1
|
Fan M, Brolo AG. Factors that Affect Quantification in Surface-Enhanced Raman Scattering. ACS NANO 2025; 19:3969-3996. [PMID: 39855155 DOI: 10.1021/acsnano.4c15183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
Abstract
Surface-enhanced Raman scattering (SERS) is an analytical technique capable of detecting trace amounts of specific species. The uniqueness of vibrational signatures is a major advantage of SERS. This combination of sensitivity and specificity has motivated researchers to develop diverse analytical methodologies leveraging SERS. However, even 50 years after its first observation, SERS is still perceived as an unreliable technique for quantification. This perception has precluded the application of SERS in laboratories that rely on consistent quantification (for regulatory purposes, for instance). In this review, we describe some of the aspects that lead to SERS intensity variations and how those challenges were addressed in the 50 years of the technique. The goal is to identify the sources of variations in SERS intensities and then demonstrate that, even with these pitfalls, the technique can be used for quantification when factors such as nature of the substrate, experimental conditions, sample preparation, surface chemistry, and data analysis are carefully considered and tailored for a particular application.
Collapse
Affiliation(s)
- Meikun Fan
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Alexandre G Brolo
- Department of Chemistry, University of Victoria, Victoria, BC V8N 4Y3, Canada
- Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, BC V8P 5C2, Canada
| |
Collapse
|
2
|
Lai H, Wang X, Qi M, Huang H, Yu B. Advances in Surface-Enhanced Raman Spectroscopy for Therapeutic Drug Monitoring. Molecules 2024; 30:15. [PMID: 39795073 PMCID: PMC11721930 DOI: 10.3390/molecules30010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/12/2024] [Accepted: 12/19/2024] [Indexed: 01/13/2025] Open
Abstract
Therapeutic drug monitoring (TDM) is pivotal for optimizing drug dosage regimens in individual patients, particularly for drugs with a narrow therapeutic index. Surface-enhanced Raman spectroscopy (SERS) has shown great potential in TDM due to high sensitivity, non-destructive analysis, specific fingerprint spectrum, low sample consumption, simple operation, and low ongoing costs. Due to the rapid development of SERS for TDM, a review focusing on the analytical method is presented to better understand the trends. This review examines the latest advancements in SERS substrates and their applications in TDM, highlighting the innovations in substrate design that enhance detection sensitivity and selectivity. We discuss the challenges faced by SERS for TDM, such as substrate signal reproducibility and matrix interference from complex biological samples, and explore solutions like digital colloid-enhanced Raman spectroscopy, enrichment detection strategies, microfluidic SERS, tandem instrument technologies, and machine learning-enabled SERS. These advancements address the limitations of traditional SERS applications and improve analytical efficiency in TDM. Finally, conclusions and perspectives on future research directions are presented. The integration of SERS with emerging technologies presents a transformative approach to TDM, with the potential to significantly enhance personalized medicine and improve patient outcomes.
Collapse
Affiliation(s)
| | | | | | | | - Bingqiong Yu
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, School of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (X.W.); (M.Q.); (H.H.)
| |
Collapse
|
3
|
Tan EX, Zhong QZ, Ting Chen JR, Leong YX, Leon GK, Tran CT, Phang IY, Ling XY. Surface-Enhanced Raman Scattering-Based Multimodal Techniques: Advances and Perspectives. ACS NANO 2024; 18:32315-32334. [PMID: 39530425 DOI: 10.1021/acsnano.4c12996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Surface-enhanced Raman scattering (SERS) spectroscopy is a versatile molecular fingerprinting technique with rapid signal readout, high aqueous compatibility, and portability. To translate SERS for real-world applications, it is pertinent to overcome inherent challenges, including high sample variability and heterogeneity, matrix effects, and nonlinear SERS signal responses of different analytes in complex (bio)chemical matrices with numerous interfering species. In this perspective, we highlight emerging SERS-based multimodal techniques to address the key roadblocks to improving the sensitivity, specificity, and reliability of (bio)chemical detection, bioimaging, theragnosis, and theragnostic. SERS-based multimodal techniques can be broadly categorized into two categories: (1) complementary methods or systems that work together to achieve a common goal where each method compensates for the weaknesses of the other to culminate in a single enhanced outcome or (2) orthogonal techniques that are independent and provide separate but corroborating results simultaneously without interfering with each other. These multimodal techniques maximize information gained from a single experiment to achieve enhanced qualitative or quantitative analysis and broaden the range of detectable analytes from small molecules to tissues. Finally, we discuss emerging directions in multimodal platform design, instrument integration, and data analytics that aim to push the analytical limits of holistic detection.
