HA-114 requires acdh-1/ACADSB, kat-1/ACAT1 and elo-6/ELOVL3/6, which are associated with fatty acid metabolism and mitochondrial β-oxidation. Our data suggest that disrupted lipid metabolism contributes to neurodegeneration and that dietary intervention with L. rhamnosus HA-114 restores lipid homeostasis and energy balance through mitochondrial β-oxidation. Our findings encourage the exploration of L. rhamnosus HA-114 derived interventions to modify the progression of neurodegenerative diseases.
Collapse
|
19
|
Cryo-EM structure of the Agrobacteriumtumefaciens T-pilus reveals the importance of positive charges in the lumen. Structure 2022; 31:375-384.e4. [PMID: 36513067 DOI: 10.1016/j.str.2022.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/19/2022] [Accepted: 11/14/2022] [Indexed: 12/14/2022]
Abstract
Agrobacterium tumefaciens is a natural genetic engineer that transfers DNA into plants, which is the most applied process for generation of genetically modified plants. DNA transfer is mediated by a type IV secretion system in the cell envelope and extracellular T-pili. We here report the cryo-electron microscopic structures of the T-pilus at 3.2-Å resolution and of the plasmid pKM101-determined N-pilus at 3-Å resolution. Both pili contain a main pilus protein (VirB2 in A. tumefaciens, TraM in pKM101) and phospholipids arranged in a five-start helical assembly. They contain positively charged amino acids in the lumen, and the lipids are positively charged in the T-pilus (phosphatidylcholine) conferring overall positive charge. Mutagenesis of the lumen-exposed Arg91 in VirB2 results in protein destabilization and loss of pilus formation. Our results reveal that different phospholipids can be incorporated into type IV secretion pili and that the charge of the lumen may be of functional importance.
Collapse
|
20
|
Acera A, Abad B, Pereiro X, Rodríguez FD, Ruzafa N, Duran JA, Vecino E. Comparative study of the lipid profile of tears and plasma enriched in growth factors. Exp Eye Res 2022; 219:109061. [DOI: 10.1016/j.exer.2022.109061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/19/2022] [Accepted: 03/30/2022] [Indexed: 01/05/2023]
|
21
|
Vachon L, Smaani A, Tessier N, Jean G, Demers A, Milasan A, Ardo N, Jarry S, Villeneuve L, Alikashani A, Finherty V, Ruiz M, Sorci-Thomas MG, Mayer G, Martel C. Downregulation of low-density lipoprotein receptor mRNA in lymphatic endothelial cells impairs lymphatic function through changes in intracellular lipids. Theranostics 2022; 12:1440-1458. [PMID: 35154499 PMCID: PMC8771568 DOI: 10.7150/thno.58780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 12/20/2021] [Indexed: 11/18/2022] Open
Abstract
Rationale: Impairment in lymphatic transport is associated with the onset and progression of atherosclerosis in animal models. The downregulation of low-density-lipoprotein receptor (LDLR) expression, rather than increased circulating cholesterol level per se, is involved in early atherosclerosis-related lymphatic dysfunction. Enhancing lymphatic function in Ldlr-/- mice with a mutant form of VEGF-C (VEGF-C 152s), a selective VEGFR-3 agonist, successfully delayed atherosclerotic plaque onset when mice were subsequently fed a high-fat diet. However, the specific mechanisms by which LDLR protects against lymphatic function impairment is unknown. Methods and results: We have thus injected wild-type and Pcsk9-/- mice with an adeno-associated virus type 1 expressing a shRNA for silencing Ldlr in vivo. We herein report that lymphatic contractility is reduced upon Ldlr dowregulation in wild-type mice only. Our in vitro experiments reveal that a decrease in LDLR expression at the mRNA level reduces the chromosome duplication phase and the protein expression of VEGFR-3, a membrane-bound key lymphatic marker. Furthermore, it also significantly reduced the levels of 18 lipid subclasses, including key constituents of lipid rafts as well as the transcription of several genes involved in cholesterol biosynthesis and cellular and metabolic processes. Exogenous PCSK9 only reduces lymphatic endothelial-LDLR at the protein level and does not affect lymphatic endothelial cell integrity. This puts forward that PCSK9 may act upon lymphatic muscle cells to mediate its effect on lymphatic contraction capacity in vivo. Conclusion: Our results suggest that treatments that specifically palliate the down regulation of LDLR mRNA in lymphatic endothelial cells preserve the integrity of the lymphatic endothelium and sustain lymphatic function, a prerequisite player in atherosclerosis.
