1
|
Wang L, Pan J, Badehnoosh B. Electrochemical biosensors for hepatocellular carcinoma. Clin Chim Acta 2025; 574:120328. [PMID: 40286895 DOI: 10.1016/j.cca.2025.120328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/22/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
The current review analyzes progress in electrochemical detection techniques for hepatocellular carcinoma biosignatures, highlighting their potential to enhance the timely detection and management of hepatocellular carcinoma. In this study, the authors explore the present state of hepatocellular carcinoma biosignatures, encompassing conventional proteins such as alpha-fetoprotein and promising biosignatures like non-coding RNAs and circulatory tumor DNA (ctDNA). This text analyzes the principles of electrochemical biosensing and explores sophisticated sensor designs employing surface modification techniques, innovative recognition elements, and nanomaterials. Particular focus is directed towards aptamer-based sensors, microfluidic technologies, and label-free methodologies. Herein, recent advancements in enhancing sensitivity and specificity are discussed, with some platforms reaching a threshold at the femtogram scale. The discussion also encompasses the progress achieved in point-of-care applications and the obstacles faced in transitioning experimental paradigms to medical applications. The prospective influence of these methodologies on medical results is under evaluation, emphasizing early detection and tailored treatment approaches. Future research should focus on creating advanced, integrated detection systems and conducting comprehensive clinical validation studies to assess the real-world effectiveness of electrochemical biosensors.
Collapse
Affiliation(s)
- Lei Wang
- Second Department of Gastrocolorectal Surgery, Jilin Cancer Hospital, Changchun, Jilin 130000, China; Key Laboratory of Gastrointestinal Tumor Bioinformatics of Jilin Province, The First Hospital of Jilin University, Changchun 130000 Jilin, China.
| | - Jianjiang Pan
- Second Department of Gastrocolorectal Surgery, Jilin Cancer Hospital, Changchun, Jilin 130000, China
| | - Bita Badehnoosh
- Department of Gynecology and Obstetrics, Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
2
|
Chen Y, Fu KX, Cotton R, Ou Z, Kwak JW, Chien JC, Kesler V, Nyein HYY, Eisenstein M, Tom Soh H. A biochemical sensor with continuous extended stability in vivo. Nat Biomed Eng 2025:10.1038/s41551-025-01389-6. [PMID: 40410556 DOI: 10.1038/s41551-025-01389-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/03/2025] [Indexed: 05/25/2025]
Abstract
The development of biosensors that can detect specific analytes continuously, in vivo, in real time has proven difficult due to biofouling, probe degradation and signal drift that often occur in vivo. By drawing inspiration from intestinal mucosa that can protect host cell receptors in the presence of the gut microbiome, we develop a synthetic biosensor that can continuously detect specific target molecules in vivo. The biomimetic multicomponent sensor features the hierarchical nano-bio interface design with three-dimensional bicontinuous nanoporous structure, polymer coating and aptamer switches, balancing small-molecule sensing and surface protection in complex biological environments. Our system is stable for at least 1 month in undiluted serum in vitro or 1 week implanted within the blood vessels of free-moving rats, retaining over 50% baseline signal and reproducible calibration curves. We demonstrate that the implanted system can intravenously track pharmacokinetics in real time even after 4 days of continuous exposure to flowing blood within rat femoral vein. In this way, our work provides a generalizable design foundation for biosensors that can continuously operate in vivo for extended durations.
Collapse
Affiliation(s)
- Yihang Chen
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Kaiyu X Fu
- Department of Radiology, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| | - Renee Cotton
- Department of Comparative Medicine, Stanford University, Stanford, CA, USA
| | - Zihao Ou
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Jean Won Kwak
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Jun-Chau Chien
- Department of Radiology, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Vladimir Kesler
- Department of Radiology, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Hnin Yin Yin Nyein
- Department of Radiology, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Michael Eisenstein
- Department of Radiology, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - H Tom Soh
- Department of Radiology, Stanford University, Stanford, CA, USA.
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA.
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
3
|
Shearer V, Yu CH, Han X, Sczepanski JT. The clinical potential of l-oligonucleotides: challenges and opportunities. Chem Sci 2024; 15:d4sc05157b. [PMID: 39479156 PMCID: PMC11514577 DOI: 10.1039/d4sc05157b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/19/2024] [Indexed: 11/02/2024] Open
Abstract
Chemically modified nucleotides are central to the development of biostable research tools and oligonucleotide therapeutics. In this context, l-oligonucleotides, the synthetic enantiomer of native d-nucleic acids, hold great promise. As enantiomers, l-oligonucleotides share the same physical and chemical properties as their native counterparts, yet their inverted l-(deoxy)ribose sugars afford them orthogonality towards the stereospecific environment of biology. Notably, l-oligonucleotides are highly resistant to degradation by cellular nucleases, providing them with superior biostability. As a result, l-oligonucleotides are being increasingly utilized for the development of diverse biomedical technologies, including molecular imaging tools, diagnostic biosensors, and aptamer-based therapeutics. Herein, we present recent such examples that highlight the clinical potential of l-oligonucleotides. Additionally, we provide our perspective on the remaining challenges and practical considerations currently associated with the use of l-oligonucleotides and explore potential solutions that will lead to the broader adoption of l-oligonucleotides in clinical applications.
Collapse
Affiliation(s)
- Victoria Shearer
- Department of Chemistry, Texas A&M University College Station Texas 77843 USA
| | - Chen-Hsu Yu
- Department of Chemistry, Texas A&M University College Station Texas 77843 USA
| | - Xuan Han
- Department of Chemistry, Texas A&M University College Station Texas 77843 USA
| | | |
Collapse
|
4
|
Mack J, Murray R, Lynch K, Arroyo-Currás N. 3D-printed electrochemical cells for multi-point aptamer-based drug measurements. SENSORS & DIAGNOSTICS 2024; 3:1533-1541. [PMID: 39157417 PMCID: PMC11325214 DOI: 10.1039/d4sd00192c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/03/2024] [Indexed: 08/20/2024]
Abstract
Electrochemical aptamer-based (E-AB) sensors achieve detection and quantitation of biomedically relevant targets such as small molecule drugs and protein biomarkers in biological samples. E-ABs are usually fabricated on commercially available macroelectrodes which, although functional for rapid sensor prototyping, can be costly and are not compatible with the microliter sample volumes typically available in biorepositories for clinical validation studies. Seeking to develop a multi-point sensing platform for sensor validation in sample volumes characteristic of clinical studies, we report a protocol for in-house assembly of 3D-printed E-ABs. We employed a commercially available 3D stereolithographic printer (FormLabs, $5k USD) for electrochemical cell fabrication and directly embedded electrodes within the 3D-printed cell structure. This approach offers a reproducible and reusable electrode fabrication process resulting in four independent and simultaneous measurements for statistically weighted results. We demonstrate compatibility with aptamer sequences binding antibiotics and antineoplastic agents. We also demonstrate a proof-of-concept validation of serum vancomycin measurements using clinical samples. Our results demonstrate that 3D-printing can be used in conjunction with E-ABs for accessible, rapid, and statistically meaningful validation of E-AB sensors in biological matrices.
