1
|
Patle RY, Dongre RS. Recent advances in PAMAM mediated nano-vehicles for targeted drug delivery in cancer therapy. J Drug Target 2025; 33:437-457. [PMID: 39530737 DOI: 10.1080/1061186x.2024.2428966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 10/02/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
3-D multi-faceted, nano-globular PAMAM dendritic skeleton is a highly significant polymer that offers applications in biomedical, industrial, environmental and agricultural fields. This is mainly due to its enhanced properties, including adjustable surface functionalities, biocompatibility, non-toxicity, high uniformity and reduced cytotoxicity, as well as its numerous internal cavities. This trait inspires further exploration and advancements in tailoring approaches. The implementation of deliberate strategic modifications in the morphological characteristics of PAMAM is crucial through chemical and biological interventions, in addition to its therapeutic advancements. Thus, the production of peripheral groups remains a prominent and highly advanced technique in molecular fabrication, aimed at boosting the potential of PAMAM conjugates. Currently, there exist numerous dendritic-hybrid materials, despite the widespread use of PAMAM-conjugated frameworks as drug delivery systems, which are well regarded for their efficacy in enhancing potency through the incorporation of surface functions. This paper provides a comprehensive review of recent progress in the design and assembly of various components of PAMAM conjugates, focusing on their unique formulations. The review encompasses synthetic methodologies, a thorough evaluation of their applicability, and an analysis of their potential functions in the context of Drug Delivery Systems (DDS) in the current period.
Collapse
Affiliation(s)
- Ramkrishna Y Patle
- PGTD Chemistry, RTM Nagpur University, Nagpur, India
- Mahatma Gandhi College of Science, Chandrapur, India
| | | |
Collapse
|
2
|
Miao Z, Zhou J. Multiscale Modeling and Simulation of Zwitterionic Anti-fouling Materials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:7980-7995. [PMID: 40105095 DOI: 10.1021/acs.langmuir.5c00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Zwitterionic materials with cationic and anionic moieties in the same chain, being electrically neutral, have excellent hydrophilicity, stability, biocompatibility, and outstanding anti-biofouling performance. Because of their unique properties, zwitterionic materials are widely applied to membrane separation, drug delivery, surface coating, etc. However, what is the root of their unique properties? It is necessary to study the structure-property relationships of zwitterionic compounds to guide the design and development of zwitterionic materials. Modeling and simulation methods are considered to be efficient technologies for understanding advanced materials in principle. This Review systematically summarizes the computational exploration of zwitterionic materials in recent years. First, the classes of zwitterionic materials are summarized. Second, the different scale simulation methods are introduced briefly. To reveal the structure-property relationships of zwitterionic materials, multiscale modeling and simulation studies at different spatial and temporal scales are summarized. The study results indicated that the strong electrostatic interaction between zwitterions with water molecules promotes formation of a stable hydration layer, namely, superhydrophilicity, leading to the excellent anti-fouling properties. Finally, we offer our viewpoint on the development and application of simulation techniques on zwitterionic materials exploration in the future. This work establishes a bridge from atomic and molecular scales to mesoscopic and macroscopic scales and helps to provide an in-depth understanding of the structure-property relationships of zwitterionic materials.
Collapse
Affiliation(s)
- Zhaohong Miao
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Jian Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
3
|
Zhang W, Wang Y, Zhang X, Zhang Y, Yu W, Tang H, Yuan WE. Polyzwitterion-branched polycholic acid nanocarriers based oral delivery insulin for long-term glucose and metabolic regulation in diabetes mellitus. J Nanobiotechnology 2025; 23:133. [PMID: 39987096 PMCID: PMC11846306 DOI: 10.1186/s12951-025-03190-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 02/01/2025] [Indexed: 02/24/2025] Open
Abstract
Diabetes represents a global health crisis that necessitates advancements in prevention, treatment, and management. Beyond glucose regulation, addressing weight management and associated complications is imperative. This study introduces an oral nanoparticle formulation designed to simultaneously control blood glucose, obesity, and metabolic dysfunction. These nanoparticles, based on poly (zwitterion-cholic acid), incorporate a polyzwitterion component to enhance permeation through the mucus layer and prolong drug residence. Furthermore, bile acid polymers not only regulate lipid metabolism but also ameliorate obesity-associated inflammation in adipose and liver tissues. In vivo experiments demonstrated significant hypoglycemic effects in healthy, type I diabetic, and type II diabetic mice. Notably, the nanocarriers significantly reduced body weight gain, ameliorated inflammation in adipose and liver tissues, and modulated lipid metabolism in the liver of db/db mice. Our study elucidates a comprehensive strategy for addressing glycemic control and diabetes-related complications, offering a promising approach for diabetes prevention and treatment.
Collapse
Affiliation(s)
- Wenkai Zhang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Inner Mongolia Research Institute of Shanghai Jiao Tong University, Hohhot, 010070, China
| | - Yue Wang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Inner Mongolia Research Institute of Shanghai Jiao Tong University, Hohhot, 010070, China
| | - Xiangqi Zhang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Inner Mongolia Research Institute of Shanghai Jiao Tong University, Hohhot, 010070, China
| | - Yihui Zhang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Inner Mongolia Research Institute of Shanghai Jiao Tong University, Hohhot, 010070, China
| | - Wei Yu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Inner Mongolia Research Institute of Shanghai Jiao Tong University, Hohhot, 010070, China
| | - Haozheng Tang
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Shandong Middle Road, Shanghai, 200001, China
| | - Wei-En Yuan
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China.
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Inner Mongolia Research Institute of Shanghai Jiao Tong University, Hohhot, 010070, China.
| |
Collapse
|
4
|
Zheng K, Ouyang X, Xie H, Peng S. Responsive Zwitterionic Materials for Enhanced Drug Delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:3744-3756. [PMID: 39907524 DOI: 10.1021/acs.langmuir.4c04809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Zwitterionic materials have traditionally been recognized as exceptional antifouling agents, imparting nanocarriers with extended circulation times in vivo. Despite much studies on antifouling ability, the responsive zwitterionic materials that change physicochemical properties stimulated by mild signals are much less explored. As is known, there are multiple biological barriers in antitumor drug delivery, including the blood circulation barrier, non-specific organ distribution, elevated tumor interstitial pressure, tumor cytomembrane barrier, and lysosomal barrier. Multiple biological barriers restrict the delivery efficiency of nanocarriers to tumors, leading to a reduced therapeutic effect and increased side effects. Therefore, it is far from satisfactory to overcome the blood circulation barrier alone for classical zwitterionic antitumor materials. To address this challenge, recently developed responsive zwitterionic materials have been engineered to overcome multiple biological barriers, thereby enabling more effective antitumor drug delivery. Furthermore, responsive zwitterionic materials could respond to signals by themselves without the need of incorporating extra stimuli-responsive groups, which maintains the simplicity of the molecular structure. In this mini-review, the recent progress of antitumor zwitterionic materials responding to pH, temperature, enzyme, or reactive oxygen species is summarized. Furthermore, prospects and challenges of responsive zwitterionic materials are provided to promote better development of this field.
Collapse
Affiliation(s)
- Ke Zheng
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan, Guangdong 523808, China
| | - Xumei Ouyang
- Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, Guangdong 519000, China
| | - Hong Xie
- Department of Veterinary Medicine, Faculty of Animal Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Shaojun Peng
- Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| |
Collapse
|
5
|
Torabi Fard N, Ahmad Panahi H, Moniri E, Reza Soltani E, Mahdavijalal M. Stimuli-Responsive Dendrimers as Nanoscale Vectors in Drug and Gene Delivery Systems: A Review Study. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2024; 32:4959-4985. [DOI: 10.1007/s10924-024-03280-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/03/2024] [Indexed: 01/06/2025]
|
6
|
Miao Z, Zhou J. Photo-responsive anti-fouling polyzwitterionic brushes: a mesoscopic simulation. J Mater Chem B 2024; 12:8076-8086. [PMID: 38973671 DOI: 10.1039/d4tb00899e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
The antifouling effects of a toothbrush-shaped photo-responsive polyzwitterionic membrane were studied via dissipative particle dynamics simulations in this work. The results reveal that the membrane modified by spiropyran methacrylate brushes displays photo-switchable and antifouling capability due to the photo-induced ring-opening reaction. Namely, surface morphology and hydrophilicity change in response to visible or UV light irradiation, which can be observed visually by protein adsorption and desorption. Further study indicates that: (1) brush-modification density can influence the structure and properties of the membrane. With low modification density, systems cannot establish an intact selective layer, which hinders the antifouling ability; as the modification density increases, the intact selective layer can be formed, which is conducive to the expression of photo-responsiveness and antifouling capability. (2) Factors of toothbrush-hair length and grafting ratio can influence the establishment of a light-responsive surface: as the grafting ratio and toothbrush-hair length increase, the light-responsive surface is gradually formed, meanwhile, the antifouling ability can be continuously reinforced under UV light irradiation. (3) As the brushes switch into a zwitterionic merocyanine state under UV exposure, the selective layer swelling becomes stronger than that with a hydrophobic spiropyran state under visible exposure. This is owing to the enhanced interaction between zwitterionic brushes and water, which is the root of the antifouling effect. The present work is expected to provide some guidelines for the design and development of novel antifouling membrane surfaces.