Collapse
Affiliation(s)
- Laurent Vachon
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | - Ali Smaani
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | - Nolwenn Tessier
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | - Gabriel Jean
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | - Annie Demers
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | - Andreea Milasan
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | - Nadine Ardo
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Stéphanie Jarry
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | - Louis Villeneuve
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | | | - Vincent Finherty
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | - Matthieu Ruiz
- Department of Nutrition, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Montreal Heart Institute, Metabolomics platform, Montreal, Quebec, Canada
| | | | - Gaétan Mayer
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
- Faculty of Pharmacy, Université de Montréal, Montreal, QC, Canada
| | - Catherine Martel
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| |
Collapse
|
22
|
Adaptive optimization of the OXPHOS assembly line partially compensates lrpprc-dependent mitochondrial translation defects in mice. Commun Biol 2021; 4:989. [PMID: 34413467 PMCID: PMC8376967 DOI: 10.1038/s42003-021-02492-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 07/20/2021] [Indexed: 11/20/2022] Open
Abstract
Mouse models of genetic mitochondrial disorders are generally used to understand specific molecular defects and their biochemical consequences, but rarely to map compensatory changes allowing survival. Here we took advantage of the extraordinary mitochondrial resilience of hepatic Lrpprc knockout mice to explore this question using native proteomics profiling and lipidomics. In these mice, low levels of the mtRNA binding protein LRPPRC induce a global mitochondrial translation defect and a severe reduction (>80%) in the assembly and activity of the electron transport chain (ETC) complex IV (CIV). Yet, animals show no signs of overt liver failure and capacity of the ETC is preserved. Beyond stimulation of mitochondrial biogenesis, results show that the abundance of mitoribosomes per unit of mitochondria is increased and proteostatic mechanisms are induced in presence of low LRPPRC levels to preserve a balance in the availability of mitochondrial- vs nuclear-encoded ETC subunits. At the level of individual organelles, a stabilization of residual CIV in supercomplexes (SCs) is observed, pointing to a role of these supramolecular arrangements in preserving ETC function. While the SC assembly factor COX7A2L could not contribute to the stabilization of CIV, important changes in membrane glycerophospholipid (GPL), most notably an increase in SC-stabilizing cardiolipins species (CLs), were observed along with an increased abundance of other supramolecular assemblies known to be stabilized by, and/or participate in CL metabolism. Together these data reveal a complex in vivo network of molecular adjustments involved in preserving mitochondrial integrity in energy consuming organs facing OXPHOS defects, which could be therapeutically exploited. Cuillerier et al. investigate compensatory mechanisms underlying survival of mice with a liver-specific knockout of the mitochondrial mRNA-binding protein Lrpprc. They propose various mechanisms operating along the OXPHOS assembly line, including mitochondrial biogenesis, mitochondrial ribosome upregulation and preferential supercomplex assembly, that could compensate lack of LRPPRC and allow survival of these mice.