Collapse
Affiliation(s)
- John Mack
- Biochemistry, Cellular and Molecular Biology Program, Johns Hopkins University School of Medicine 316 Hunterian Building, 725 North Wolfe Street Baltimore MD 21205 USA +1 443 287 4798
| | - Raygan Murray
- Biochemistry, Cellular and Molecular Biology Program, Johns Hopkins University School of Medicine 316 Hunterian Building, 725 North Wolfe Street Baltimore MD 21205 USA +1 443 287 4798
| | - Kenedi Lynch
- Amgen Scholars Program, Krieger School of Arts and Sciences, Johns Hopkins University Baltimore MD 21218 USA
| | - Netzahualcóyotl Arroyo-Currás
- Biochemistry, Cellular and Molecular Biology Program, Johns Hopkins University School of Medicine 316 Hunterian Building, 725 North Wolfe Street Baltimore MD 21205 USA +1 443 287 4798
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine Baltimore MD 21205 USA
| |
Collapse
|
5
|
Ye C, Lukas H, Wang M, Lee Y, Gao W. Nucleic acid-based wearable and implantable electrochemical sensors. Chem Soc Rev 2024; 53:7960-7982. [PMID: 38985007 PMCID: PMC11308452 DOI: 10.1039/d4cs00001c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
The rapid advancements in nucleic acid-based electrochemical sensors for implantable and wearable applications have marked a significant leap forward in the domain of personal healthcare over the last decade. This technology promises to revolutionize personalized healthcare by facilitating the early diagnosis of diseases, monitoring of disease progression, and tailoring of individual treatment plans. This review navigates through the latest developments in this field, focusing on the strategies for nucleic acid sensing that enable real-time and continuous biomarker analysis directly in various biofluids, such as blood, interstitial fluid, sweat, and saliva. The review delves into various nucleic acid sensing strategies, emphasizing the innovative designs of biorecognition elements and signal transduction mechanisms that enable implantable and wearable applications. Special perspective is given to enhance nucleic acid-based sensor selectivity and sensitivity, which are crucial for the accurate detection of low-level biomarkers. The integration of such sensors into implantable and wearable platforms, including microneedle arrays and flexible electronic systems, actualizes their use in on-body devices for health monitoring. We also tackle the technical challenges encountered in the development of these sensors, such as ensuring long-term stability, managing the complexity of biofluid dynamics, and fulfilling the need for real-time, continuous, and reagentless detection. In conclusion, the review highlights the importance of these sensors in the future of medical engineering, offering insights into design considerations and future research directions to overcome existing limitations and fully realize the potential of nucleic acid-based electrochemical sensors for healthcare applications.
Collapse
Affiliation(s)
- Cui Ye
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA.
| | - Heather Lukas
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA.
| | - Minqiang Wang
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA.
| | - Yerim Lee
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA.
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
6
|
Leung KK, Gerson J, Emmons N, Heemstra JM, Kippin TE, Plaxco KW. The Use of Xenonucleic Acids Significantly Reduces the In Vivo Drift of Electrochemical Aptamer-Based Sensors. Angew Chem Int Ed Engl 2024; 63:e202316678. [PMID: 38500260 PMCID: PMC11821280 DOI: 10.1002/anie.202316678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/09/2024] [Accepted: 03/17/2024] [Indexed: 03/20/2024]
Abstract
Electrochemical aptamer-based sensors support the high-frequency, real-time monitoring of molecules-of-interest in vivo. Achieving this requires methods for correcting the sensor drift seen during in vivo placements. While this correction ensures EAB sensor measurements remain accurate, as drift progresses it reduces the signal-to-noise ratio and precision. Here, we show that enzymatic cleavage of the sensor's target-recognizing DNA aptamer is a major source of this signal loss. To demonstrate this, we deployed a tobramycin-detecting EAB sensor analog fabricated with the DNase-resistant "xenonucleic acid" 2'O-methyl-RNA in a live rat. In contrast to the sensor employing the equivalent DNA aptamer, the 2'O-methyl-RNA aptamer sensor lost very little signal and had improved signal-to-noise. We further characterized the EAB sensor drift using unstructured DNA or 2'O-methyl-RNA oligonucleotides. While the two devices drift similarly in vitro in whole blood, the in vivo drift of the 2'O-methyl-RNA-employing device is less compared to the DNA-employing device. Studies of the electron transfer kinetics suggested that the greater drift of the latter sensor arises due to enzymatic DNA degradation. These findings, coupled with advances in the selection of aptamers employing XNA, suggest a means of improving EAB sensor stability when they are used to perform molecular monitoring in the living body.
Collapse
Affiliation(s)
- Kaylyn K. Leung
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA 93106, USA
- Center for Bioengineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Julian Gerson
- Department of Psychological and Brain Sciences, University of California, Santa Barbara
- Center for Bioengineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Nicole Emmons
- Department of Psychological and Brain Sciences, University of California, Santa Barbara
- Center for Bioengineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Jennifer M. Heemstra
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Tod E. Kippin
- Department of Psychological and Brain Sciences, University of California, Santa Barbara
- Department of Molecular Cellular and Developmental Biology, University of California, Santa Barbara
| | - Kevin W. Plaxco
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA 93106, USA
- Center for Bioengineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
7
|
Bag S, Ghosal S, Mukherjee M, Pramanik G, Bhowmik S. Quercetin Exhibits Preferential Binding Interaction by Selectively Targeting HRAS1 I-Motif DNA-Forming Promoter Sequences. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:10157-10170. [PMID: 38700902 DOI: 10.1021/acs.langmuir.4c00418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2024]
Abstract
I-Motif (iM) DNA structures represent among the most significant noncanonical nucleic acid configurations. iM-forming DNA sequences are found in an array of vital genomic locations and are particularly frequent in the promoter islands of various oncogenes. Thus, iM DNA is a crucial candidate for anticancer medicines; therefore, binding interactions between iM DNA and small molecular ligands, such as flavonoids, are critically important. Extensive sets of spectroscopic strategies and thermodynamic analysis were utilized in the present investigation to find out the favorable interaction of quercetin (Que), a dietary flavonoid that has various health-promoting characteristics, including anticancer properties, with noncanonical iM DNA structure. Spectroscopic studies and thermal analysis revealed that Que interacts preferentially with HRAS1 iM DNA compared with VEGF, BCL2 iM, and duplex DNA. Que, therefore, emerged as a suitable natural-product-oriented antagonist for targeting HRAS1 iM DNA. The innovative spectroscopic as well as mechanical features of Que and its specific affinity for HRAS1 iM may be useful for therapeutic applications and provide crucial insights for the design of compounds with remarkable medicinal properties.