Collapse
Affiliation(s)
- Zhaohong Miao
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou, Guangdong, 510640, P. R. China.
| | - Jian Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou, Guangdong, 510640, P. R. China.
| |
Collapse
|
7
|
Hu Y, Chen J, Hu W. Selective Cellular Uptake and Druggability Efficacy through Functionalized Chitosan-Conjugated Polyamidoamine (PAMAM) Dendrimers. SENSORS (BASEL, SWITZERLAND) 2024; 24:4853. [PMID: 39123900 PMCID: PMC11315009 DOI: 10.3390/s24154853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024]
Abstract
Nanotechnology has ushered in significant advancements in drug design, revolutionizing the prevention, diagnosis, and treatment of various diseases. The strategic utilization of nanotechnology to enhance drug loading, delivery, and release has garnered increasing attention, leveraging the enhanced physical and chemical properties offered by these systems. Polyamidoamine (PAMAM) dendrimers have been pivotal in drug delivery, yet there is room for further enhancement. In this study, we conjugated PAMAM dendrimers with chitosan (CS) to augment cellular internalization in tumor cells. Specifically, doxorubicin (DOX) was initially loaded into PAMAM dendrimers to form DOX-loaded PAMAM (DOX@PAMAM) complexes via intermolecular forces. Subsequently, CS was linked onto the DOX-loaded PAMAM dendrimers to yield CS-conjugated PAMAM loaded with DOX (DOX@CS@PAMAM) through glutaraldehyde crosslinking via the Schiff base reaction. The resultant DOX@CS@PAMAM complexes were comprehensively characterized using Fourier-transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), and dynamic light scattering (DLS). Notably, while the drug release profile of DOX@CS@PAMAM in acidic environments was inferior to that of DOX@PAMAM, DOX@CS@PAMAM demonstrated effective acid-responsive drug release, with a cumulative release of 70% within 25 h attributed to the imine linkage. Most importantly, DOX@CS@PAMAM exhibited significant selective cellular internalization rates and antitumor efficacy compared to DOX@PAMAM, as validated through cell viability assays, fluorescence imaging, and flow cytometry analysis. In summary, DOX@CS@PAMAM demonstrated superior antitumor effects compared to unconjugated PAMAM dendrimers, thereby broadening the scope of dendrimer-based nanomedicines with enhanced therapeutic efficacy and promising applications in cancer therapy.
Collapse
Affiliation(s)
- Ye Hu
- Nanjing Institute for Food and Drug Control, Nanjing 211198, China
| | - Jian Chen
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Wenyan Hu
- Nanjing Institute for Food and Drug Control, Nanjing 211198, China
| |
Collapse
|
8
|
Chen W, Liu P. Dendritic polymer prodrug-based unimolecular micelles for pH-responsive co-delivery of doxorubicin and camptothecin with synergistic controlled drug release effect. Colloids Surf B Biointerfaces 2024; 238:113906. [PMID: 38615388 DOI: 10.1016/j.colsurfb.2024.113906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/07/2024] [Accepted: 04/07/2024] [Indexed: 04/16/2024]
Abstract
Combination chemotherapy has been recognized as a more powerful strategy for tumor treatment rather than the single chemotherapy. However, the interactive mechanism of the two hydrophobic chemotherapeutic drugs has not been explored by now. Aiming for a better synergistic effect, such interactive mechanism was investigated in the present work, by designing CPT@DOX-DPUTEA-PEG nanomedicine with encapsulated camptothecin (CPT) and conjugated doxorubicin (DOX). The synergistic controlled drug release effect was found for the two drugs loaded on the different sites of the dendritic polyurethane core. Synergism was achieved on the HepG2 cells with a combination index (CI) of 0.58 in the in vitro cellular experiments. The results demonstrated the promising application of the unimolecular micelles-based nanomedicine with independently loading of two hydrophobic chemotherapeutic drugs.
Collapse
Affiliation(s)
- Wei Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China; School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining 810016, China
| | - Peng Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
9
|
Lv W, Wang Y, Fu H, Liang Z, Huang B, Jiang R, Wu J, Zhao Y. Recent advances of multifunctional zwitterionic polymers for biomedical application. Acta Biomater 2024; 181:19-45. [PMID: 38729548 DOI: 10.1016/j.actbio.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/27/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Zwitterionic polymers possess equal total positive and negative charges in the repeating units, making them electrically neutral overall. This unique property results in superhydrophilicity, which makes the zwitterionic polymers highly effective in resisting protein adsorption, thus endowing the drug carriers with long blood circulation time, inhibiting thrombus formation on biomedical devices in contact with blood, and ensuring the good sensitivity of sensors in biomedical application. Moreover, zwitterionic polymers have tumor-targeting ability and pH-responsiveness, rendering them ideal candidates for antitumor drug delivery. Additionally, the high ionic conductivity of zwitterionic polymers makes them an important raw material for ionic skin. Zwitterionic polymers exhibit remarkable resistance to bacterial adsorption and growth, proving their suitability in a wide range of biomedical applications such as ophthalmic applications, and wound dressings. In this paper, we provide an in-depth analysis of the different structures and characteristics of zwitterionic polymers and highlight their unique qualities and suitability for biomedical applications. Furthermore, we discuss the limitations and challenges that must be overcome to realize the full potential of zwitterionic polymers and present an optimistic perspective for zwitterionic polymers in the biomedical fields. STATEMENT OF SIGNIFICANCE: Zwitterionic polymers have a series of excellent properties such as super hydrophilicity, anti-protein adsorption, antibacterial ability and good ionic conductivity. However, biomedical applications of multifunctional zwitterionic polymers are still a major field to be explored. This review focuses on the design and application of zwitterionic polymers-based nanosystems for targeted and responsive delivery of antitumor drugs and cancer diagnostic agents. Moreover, the use of zwitterionic polymers in various biomedical applications such as biomedical devices in contact with blood, biosensors, ionic skin, ophthalmic applications and wound dressings is comprehensively described. We discuss current results and future challenges for a better understanding of multifunctional zwitterionic polymers for biomedical applications.
Collapse
Affiliation(s)
- Wenfeng Lv
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Yanhui Wang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Huayu Fu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Ziyang Liang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Bangqi Huang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Ruiqin Jiang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Jun Wu
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou, 511400, Guangdong, China; Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China.
| | - Yi Zhao
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
10
|
Cao Y, Zhu J, Kou J, Tieleman DP, Liang Q. Unveiling Interactions of Tumor-Targeting Nanoparticles with Lipid Bilayers Using a Titratable Martini Model. J Chem Theory Comput 2024; 20:4045-4053. [PMID: 38648670 DOI: 10.1021/acs.jctc.4c00231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
pH-responsive nanoparticles are ideal vehicles for drug delivery and are widely used in cell imaging in targeted therapy of cancer, which usually has a weakly acidic microenvironment. In this work, we constructed a titratable molecular model for nanoparticles grafted with ligands of pH-sensitive carboxylic acids and investigated the interactions between the nanoparticles and the lipid bilayer in varying pH environments. We mainly examined the effect of the grafting density of the pH-sensitive ligands of the nanoparticles on the interactions of the nanoparticles with the lipid bilayer. The results show that the nanoparticles can penetrate the lipid bilayer only when the pH value is lower than a critical value, which can be readily modulated to the specific pH value of the tumor microenvironment by changing the ligand grafting density. This work provides some insights into modulating the interactions between the pH-sensitive nanoparticles and cellular membranes to realize targeted drug delivery to tumors based on their specific pH environment.