Collapse
|
23
|
Mia S, Sonkar R, Williams L, Latimer MN, Frayne Robillard I, Diwan A, Frank SJ, Des Rosiers C, Young ME. Impact of obesity on day-night differences in cardiac metabolism. FASEB J 2021; 35:e21298. [PMID: 33660366 PMCID: PMC7942981 DOI: 10.1096/fj.202001706rr] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/16/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023]
Abstract
An intrinsic property of the heart is an ability to rapidly and coordinately adjust flux through metabolic pathways in response to physiologic stimuli (termed metabolic flexibility). Cardiac metabolism also fluctuates across the 24‐hours day, in association with diurnal sleep‐wake and fasting‐feeding cycles. Although loss of metabolic flexibility has been proposed to play a causal role in the pathogenesis of cardiac disease, it is currently unknown whether day‐night variations in cardiac metabolism are altered during disease states. Here, we tested the hypothesis that diet‐induced obesity disrupts cardiac “diurnal metabolic flexibility”, which is normalized by time‐of‐day‐restricted feeding. Chronic high fat feeding (20‐wk)‐induced obesity in mice, abolished diurnal rhythms in whole body metabolic flexibility, and increased markers of adverse cardiac remodeling (hypertrophy, fibrosis, and steatosis). RNAseq analysis revealed that 24‐hours rhythms in the cardiac transcriptome were dramatically altered during obesity; only 22% of rhythmic transcripts in control hearts were unaffected by obesity. However, day‐night differences in cardiac substrate oxidation were essentially identical in control and high fat fed mice. In contrast, day‐night differences in both cardiac triglyceride synthesis and lipidome were abolished during obesity. Next, a subset of obese mice (induced by 18‐wks ad libitum high fat feeding) were allowed access to the high fat diet only during the 12‐hours dark (active) phase, for a 2‐wk period. Dark phase restricted feeding partially restored whole body metabolic flexibility, as well as day‐night differences in cardiac triglyceride synthesis and lipidome. Moreover, this intervention partially reversed adverse cardiac remodeling in obese mice. Collectively, these studies reveal diurnal metabolic inflexibility of the heart during obesity specifically for nonoxidative lipid metabolism (but not for substrate oxidation), and that restricting food intake to the active period partially reverses obesity‐induced cardiac lipid metabolism abnormalities and adverse remodeling of the heart.
Collapse
Affiliation(s)
- Sobuj Mia
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ravi Sonkar
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lamario Williams
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mary N Latimer
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Abhinav Diwan
- Departments of Medicine, Cell Biology and Physiology, Washington University School of Medicine and John Cochran VA Medical Center, St. Louis, MO, USA
| | - Stuart J Frank
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.,Endocrinology Section, Birmingham VAMC Medical Service, Birmingham, AL, USA
| | - Christine Des Rosiers
- Department of Nutrition, Université de Montréal and Montreal Heart Institute, Montréal, QC, Canada
| | - Martin E Young
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
24
|
Wang C, Gong Y, Deng F, Ding E, Tang J, Codling G, Challis JK, Green D, Wang J, Chen Q, Xie Y, Su S, Yang Z, Raine J, Jones PD, Tang S, Giesy JP. Remodeling of Arctic char (Salvelinus alpinus) lipidome under a stimulated scenario of Arctic warming. GLOBAL CHANGE BIOLOGY 2021; 27:3282-3298. [PMID: 33837644 DOI: 10.1111/gcb.15638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/14/2021] [Indexed: 06/12/2023]
Abstract
Arctic warming associated with global climate change poses a significant threat to populations of wildlife in the Arctic. Since lipids play a vital role in adaptation of organisms to variations in temperature, high-resolution mass-spectrometry-based lipidomics can provide insights into adaptive responses of organisms to a warmer environment in the Arctic and help to illustrate potential novel roles of lipids in the process of thermal adaption. In this study, we studied an ecologically and economically important species-Arctic char (Salvelinus alpinus)-with a detailed multi-tissue analysis of the lipidome in response to chronic shifts in temperature using a validated lipidomics workflow. In addition, dynamic alterations in the hepatic lipidome during the time course of shifts in temperature were also characterized. Our results showed that early life stages of Arctic char were more susceptible to variations in temperature. One-year-old Arctic char responded to chronic increases in temperature with coordinated regulation of lipids, including headgroup-specific remodeling of acyl chains in glycerophospholipids (GP) and extensive alterations in composition of lipids in membranes, such as less lyso-GPs, and more ether-GPs and sphingomyelin. Glycerolipids (e.g., triacylglycerol, TG) also participated in adaptive responses of the lipidome of Arctic char. Eight-week-old Arctic char exhibited rapid adaptive alterations of the hepatic lipidome to stepwise decreases in temperature while showing blunted responses to gradual increases in temperature, implying an inability to adapt rapidly to warmer environments. Three common phosphatidylethanolamines (PEs) (PE 36:6|PE 16:1_20:5, PE 38:7|PE 16:1_22:6, and PE 40:7|PE 18:1_22:6) were finally identified as candidate lipid biomarkers for temperature shifts via machine learning approach. Overall, this work provides additional information to a better understanding of underlying regulatory mechanisms of the lipidome of Arctic organisms in the face of near-future warming.