Collapse
Affiliation(s)
- Sagar Bag
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India
| | - Souvik Ghosal
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Pondy-Cuddalore Main Road, Pillaiyarkuppam, Pondicherry 607402, India
| | - Moupriya Mukherjee
- UGC-DAE Consortium for Scientific Research, Kolkata Centre, Sector III, LB-8, Bidhan Nagar, Kolkata 700 106, India
| | - Goutam Pramanik
- UGC-DAE Consortium for Scientific Research, Kolkata Centre, Sector III, LB-8, Bidhan Nagar, Kolkata 700 106, India
| | - Sudipta Bhowmik
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Pondy-Cuddalore Main Road, Pillaiyarkuppam, Pondicherry 607402, India
| |
Collapse
|
8
|
Wu Y, Shi J, Kippin TE, Plaxco KW. Codeposition Enhances the Performance of Electrochemical Aptamer-Based Sensors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8703-8710. [PMID: 38616608 PMCID: PMC11821552 DOI: 10.1021/acs.langmuir.4c00585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Electrochemical aptamer-based (EAB) sensors, a minimally invasive means of performing high-frequency, real-time measurement of drugs and biomarkers in situ in the body, have traditionally been fabricated by depositing their target-recognizing aptamer onto an interrogating gold electrode using a "sequential" two-step method involving deposition of the thiol-modified oligonucleotide (typically for 1 h) followed by incubation in mercaptohexanol solution (typically overnight) to complete the formation of a stable, self-assembled monolayer. Here we use EAB sensors targeting vancomycin, tryptophan, and phenylalanine to show that "codeposition", a less commonly employed EAB fabrication method in which the thiol-modified aptamer and the mercaptohexanol diluent are deposited on the electrode simultaneously and for as little as 1 h, improves the signal gain (relative change in signal upon the addition of high concentrations of the target) of the vancomycin and tryptophan sensors without significantly reducing their stability. In contrast, the gain of the phenylalanine sensor is effectively identical irrespective of the fabrication approach employed. This sensor, however, appears to employ binding-induced displacement of the redox reporter rather than binding-induced folding as its signal transduction mechanism, suggesting in turn a mechanism for the improvement observed for the other two sensors. Codeposition thus not only provides a more convenient means of fabricating EAB sensors but also can improve their performance.
Collapse
Affiliation(s)
- Yuyang Wu
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Jinyuan Shi
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Tod E Kippin
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, California 93106, United States
- Department of Molecular Cellular and Developmental Biology, University of California, Santa Barbara, California 93106, United States
- Neuroscience Research Institute, University of California, Santa Barbara, California 93106, United States
- Biological Engineering Graduate Program, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Kevin W Plaxco
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
- Biological Engineering Graduate Program, University of California Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
9
|
Ritz AJ, Stuehr OM, Comer DN, Lazenby RA. Controlling Gold Morphology Using Electrodeposition for the Preparation of Electrochemical Aptamer-Based Sensors. ACS APPLIED BIO MATERIALS 2024; 7:1925-1935. [PMID: 38369768 DOI: 10.1021/acsabm.3c01254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Nanostructuring of gold surfaces to enhance electroactive surface area has proven to significantly enhance the performance of electrochemical aptamer-based (E-AB) sensors, particularly for electrodes on the microscale. Unlike for sensors fabricated on polished gold surfaces, predicting the behavior of E-AB sensors on surfaces with varied gold morphologies becomes more intricate due to the effects of surface roughness and the shapes and sizes of surface features on supporting a self-assembled monolayer. In this study, we explored the impact of gold morphology characteristics on sensor performance, evaluating parameters such as signal change in response to the addition of the target analyte, aptamer probe packing density, and continuous sensing ability. Our findings reveal that surface area enhancement can either enhance or diminish sensor performance for gold nanostructured E-AB sensors, contingent upon the surface morphology. In particular, our results indicate that the aptamer packing density and target analyte signal change results are heavily dependent on gold nanostructure size and features. Sensing surfaces with larger nanoparticle diameters, which were prepared using electrodeposition at a constant potential, had a reduced aptamer packing density and exhibited diminished sensor performance. However, the equivalent packing density of polished electrodes did not yield the equivalent signal change. Other surfaces that were prepared using pulsed waveform electrodeposition achieved optimal signal change with a deposition time, tdep, of 120 s, and increased deposition time with enhanced electroactive surface area resulted in minimized signal changes and more rapid sensor degradation. By investigating sensing surfaces with varied morphologies, we have demonstrated that enhancing the electroactive surface does not always enhance the signal change of the sensor, and aptamer packing density alone does not dictate observed signal change trends. We anticipate that understanding how electrodeposition techniques enhance or diminish sensor performance will pave the way for further exploration of nanostructure-aptamer relationships, contributing to the future development of optimized, miniaturized electrochemical aptamer-based sensors for continuous, in vivo sensing.
Collapse
Affiliation(s)
- Amanda J Ritz
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Olivia M Stuehr
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Danté N Comer
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Robert A Lazenby
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
10
|
Xu X, Zuo Y, Chen S, Hatami A, Gu H. Advancements in Brain Research: The In Vivo/In Vitro Electrochemical Detection of Neurochemicals. BIOSENSORS 2024; 14:125. [PMID: 38534232 DOI: 10.3390/bios14030125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/28/2024]
Abstract
Neurochemicals, crucial for nervous system function, influence vital bodily processes and their fluctuations are linked to neurodegenerative diseases and mental health conditions. Monitoring these compounds is pivotal, yet the intricate nature of the central nervous system poses challenges. Researchers have devised methods, notably electrochemical sensing with micro-nanoscale electrodes, offering high-resolution monitoring despite low concentrations and rapid changes. Implantable sensors enable precise detection in brain tissues with minimal damage, while microdialysis-coupled platforms allow in vivo sampling and subsequent in vitro analysis, addressing the selectivity issues seen in other methods. While lacking temporal resolution, techniques like HPLC and CE complement electrochemical sensing's selectivity, particularly for structurally similar neurochemicals. This review covers essential neurochemicals and explores miniaturized electrochemical sensors for brain analysis, emphasizing microdialysis integration. It discusses the pros and cons of these techniques, forecasting electrochemical sensing's future in neuroscience research. Overall, this comprehensive review outlines the evolution, strengths, and potential applications of electrochemical sensing in the study of neurochemicals, offering insights into future advancements in the field.
Collapse
Affiliation(s)
- Xiaoxuan Xu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Yimei Zuo
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Shu Chen
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Amir Hatami
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Prof. Sobouti Boulevard, P.O. Box 45195-1159, Zanjan 45137-66731, Iran
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Hui Gu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| |
Collapse
|
11
|
Watkins Z, McHenry A, Heikenfeld J. Wearing the Lab: Advances and Challenges in Skin-Interfaced Systems for Continuous Biochemical Sensing. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 187:223-282. [PMID: 38273210 DOI: 10.1007/10_2023_238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Continuous, on-demand, and, most importantly, contextual data regarding individual biomarker concentrations exemplify the holy grail for personalized health and performance monitoring. This is well-illustrated for continuous glucose monitoring, which has drastically improved outcomes and quality of life for diabetic patients over the past 2 decades. Recent advances in wearable biosensing technologies (biorecognition elements, transduction mechanisms, materials, and integration schemes) have begun to make monitoring of other clinically relevant analytes a reality via minimally invasive skin-interfaced devices. However, several challenges concerning sensitivity, specificity, calibration, sensor longevity, and overall device lifetime must be addressed before these systems can be made commercially viable. In this chapter, a logical framework for developing a wearable skin-interfaced device for a desired application is proposed with careful consideration of the feasibility of monitoring certain analytes in sweat and interstitial fluid and the current development of the tools available to do so. Specifically, we focus on recent advancements in the engineering of biorecognition elements, the development of more robust signal transduction mechanisms, and novel integration schemes that allow for continuous quantitative analysis. Furthermore, we highlight the most compelling and promising prospects in the field of wearable biosensing and the challenges that remain in translating these technologies into useful products for disease management and for optimizing human performance.