Collapse
Affiliation(s)
- Emily Xi Tan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Qi-Zhi Zhong
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Jaslyn Ru Ting Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Yong Xiang Leong
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Guo Kang Leon
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Cam Tu Tran
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - In Yee Phang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Nano Energy Composites, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Xing Yi Ling
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Nano Energy Composites, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921 Singapore
| |
Collapse
|
4
|
Liu H, Fu J, Zhang J, Dong Y, Yang L, Cao J, Lei Y, Cao K. A universal electrochemical-modulated surface-enhanced Raman scattering platform for the sensitive detection of charged molecules. Anal Chim Acta 2024; 1326:343134. [PMID: 39260914 DOI: 10.1016/j.aca.2024.343134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/10/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024]
Abstract
Electrochemical-modulated surface-enhanced Raman scattering (EC-SERS) integrates the benefits of SERS with electrochemical techniques. By controlling the electrode potential, Raman spectroscopy allows for the analysis of molecules with enhanced sensitivity and selectivity. With its large volume and high sample consumption, the traditional three-electrode electrochemical cell constrains the widespread adoption of EC-SERS. This study developed a versatile EC-SERS platform based on Ag nanowires-modified screen-printed electrode (AgNWs-SPE). Taking advantage of the dual functionality of AgNWs-SPE, this platform facilitates the successful in situ collection and sensitive detection of charged molecules. Experimental findings and theoretical calculations validate the platform's high sensitivity and selectivity mainly regulated by the applied potential, providing a universal approach for the highly sensitive and accurate detection of charged molecules.
Collapse
Affiliation(s)
- Huiqiao Liu
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, China; Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang, 464000, China
| | - Jinjin Fu
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, China
| | - Jiakun Zhang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, China
| | - Yulian Dong
- Fachgebiet Angewandte Nanophysik, Institut für Physik & IMN MacroNano, Technische Universität Ilmenau, 98693, Ilmenau, Germany
| | - Ling Yang
- Teaching and Research Information Center, Xinyang City Shihe District, Xinyang, 464000, China
| | - Juntao Cao
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, China; Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang, 464000, China
| | - Yong Lei
- Fachgebiet Angewandte Nanophysik, Institut für Physik & IMN MacroNano, Technische Universität Ilmenau, 98693, Ilmenau, Germany
| | - Kangzhe Cao
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, China.
| |
Collapse
|
5
|
Poonia M, Morder CJ, Schorr HC, Schultz ZD. Raman and Surface-Enhanced Raman Scattering Detection in Flowing Solutions for Complex Mixture Analysis. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2024; 17:411-432. [PMID: 38382105 PMCID: PMC11254575 DOI: 10.1146/annurev-anchem-061522-035207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Raman scattering provides a chemical-specific and label-free method for identifying and quantifying molecules in flowing solutions. This review provides a comprehensive examination of the application of Raman spectroscopy and surface-enhanced Raman scattering (SERS) to flowing liquid samples. We summarize developments in online and at-line detection using Raman and SERS analysis, including the design of microfluidic devices, the development of unique SERS substrates, novel sampling interfaces, and coupling these approaches to fluid-based chemical separations (e.g., chromatography and electrophoresis). The article highlights the challenges and limitations associated with these techniques and provides examples of their applications in a variety of fields, including chemistry, biology, and environmental science. Overall, this review demonstrates the utility of Raman and SERS for analysis of complex mixtures and highlights the potential for further development and optimization of these techniques.