Collapse
Affiliation(s)
- Yu Cao
- Center for Statistical and Theoretical Condensed Matter Physics & Department of Physics, Zhejiang Normal University, Jinhua 321004, China
- Zhejiang Institute of Photoelectronics & Zhejiang Institute for Advanced Light Source, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Jin Zhu
- Center for Statistical and Theoretical Condensed Matter Physics & Department of Physics, Zhejiang Normal University, Jinhua 321004, China
- Zhejiang Institute of Photoelectronics & Zhejiang Institute for Advanced Light Source, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Jianlong Kou
- Center for Statistical and Theoretical Condensed Matter Physics & Department of Physics, Zhejiang Normal University, Jinhua 321004, China
- Zhejiang Institute of Photoelectronics & Zhejiang Institute for Advanced Light Source, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - D Peter Tieleman
- Centre for Molecular Simulation and Department of Biological Science, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Qing Liang
- Center for Statistical and Theoretical Condensed Matter Physics & Department of Physics, Zhejiang Normal University, Jinhua 321004, China
- Zhejiang Institute of Photoelectronics & Zhejiang Institute for Advanced Light Source, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| |
Collapse
|
11
|
Xiang Y, Wang B, Yang W, Zheng X, Chen R, Gong Q, Gu Z, Liu Y, Luo K. Mitocytosis Mediated by an Enzyme-Activable Mitochondrion-Disturbing Polymer-Drug Conjugate Enhances Active Penetration in Glioblastoma Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311500. [PMID: 38299748 DOI: 10.1002/adma.202311500] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/16/2024] [Indexed: 02/02/2024]
Abstract
The application of nanomedicines for glioblastoma (GBM) therapy is hampered by the blood-brain barrier (BBB) and the dense glioblastoma tissue. To achieve efficient BBB crossing and deep GBM penetration, this work demonstrates a strategy of active transcellular transport of a mitochondrion-disturbing nanomedicine, pGBEMA22-b-pSSPPT9 (GBEPPT), in the GBM tissue through mitocytosis. GBEPPT is computer-aided designed and prepared by self-assembling a conjugate of an amphiphilic block polymer and a drug podophyllotoxin (PPT). When GBEPPT is delivered to the tumor site, overexpressed γ-glutamyl transpeptidase (GGT) on the brain-blood endothelial cell, or the GBM cell triggered enzymatic hydrolysis of γ-glutamylamide on GBEPPT to reverse its negative charge to positive. Positively charged GBEPPT rapidly enter into the cell and target the mitochondria. These GBEPPT disturb the homeostasis of mitochondria, inducing mitocytosis-mediated extracellular transport of GBEPPT to the neighboring cells via mitosomes. This intracellular-to-intercellular delivery cycle allows GBEPPT to penetrate deeply into the GBM parenchyma, and exert sustainable action of PPT released from GBEPPT on the tumor cells along its penetration path at the tumor site, thus improving the anti-GBM effect. The process of mitocytosis mediated by the mitochondrion-disturbing nanomedicine may offer great potential in enhancing drug penetration through malignant tissues, especially poorly permeable solid tumors.
Collapse
Affiliation(s)
- Yufan Xiang
- Department of Neurosurgery, Department of Radiology, Neurosurgery Research Laboratory, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bing Wang
- Department of Neurosurgery, Department of Radiology, Neurosurgery Research Laboratory, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wanchun Yang
- Department of Neurosurgery, Department of Radiology, Neurosurgery Research Laboratory, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiuli Zheng
- Department of Neurosurgery, Department of Radiology, Neurosurgery Research Laboratory, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rongjun Chen
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Qiyong Gong
- Department of Neurosurgery, Department of Radiology, Neurosurgery Research Laboratory, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, 361021, China
| | - Zhongwei Gu
- Department of Neurosurgery, Department of Radiology, Neurosurgery Research Laboratory, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yanhui Liu
- Department of Neurosurgery, Department of Radiology, Neurosurgery Research Laboratory, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Kui Luo
- Department of Neurosurgery, Department of Radiology, Neurosurgery Research Laboratory, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| |
Collapse
|
12
|
Mashayekh E, Ghiasi ZNK, Bhia I, Khorrami ZA, Malekahmadi O, Bhia M, Malekmohammadi S, Ertas YN. Metal-Organic Frameworks for Cisplatin Delivery to Cancer Cells: A Molecular Dynamics Simulation. ACS OMEGA 2024; 9:19627-19636. [PMID: 38708264 PMCID: PMC11064028 DOI: 10.1021/acsomega.4c01437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/30/2024] [Accepted: 04/15/2024] [Indexed: 05/07/2024]
Abstract
Metal-organic frameworks (MOFs) are utilized as nanocarriers to enhance the efficiency of chemotherapy drugs, including cisplatin, which exhibit limitations such as side effects and resistance mechanisms. To evaluate the role of MOFs, we employed a molecular dynamics simulation, which, unlike other experiments, is cost-effective, less dangerous, and provides accurate results. Furthermore, we conducted molecular docking simulations to understand the interaction between cisplatin and MOF, as well as their internal interactions and how they bind to each other. Cisplatin and MOF molecules were parametrized using the Avogadro software and x2top command in GROMACS 5.1.2 and optimized by CP2K software; the Charmm-GUI site parametrized the cell cancer membrane. Three molecular dynamics simulations were conducted in four stages at various pHs, followed by simulated umbrella sampling. The simulations analyzed the pH responsiveness, total energy, Gibbs free energy, gyration radius, radial distribution function (RDF), solvent accessible surface area, and nanoparticles' toxicity. Results demonstrated that a neutral pH level (7.4) has greater adsorption and interaction compared to acidic pH values (6.4 and 5.4) because it displays the highest total energy (-17.1 kJ/mol), the highest RDF value (6.66), and the shortest distance (0.51 nm). Furthermore, the combination of cisplatin and MOFs displayed increased penetration compared to that of their individual forms. This study highlights the suitability of MOFs as nanocarriers and identifies the optimal pH values for desirable outcomes. Thus, it provides future studies with appropriate data to conduct their experiments in assessing MOFs.
Collapse
Affiliation(s)
- Elham Mashayekh
- Department
of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115, Iran
| | - Zahra Nouri Khajeh Ghiasi
- Department
of Chemical Engineering, Islamic Azad University, Shahrood Branch, Shahrood 36155163, Iran
| | - Iman Bhia
- Faculty
of Medicine, Shahid Beheshti University
of Medical Sciences, Tehran 1985717443, Iran
| | - Zohreh Arefi Khorrami
- Department
of Chemical Engineering, Amirkabir University
of Technology (Tehran Polytechnic), 424 Hafez Avenue, Tehran 1591634311, Iran
| | - Omid Malekahmadi
- Department
of Mining and Metallurgical Engineering, Yazd University, Yazd 89195, Iran
| | - Mohammed Bhia
- Department
of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 1996835113, Iran
| | - Samira Malekmohammadi
- School
of Materials, University of Manchester, Engineering Building A, MECD, Manchester M1 3BB, U.K.
| | - Yavuz Nuri Ertas
- ERNAM−Nanotechnology
Research and Application Center, Erciyes
University, Kayseri 38039, Türkiye
- Department
of Biomedical Engineering, Erciyes University, Kayseri 38039, Türkiye
| |
Collapse
|
13
|
Xu W, Tao Y, Xu H, Wen J. Theoretical trends in the dynamics simulations of molecular machines across multiple scales. Phys Chem Chem Phys 2024; 26:4828-4839. [PMID: 38235540 DOI: 10.1039/d3cp05201j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Over the past few decades, molecular machines have been extensively studied, since they are composed of single molecules for functional materials capable of responding to external stimuli, enabling motion at scales ranging from the microscopic to the macroscopic level within molecular aggregates. This advancement holds the potential to efficiently transform external resources into mechanical movement, achieved through precise control of conformational changes in stimuli-responsive materials. However, the underlying mechanism that links microscopic and macroscopic motions remains unclear, demanding computational development associated with simulating the construction of molecular machines from single molecules. This bottleneck has impeded the design of more efficient functional materials. Advancements in theoretical simulations have successfully been developed in various computational models to unveil the operational mechanisms of stimulus-responsive molecular machines, which could help us reduce the costs in experimental trial-and-error procedures. It opens doors to the computer-aided design of innovative functional materials. In this perspective, we have reviewed theoretical approaches employed in simulating dynamic processes involving conformational changes in molecular machines, spanning different scales and environmental conditions. In addition, we have highlighted current challenges and anticipated future trends in the collective control of aggregates within molecular machines. Our goal is to provide a comprehensive overview of recent theoretical advancements in the field of molecular machines, offering valuable insights for the design of novel smart materials.