Collapse
Affiliation(s)
- Zach Watkins
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA.
| | - Adam McHenry
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
| | - Jason Heikenfeld
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
12
|
Hariri AA, Cartwright AP, Dory C, Gidi Y, Yee S, Thompson IAP, Fu KX, Yang K, Wu D, Maganzini N, Feagin T, Young BE, Afshar BH, Eisenstein M, Digonnet MJF, Vuckovic J, Soh HT. Modular Aptamer Switches for the Continuous Optical Detection of Small-Molecule Analytes in Complex Media. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304410. [PMID: 37975267 DOI: 10.1002/adma.202304410] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/10/2023] [Indexed: 11/19/2023]
Abstract
Aptamers are a promising class of affinity reagents because signal transduction mechanisms can be built into the reagent, so that they can directly produce a physically measurable output signal upon target binding. However, endowing the signal transduction functionality into an aptamer remains a trial-and-error process that can compromise its affinity or specificity and typically requires knowledge of the ligand binding domain or its structure. In this work, a design architecture that can convert an existing aptamer into a "reversible aptamer switch" whose kinetic and thermodynamic properties can be tuned without a priori knowledge of the ligand binding domain or its structure is described. Finally, by combining these aptamer switches with evanescent-field-based optical detection hardware that minimizes sample autofluorescence, this study demonstrates the first optical biosensor system that can continuously measure multiple biomarkers (dopamine and cortisol) in complex samples (artificial cerebrospinal fluid and undiluted plasma) with second and subsecond-scale time responses at physiologically relevant concentration ranges.
Collapse
Affiliation(s)
- Amani A Hariri
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Alyssa P Cartwright
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Constantin Dory
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Yasser Gidi
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Steven Yee
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Ian A P Thompson
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Kaiyu X Fu
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Kiyoul Yang
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Diana Wu
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Nicolò Maganzini
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Trevor Feagin
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Brian E Young
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Behrad Habib Afshar
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | | | - Michel J F Digonnet
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Jelena Vuckovic
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - H Tom Soh
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
13
|
Dominique NL, Chandran A, Jensen IM, Jenkins DM, Camden JP. Unmasking the Electrochemical Stability of N-Heterocyclic Carbene Monolayers on Gold. Chemistry 2023:e202303681. [PMID: 38116819 DOI: 10.1002/chem.202303681] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/16/2023] [Indexed: 12/21/2023]
Abstract
N-heterocyclic carbene (NHC) monolayers are transforming electrocatalysis and biosensor design via their increased performance and stability. Despite their increasing use in electrochemical systems, the integrity of the NHC monolayer during voltage perturbations remains largely unknown. Herein, we deploy surface-enhanced Raman spectroscopy (SERS) to measure the stability of two model NHCs on gold in ambient conditions as a function of applied potential and under continuous voltammetric interrogation. Our results illustrate that NHC monolayers exhibit electrochemical stability over a wide voltage window (-1 V to 0.5 V vs Ag|AgCl), but they are found to degrade at strongly reducing (< -1 V) or oxidizing (>0.5 V) potentials. We also address NHC monolayer stability under continuous voltammetric interrogation between 0.2 V and -0.5 V, a commonly used voltage window for sensing, showing they are stable for up to 43 hours. However, we additionally find that modifications of the backbone NHC structure can lead to significantly shorter operational lifetimes. While these results highlight the potential of NHC architectures for electrode functionalization, they also reveal potential pitfalls that have not been fully appreciated in electrochemical applications of NHCs.
Collapse
Affiliation(s)
- Nathaniel L Dominique
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN-46556, United States
| | - Aruna Chandran
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN-46556, United States
| | - Isabel M Jensen
- Department of Chemistry, University of Tennessee, Knoxville, Knoxville, TN-37996
| | - David M Jenkins
- Department of Chemistry, University of Tennessee, Knoxville, Knoxville, TN-37996
| | - Jon P Camden
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN-46556, United States
| |
Collapse
|
14
|
Miera GG, Heinz O, Hong W, Walker GC. Virtual Issue: Electrode Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18171-18174. [PMID: 38111359 DOI: 10.1021/acs.langmuir.3c03655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
|
15
|
Li S, Dai J, Zhu M, Arroyo-Currás N, Li H, Wang Y, Wang Q, Lou X, Kippin TE, Wang S, Plaxco KW, Li H, Xia F. Implantable Hydrogel-Protective DNA Aptamer-Based Sensor Supports Accurate, Continuous Electrochemical Analysis of Drugs at Multiple Sites in Living Rats. ACS NANO 2023; 17:18525-18538. [PMID: 37703911 DOI: 10.1021/acsnano.3c06520] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
The ability to track the levels of specific molecules, such as drugs, metabolites, and biomarkers, in the living body, in real time and for long durations, would improve our understanding of health and our ability to diagnose, treat, and monitor disease. To this end, we are developing electrochemical aptamer-based (EAB) biosensors, a general platform supporting high-frequency, real-time molecular measurements in the living body. Here we report that the use of an agarose hydrogel protective layer for EAB sensors significantly improves their signaling stability when deployed in the complex, highly time-varying environments found in vivo. The improved stability is sufficient that these hydrogel-protected sensors achieved good baseline stability and precision when deployed in situ in the veins, muscles, bladder, or tumors of living rats without the use of the drift correction approaches traditionally required in such placements. Finally, our implantable gel-protective EAB sensors achieved good biocompatibility when deployed in vivo in the living rats without causing any severe inflammation.
Collapse
Affiliation(s)
- Shaoguang Li
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, People's Republic of China
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Man Zhu
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, People's Republic of China
| | - Netzahualcóyotl Arroyo-Currás
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Hongxing Li
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, People's Republic of China
| | - Yuanyuan Wang
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, People's Republic of China
| | - Quan Wang
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, People's Republic of China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, People's Republic of China
| | - Tod E Kippin
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, California 93106, United States
- The Neuroscience Research Institute, University of California, Santa Barbara, California 93106, United States
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Kevin W Plaxco
- Department of Molecular Cellular and Developmental Biology, University of California, Santa Barbara, California 93106, United States
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
- Center for Bioengineering, University of California, Santa Barbara, California 93106, United States
- Interdepartmental Program in Biomolecular Science and Engineering, University of California, Santa Barbara, California 93106, United States
| | - Hui Li
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, People's Republic of China
| | - Fan Xia
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, People's Republic of China
| |
Collapse
|
16
|
Young T, Clark V, Arroyo-Currás N, Heikenfeld J. Perspective-The Feasibility of Continuous Protein Monitoring in Interstitial Fluid. ECS SENSORS PLUS 2023; 2:027001. [PMID: 37128505 PMCID: PMC10140668 DOI: 10.1149/2754-2726/accd7e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/09/2023] [Indexed: 05/03/2023]
Abstract
Real-time continuous monitoring of proteins in-vivo holds great potential for personalized medical applications. Unfortunately, a prominent knowledge gap exists in the fundamental biology regarding protein transfer and correlation between interstitial fluid and blood. Additionally, technological sensing will require affinity-based platforms that cannot be robustly protected in-vivo and will therefore be challenged in sensitivity, longevity, and fouling over multi-day to week timelines. Here we use electrochemical aptamer sensors as a model system to discuss further research necessary to achieve continuous protein sensing.