Collapse
Affiliation(s)
- Chao Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Yufeng Gong
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Fuchang Deng
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Enmin Ding
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jie Tang
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
- School of Resources and Environment, Anhui Agricultural University, Hefei, Anhui, China
| | - Garry Codling
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
- Research Centre for Contaminants in the Environment, Masaryk University, Brno, Czech Republic
| | | | - Derek Green
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jing Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Qiliang Chen
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Yuwei Xie
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Shu Su
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Zilin Yang
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jason Raine
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Paul D Jones
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Song Tang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Environmental Sciences, Baylor University, Waco, TX, USA
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| |
Collapse
|
25
|
Identification of Circulating Endocan-1 and Ether Phospholipids as Biomarkers for Complications in Thalassemia Patients. Metabolites 2021; 11:metabo11020070. [PMID: 33530524 PMCID: PMC7912378 DOI: 10.3390/metabo11020070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/08/2021] [Accepted: 01/18/2021] [Indexed: 12/20/2022] Open
Abstract
Despite advances in our knowledge and attempts to improve therapies, β-thalassemia remains a prevalent disorder with increased risk for the development of cardiomyopathy. Using an untargeted discovery-based lipidomic workflow, we uncovered that transfusion-dependent thalassemia (TDT) patients had a unique circulating lipidomic signature consisting of 387 lipid features, allowing their significant discrimination from healthy controls (Q-value < 0.01). In particular, TDT patients had elevated triacylglycerols and long-chain acylcarnitines, albeit lower ether phospholipids or plasmalogens, sphingomyelins, and cholesterol esters, reminiscent of that previously characterized in cardiometabolic diseases resulting from mitochondrial and peroxisomal dysfunction. Discriminating lipid (sub)classes correlated differentially with clinical parameters, reflecting blood (ether phospholipids) and iron (cholesterol ester) status or heart function (triacylglycerols). We also tested 15 potential serum biomarkers related to cardiometabolic disease and found that both lipocalin-2 and, for the first time, endocan-1 levels were significantly elevated in TDT patients and showed a strong correlation with blood parameters and three ether diacylglycerophosphatidylcholine species. In conclusion, this study identifies new characteristics of TDT patients which may have relevance in developing biomarkers and therapeutics.
Collapse
|
26
|
Schmeisser S, Li S, Bouchard B, Ruiz M, Des Rosiers C, Roy R. Muscle-Specific Lipid Hydrolysis Prolongs Lifespan through Global Lipidomic Remodeling. Cell Rep 2020; 29:4540-4552.e8. [PMID: 31875559 DOI: 10.1016/j.celrep.2019.11.090] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 09/20/2019] [Accepted: 11/21/2019] [Indexed: 12/20/2022] Open
Abstract
A growing body of evidence suggests that changes in fat metabolism may have a significant effect on lifespan. Accumulation of lipid deposits in non-adipose tissue appears to be critical for age-related pathologies and may also contribute to the aging process itself. We established a model of lipid storage in muscle cells of C. elegans to reveal a mechanism that promotes longevity non-cell-autonomously. Here, we describe how muscle-specific activation of adipose triglyceride lipase (ATGL) and the phospholipase A2 (PLA2) ortholog IPLA-7 collectively affect inter-tissular communication and systemic adaptation that requires the activity of AMP-dependent protein kinase (AMPK) and a highly conserved nuclear receptor outside of the muscle. Our data suggest that muscle-specific bioactive lipid signals, or "lipokines," are generated following triglyceride breakdown and that these signals impinge on a complex network of genes that modify the global lipidome, consequently extending the lifespan.