Collapse
Affiliation(s)
- Weijia Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Yuanda Tao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Haoyang Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Jin Wen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
14
|
Wang X, Zhang M, Li Y, Cong H, Yu B, Shen Y. Research Status of Dendrimer Micelles in Tumor Therapy for Drug Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304006. [PMID: 37635114 DOI: 10.1002/smll.202304006] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/16/2023] [Indexed: 08/29/2023]
Abstract
Dendrimers are a family of polymers with highly branched structure, well-defined composition, and extensive functional groups, which have attracted great attention in biomedical applications. Micelles formed by dendrimers are ideal nanocarriers for delivering anticancer agents due to the explicit study of their characteristics of particle size, charge, and biological properties such as toxicity, blood circulation time, biodistribution, and cellular internalization. Here, the classification, preparation, and structure of dendrimer micelles are reviewed, and the specific functional groups modified on the surface of dendrimers for tumor active targeting, stimuli-responsive drug release, reduced toxicity, and prolonged blood circulation time are discussed. In addition, their applications are summarized as various platforms for biomedical applications related to cancer therapy including drug delivery, gene transfection, nano-contrast for imaging, and combined therapy. Other applications such as tissue engineering and biosensor are also involved. Finally, the possible challenges and perspectives of dendrimer micelles for their further applications are discussed.
Collapse
Affiliation(s)
- Xijie Wang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Min Zhang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Yanan Li
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
- School of Materials Science and Engineering, Shandong University of Technology, Zibo, 255000, China
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of, Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
15
|
Miao Z, Qin L, Zhou Z, Zhou M, Fu H, Zhang L, Zhou J. Zwitterion-Modified Nanogel Responding to Temperature and Ionic Strength: A Dissipative Particle Dynamics Simulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13678-13687. [PMID: 37713407 DOI: 10.1021/acs.langmuir.3c01875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
The self-assembly and stimuli-responsive properties of nanogel poly(n-isopropylacrylamide) (p(NIPAm)) and zwitterion-modified nanogel poly(n-isopropylacrylamide-co-sulfobetainemethacrylate) (p(NIPAm-co-SBMA)) were explored by dissipative particle dynamics simulations. Simulation results reveal that for both types of nanogel, it is beneficial to form spherical nanogels at polymer concentrations of 5-10%. When the chain length (L) elongates from 10 to 40, the sizes of the nanogels enlarge. As for the p(NIPAm) nanogel, it shows thermoresponsiveness; when it switches to the hydrophilic state, the nanogel swells, and vice versa. The zwitterion-modified nanogel p(NIPAm-co-SBMA) possesses thermoresponsiveness and ionic strength responsiveness concurrently. At 293 K, both hydrophilic p(NIPAm) and superhydrophilic polysulfobetaine methacrylate (pSBMA) could appear on the outer surface of the nanogel; however, at 318 K, superhydrophilic pSBMA is on the outer surface to cover the hydrophobic p(NIPAm) core. As the temperature rises, the nanogel shrinks and remains antifouling all through. The salt-responsive property can be reflected by the nanogel size; the volumes of the nanogels in saline systems are larger than those in salt-free systems as the ionic condition inhibits the shrinkage of the zwitterionic pSBMA. This work exhibits the temperature-responsive and salt-responsive behavior of zwitterion-modified-pNIPAm nanogels at the molecular level and provides guidance in antifouling nanogel design.
Collapse
Affiliation(s)
- Zhaohong Miao
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Lanlan Qin
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Zhaoxi Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Meng Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Heqing Fu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Lizhi Zhang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Jian Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
16
|
Li Y, Liu M, Xue M, Kang Y, Liu D, Wen Y, Zhao D, Guan B. Engineered Biomaterials Trigger Remineralization and Antimicrobial Effects for Dental Caries Restoration. Molecules 2023; 28:6373. [PMID: 37687202 PMCID: PMC10489995 DOI: 10.3390/molecules28176373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/26/2023] [Accepted: 08/07/2023] [Indexed: 09/10/2023] Open
Abstract
Dental caries is the most prevalent chronic disease globally, significantly impacting individuals' quality of life. A key reason behind the failure of implanted restorations is their biological inactivity, meaning they are unable to form crosslinks with the surrounding tooth structures, thus making patients susceptible to implant loss and recurrent tooth decay. For the treatment of caries, antibacterial medicine and remineralization are effective means of treating the recurrence of caries. Owing to the rapid progression in the biomaterials field, several biomaterials have been reported to display antimicrobial properties and aid in dentin remineralization. Bioactive materials hold considerable potential in diminishing biofilm accumulation, inhibiting the process of demineralization, enabling dentin remineralization, and combating bacteria related to caries. Bioactive materials, such as fluoride, amorphous calcium phosphate, bioactive glass, collagen, and resin-based materials, have demonstrated their effectiveness in promoting dentin remineralization and exerting antibacterial effects on dental caries. However, the concentration of fluoride needs to be strictly controlled. Although amorphous calcium phosphate can provide the necessary calcium and phosphorus ions for remineralization, it falls short in delivering the mechanical strength required for oral mastication. Resin-based materials also offer different advantages due to the complexity of their design. In this review, we delve into the application of advanced bioactive materials for enhancing dentin remineralization and antibacterial properties. We eagerly anticipate future developments in bioactive materials for the treatment of dental caries.
Collapse
Affiliation(s)
- Yuexiao Li
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, China Medical University, Shenyang 110022, China
| | - Minda Liu
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, China Medical University, Shenyang 110022, China
| | - Mingyu Xue
- School and Hospital of Stomatology, China Medical University, Shenyang 110002, China
| | - Yuanyuan Kang
- School and Hospital of Stomatology, China Medical University, Shenyang 110002, China
| | - Dongjuan Liu
- School and Hospital of Stomatology, China Medical University, Shenyang 110002, China
| | - Yan Wen
- School and Hospital of Stomatology, China Medical University, Shenyang 110002, China
| | - Duoyi Zhao
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Boyu Guan
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, China Medical University, Shenyang 110022, China
- School and Hospital of Stomatology, China Medical University, Shenyang 110002, China
| |
Collapse
|
17
|
Yang C, Wang D, Liu W, Yang Z, He T, Chen F, Lin W. Folate modified dual pH/reduction-responsive mixed micelles assembled using FA-PEG-PDEAEMA and PEG-SS-PCL for doxorubicin delivery. Phys Chem Chem Phys 2023; 25:12458-12468. [PMID: 37096448 DOI: 10.1039/d2cp04045j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Aiming at achieving the concurrent performances of high loading, well controlled release and active targeted delivery, folate (FA) modified dual pH/reduction-responsive mixed polymeric micelles were rationally assembled using FA-PEG-PDEAEMA and PEG-SS-PCL by dissipative particle dynamics (DPD) simulations. The optimized polymers PEG112-PDEAEMA40, FA-PEG112-PDEAEMA40, and PEG112-SS-PCL70 were synthesized and characterized using 1H NMR, FT-IR and GPC, and their mixed micelles were applied for doxorubicin (DOX) delivery. The drug loading capacity (LC) and encapsulation efficiency (EE) values of the MIX1 (FA-PEG112-PDEAEMA40/PEG112-SS-PCL70) at a DOX/polymer feeding ratio of 15 mg/30 mg were 20.22% and 50.69%, which were higher than those of single polymer micelles and MIX2 (PEG112-PDEAEMA40/PEG112-SS-PCL70). Particle size distributions, mesoscopic morphologies, DPD simulations and in vitro drug release profiles all confirmed the well-controlled release performance of the DOX-loaded micelles formed by MIX1: slow DOX release with a cumulative release of 20.46% in the neutral environment and accelerated release with a cumulative release of 74.20% at pH 5.0 + 10 mM DTT within 120 h, which were similar to those of MIX2. Cytotoxicity assay found that both MIX1 and MIX2 blank micelles were biocompatible, and a superior inhibitory effect of the FA-modified DOX-loaded micelles MIX1 on HepG2 cells was found compared to that of free DOX and non-FA-modified DOX-loaded micelles MIX2. All of these confirmed the superiority of MIX1 micelles with high loading capacity, well controlled release, and enhanced inhibitory effects on HepG2 cells, which might be a prospective candidate for anticancer drug delivery.