Collapse
Affiliation(s)
- Thomas Young
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, United States of America
| | - Vincent Clark
- Chemistry-Biology Interface Program, Zanvyl Krieger School of Arts & Sciences, Johns Hopkins University, Baltimore, MD 21218, United States of America
| | - Netzahualcóyotl Arroyo-Currás
- Chemistry-Biology Interface Program, Zanvyl Krieger School of Arts & Sciences, Johns Hopkins University, Baltimore, MD 21218, United States of America
| | - Jason Heikenfeld
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, United States of America
- Department of Electrical & Computer Engineering, University of Cincinnati, Cincinnati, OH 45221, United States of America
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States of America
| |
Collapse
|
17
|
A non-invasive wearable stress patch for real-time cortisol monitoring using a pseudoknot-assisted aptamer. Biosens Bioelectron 2023; 227:115097. [PMID: 36858023 DOI: 10.1016/j.bios.2023.115097] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/29/2022] [Accepted: 01/19/2023] [Indexed: 01/30/2023]
Abstract
Stress is part of everyone's life and is exacerbated by traumatic events such as pandemics, disasters, violence, lifestyle changes, and health disorders. Chronic stress has many detrimental health effects and can even be life-threatening. Long-term stress monitoring outside of a hospital is often accomplished by measuring heart rate variability. While easy to measure, this digital biomarker has low specificity, greatly limiting its utility. To address this shortcoming, we report a non-invasive, wearable biomolecular sensor to monitor cortisol levels in sweat. Cortisol is a neuroendocrine hormone that regulates homeostasis as part of the stress pathway. Cortisol is detected using an electrochemical sensor functionalized with a pseudoknot-assisted aptamer and a flexible microfluidic sweat sampling system. The skin-worn microfluidic sampler provides rapid sweat collection while separating old and new sweat. The conformation-switching aptamer provides high specificity towards cortisol while being regenerable, allowing it to monitor temporal changes continuously. The aptamer was engineered to add a pseudoknot, restricting it to only two states, thus minimizing the background signal and enabling high sensitivity. An electrochemical pH sensor allows pH-corrected amperometric measurements. Device operation was demonstrated invitro with a broad linear dynamic range (1 pM - 1 μM) covering the physiological range and a sub-picomolar (0.2 pM) limit of detection in sweat. Real-time, on-body measurements were collected from human subjects using an induced stress protocol, demonstrating in-situ signal regeneration and the ability to detect dynamic cortisol fluctuations continuously for up to 90 min. The reported device has the potential to improve prognosis and enable personalized treatments.
Collapse
|
18
|
Watkins Z, Karajic A, Young T, White R, Heikenfeld J. Week-Long Operation of Electrochemical Aptamer Sensors: New Insights into Self-Assembled Monolayer Degradation Mechanisms and Solutions for Stability in Serum at Body Temperature. ACS Sens 2023; 8:1119-1131. [PMID: 36884003 PMCID: PMC10443649 DOI: 10.1021/acssensors.2c02403] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Conventional wisdom suggests that widely utilized self-assembled alkylthiolate monolayers on gold are too unstable to last more than several days when exposed to complex fluids such as raw serum at body temperature. Demonstrated here is that these monolayers can not only last at least 1 week under such harsh conditions but that significant applied value can be captured for continuous electrochemical aptamer biosensors. Electrochemical aptamer biosensors provide an ideal tool to investigate monolayer degradation, as aptamer sensors require a tightly packed monolayer to preserve sensor signal vs background current and readily reveal fouling by albumin and other solutes when operating in biofluids. Week-long operation in serum at 37 °C is achieved by (1) increasing van der Waals interactions between adjacent monolayer molecules to increase the activation energy required for desorption, (2) optimizing electrochemical measurement to decrease both alkylthiolate oxidation and electric-field-induced desorption, and (3) mitigating fouling using protective zwitterionic membranes and zwitterion-based blocking layers with antifouling properties. This work further proposes origins and mechanisms of monolayer degradation in a logical stepwise manner that was previously unobservable over multiday time scales. Several of the observed results are surprising, revealing that short-term improvements to sensor longevity (i.e., hours) actually increase sensor degradation in the longer term (i.e., days). The results and underlying insights on mechanisms not only push forward fundamental understanding of stability for self-assembled monolayers but also demonstrate an important milestone for continuous electrochemical aptamer biosensors.
Collapse
Affiliation(s)
- Zach Watkins
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Aleksandar Karajic
- Department of Electrical & Computer Engineering, University of Cincinnati, Cincinnati, OH 45221
| | - Thomas Young
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221
| | - Ryan White
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221
- Department of Electrical & Computer Engineering, University of Cincinnati, Cincinnati, OH 45221
| | - Jason Heikenfeld
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221
- Department of Electrical & Computer Engineering, University of Cincinnati, Cincinnati, OH 45221
| |
Collapse
|
19
|
Clark V, Pellitero MA, Arroyo-Currás N. Explaining the Decay of Nucleic Acid-Based Sensors under Continuous Voltammetric Interrogation. Anal Chem 2023; 95:4974-4983. [PMID: 36881708 PMCID: PMC10035425 DOI: 10.1021/acs.analchem.2c05158] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/23/2023] [Indexed: 03/09/2023]
Abstract
Nucleic acid-based electrochemical sensors (NBEs) can support continuous and highly selective molecular monitoring in biological fluids, both in vitro and in vivo, via affinity-based interactions. Such interactions afford a sensing versatility that is not supported by strategies that depend on target-specific reactivity. Thus, NBEs have significantly expanded the scope of molecules that can be monitored continuously in biological systems. However, the technology is limited by the lability of the thiol-based monolayers employed for sensor fabrication. Seeking to understand the main drivers of monolayer degradation, we studied four possible mechanisms of NBE decay: (i) passive desorption of monolayer elements in undisturbed sensors, (ii) voltage-induced desorption under continuous voltammetric interrogation, (iii) competitive displacement by thiolated molecules naturally present in biofluids like serum, and (iv) protein binding. Our results indicate that voltage-induced desorption of monolayer elements is the main mechanism by which NBEs decay in phosphate-buffered saline. This degradation can be overcome by using a voltage window contained between -0.2 and 0.2 V vs Ag|AgCl, reported for the first time in this work, where electrochemical oxygen reduction and surface gold oxidation cannot occur. This result underscores the need for chemically stable redox reporters with more positive reduction potentials than the benchmark methylene blue and the ability to cycle thousands of times between redox states to support continuous sensing for long periods. Additionally, in biofluids, the rate of sensor decay is further accelerated by the presence of thiolated small molecules like cysteine and glutathione, which can competitively displace monolayer elements even in the absence of voltage-induced damage. We hope that this work will serve as a framework to inspire future development of novel sensor interfaces aiming to eliminate the mechanisms of signal decay in NBEs.