Collapse
Affiliation(s)
- Monika Poonia
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA;
| | - Courtney J Morder
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA;
| | - Hannah C Schorr
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA;
| | - Zachary D Schultz
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA;
| |
Collapse
|
6
|
Xia L, Huang Y, Wang Q, Wang X, Wang Y, Wu J, Li Y. Deciphering biomolecular complexities: the indispensable role of surface-enhanced Raman spectroscopy in modern bioanalytical research. Analyst 2024; 149:2526-2541. [PMID: 38623605 DOI: 10.1039/d4an00272e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Surface-enhanced Raman spectroscopy (SERS) has emerged as an indispensable analytical tool in biomolecular research, providing unmatched sensitivity critical for the elucidation of biomolecular structures. This review presents a thorough examination of SERS, outlining its fundamental principles, cataloging its varied applications within the biomolecular sphere, and contemplating its future developmental trajectories. We begin with a detailed analysis of SERS's mechanistic principles, emphasizing both the phenomena of surface enhancement and the complexities inherent in Raman scattering spectroscopy. Subsequently, we delve into the pivotal role of SERS in the structural analysis of diverse biomolecules, including proteins, nucleic acids, lipids, carbohydrates, and biochromes. The remarkable capabilities of SERS extend beyond mere detection, offering profound insights into biomolecular configurations and interactions, thereby enriching our comprehension of intricate biological processes. This review also sheds light on the application of SERS in real-time monitoring of various bio-relevant compounds, from enzymes and coenzymes to metal ion-chelate complexes and cellular organelles, thereby providing a holistic view and empowering researchers to unravel the complexities of biological systems. We also address the current challenges faced by SERS, such as enhancing sensitivity and resolution, developing stable and reproducible substrates, and conducting thorough analyses in complex biological matrices. Nonetheless, the continual advancements in nanotechnology and spectroscopy solidify the standing of SERS as a formidable force in biomolecular research. In conclusion, the versatility and robustness of SERS not only deepen our understanding of biomolecular intricacies but also pave the way for significant developments in medical research, therapeutic innovation, and diagnostic approaches.
Collapse
Affiliation(s)
- Ling Xia
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China.
| | - Yujiang Huang
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China.
| | - Qiuying Wang
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China.
| | - Xiaotong Wang
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China.
| | - Yunpeng Wang
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China.
| | - Jing Wu
- School of Physics and Technology, Nantong University, No. 9, Seyuan Road, Nantong, Jiangsu, 226019, PR China
| | - Yang Li
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China.
- Department of Clinical Laboratory Diagnosis, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
- Research Unit of Health Sciences and Technology (HST), Faculty of Medicine University of Oulu, Finland
| |
Collapse
|
7
|
Yang R, Zhang B, Wang Y, Zheng Y, Zhang Q, Yang X. Sensitive determination of thiram in apple samples using a ZIF-67 modified Si/Au@Ag composite as a SERS substrate. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4851-4861. [PMID: 37702243 DOI: 10.1039/d3ay01338c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Substrate materials with high sensitivity and storage stability are crucial for the practical analytical application of surface-enhanced Raman scattering (SERS) techniques. In this work, a SERS-active substrate (Si/Au@Ag/ZIF-67) was fabricated with a metal-organic framework (ZIF-67) on a plasmonic surface (Si/Au@Ag) via self-assembly. The as-prepared material combined the properties of the abundant hotspots of the Au@Ag nanoparticles and the excellent adsorption performance of ZIF-67 for organic molecules. The synergy leads to high sensitivity of the composite substrate with a low detection limit for 4-aminothiophenol (a typical Raman reporter molecule) down to 2.0 × 10-9 M and the analytical enhancement factor (AEF) of the SERS substrate is 3.4 × 106. Moreover, the substrates exhibited good repeatability, high reproducibility, and reliable stability due to the MOF coating. The SERS signal was stable after 60 days of storage at room temperature. Ultimately, the optimal Si/Au@Ag/ZIF-67 was applied as a SERS sensor to analyze thiram, and the results showed a linear concentration range from 10-7 to 10-5 M with good linearity (R2 = 0.9934). The recoveries of thiram in spiked apple juice were in the range of 95.7-102.3%, with relative standard deviations less than 4.3%. These results predict that the proposed SERS substrates may hold great potential for the detection of environmental and food pollution in practical applications.