Collapse
Affiliation(s)
| | - Shaolin Li
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada
| | - Bertrand Bouchard
- Montreal Heart Institute, Research Center, Montreal, QC H1T 1C8, Canada
| | - Matthieu Ruiz
- Montreal Heart Institute, Research Center, Montreal, QC H1T 1C8, Canada; Department of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Christine Des Rosiers
- Montreal Heart Institute, Research Center, Montreal, QC H1T 1C8, Canada; Department of Nutrition, University of Montreal, Montreal, QC H2T 1A8, Canada
| | - Richard Roy
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada.
| |
Collapse
|
27
|
Oppong AK, Diallo K, Robillard Frayne I, Des Rosiers C, Lim GE. Reducing 14-3-3ζ expression influences adipocyte maturity and impairs function. Am J Physiol Endocrinol Metab 2020; 319:E117-E132. [PMID: 32369418 DOI: 10.1152/ajpendo.00093.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
One of the primary metabolic functions of a mature adipocyte is to supply energy via lipolysis, or the catabolism of stored lipids. Adipose triacylglycerol lipase (ATGL) and hormone-sensitive lipase (HSL) are critical lipolytic enzymes, and their phosphorylation generates phospho-binding sites for 14-3-3 proteins, a ubiquitously expressed family of molecular scaffolds. Although we previously identified essential roles of the 14-3-3ζ isoform in murine adipogenesis, the presence of 14-3-3 protein binding sites on ATGL and HSL suggests that 14-3-3ζ could also influence mature adipocyte processes like lipolysis. Here we demonstrate that 14-3-3ζ is necessary for lipolysis in male mice and fully differentiated 3T3-L1 adipocytes, as depletion of 14-3-3ζ significantly impaired glycerol and free fatty acid (FFA) release. Unexpectedly, reducing 14-3-3ζ expression was found to significantly impact adipocyte maturity, as observed by reduced abundance of peroxisome proliferator-activated receptor (PPAR)γ2 protein and expression of mature adipocyte genes and those associated with de novo triglyceride synthesis and lipolysis. The impact of 14-3-3ζ depletion on adipocyte maturity was further examined with untargeted lipidomics, which revealed that reductions in 14-3-3ζ abundance promoted the acquisition of a lipidomic signature that resembled undifferentiated preadipocytes. Collectively, these findings reveal a novel aspect of 14-3-3ζ in adipocytes, as reducing 14-3-3ζ was found to have a negative effect on adipocyte maturity and adipocyte-specific processes like lipolysis.
Collapse
Affiliation(s)
- Abel K Oppong
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Cardiometabolic axis, Centre de recherche de Centre hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Kadidia Diallo
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Cardiometabolic axis, Centre de recherche de Centre hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | | | - Christine Des Rosiers
- Montreal Heart Institute, Research Centre, Montreal, Quebec, Canada
- Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
| | - Gareth E Lim
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Cardiometabolic axis, Centre de recherche de Centre hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
28
|
Advances in Liquid Chromatography–Mass Spectrometry-Based Lipidomics: A Look Ahead. JOURNAL OF ANALYSIS AND TESTING 2020. [DOI: 10.1007/s41664-020-00135-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Ruiz M, Cuillerier A, Daneault C, Deschênes S, Frayne IR, Bouchard B, Forest A, Legault JT, Vaz FM, Rioux JD, Burelle Y, Des Rosiers C. Lipidomics unveils lipid dyshomeostasis and low circulating plasmalogens as biomarkers in a monogenic mitochondrial disorder. JCI Insight 2019; 4:123231. [PMID: 31341105 DOI: 10.1172/jci.insight.123231] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 05/31/2019] [Indexed: 12/17/2022] Open
Abstract
Mitochondrial dysfunction characterizes many rare and common age-associated diseases. The biochemical consequences, underlying clinical manifestations, and potential therapeutic targets, remain to be better understood. We tested the hypothesis that lipid dyshomeostasis in mitochondrial disorders goes beyond mitochondrial fatty acid β-oxidation, particularly in liver. This was achieved using comprehensive untargeted and targeted lipidomics in a case-control cohort of patients with Leigh syndrome French-Canadian variant (LSFC), a mitochondrial disease caused by mutations in LRPPRC, and in mice harboring liver-specific inactivation of Lrpprc (H-Lrpprc-/-). We discovered a plasma lipid signature discriminating LSFC patients from controls encompassing lower levels of plasmalogens and conjugated bile acids, which suggest perturbations in peroxisomal lipid metabolism. This premise was reinforced in H-Lrpprc-/- mice, which compared with littermates recapitulated a similar, albeit stronger peroxisomal metabolic signature in plasma and liver including elevated levels of very-long-chain acylcarnitines. These mice also presented higher transcript levels for hepatic markers of peroxisome proliferation in addition to lipid remodeling reminiscent of nonalcoholic fatty liver diseases. Our study underscores the value of lipidomics to unveil unexpected mechanisms underlying lipid dyshomeostasis ensuing from mitochondrial dysfunction herein implying peroxisomes and liver, which likely contribute to the pathophysiology of LSFC, but also other rare and common mitochondrial diseases.