Collapse
Affiliation(s)
- Chufen Yang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China.
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang 515200, China
| | - Delin Wang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| | - Wenyao Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| | - Zexiong Yang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| | - Teng He
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| | - Fang Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| | - Wenjing Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China.
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang 515200, China
| |
Collapse
|
18
|
Foo W, Cseresnyés Z, Rössel C, Teng Y, Ramoji A, Chi M, Hauswald W, Huschke S, Hoeppener S, Popp J, Schacher FH, Sierka M, Figge MT, Press AT, Bauer M. Tuning the corona-core ratio of polyplex micelles for selective oligonucleotide delivery to hepatocytes or hepatic immune cells. Biomaterials 2023; 294:122016. [PMID: 36702000 DOI: 10.1016/j.biomaterials.2023.122016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/06/2023] [Accepted: 01/14/2023] [Indexed: 01/22/2023]
Abstract
Targeted delivery of oligonucleotides or small molecular drugs to hepatocytes, the liver's parenchymal cells, is challenging without targeting moiety due to the highly efficient mononuclear phagocyte system (MPS) of the liver. The MPS comprises Kupffer cells and specialized sinusoidal endothelial cells, efficiently clearing nanocarriers regardless of their size and surface properties. Physiologically, this non-parenchymal shield protects hepatocytes; however, these local barriers must be overcome for drug delivery. Nanocarrier structural properties strongly influence tissue penetration, in vivo pharmacokinetics, and biodistribution profile. Here we demonstrate the in vivo biodistribution of polyplex micelles formed by polyion complexation of short interfering (si)RNA with modified poly(ethylene glycol)-block-poly(allyl glycidyl ether) (PEG-b-PAGE) diblock copolymer that carries amino moieties in the side chain. The ratio between PEG corona and siRNA complexed PAGE core of polyplex micelles was chemically varied by altering the degree of polymerization of PAGE. Applying Raman-spectroscopy and dynamic in silico modeling on the polyplex micelles, we determined the corona-core ratio (CCR) and visualized the possible micellar structure with varying CCR. The results for this model system reveal that polyplex micelles with higher CCR, i.e., better PEG coverage, exclusively accumulate and thus allow passive cell-type-specific targeting towards hepatocytes, overcoming the macrophage-rich reticuloendothelial barrier of the liver.
Collapse
Affiliation(s)
- WanLing Foo
- Jena University Hospital, Department of Anesthesiology and Intensive Care Medicine, Am Klinikum 1, 07747, Jena, Germany
| | - Zoltán Cseresnyés
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Research Group Applied Systems Biology, Beutenbergstraße 13, 07745, Jena, Germany
| | - Carsten Rössel
- Friedrich-Schiller-University, Jena Center for Soft Matter, Philosophenweg 7, 07743, Jena, Germany; Friedrich-Schiller-University, Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Humboldtstraße 10, 07743, Jena, Germany
| | - Yingfeng Teng
- Friedrich-Schiller-University, Computational Materials Science Group, Otto Schott Institute of Materials Research, Faculty of Physics and Astronomy, Löbdergraben 32, 07743, Jena, Germany
| | - Anuradha Ramoji
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany; Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich-Schiller-University, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743, Jena, Germany; Jena University Hospital, Center for Sepsis Control and Care, Friedrich-Schiller-University, Am Klinikum 1, 07747, Jena, Germany
| | - Mingzhe Chi
- Friedrich-Schiller-University, Computational Materials Science Group, Otto Schott Institute of Materials Research, Faculty of Physics and Astronomy, Löbdergraben 32, 07743, Jena, Germany
| | - Walter Hauswald
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Sophie Huschke
- Jena University Hospital, Department of Anesthesiology and Intensive Care Medicine, Am Klinikum 1, 07747, Jena, Germany
| | - Stephanie Hoeppener
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Research Group Applied Systems Biology, Beutenbergstraße 13, 07745, Jena, Germany; Friedrich-Schiller-University, Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Humboldtstraße 10, 07743, Jena, Germany
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany; Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich-Schiller-University, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743, Jena, Germany; Jena University Hospital, Center for Sepsis Control and Care, Friedrich-Schiller-University, Am Klinikum 1, 07747, Jena, Germany
| | - Felix H Schacher
- Friedrich-Schiller-University, Jena Center for Soft Matter, Philosophenweg 7, 07743, Jena, Germany; Friedrich-Schiller-University, Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Humboldtstraße 10, 07743, Jena, Germany
| | - Marek Sierka
- Friedrich-Schiller-University, Jena Center for Soft Matter, Philosophenweg 7, 07743, Jena, Germany; Friedrich-Schiller-University, Computational Materials Science Group, Otto Schott Institute of Materials Research, Faculty of Physics and Astronomy, Löbdergraben 32, 07743, Jena, Germany
| | - Marc Thilo Figge
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Research Group Applied Systems Biology, Beutenbergstraße 13, 07745, Jena, Germany; Institute of Microbiology, Faculty of Biological Sciences, Friedrich-Schiller-University Jena, 07743, Jena, Germany; Friedrich-Schiller-University, Jena Center for Soft Matter, Philosophenweg 7, 07743, Jena, Germany
| | - Adrian T Press
- Jena University Hospital, Department of Anesthesiology and Intensive Care Medicine, Am Klinikum 1, 07747, Jena, Germany; Friedrich-Schiller-University, Jena Center for Soft Matter, Philosophenweg 7, 07743, Jena, Germany; Jena University Hospital, Center for Sepsis Control and Care, Friedrich-Schiller-University, Am Klinikum 1, 07747, Jena, Germany; Friedrich-Schiller-University, Faculty of Medicine, Kastanienstraße. 1, 07747, Jena, Germany.
| | - Michael Bauer
- Jena University Hospital, Department of Anesthesiology and Intensive Care Medicine, Am Klinikum 1, 07747, Jena, Germany; Friedrich-Schiller-University, Jena Center for Soft Matter, Philosophenweg 7, 07743, Jena, Germany; Jena University Hospital, Center for Sepsis Control and Care, Friedrich-Schiller-University, Am Klinikum 1, 07747, Jena, Germany.
| |
Collapse
|
19
|
Pranav U, Malhotra M, Pathan S, Jayakannan M. Structural Engineering of Star Block Biodegradable Polymer Unimolecular Micelles for Drug Delivery in Cancer Cells. ACS Biomater Sci Eng 2023; 9:743-759. [PMID: 36579913 DOI: 10.1021/acsbiomaterials.2c01201] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The present investigation reports the structural engineering of biodegradable star block polycaprolactone (PCL) to tailor-make aggregated micelles and unimolecular micelles to study their effect on drug delivery aspects in cancer cell lines. Fully PCL-based star block copolymers were designed by varying the arm numbers from two to eight while keeping the arm length constant throughout. Multifunctional initiators were exploited for stepwise solvent-free melt ring-opening polymerization of ε-caprolactone and γ-substituted caprolactone to construct star block copolymers having a PCL hydrophobic core and a carboxylic PCL hydrophilic shell, respectively. A higher arm number and a higher degree of branching in star polymers facilitated the formation of unimolecular micelles as opposed to the formation of conventional multimicellar aggregates in lower arm analogues. The dense core of the unimolecular micelles enabled them to load high amounts of the anticancer drug doxorubicin (DOX, ∼12-15%) compared to the aggregated micelles (∼3-4%). The star unimolecular micelle completely degraded leading to 90% release of the loaded drug upon treatment with the lysosomal esterase enzyme in vitro. The anticancer efficacies of these DOX-loaded unimolecular micelles were tested in a breast cancer cell line (MCF-7), and their IC50 values were found to be much lower compared to those of aggregated micelles. Time-dependent cellular uptake studies by confocal microscopy revealed that unimolecular micelles were readily taken up by the cells, and enhancement of the drug concentration was observed at the intracellular level up to 36 h. The present work opens new synthetic strategies for building a next-generation biodegradable unimolecular micellar nanoplatform for drug delivery in cancer research.