Collapse
Affiliation(s)
- Rui Yang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000, China.
| | - Baowen Zhang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000, China.
| | - Ya Wang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000, China.
| | - Yi Zheng
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000, China.
| | - Qian Zhang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000, China.
| | - Xiupei Yang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000, China.
| |
Collapse
|
8
|
Kozhina E, Bedin S, Martynov A, Andreev S, Piryazev A, Grigoriev Y, Gorbunova Y, Naumov A. Ultrasensitive Optical Fingerprinting of Biorelevant Molecules by Means of SERS-Mapping on Nanostructured Metasurfaces. BIOSENSORS 2022; 13:46. [PMID: 36671881 PMCID: PMC9855407 DOI: 10.3390/bios13010046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
The most relevant technique for portable (on-chip) sensors is Surface Enhanced Raman Scattering (SERS). This strategy crashes in the case of large (biorelevant) molecules and nano-objects, whose SERS spectra are irreproducible for "homeopathic" concentrations. We suggested solving this problem by SERS-mapping. We analyzed the distributions of SERS parameters for relatively "small" (malachite green (MG)) and "large" (phthalocyanine, H2Pc*) molecules. While fluctuations of spectra for "small" MG were negligible, noticeable distribution of spectra was observed for "large" H2Pc*. We show that the latter is due to a random arrangement of molecules with respect to "hot spot" areas, which have limited sizes, thus amplifying the lines corresponding to vibrations of different molecule parts. We have developed a method for engineering low-cost SERS substrates optimized for the best enhancement efficiency and a measurement protocol to obtain a reliable Raman spectrum, even for a countable number of large molecules randomly distributed over the substrate.
Collapse
Affiliation(s)
- Elizaveta Kozhina
- Laboratory of Plasmonics, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, 121205 Moscow, Russia
- Department of Advanced Photonics and Sensorics, Lebedev Physical Institute RAS, Troitsk Branch, Fizicheskaya Str. 11, 108840 Moscow, Troitsk, Russia
| | - Sergey Bedin
- Department of Advanced Photonics and Sensorics, Lebedev Physical Institute RAS, Troitsk Branch, Fizicheskaya Str. 11, 108840 Moscow, Troitsk, Russia
- Laboratory of Physics of Advanced Materials and Nanostructures, Moscow State Pedagogical University, Malaya Pirogovskaya St. 1-1, 119991 Moscow, Russia
- Laboratory for the Growth of Thin Films and Inorganic Nanostructures Center of Crystallography and Photonics of RAS, Leninskiy Prosp. 59, 119333 Moscow, Russia
| | - Alexander Martynov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskiy Prosp., 31 Building 4, 119071 Moscow, Russia
| | - Stepan Andreev
- Laboratory of Physics of Advanced Materials and Nanostructures, Moscow State Pedagogical University, Malaya Pirogovskaya St. 1-1, 119991 Moscow, Russia
| | - Alexey Piryazev
- Department of Chemistry, Moscow State University, Leninskie Gory, 1, 119991 Moscow, Russia
- Research Center of Genetics and Life Sciences, Research Direction–Biomaterials, Sirius University of Science and Technology, 1 Olympic Ave, 354340 Sochi, Russia
| | - Yuri Grigoriev
- Laboratory for the Growth of Thin Films and Inorganic Nanostructures Center of Crystallography and Photonics of RAS, Leninskiy Prosp. 59, 119333 Moscow, Russia
| | - Yulia Gorbunova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskiy Prosp., 31 Building 4, 119071 Moscow, Russia
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskiy Prosp., 31, 119991 Moscow, Russia
| | - Andrey Naumov
- Department of Advanced Photonics and Sensorics, Lebedev Physical Institute RAS, Troitsk Branch, Fizicheskaya Str. 11, 108840 Moscow, Troitsk, Russia
- Laboratory of Physics of Advanced Materials and Nanostructures, Moscow State Pedagogical University, Malaya Pirogovskaya St. 1-1, 119991 Moscow, Russia
- Laboratory for Spectroscopy of Electronic Spectra of Molecules, Institute for Spectroscopy RAS, Fizicheskaya Str. 5, 108840 Moscow, Troitsk, Russia