Collapse
Affiliation(s)
- Vincent Clark
- Chemistry-Biology
Interface Program, Zanvyl Krieger School of Arts & Sciences, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Miguel Aller Pellitero
- Departamento
de Química Física y Analítica, Universidad de Oviedo, Av. Julián Clavería 8, Oviedo 33006, Spain
- Instituto
de Investigación Sanitaria Del Principado de Asturias, Avenida de Roma, Oviedo 33011, Spain
- Department
of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Netzahualcóyotl Arroyo-Currás
- Chemistry-Biology
Interface Program, Zanvyl Krieger School of Arts & Sciences, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department
of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
20
|
Shaver A, Arroyo-Currás N. Expanding the Monolayer Scope for Nucleic Acid-Based Electrochemical Sensors Beyond Thiols on Gold: Alkylphosphonic Acids on ITO. ECS SENSORS PLUS 2023; 2:010601. [PMID: 37006966 PMCID: PMC10053865 DOI: 10.1149/2754-2726/acc4d9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/15/2023] [Indexed: 03/18/2023]
Abstract
Electrochemical biosensors are a powerful and rapidly evolving molecular monitoring technology. Evidenced by the success of the continuous glucose monitor in managing Type 1 Diabetes, these sensors are capable of precise, accurate measurements in unprocessed biological environments. Nucleic acid-based electrochemical sensors (NBEs) are a specific type of biosensor that employs the target binding and conformational dynamics of nucleic acids for signal transduction. Currently, the vast majority of NBEs are fabricated via self-assembly of alkylthiols on Au electrodes. However, this architecture is limited in scope, as Au electrodes are not universally deployable for all potential NBE applications. Here, to expand the repertoire of materials on which NBEs can be made, we describe the multistep procedure for creating sensing monolayers of alkylphosphonic acids on a conductive oxide surface. Using such monolayers on indium tin oxide (ITO)-coated glass slides, we couple redox reporter-modified nucleic acids and demonstrate signaling of procaine-binding NBE sensors in buffer and human serum. We investigate the operational stability of these NBE sensors to reveal faster signal loss relative to benchmark thiol-on-gold sensing layers, a result that arises due to poor stability of the underlying ITO. Finally, we discuss future directions to continue expansion of NBE sensor materials and applications.
Collapse
Affiliation(s)
- Alexander Shaver
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21202, United States of America
| | - Netzahualcóyotl Arroyo-Currás
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21202, United States of America
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States of America
| |
Collapse
|
21
|
Aller Pellitero M, Kundu N, Sczepanski J, Arroyo-Currás N. Os(II/III) complex supports pH-insensitive electrochemical DNA-based sensing with superior operational stability than the benchmark methylene blue reporter. Analyst 2023; 148:806-813. [PMID: 36632808 PMCID: PMC9924220 DOI: 10.1039/d2an01901a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
DNA-based electrochemical sensors use redox reporters to transduce affinity events into electrical currents. Ideally, such reporters must be electrochemically reversible, chemically stable for thousands of redox cycles, and tolerant to changing chemical environments. Here we report the first use of an Os(II/III) complex in DNA-based sensors, which undergoes pH-insensitive electron transfer with 35% better operational stability relative to the benchmark methylene blue, making it a promising reporter for continuous molecular monitoring applications where pH fluctuates with time.
Collapse
Affiliation(s)
- Miguel Aller Pellitero
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.
| | - Nandini Kundu
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Jonathan Sczepanski
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Netzahualcóyotl Arroyo-Currás
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, 21218, USA
| |
Collapse
|
22
|
Khuda N, Somasundaram S, Urgunde AB, Easley CJ. Ionic Strength and Hybridization Position near Gold Electrodes Can Significantly Improve Kinetics in DNA-Based Electrochemical Sensors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5019-5027. [PMID: 36661270 PMCID: PMC10370289 DOI: 10.1021/acsami.2c22741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A variety of electrochemical (EC) biosensors play critical roles in disease diagnostics. More recently, DNA-based EC sensors have been established as promising for detecting a wide range of analyte classes. Since most of these sensors rely on the high specificity of DNA hybridization for analyte binding or structural control, it is crucial to understand the kinetics of hybridization at the electrode surface. In this work, we have used methylene blue-labeled DNA strands to monitor the kinetics of DNA hybridization at the electrode surface with square-wave voltammetry. By varying the position of the double-stranded DNA segment relative to the electrode surface as well as the bulk solution's ionic strength (0.125-1.00 M), we observed significant interferences with DNA hybridization closer to the surface, with more substantial interference at lower ionic strength. As a demonstration of the effect, toehold-mediated strand displacement reactions were slowed and diminished close to the surface, while strategic placement of the DNA binding site improved reaction rates and yields. This work manifests that both the salt concentration and DNA hybridization site relative to the electrode are important factors to consider when designing DNA-based EC sensors that measure hybridization directly at the electrode surface.
Collapse
Affiliation(s)
- Niamat Khuda
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA
| | | | - Ajay B. Urgunde
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA
| | | |
Collapse
|
23
|
Rahbarimehr E, Chao HP, Churcher ZR, Slavkovic S, Kaiyum YA, Johnson PE, Dauphin-Ducharme P. Finding the Lost Dissociation Constant of Electrochemical Aptamer-Based Biosensors. Anal Chem 2023; 95:2229-2237. [PMID: 36638814 DOI: 10.1021/acs.analchem.2c03566] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Electrochemical aptamer-based (E-AB) biosensors afford real-time measurements of the concentrations of molecules directly in complex matrices and in the body, offering alternative strategies to develop innovative personalized medicine tools. While different electroanalytical techniques have been used to interrogate E-AB sensors (i.e., cyclic voltammetry, electrochemical impedance spectroscopy, and chronoamperometry) to resolve the change in electron transfer of the aptamer's covalently attached redox reporter, square-wave voltammetry remains a widely used technique due to its ability to maximize the redox reporter's faradic contribution to the measured current. Several E-AB sensors interrogated with this technique, however, show lower aptamer affinity (i.e., μM-mM) even in the face of employing aptamers that have high affinities (i.e., nM-μM) when characterized using solution techniques such as isothermal titration calorimetry (ITC) or fluorescence spectroscopy. Given past reports showing that E-AB sensor's response is dependent on square-wave interrogation parameters (i.e., frequency and amplitude), we hypothesized that the difference in dissociation constants measured with solution techniques stemmed from the electrochemical interrogation technique itself. In response, we decided to compare six dissociation constants of aptamers when characterized in solution with ITC and when interrogated on electrodes with electrochemical impedance spectroscopy, a technique able to, in contrast to square-wave voltammetry, deconvolute and quantify E-AB sensors' contributions to the measured current. In doing so, we found that we were able to measure dissociation constants that were either separated by 2-3-fold or within experimental errors. These results are in contrast with square-wave voltammetry-measured dissociation constants that are at the most separated by 2-3 orders of magnitude from ones measured by ITC. We thus envision that the versatility and time scales covered by electrochemical impedance spectroscopy offer the highest sensitivity to measure target binding in electrochemical biosensors relying on changes in electron-transfer rates.