Collapse
Affiliation(s)
- Upendiran Pranav
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr. Homi Bhabha Road, Pune 411008 Maharashtra, India
| | - Mehak Malhotra
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr. Homi Bhabha Road, Pune 411008 Maharashtra, India
| | - Shahidkhan Pathan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr. Homi Bhabha Road, Pune 411008 Maharashtra, India
| | - Manickam Jayakannan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr. Homi Bhabha Road, Pune 411008 Maharashtra, India
| |
Collapse
|
20
|
Yang Z, Mai H, Wang D, He T, Chen F, Yang C. Systematic Design and Study of Star-like Polymeric Prodrug Unimolecular Micelles β-CD-P[CL- co-(ACL- g-DOX)-SS-MPEG] 21 by DPD Simulations. ACS OMEGA 2023; 8:4963-4971. [PMID: 36777574 PMCID: PMC9910076 DOI: 10.1021/acsomega.2c07371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Unimolecular micelles composed of a single polymeric molecule have recently attracted significant attention in anti-cancer drug delivery due to their high thermodynamic stability and small particle sizes. Applying the prodrug strategy to unimolecular micelles may provide superior nano-drug carriers with simultaneous high stability, low drug leakage, and well-drug loading capacity. However, the formation mechanism of the unimolecular prodrug micelles, the superiority of the prodrug strategy, as well as the prodrug controlled release mechanism were scantily understood at the mesoscopic scale. In this work, dissipative particle dynamics mesoscopic simulations were employed to investigate the self-assembly behavior, formation conditions, drug distribution regularities, and the prodrug release process of the star-like polymeric prodrug unimolecular micelles formed by β-CD-P[CL-co-(ACL-g-DOX)-SS-MPEG]21. A special bond-breaking script was used to accomplish the bond-breaking simulation of the grafted DOX bonds and the disulfide bonds. Results showed that to form well monodispersed and superior DOX-loaded unimolecular micelles, the polymer concentration should be well controlled at low volume fractions (≤10.59%), and the detailed molecular structure of the polymer was suggested as β-cyclodextrin-P[caprolactone-co-(amino caprolactone-g-doxorubicin)-disulfide-methyl polyethylene glycol]21) (β-CD-P[CL30-co-(ACL-g-DOX)8-SS-MPEG49]21). By comparison with the DOX physically loaded micelles, it was found that the prodrug unimolecular micelles with DOX grafted on the polymer displayed no drug leakage and superior drug loading capacity. Simulations on the prodrug release process showed that the prodrug unimolecular micelles assembled by β-CD-P[CL30-co-(ACL-g-DOX)8-SS-MPEG49]21 would provide good dual pH/reduction-responsive DOX release performance.
Collapse
Affiliation(s)
- Zexiong Yang
- School
of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou510006, PR China
| | - Haiyan Mai
- Department
of Pharmacy, Third Affiliated Hospital of
Sun Yat-sen University, Guangzhou510630, PR China
| | - Delin Wang
- School
of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou510006, PR China
| | - Teng He
- School
of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou510006, PR China
| | - Fang Chen
- School
of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou510006, PR China
| | - Chufen Yang
- School
of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou510006, PR China
| |
Collapse
|
21
|
Smart Polymeric Micelles for Anticancer Hydrophobic Drugs. Cancers (Basel) 2022; 15:cancers15010004. [PMID: 36612002 PMCID: PMC9817890 DOI: 10.3390/cancers15010004] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer has become one of the deadliest diseases in our society. Surgery accompanied by subsequent chemotherapy is the treatment most used to prolong or save the patient's life. Still, it carries secondary risks such as infections and thrombosis and causes cytotoxic effects in healthy tissues. Using nanocarriers such as smart polymer micelles is a promising alternative to avoid or minimize these problems. These nanostructured systems will be able to encapsulate hydrophilic and hydrophobic drugs through modified copolymers with various functional groups such as carboxyls, amines, hydroxyls, etc. The release of the drug occurs due to the structural degradation of these copolymers when they are subjected to endogenous (pH, redox reactions, and enzymatic activity) and exogenous (temperature, ultrasound, light, magnetic and electric field) stimuli. We did a systematic review of the efficacy of smart polymeric micelles as nanocarriers for anticancer drugs (doxorubicin, paclitaxel, docetaxel, lapatinib, cisplatin, adriamycin, and curcumin). For this reason, we evaluate the influence of the synthesis methods and the physicochemical properties of these systems that subsequently allow an effective encapsulation and release of the drug. On the other hand, we demonstrate how computational chemistry will enable us to guide and optimize the design of these micelles to carry out better experimental work.
Collapse
|
22
|
Surface functionalization of graphene nanosheet with poly (L-histidine) and its application in drug delivery: covalent vs non-covalent approaches. Sci Rep 2022; 12:19046. [PMID: 36351935 PMCID: PMC9646737 DOI: 10.1038/s41598-022-21619-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/29/2022] [Indexed: 11/10/2022] Open
Abstract
Nowadays, nanomaterials are increasingly being used as drug carriers in the treatment of different types of cancers. As a result, these applications make them attractive to researchers dealing with diagnosis and biomarkers discovery of the disease. In this study, the adsorption behavior of gemcitabine (GMC) on graphene nanosheet (GNS), in the presence and absence of Poly (L-histidine) (PLH) polymer is discussed using molecular dynamics (MD) simulation. The MD results revealed an increase in the efficiency and targeting of the drug when the polymer is covalently attached to the graphene substrate. In addition, the metadynamics simulation to investigate the effects of PLH on the adsorption capacity of the GNS, and explore the adsorption/desorption process of GMC on pristine and PLH- grafted GNS is performed. The metadynamics calculations showed that the amount of free energy of the drug in acidic conditions is higher (- 281.26 kJ/mol) than the free energy in neutral conditions (- 346.24 kJ/mol). Consequently, the PLH polymer may not only help drug adsorption but can also help in drug desorption in lower pH environments. Based on these findings, it can be said that covalent polymer bonding not only can help in the formation of a targeted drug delivery system but also can increase the adsorption capacity of the substrate.
Collapse
|
23
|
Badalkhani-Khamseh F, Ebrahim-Habibi A, Hadipour NL, Behmanesh M. PEGylated PAMAM Dendrimers as Eptifibatide Nanocarriers: An Atomistic View from Molecular Dynamics Simulations. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
24
|
Tao S, Yang J, Su Z, Zhou F, Wang Z, Yang Y, Sun L, Deng Y, Liang K, Li J. A Dentin Biomimetic Remineralization Material with an Ability to Stabilize Collagen. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203644. [PMID: 35989094 DOI: 10.1002/smll.202203644] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/22/2022] [Indexed: 06/15/2023]
Abstract
The integrity of collagen matrix structure is a prerequisite for effectively inducing biomimetic remineralization. Repeated low pH stimulation activates matrix metalloproteinases (MMPs) in dental caries. Activated MMPs cause the breakdown of collagen fibrils. Collagen stabilization is a major obstacle to the clinical application of remineralization templates. Here, galardin-loaded poly(amido amine) (PAMAM)-NGV (PAMAM-NGV@galardin, PNG) is constructed to induce collagen stabilization and dentin biomimetic remineralization simultaneously, in order to combat early caries in dentin. PAMAM acts in the role of nucleation template for dentin remineralization, while galardin acts as the role of MMPs inhibitor. NGV peptides modified on the surface of dendrimer core can form small clusters with synergistic movement in short range, and those short-range clusters can form domain areas with different properties on the surface of PAMAM core and restrict the movement of collagen, favoring collagen crosslinking, which can be explained through the computational simulation analysis results. NGV peptides and galardin show a dual collagen-protective effect, laying the foundation for the dentin remineralization effect induced by PAMAM. PNG induces dentin remineralization in an environment with collagenase, meanwhile showsing anti-dentin caries efficacy in vivo. These findings indicate that PNG has great potential to combat early dentin caries for future clinical application.