| |
Collapse
|
9
|
Markin AV, Arzhanukhina AI, Markina NE, Goryacheva IY. Analytical performance of electrochemical surface-enhanced Raman spectroscopy: A critical review. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Haroon M, Ashraf M, Ullah N, Nawaz Tahir M, Al-Saadi AA. SERS and EC-SERS detection of local anesthetic procaine using Pd loaded highly reduced graphene oxide nanocomposite substrate. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 278:121381. [PMID: 35588604 DOI: 10.1016/j.saa.2022.121381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 05/02/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
The localized surface plasmon resonance (LSPR) excitations are critical towards achieving sizable spectral enhancements of the Raman scattered light. Herein, the synthesis of palladium-based highly reduced graphene oxide (Pd-HRG) with LSPR properties as an effective surface-enhanced Raman scattering (SERS) substrate and its utility in the highly sensitive detection of procaine are reported. The concentration detection of procaine samples was optimized by applying a set of pre-concentration parameters. The Pd-HRG nanocomposite showed a remarkable LSPR response with a Raman enhancement factor of 8.7 × 102. The Pd-HRG is employed to modify fluorine doped tin oxide electrode (Pd-HRG/FTO), resulted with an enhancement factor of 7.5 × 104 corresponding to the EC-SERS technique. The electronic and surface properties of synthesized Pd-HRG and functionalized FTO electrode were evaluated using Raman, infrared, EIS, XRD, FESEM and EDX techniques. Quantum chemical calculations were carried out to elaborate on the nature of interaction of procaine molecules with a nanostructured surface model. Pd-HRG, with an efficient and cost-effective fabrication, can be considered as a promising EC-SERS substrate for the detection of organic therapeutic drugs.
Collapse
Affiliation(s)
- Muhammad Haroon
- Department of Chemistry, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Muhammad Ashraf
- Department of Chemistry, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Nisar Ullah
- Department of Chemistry, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Muhammad Nawaz Tahir
- Department of Chemistry, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia; Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia.
| | - Abdulaziz A Al-Saadi
- Department of Chemistry, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia; Interdisciplinary Research Center for Refining and Advanced Chemicals, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia.
| |
Collapse
|
11
|
Moldovan R, Vereshchagina E, Milenko K, Iacob BC, Bodoki AE, Falamas A, Tosa N, Muntean CM, Farcău C, Bodoki E. Review on combining surface-enhanced Raman spectroscopy and electrochemistry for analytical applications. Anal Chim Acta 2022; 1209:339250. [PMID: 35569862 DOI: 10.1016/j.aca.2021.339250] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/12/2021] [Accepted: 11/02/2021] [Indexed: 02/07/2023]
Abstract
The discovery of surface enhanced Raman scattering (SERS) from an electrochemical (EC)-SERS experiment is known as a historic breakthrough. Five decades have passed and Raman spectroelectrochemistry (SEC) has developed into a common characterization tool that provides information about the electrode-electrolyte interface. Recently, this technique has been successfully explored for analytical purposes. EC was found to highly improve the performances of SERS sensors, providing, among others, controlled adsorption of analytes and increased reproducibility. In this review, we highlight the potential of EC-SERS sensors to be implemented for point-of-need (PON) analyses as miniaturized devices, and their ability to revolutionize fields like quality control, diagnosis or environmental and food safety. Important developments have been achieved in Raman spectroelectrochemistry, which now represents a promising alternative to conventional analytical methods and interests more and more researchers. The studies included in this review open endless possibilities for real-life EC-SERS analytical applications.