Collapse
Affiliation(s)
- Erfan Rahbarimehr
- Département de chimie, Université de Sherbrooke, Sherbrooke, QuébecJ1K 2R1, Canada
| | - Hoi Pui Chao
- Department of Chemistry, York University, 4700 Keele Street, Toronto, OntarioM3J 1P3, Canada
| | - Zachary R Churcher
- Department of Chemistry, York University, 4700 Keele Street, Toronto, OntarioM3J 1P3, Canada
| | - Sladjana Slavkovic
- Department of Chemistry, York University, 4700 Keele Street, Toronto, OntarioM3J 1P3, Canada
| | - Yunus A Kaiyum
- Department of Chemistry, York University, 4700 Keele Street, Toronto, OntarioM3J 1P3, Canada
| | - Philip E Johnson
- Department of Chemistry, York University, 4700 Keele Street, Toronto, OntarioM3J 1P3, Canada
| | | |
Collapse
|
24
|
Ming T, Luo J, Xing Y, Cheng Y, Liu J, Sun S, Kong F, Xu S, Dai Y, Xie J, Jin H, Cai X. Recent progress and perspectives of continuous in vivo testing device. Mater Today Bio 2022; 16:100341. [PMID: 35875195 PMCID: PMC9305619 DOI: 10.1016/j.mtbio.2022.100341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/26/2022] Open
Abstract
Devices for continuous in-vivo testing (CIVT) can detect target substances in real time, thus providing a valuable window into a patient's condition, their response to therapeutics, metabolic activities, and neurotransmitter transmission in the brain. Therefore, CIVT devices have received increased attention because they are expected to greatly assist disease diagnosis and treatment and research on human pathogenesis. However, CIVT has been achieved for only a few markers, and it remains challenging to detect many key markers. Therefore, it is important to summarize the key technologies and methodologies of CIVT, and to examine the direction of future development of CIVT. We review recent progress in the development of CIVT devices, with consideration of the structure of these devices, principles governing continuous detection, and nanomaterials used for electrode modification. This detailed and comprehensive review of CIVT devices serves three purposes: (1) to summarize the advantages and disadvantages of existing devices, (2) to provide a reference for development of CIVT equipment to detect additional important markers, and (3) to discuss future prospects with emphasis on problems that must be overcome for further development of CIVT equipment. This review aims to promote progress in research on CIVT devices and contribute to future innovation in personalized medical treatments.
Collapse
Affiliation(s)
- Tao Ming
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, PR China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinping Luo
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, PR China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Xing
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, PR China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Cheng
- Obstetrics and Gynecology Department, Peking University First Hospital, Beijing, 100034, PR China
| | - Juntao Liu
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, PR China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuai Sun
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, PR China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fanli Kong
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, PR China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shihong Xu
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, PR China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuchuan Dai
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, PR China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingyu Xie
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, PR China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongyan Jin
- Obstetrics and Gynecology Department, Peking University First Hospital, Beijing, 100034, PR China
| | - Xinxia Cai
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100094, PR China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
25
|
Aliyu AW, Zainuddin BS, Hou LJ, Yew LC, Mustaffa KMF. Serum Stability of 5’ Cholesterol Triethylene Glycol- 26-OKA and 3’ Cholesterol Triethylene Glycol- 24-OKA modified Protoporphyrin IX DNA-Aptamer and their in vitro Heme binding Characteristics. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
26
|
Clark V, Waters K, Orsburn B, Bumpus NN, Kundu N, Sczepanski JT, Ray P, Arroyo‐Currás N. Human Cyclophilin B Nuclease Activity Revealed via Nucleic Acid-Based Electrochemical Sensors. Angew Chem Int Ed Engl 2022; 61:e202211292. [PMID: 35999181 PMCID: PMC9633453 DOI: 10.1002/anie.202211292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Indexed: 01/12/2023]
Abstract
Human cyclophilin B (CypB) is oversecreted by pancreatic cancer cells, making it a potential biomarker for early-stage disease diagnosis. Our group is motivated to develop aptamer-based assays to measure CypB levels in biofluids. However, human cyclophilins have been postulated to have collateral nuclease activity, which could impede the use of aptamers for CypB detection. To establish if CypB can hydrolyze electrode-bound nucleic acids, we used ultrasensitive electrochemical sensors to measure CypB's hydrolytic activity. Our sensors use ssDNA and dsDNA in the biologically predominant d-DNA form, and in the nuclease resistant l-DNA form. Challenging such sensors with CypB and control proteins, we unequivocally demonstrate that CypB can cleave nucleic acids. To our knowledge, this is the first study to use electrochemical biosensors to reveal the hydrolytic activity of a protein that is not known to be a nuclease. Future development of CypB bioassays will require the use of nuclease-resistant aptamer sequences.
Collapse
Affiliation(s)
- Vincent Clark
- Chemistry-Biology Interface ProgramZanvyl Krieger School of Arts & SciencesJohns Hopkins UniversityBaltimoreMD 21218USA
| | - Kelly Waters
- Department of Pharmacology and Molecular SciencesJohns Hopkins University School of MedicineBaltimoreMD 21205USA
| | - Ben Orsburn
- Department of Pharmacology and Molecular SciencesJohns Hopkins University School of MedicineBaltimoreMD 21205USA
| | - Namandjé N. Bumpus
- Department of Pharmacology and Molecular SciencesJohns Hopkins University School of MedicineBaltimoreMD 21205USA
| | - Nandini Kundu
- Department of ChemistryTexas A&M University College StationTexasTX 77842USA
| | | | - Partha Ray
- Department of SurgeryDivision of Surgical OncologyMoores Cancer CenterDepartment of MedicineDivision of Infectious Diseases and Global Public HealthUniversity of California San Diego HealthSan DiegoCA 92093USA
| | - Netzahualcóyotl Arroyo‐Currás
- Chemistry-Biology Interface ProgramZanvyl Krieger School of Arts & SciencesJohns Hopkins UniversityBaltimoreMD 21218USA
- Department of Pharmacology and Molecular SciencesJohns Hopkins University School of MedicineBaltimoreMD 21205USA
| |
Collapse
|
27
|
Chung S, Singh NK, Gribkoff VK, Hall DA. Electrochemical Carbamazepine Aptasensor for Therapeutic Drug Monitoring at the Point of Care. ACS OMEGA 2022; 7:39097-39106. [PMID: 36340178 PMCID: PMC9631757 DOI: 10.1021/acsomega.2c04865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/22/2022] [Indexed: 06/02/2023]
Abstract
Monitoring the anti-epileptic drug carbamazepine (CBZ) is crucial for proper dosing, optimizing a patient's clinical outcome, and managing their medication regimen. Due to its narrow therapeutic window and concentration-related toxicity, CBZ is prescribed and monitored in a highly personalized manner. We report an electrochemical conformation-changing aptasensor with two assay formats: a 30 min assay for routine monitoring and a 5 min assay for rapid emergency testing. To enable "sample-to-answer" testing, a de novo CBZ aptamer (K d < 12 nM) with conformational switching due to a G-quadruplex motif was labeled with methylene blue and immobilized on a gold electrode. The electrode fabrication and detection conditions were optimized using electrochemical techniques and visualized by atomic force microscopy (AFM). The aptasensor performance, including reproducibility, stability, and interference, was characterized using electrochemical impedance spectroscopy and voltammetry techniques. The aptasensor exhibited a wide dynamic range in buffer (10 nM to 100 μM) with limits of detection of 1.25 and 1.82 nM for the 5 and 30 min assays, respectively. The clinical applicability is demonstrated by detecting CBZ in finger prick blood samples (<50 μL). The proposed assays provide a promising method to enable point-of-care monitoring for timely personalized CBZ dosing.