Collapse
Affiliation(s)
- Siying Tao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jiaojiao Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zhifei Su
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Fangjie Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Ziyou Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yingming Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Lizhong Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yi Deng
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Kunneng Liang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jiyao Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
25
|
Javan Nikkhah S, Vandichel M. Modeling Polyzwitterion-Based Drug Delivery Platforms: A Perspective of the Current State-of-the-Art and Beyond. ACS ENGINEERING AU 2022; 2:274-294. [PMID: 35996394 PMCID: PMC9389590 DOI: 10.1021/acsengineeringau.2c00008] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Drug delivery platforms are anticipated to have biocompatible and bioinert surfaces. PEGylation of drug carriers is the most approved method since it improves water solubility and colloid stability and decreases the drug vehicles' interactions with blood components. Although this approach extends their biocompatibility, biorecognition mechanisms prevent them from biodistribution and thus efficient drug transfer. Recent studies have shown (poly)zwitterions to be alternatives for PEG with superior biocompatibility. (Poly)zwitterions are super hydrophilic, mainly stimuli-responsive, easy to functionalize and they display an extremely low protein adsorption and long biodistribution time. These unique characteristics make them already promising candidates as drug delivery carriers. Furthermore, since they have highly dense charged groups with opposite signs, (poly)zwitterions are intensely hydrated under physiological conditions. This exceptional hydration potential makes them ideal for the design of therapeutic vehicles with antifouling capability, i.e., preventing undesired sorption of biologics from the human body in the drug delivery vehicle. Therefore, (poly)zwitterionic materials have been broadly applied in stimuli-responsive "intelligent" drug delivery systems as well as tumor-targeting carriers because of their excellent biocompatibility, low cytotoxicity, insignificant immunogenicity, high stability, and long circulation time. To tailor (poly)zwitterionic drug vehicles, an interpretation of the structural and stimuli-responsive behavior of this type of polymer is essential. To this end, a direct study of molecular-level interactions, orientations, configurations, and physicochemical properties of (poly)zwitterions is required, which can be achieved via molecular modeling, which has become an influential tool for discovering new materials and understanding diverse material phenomena. As the essential bridge between science and engineering, molecular simulations enable the fundamental understanding of the encapsulation and release behavior of intelligent drug-loaded (poly)zwitterion nanoparticles and can help us to systematically design their next generations. When combined with experiments, modeling can make quantitative predictions. This perspective article aims to illustrate key recent developments in (poly)zwitterion-based drug delivery systems. We summarize how to use predictive multiscale molecular modeling techniques to successfully boost the development of intelligent multifunctional (poly)zwitterions-based systems.
Collapse
Affiliation(s)
- Sousa Javan Nikkhah
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - Matthias Vandichel
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| |
Collapse
|
26
|
Yuan J, He F, Wen Q, Yu G, Li J, Feng Y. Effects of pH and UV on the stability, drug-loading and release behavior of alginate-based emulsion: A coarse-grained molecular dynamics simulation and experimental study. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Patil S, Mishra VS, Yadav N, Reddy PC, Lochab B. Dendrimer-Functionalized Nanodiamonds as Safe and Efficient Drug Carriers for Cancer Therapy: Nucleus Penetrating Nanoparticles. ACS APPLIED BIO MATERIALS 2022; 5:3438-3451. [PMID: 35754387 DOI: 10.1021/acsabm.2c00373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nanodiamonds (NDs) are increasingly being assessed as potential candidates for drug delivery in cancer cells and they hold great promise in overcoming the side effects of traditional chemotherapeutics. In the current work, carboxylic acid functionalized nanodiamonds (ND-COOH) were covalently modified with poly(amidoamine) dendrimer (PAMAM) to form amine-terminated nanodiamonds (NP). Unlike ND-COOH, the chemically modified nanodiamond platform NP revealed a pH-independent aqueous dispersion stability, enhancing its potential as an effective carrier. Physical encapsulation of poorly water soluble cabazitaxel (CTX) drug on NP formed ND-PAMAM-CTX (NPC) nanoconjugates and substantially reduced the size of CTX from micrometer to nanometer. CTX was localized within the pores of nanoparticle aggregates and the cavities of the PAMAM dendrimer, thus facilitating the loaded drug's controlled and sustained release. NPC's cumulative CTX release efficiency was determined to be ∼95% at pH 4 after 96 h. A high cellular uptake of NPC both within the cytoplasm and nucleus of U87 cells is confirmed, accounting for a reduced IC50 value (1 nM). Both the cell cycle and Western blot analyses confirmed enhanced cell death and suppressed tubulin protein expression in NPC-treated cells. A significantly high inhibition to cell division with early apoptosis and reduced metastasis demonstrates the effective loading of CTX dosages on the nanocarrier. The present work highlights the potential of a newly designed nanocarrier NP as an efficient nanocargo for cellular delivery applications and may provide future insights to treat one of the most aggressive tumors in neuro-oncological research, glioblastoma multiforme (GBM).
Collapse
Affiliation(s)
- Sachin Patil
- Materials Chemistry Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Delhi-NCR 201314, India
| | - Vishnu S Mishra
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Delhi-NCR 201314, India
| | - Nisha Yadav
- Materials Chemistry Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Delhi-NCR 201314, India
| | - Puli Chandramouli Reddy
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Delhi-NCR 201314, India
| | - Bimlesh Lochab
- Materials Chemistry Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Delhi-NCR 201314, India
| |
Collapse
|
28
|
Zheng X, Pan D, Zhu G, Zhang L, Bhamra A, Chen R, Zhang H, Gong Q, Gu Z, Luo K. A Dendritic Polymer-Based Nanosystem Mediates Drug Penetration and Irreversible Endoplasmic Reticulum Stresses in Tumor via Neighboring Effect. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201200. [PMID: 35289966 DOI: 10.1002/adma.202201200] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/09/2022] [Indexed: 02/05/2023]
Abstract
Nanoparticles (NPs)-based cancer therapeutics are generally impeded by poor drug penetration into solid tumors due to their dense tumor extracellular matrix (ECM). Herein, pH/redox-responsive dendritic polymer-based NPs are developed to amplify the neighboring effect for improving drug penetration and driving cell apoptosis via combination therapy. Pyropheophorbide a (Ppa) is conjugated with PEGylated dendritic peptides via disulfide bonds and doxorubicin (DOX) encapsulated in the conjugate to construct dual-responsive NPs, PDPP@D. Delayed released DOX and Ppa from PDPP@D exert their combination therapeutic effect to induce cell apoptosis, and then they are liberated out of dying cells to amplify the neighboring effect, resulting in their diffusion through the dense ECM and penetration into solid tumors. Transcriptome studies reveal that PDPP@D leads to irreversible stress on the endoplasmic reticulum and inhibits cell protection through blocking the IRE1-dependent survival pathway and unleashing the DR5-mediated caspase activity to promote cell death. The strategy of amplifying the neighboring effect of NPs through combination therapy may offer great potential in enhancing drug penetration and eradicating solid tumors.
Collapse
Affiliation(s)
- Xiuli Zheng
- Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Dayi Pan
- Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Guonian Zhu
- Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.,Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, and Core Facility of West China Hospital, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lu Zhang
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, and Core Facility of West China Hospital, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Apanpreet Bhamra
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, United Kingdom
| | - Rongjun Chen
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, United Kingdom
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.,Functional and molecular imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Zhongwei Gu
- Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Kui Luo
- Department of Radiology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.,Functional and molecular imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| |
Collapse
|
29
|
Liu D, Huang L, Li T, Zhang G, Ni Q. Cucurbit[6]uril-functionalized Fe3O4 magnetic nanoparticles for pH-responsive drug delivery. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02147-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
30
|
Theoretical investigation of Chitosan-Assisted Controlled Release of Digestive System Antitumor Drug Fluorouracil. J Pharm Sci 2022; 111:2049-2055. [PMID: 35122829 DOI: 10.1016/j.xphs.2022.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 11/22/2022]
Abstract
5-Fluorouracil (5-FU) has been applied to treat pancreatic cancer, which is one of the most common types of digestive system tumors. However, due to poor tumor selectivity, 5-FU's therapeutic effect has certain limitations. 5-FU's activity and selectivity against tumor cells can be improved by chitosan assisted drug delivery systems. Understanding the atomic interaction mechanism between chitosan and 5-FU is important. In this work, the interactions between 5-FU and different types of chitosan were systematically investigated by using molecular dynamics (MD) simulation. Based on the radial distribution function and the free energy calculation, our results demonstrate that the functional groups of chitosan could greatly regulate the interaction behavior between chitosan and 5-FU. Moreover, 5-FU could gradually release from chitosan at a more acidic pH (tumor tissues) environment. These results revealed the underlying atomic interaction mechanism between 5-FU and chitosan at various pH levels, and may be helpful in the design of chitosan-based drug delivery systems.
Collapse
|
31
|
Miao Z, Chen Z, Wang L, Zhang L, Zhou J. Dual-responsive zwitterion-modified nanopores:a mesoscopic simulation study. J Mater Chem B 2022; 10:2740-2749. [DOI: 10.1039/d1tb02416g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, dissipative particle dynamics simulation was carried out to investigate the intelligent switching effect of nanopores grafted by the zwitterionic polymer brushes poly(carboxybetaine) with excellent antifouling property. The...