Collapse
Affiliation(s)
- Matthieu Ruiz
- Department of Nutrition and.,Department of Medicine, Université de Montréal, Montreal, Quebec, Canada.,Montreal Heart Institute Research Center, Montreal, Quebec, Canada
| | - Alexanne Cuillerier
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences and Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Sonia Deschênes
- Montreal Heart Institute Research Center, Montreal, Quebec, Canada
| | | | | | - Anik Forest
- Montreal Heart Institute Research Center, Montreal, Quebec, Canada
| | | | | | - Frederic M Vaz
- Amsterdam UMC, University of Amsterdam, Laboratory Genetic Metabolic Diseases, Core Facility Metabolomics, Amsterdam Gastroenterology & Metabolism, Meibergdreef, Amsterdam, Netherlands
| | - John D Rioux
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada.,Montreal Heart Institute Research Center, Montreal, Quebec, Canada
| | - Yan Burelle
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences and Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Christine Des Rosiers
- Department of Nutrition and.,Montreal Heart Institute Research Center, Montreal, Quebec, Canada
| |
Collapse
|
30
|
Pinçon A, De Montgolfier O, Akkoyunlu N, Daneault C, Pouliot P, Villeneuve L, Lesage F, Levy BI, Thorin-Trescases N, Thorin É, Ruiz M. Non-Alcoholic Fatty Liver Disease, and the Underlying Altered Fatty Acid Metabolism, Reveals Brain Hypoperfusion and Contributes to the Cognitive Decline in APP/PS1 Mice. Metabolites 2019; 9:metabo9050104. [PMID: 31130652 PMCID: PMC6572466 DOI: 10.3390/metabo9050104] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/16/2019] [Accepted: 05/21/2019] [Indexed: 12/22/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), the leading cause of chronic liver disease, is associated with cognitive decline in middle-aged adults, but the mechanisms underlying this association are not clear. We hypothesized that NAFLD would unveil the appearance of brain hypoperfusion in association with altered plasma and brain lipid metabolism. To test our hypothesis, amyloid precursor protein/presenilin-1 (APP/PS1) transgenic mice were fed a standard diet or a high-fat, cholesterol and cholate diet, inducing NAFLD without obesity and hyperglycemia. The diet-induced NAFLD disturbed monounsaturated and polyunsaturated fatty acid (MUFAs, PUFAs) metabolism in the plasma, liver, and brain, and particularly reduced n-3 PUFAs levels. These alterations in lipid homeostasis were associated in the brain with an increased expression of Tnfα, Cox2, p21, and Nox2, reminiscent of brain inflammation, senescence, and oxidative stress. In addition, compared to wild-type (WT) mice, while brain perfusion was similar in APP/PS1 mice fed with a chow diet, NAFLD in APP/PS1 mice reveals cerebral hypoperfusion and furthered cognitive decline. NAFLD reduced plasma β40- and β42-amyloid levels and altered hepatic but not brain expression of genes involved in β-amyloid peptide production and clearance. Altogether, our results suggest that in a mouse model of Alzheimer disease (AD) diet-induced NAFLD contributes to the development and progression of brain abnormalities through unbalanced brain MUFAs and PUFAs metabolism and cerebral hypoperfusion, irrespective of brain amyloid pathology that may ultimately contribute to the pathogenesis of AD.