Collapse
Affiliation(s)
- Rebeca Moldovan
- Analytical Chemistry Department, Faculty of Pharmacy, Iuliu Hațieganu" University of Medicine and Pharmacy, 4, Louis Pasteur, 400349, Cluj-Napoca, Romania
| | - Elizaveta Vereshchagina
- Department of Microsystems and Nanotechnology (MiNaLab), SINTEF Digital, Gaustadalléen 23C, 0373, Oslo, Norway
| | - Karolina Milenko
- Department of Microsystems and Nanotechnology (MiNaLab), SINTEF Digital, Gaustadalléen 23C, 0373, Oslo, Norway
| | - Bogdan-Cezar Iacob
- Analytical Chemistry Department, Faculty of Pharmacy, Iuliu Hațieganu" University of Medicine and Pharmacy, 4, Louis Pasteur, 400349, Cluj-Napoca, Romania
| | - Andreea Elena Bodoki
- General and Inorganic Chemistry Department, Faculty of Pharmacy, Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, 12, Ion Creangă, 400010, Cluj-Napoca, Romania
| | - Alexandra Falamas
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293, Cluj-Napoca, Romania
| | - Nicoleta Tosa
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293, Cluj-Napoca, Romania
| | - Cristina M Muntean
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293, Cluj-Napoca, Romania
| | - Cosmin Farcău
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293, Cluj-Napoca, Romania.
| | - Ede Bodoki
- Analytical Chemistry Department, Faculty of Pharmacy, Iuliu Hațieganu" University of Medicine and Pharmacy, 4, Louis Pasteur, 400349, Cluj-Napoca, Romania.
| |
Collapse
|
12
|
Li H, Xu H, Zhang J, Li Y, Yu H, Zhao Y, Wang D, Li Y, Zhu J. Synthesis of an organic phosphoric acid-based multilayered SERS imprinted sensor for selective detection of dichlorophenol. NEW J CHEM 2022. [DOI: 10.1039/d2nj01637k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A novel SERS imprinted sensor (AIM@MIPs) was prepared, which could improve the detection ability of analysis detection. The AIM@MIPs presented sensitive and selective detection property to 2,6-DCP.
Collapse
Affiliation(s)
- Hongji Li
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Ministry of Education), Jilin Normal University, Changchun, 130103, China
- College of Environmental Science and Engineering, Jilin Normal University, Siping, 136000, China
| | - Hongda Xu
- College of Environmental Science and Engineering, Jilin Normal University, Siping, 136000, China
| | - Jinyue Zhang
- College of Environmental Science and Engineering, Jilin Normal University, Siping, 136000, China
| | - Yi Li
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China
| | - Haochen Yu
- College of Environmental Science and Engineering, Jilin Normal University, Siping, 136000, China
| | - Yibo Zhao
- College of Environmental Science and Engineering, Jilin Normal University, Siping, 136000, China
| | - Dandan Wang
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Ministry of Education), Jilin Normal University, Changchun, 130103, China
- College of Environmental Science and Engineering, Jilin Normal University, Siping, 136000, China
| | - Yunhui Li
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China
- Zhong shan Institute of Changchun University of Science and Technology, Zhongshan, 528403, China
| | - Jianwei Zhu
- Zhong shan Institute of Changchun University of Science and Technology, Zhongshan, 528403, China
| |
Collapse
|
13
|
Lu Y, Lin L, Ye J. Human metabolite detection by surface-enhanced Raman spectroscopy. Mater Today Bio 2022; 13:100205. [PMID: 35118368 PMCID: PMC8792281 DOI: 10.1016/j.mtbio.2022.100205] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/15/2022] [Accepted: 01/16/2022] [Indexed: 12/17/2022]
Abstract
Metabolites are important biomarkers in human body fluids, conveying direct information of cellular activities and physical conditions. Metabolite detection has long been a research hotspot in the field of biology and medicine. Surface-enhanced Raman spectroscopy (SERS), based on the molecular “fingerprint” of Raman spectrum and the enormous signal enhancement (down to a single-molecule level) by plasmonic nanomaterials, has proven to be a novel and powerful tool for metabolite detection. SERS provides favorable properties such as ultra-sensitive, label-free, rapid, specific, and non-destructive detection processes. In this review, we summarized the progress in recent 10 years on SERS-based sensing of endogenous metabolites at the cellular level, in tissues, and in biofluids, as well as drug metabolites in biofluids. We made detailed discussions on the challenges and optimization methods of SERS technique in metabolite detection. The combination of SERS with modern biomedical technology were also anticipated.