Collapse
Affiliation(s)
- Saeromi Chung
- Department
of Electrical and Computer Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Naveen K. Singh
- Department
of Electrical and Computer Engineering, University of California San Diego, La Jolla, California 92093, United States
| | | | - Drew A. Hall
- Department
of Electrical and Computer Engineering, University of California San Diego, La Jolla, California 92093, United States
- Department
of Bioengineering, University of California
San Diego, La Jolla, California 92093, United States
| |
Collapse
|
28
|
Downs AM, Plaxco KW. Real-Time, In Vivo Molecular Monitoring Using Electrochemical Aptamer Based Sensors: Opportunities and Challenges. ACS Sens 2022; 7:2823-2832. [PMID: 36205360 PMCID: PMC9840907 DOI: 10.1021/acssensors.2c01428] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The continuous, real-time measurement of specific molecules in situ in the body would greatly improve our ability to understand, diagnose, and treat disease. The vast majority of continuous molecular sensing technologies, however, either (1) rely on the chemical or enzymatic reactivity of their targets, sharply limiting their scope, or (2) have never been shown (and likely will never be shown) to operate in the complex environments found in vivo. Against this background, here we review electrochemical aptamer-based (EAB) sensors, an electrochemical approach to real-time molecular monitoring that has now seen 15 years of academic development. The strengths of the EAB platform are significant: to date it is the only molecular measurement technology that (1) functions independently of the chemical reactivity of its targets, and is thus general, and (2) supports in vivo measurements. Specifically, using EAB sensors we, and others, have already reported the real-time, seconds-resolved measurements of multiple, unrelated drugs and metabolites in situ in the veins and tissues of live animals. Against these strengths, we detail the platform's remaining weaknesses, which include still limited measurement duration (hours, rather than the more desirable days) and the difficulty in obtaining sufficiently high performance aptamers against new targets, before then detailing promising approaches overcoming these hurdles. Finally, we close by exploring the opportunities we believe this potentially revolutionary technology (as well as a few, possibly competing, technologies) will create for both researchers and clinicians.
Collapse
Affiliation(s)
- Alex M. Downs
- Sandia National Laboratories, Albuquerque, NM 87106, USA
| | - Kevin W. Plaxco
- Center for Bioengineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA,Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA 93106, USA,Corresponding author:
| |
Collapse
|
29
|
Shaver A, Arroyo-Currás N. The challenge of long-term stability for nucleic acid-based electrochemical sensors. CURRENT OPINION IN ELECTROCHEMISTRY 2022; 32:100902. [PMID: 36092288 PMCID: PMC9455832 DOI: 10.1016/j.coelec.2021.100902] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nucleic acid-based electrochemical sensors are a versatile technology enabling affinity-based detection of a great variety of molecular targets, regardless of inherent electrochemical activity or enzymatic reactivity. Additionally, their modular interface and ease of fabrication enable rapid prototyping and sensor development. However, the technology has inhibiting limitations in terms of long-term stability that have precluded translation into clinically valuable platforms like continuous molecular monitors. In this opinion, we discuss published methods to address various aspects of sensor stability, including thiol-based monolayers and anti-biofouling capabilities. We hope the highlighted works will motivate the field to develop innovative strategies for extending the long-term operational life of nucleic acid-based electrochemical sensors.
Collapse
Affiliation(s)
- Alexander Shaver
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Netzahualcóyotl Arroyo-Currás
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
| |
Collapse
|
30
|
Dominique NL, Strausser SL, Olson JE, Boggess WC, Jenkins DM, Camden JP. Probing N-Heterocyclic Carbene Surfaces with Laser Desorption Ionization Mass Spectrometry. Anal Chem 2021; 93:13534-13538. [PMID: 34582180 DOI: 10.1021/acs.analchem.1c02401] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The proliferation of N-heterocyclic carbene (NHC) self-assembled monolayers (SAMs) on gold surfaces stems from their exceptional stability compared to conventional thiol-SAMs. The prospect of biological applications for NHC-SAMs on gold shows the need for biocompatible techniques (e.g., large biomolecule detection and high throughput) that assesses SAM molecular composition. Herein, we demonstrate that laser desorption ionization mass spectrometry (LDI-MS) is a powerful and facile probe of NHC surface chemistry. LDI-MS of prototypical imidazole-NHC- and benzimidazole-NHC-functionalized AuNPs yields exclusively [NHC2Au]+ ions and not larger gold clusters. Employing benzimidazole-NHC isotopologues, we explore how monolayers pack on a single AuNP and the lability of the NHCs once ligated. Quantitative analysis of the homoleptic and heteroleptic [NHC2Au]+ ions is performed by comparing to a binomial model representative of a randomized monolayer. Lastly, the reduction of nitro-NHC-AuNPs to amine-NHC-AuNPs is tracked via LDI-MS signals, illustrating the ability of LDI-MS to probe postsynthetic modifications of the anchored NHCs, which is critical for current and future applications of NHC surfaces.
Collapse
Affiliation(s)
- Nathaniel L Dominique
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Shelby L Strausser
- Department of Chemistry, University of Tennessee, Knoxville, Knoxville, Tennessee 37996, United States
| | - Jacob E Olson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - William C Boggess
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - David M Jenkins
- Department of Chemistry, University of Tennessee, Knoxville, Knoxville, Tennessee 37996, United States
| | - Jon P Camden
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
31
|
Leung KK, Downs AM, Ortega G, Kurnik M, Plaxco KW. Elucidating the Mechanisms Underlying the Signal Drift of Electrochemical Aptamer-Based Sensors in Whole Blood. ACS Sens 2021; 6:3340-3347. [PMID: 34491055 PMCID: PMC12038169 DOI: 10.1021/acssensors.1c01183] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The ability to monitor drugs, metabolites, hormones, and other biomarkers in situ in the body would greatly advance both clinical practice and biomedical research. To this end, we are developing electrochemical aptamer-based (EAB) sensors, a platform technology able to perform real-time, in vivo monitoring of specific molecules irrespective of their chemical or enzymatic reactivity. An important obstacle to the deployment of EAB sensors in the challenging environments found in the living body is signal drift, whereby the sensor signal decreases over time. To date, we have demonstrated a number of approaches by which this drift can be corrected sufficiently well to achieve good measurement precision over multihour in vivo deployments. To achieve a much longer in vivo measurement duration, however, will likely require that we understand and address the sources of this effect. In response, here, we have systematically examined the mechanisms underlying the drift seen when EAB sensors and simpler, EAB-like devices are challenged in vitro at 37 °C in whole blood as a proxy for in vivo conditions. Our results demonstrate that electrochemically driven desorption of a self-assembled monolayer and fouling by blood components are the two primary sources of signal loss under these conditions, suggesting targeted approaches to remediating this degradation and thus improving the stability of EAB sensors and other, similar electrochemical biosensor technologies when deployed in the body.
Collapse
Affiliation(s)
- Kaylyn K Leung
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
- Center for Bioengineering, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Alex M Downs
- Center for Bioengineering, University of California Santa Barbara, Santa Barbara, California 93106, United States
- Department of Mechanical Engineering, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Gabriel Ortega
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
- Center for Bioengineering, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Martin Kurnik
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
- Center for Bioengineering, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Kevin W Plaxco
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
- Center for Bioengineering, University of California Santa Barbara, Santa Barbara, California 93106, United States
- Department of Mechanical Engineering, University of California Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|