Collapse
|
32
|
Malekzadeh A, Zahedi P, Abdouss M. Synthesis and performance evaluation of 5-fluorouracil-loaded zwitterionic poly(4-vinylpyridine) nanoparticles. NEW J CHEM 2022. [DOI: 10.1039/d2nj00121g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
After polymerizing 4-vinylpyridine, the obtained polymer was converted into zwitterionic nanoparticles containing 5-fluorouracil. Their potential for long-term blood circulation was investigated by in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Ali Malekzadeh
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, P. O. Box: 11155-4563, Tehran, Iran
| | - Payam Zahedi
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, P. O. Box: 11155-4563, Tehran, Iran
| | - Majid Abdouss
- Department of Chemistry, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
33
|
Investigation of morphology, micelle properties, drug encapsulation and release behavior of self-assembled PEG-PLA-PEG block copolymers: A coarse-grained molecular simulations study. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
34
|
Yang Z, Zhao H, Wang D, Yin L, Cai K, Lin Z, Chen T, Yang C. DPD simulations on mixed polymeric DOX-loaded micelles assembled from PCL-SS-PPEGMA/PDEA-PPEGMA and their dual pH/reduction-responsive release. Phys Chem Chem Phys 2021; 23:19011-19021. [PMID: 34612439 DOI: 10.1039/d1cp02750f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The design of mixed polymeric micelles by a combination of two or more dissimilar polymers is a potential strategy to achieve multiple stimuli-response for anti-cancer drug delivery. However, their drug loading co-micellization behavior and multiple stimuli-responsive drug release mechanism have been poorly understood at the mesoscopic level, especially in the system that involves reduction-response due to the difficulty of simulation on the cleavage of chemical bonds. In this work, the co-micellization behavior, drug distribution regularities and dual pH/reduction-responsive drug release process of mixed micelles formed by disulfide-linked polycaprolactone-b-polyethylene glycol methyl ether methacrylate (PCL-SS-PPEGMA) and poly(ethylene glycol) methyl ether-b-poly(N,N-diethylamino ethyl methacrylate) (PDEA-PPEGMA) were studied by dissipative particle dynamics (DPD) mesoscopic simulations. A dedicated bond-breaking script was employed to accomplish the disulfide bond-breaking simulations. The results showed that PCL55-SS-PPEGMA10 and PDEA34-PPEGMA11 could be well mixed to form superior DOX-loaded micelles with good drug-loading capacity and drug-controlled release performance. To prepare the DOX-loaded micelles with optimized properties, the simulation results suggested the feed ratio of DOX:PCL55-SS-PPEGMA10:PDEA34-PPEGMA11 set to 3:4:4. Compared with the two single stimuli-response, the dual pH/reduction-response process perfectly combined both pH-response and reduction-response together, providing a higher release rate of DOX. Therefore, this study provides theoretical guidance aimed at the property optimization and micellar structure design of the dual pH/reduction-responsive mixed micelles.
Collapse
Affiliation(s)
- Zexiong Yang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Feng YH, Zhang XP, Li WX, Guo XD. Stability and Diffusion Properties of Insulin in Dissolvable Microneedles: A Multiscale Simulation Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9244-9252. [PMID: 34301147 DOI: 10.1021/acs.langmuir.1c01434] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Microneedle (MN) technology has been proven to be promising to become an effective drug delivery route of insulin for diabetes treatment, with the advantages of high delivery efficiency, convenient management, and minimal risk of infection. However, efforts are still required to verify the insulin activity in MNs for further clinical application. Moreover, it is also essential to study the diffusion properties of insulin to understand the ability of various MN materials to control insulin release. Herein, we have combined all-atom molecular dynamics simulation and coarse-grained dissipative particle dynamics to systematically study insulin's structural stability and diffusion coefficient in polyvinyl alcohol and hyaluronic acid solutions. The all-atom simulation reveals the dissimilarities in the interaction mode between insulin and the two polymers. It also points out that the presence of the two polymers would not irreversibly impact the secondary structure of insulin, thereby ensuring regular insulin expression in vivo. Mesoscopic simulation results manifest that the diffusion coefficient of insulin in hyaluronic acid (HA) solution is greater than that of the polyvinyl alcohol (PVA) system. Meanwhile, through the study of insulin centroid trajectory, we have claimed two different diffusion mechanisms of insulin in polymer solution: The movement of insulin in the HA and water solution follows the Brownian motion rule. In comparison, the hopping effect of insulin has been observed in the PVA solution due to poor intermolecular affinity as well as lower polymer water solubility. By summarizing different diffusion mechanisms, this study can provide theoretical guidance for preparing insulin-loaded dissolvable MNs.
Collapse
Affiliation(s)
- Yun Hao Feng
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Xiao Peng Zhang
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Wen Xuan Li
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Xin Dong Guo
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| |
Collapse
|
36
|
Deng F, Wu L, Lu X, Wang S, Chen S, Ding T. A General Nanocoating Method via Photoinduced Self-Initiation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:5548-5553. [PMID: 33904742 DOI: 10.1021/acs.langmuir.1c00303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hybrid core-shell nanoparticles play a very significant role in many applications. Here, we report a light-induced oligomer coating on nanoparticles via Norrish type I reaction. The radical species generated via UV irradiation can chemically initiate the photoinitiators, which are then polymerized and deposited on inorganic nanoparticles via heterogeneous nucleation, forming a soft oligomer coating smaller than 40 nm. This coating method is versatile and potentially applicable to many different types of inorganic cores and their assemblies, making it a very useful technique for "freezing" nanoassemblies in solution. Moreover, these oligomer coatings containing radical species can also initiate surface polymerization of both styrenic and acrylic monomers with certain functionalities for different applications such as self-assembly, plasmon tuning, and pH sensing (3.5-4.5).
Collapse
Affiliation(s)
- Fangfang Deng
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan 430072 China
| | - Liang Wu
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Xiaolin Lu
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan 430072 China
| | - Shuangshuang Wang
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan 430072 China
| | - Suming Chen
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Tao Ding
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan 430072 China
| |
Collapse
|
37
|
Li J, Liu M, Qiu Y, Gan Y, Jiang H, Liu B, Wei H, Ma N. Urchin-like Hydroxyapatite/Graphene Hollow Microspheres as pH-Responsive Bone Drug Carriers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4137-4146. [PMID: 33813823 DOI: 10.1021/acs.langmuir.0c03640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Hydroxyapatite (HA) is the main inorganic component of human bones and teeth. It has good biocompatibility and bioactivity, which promotes its good application prospects in the field of bone drug carriers. In this study, tetraethylenepentamine-graphene (rGO-TEPA)/CaCO3:HA composite microspheres were prepared via microwave hydrothermal synthesis using rGO-TEPA/CaCO3 solid microspheres as intermediates. Furthermore, the incompletely transformed CaCO3 was removed by soaking in a citric acid buffer to obtain rGO-TEPA/HA hollow composite microspheres. The two types of as-prepared composite microspheres exhibited sea urchin-like structures, large BET surface areas, and good dispersibility. Mouse preosteoblast cells (MC3T3-E1) were used for in vitro cytotoxicity experiments. The in vitro cell viability test showed that the two composite drug carriers exhibited noncytotoxicity. Moreover, the doxorubicin (DOX) loading and releasing investigations revealed that the two types of prepared carriers had mild storage-release behaviors and good pH responsiveness. Hence, these rGO-TEPA/HA hollow microspheres have promising applications as bone drug carriers.
Collapse
Affiliation(s)
- Jie Li
- College of Light Industry Science and Engineering, Tianjin University of Science and Technology, 300222 Tianjin, China
| | - Miaomiao Liu
- College of Light Industry Science and Engineering, Tianjin University of Science and Technology, 300222 Tianjin, China
| | - Yujuan Qiu
- College of Light Industry Science and Engineering, Tianjin University of Science and Technology, 300222 Tianjin, China
| | - Yuanjing Gan
- College of Light Industry Science and Engineering, Tianjin University of Science and Technology, 300222 Tianjin, China
| | - Hongkun Jiang
- Key Laboratory of Superlight Material and Surface Technology of Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, 150001 Harbin, China
| | - Boyue Liu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, 300384 Tianjin, China
| | - Hao Wei
- Key Laboratory of Superlight Material and Surface Technology of Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, 150001 Harbin, China
| | - Ning Ma
- Key Laboratory of Superlight Material and Surface Technology of Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, 150001 Harbin, China
| |
Collapse
|