Collapse
Affiliation(s)
- Yao Lu
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, PR China
| | - Li Lin
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, PR China
- Corresponding author.
| | - Jian Ye
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, PR China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200240, PR China
- Corresponding author. State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, PR China.
| |
Collapse
|
14
|
Boccorh DK, Macdonald PA, Boyle CW, Wain AJ, Berlouis LEA, Wark AW. A universal polymer shell-isolated nanoparticle (SHIN) design for single particle spectro-electrochemical SERS sensing using different core shapes. NANOSCALE ADVANCES 2021; 3:6415-6426. [PMID: 36133494 PMCID: PMC9416900 DOI: 10.1039/d1na00473e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/20/2021] [Indexed: 06/16/2023]
Abstract
Shell-isolated nanoparticles (SHINs) have attracted increasing interest for non-interfering plasmonic enhanced sensing in fields such as materials science, biosensing, and in various electrochemical systems. The metallic core of these nanoparticles is isolated from the surrounding environment preventing direct contact or chemical interaction with the metal surface, while still being close enough to enable localized surface plasmon enhancement of the Raman scattering signal from the analyte. This concept forms the basis of the shell isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) technique. To date, the vast majority of SHIN designs have focused on SiO2 shells around spherical nanoparticle cores and there has been very limited published research considering alternatives. In this article, we introduce a new polymer-based approach which provides excellent control over the layer thickness and can be applied to plasmonic metal nanoparticles of various shapes and sizes without compromising the overall nanoparticle morphology. The SHIN layers are shown to exhibit excellent passivation properties and robustness in the case of gold nanosphere (AuNP) and anisotropic gold nanostar (AuNS) core shapes. In addition, in situ SHINERS spectro-electrochemistry measurements performed on both SHIN and bare Au nanoparticles demonstrate the utility of the SHIN coatings. Correlated confocal Raman and SEM mapping was achieved to clearly establish single nanoparticle SERS sensitivity. Finally, confocal in situ SERS mapping enabled visualisation of the redox related molecular structure changes occurring on an electrode surface in the vicinity of individual SHIN-coated nanoparticles.
Collapse
Affiliation(s)
- Delali K Boccorh
- Centre for Molecular Nanometrology, Technology and Innovation Centre, Dept. of Pure & Applied Chemistry, University of Strathclyde 99 George St Glasgow G1 1RD UK +44 (0)141 548 3084
- National Physical Laboratory Hampton Road Teddington TW11 0LW UK
| | - Peter A Macdonald
- Centre for Molecular Nanometrology, Technology and Innovation Centre, Dept. of Pure & Applied Chemistry, University of Strathclyde 99 George St Glasgow G1 1RD UK +44 (0)141 548 3084
| | - Colm W Boyle
- Centre for Molecular Nanometrology, Technology and Innovation Centre, Dept. of Pure & Applied Chemistry, University of Strathclyde 99 George St Glasgow G1 1RD UK +44 (0)141 548 3084
| | - Andrew J Wain
- National Physical Laboratory Hampton Road Teddington TW11 0LW UK
| | - Leonard E A Berlouis
- Dept. of Pure & Applied Chemistry, University of Strathclyde 295 Cathedral St Glasgow G1 1XL UK
| | - Alastair W Wark
- Centre for Molecular Nanometrology, Technology and Innovation Centre, Dept. of Pure & Applied Chemistry, University of Strathclyde 99 George St Glasgow G1 1RD UK +44 (0)141 548 3084
| |
Collapse
|