Collapse
Affiliation(s)
- Anthony Pinçon
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada.
- Research Center, Montreal Heart Institute, University of Montreal, Montreal, QC H1T 1C8, Canada.
| | - Olivia De Montgolfier
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada.
- Research Center, Montreal Heart Institute, University of Montreal, Montreal, QC H1T 1C8, Canada.
| | - Nilay Akkoyunlu
- Research Center, Montreal Heart Institute, University of Montreal, Montreal, QC H1T 1C8, Canada.
| | - Caroline Daneault
- Research Center, Montreal Heart Institute, University of Montreal, Montreal, QC H1T 1C8, Canada.
| | - Philippe Pouliot
- Research Center, Montreal Heart Institute, University of Montreal, Montreal, QC H1T 1C8, Canada.
- Department of Electrical Engineering, Ecole Polytechnique de Montréal, Montreal, QC H3T 1J4, Canada.
| | - Louis Villeneuve
- Research Center, Montreal Heart Institute, University of Montreal, Montreal, QC H1T 1C8, Canada.
| | - Frédéric Lesage
- Research Center, Montreal Heart Institute, University of Montreal, Montreal, QC H1T 1C8, Canada.
- Department of Electrical Engineering, Ecole Polytechnique de Montréal, Montreal, QC H3T 1J4, Canada.
| | - Bernard I Levy
- Institut des Vaisseaux et du Sang, Hôpital Lariboisière, 75010 Paris, France.
| | | | - Éric Thorin
- Research Center, Montreal Heart Institute, University of Montreal, Montreal, QC H1T 1C8, Canada.
- Department of Surgery, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada.
| | - Matthieu Ruiz
- Research Center, Montreal Heart Institute, University of Montreal, Montreal, QC H1T 1C8, Canada.
- Department of Medecine, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada.
| |
Collapse
|
31
|
Navarro-Reig M, Tauler R, Iriondo-Frias G, Jaumot J. Untargeted lipidomic evaluation of hydric and heat stresses on rice growth. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1104:148-156. [PMID: 30471516 DOI: 10.1016/j.jchromb.2018.11.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/10/2018] [Accepted: 11/13/2018] [Indexed: 02/02/2023]
Abstract
Environmental stresses are the major factors that limit the geographical distribution of plants. As a consequence, plants have developed different strategies to adapt to these environmental changes among which can be outlined the maintenance of membranes' integrity and fluidity. Lipids are key molecules for this environmental adaptation and a comprehensive understand of the molecular mechanisms underlying is still required. Here, lipidome changes in Japanese rice (Oryza sativa var. Japonica) upon heat and hydric stresses are assessed using an untargeted approach based on liquid chromatography coupled with mass spectrometry (LC-MS). The obtained data were analyzed using different multivariate data analysis tools. A total number of 298 lipids responded to these abiotic stresses, and 128 of them were tentatively identified. Diacylglycerols (DG), triacylglycerols (TG), phosphatidylcholines (PC) and phosphatidylethanolamines (PE) were the most altered lipid families heat and hydric stress. Interpretation of the obtained results showed relevant changes related to the unsaturation degree in the identified lipids. In the case of heat stress, a decrease in the unsaturation degree of lipids can be linked to an increase in the cell membranes' rigidity. In contrast, the hydric stress produced an increase in the lipids unsaturation degree causing an increase in the cell membranes' fluidity, in an attempt to adapt to these non-optimal conditions.
Collapse
Affiliation(s)
- Meritxell Navarro-Reig
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - Romà Tauler
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Guillermo Iriondo-Frias
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Joaquim Jaumot
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| |
Collapse
|