1
|
Emde B, Niehaus K, Tickenbrock L. Evaluation of 3D-Printed Microfluidic Structures for Use in AML-Specific Biomarker Detection of PML::RARA. Int J Mol Sci 2025; 26:497. [PMID: 39859217 PMCID: PMC11765455 DOI: 10.3390/ijms26020497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/18/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
An obstacle for many microfluidic developments is the fabrication of its structures, which is often complex, time-consuming, and expensive. Additive manufacturing can help to reduce these barriers. This study investigated whether the results of a microfluidic assay for the detection of the promyelocytic leukemia (PML)-retinoic acid receptor α (RARα) fusion protein (PML::RARA), and thus for the differential diagnosis of acute promyelocytic leukemia (APL), could be transferred from borosilicate glass microfluidic structures to additively manufactured fluidics. Digital light processing (DLP) and stereolithography (SLA) printers as well as different photopolymerizable methacrylate-based resins were tested for fabrication of the fluidics. To assess suitability, both print resolution and various physical properties, serializability, biocompatibility, and functionalization with biological molecules were analyzed. The results show that additively manufactured microfluidics are suitable for application in leukemia diagnostics. This was demonstrated by transferring the microfluidic sandwich enzyme-linked immunosorbent assay (ELISA) for PML::RARA onto the surface of magnetic microparticles from a glass structure to three-dimensional (3D)-printed parts. A comparison with conventional glass microstructures suggests lower sensitivity but highlights the potential of additive manufacturing for prototyping microfluidics. This may contribute to the wider use of microfluidics in biotechnological or medical applications.
Collapse
MESH Headings
- Humans
- Printing, Three-Dimensional
- Oncogene Proteins, Fusion/analysis
- Oncogene Proteins, Fusion/metabolism
- Microfluidics/methods
- Leukemia, Promyelocytic, Acute/diagnosis
- Leukemia, Promyelocytic, Acute/metabolism
- Biomarkers, Tumor/analysis
- Retinoic Acid Receptor alpha
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/metabolism
- Enzyme-Linked Immunosorbent Assay
- Promyelocytic Leukemia Protein
Collapse
Affiliation(s)
- Benedikt Emde
- Department Hamm 1, Hamm-Lippstadt University of Applied Science, 59063 Hamm, Germany;
- Proteome and Metabolome Research, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany;
| | - Karsten Niehaus
- Proteome and Metabolome Research, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany;
| | - Lara Tickenbrock
- Department Hamm 1, Hamm-Lippstadt University of Applied Science, 59063 Hamm, Germany;
| |
Collapse
|
2
|
Musgrove HB, Cook SR, Pompano RR. Parylene-C Coating Protects Resin-3D-Printed Devices from Material Erosion and Prevents Cytotoxicity toward Primary Cells. ACS APPLIED BIO MATERIALS 2023; 6:3079-3083. [PMID: 37534979 PMCID: PMC10754061 DOI: 10.1021/acsabm.3c00444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Resin 3D printing is attractive for the rapid fabrication of microscale cell culture devices, but common resin materials are unstable and cytotoxic under culture conditions. Strategies such as leaching or overcuring are insufficient to protect sensitive primary cells such as white blood cells. Here, we evaluated the effectiveness of using a parylene C coating of commercially available clear resins to prevent cytotoxic leaching, degradation of microfluidic devices, and absorption of small molecules. We found that parylene C significantly improved both the cytocompatibility with primary murine white blood cells and the material integrity of prints while maintaining the favorable optical qualities held by clear resins.
Collapse
Affiliation(s)
- Hannah B. Musgrove
- Dept. of Chemistry, University of Virginia, Charlottesville, Virginia. 22903, USA
| | - Sophie R. Cook
- Dept. of Chemistry, University of Virginia, Charlottesville, Virginia. 22903, USA
| | - Rebecca R. Pompano
- Dept. of Chemistry, University of Virginia, Charlottesville, Virginia. 22903, USA
| |
Collapse
|
3
|
Musgrove HB, Catterton MA, Pompano RR. Applied tutorial for the design and fabrication of biomicrofluidic devices by resin 3D printing. Anal Chim Acta 2022; 1209:339842. [PMID: 35569850 PMCID: PMC9454328 DOI: 10.1016/j.aca.2022.339842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 04/11/2022] [Accepted: 04/15/2022] [Indexed: 11/01/2022]
Abstract
Resin 3D printing, especially digital light processing (DLP) printing, is a promising rapid fabrication method for bio-microfluidic applications such as clinical tests, lab-on-a-chip devices, and sensor integrated devices. The benefits of 3D printing lead many to believe this fabrication method will accelerate the use of microfluidics, but there are a number of potential obstacles to overcome for bioanalytical labs to fully utilize this technology. For commercially available printing materials, this includes challenges in producing prints with the print resolution and mechanical stability required for a particular design, along with cytotoxic components within many photopolymerizing resins and low optical compatibility for imaging experiments. Potential solutions to these problems are scattered throughout the literature and rarely available in head-to-head comparisons. Therefore, we present here a concise guide to the principles of resin 3D printing most relevant for fabrication of bioanalytical microfluidic devices. Intended to quickly orient labs that are new to 3D printing, the tutorial includes the results of selected systematic tests to inform resin selection, strategies for design optimization, and improvement of biocompatibility of resin 3D printed bio-microfluidic devices.
Collapse
Affiliation(s)
- Hannah B Musgrove
- Department of Chemistry, University of Virginia. Charlottesville, VA, USA
| | - Megan A Catterton
- Department of Chemistry, University of Virginia. Charlottesville, VA, USA
| | - Rebecca R Pompano
- Department of Chemistry, University of Virginia. Charlottesville, VA, USA.
| |
Collapse
|
4
|
Mallakpour S, Tabesh F, Hussain CM. A new trend of using poly(vinyl alcohol) in 3D and 4D printing technologies: Process and applications. Adv Colloid Interface Sci 2022; 301:102605. [PMID: 35144173 DOI: 10.1016/j.cis.2022.102605] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 12/16/2022]
Abstract
Recently, 3D/4D printing technologies have been the researchers' interest, and they are getting improved more important. They are applicable in various fields like medical fields, pharmaceutics, construction, tissue engineering, dentistry, water treatment, etc. These technologies overcame the difficulty of the conventional methods in producing complicated structures. They can be fed by different materials such as nanomaterials, smart polymers, responsive polymers, metamaterials, synthetic polymers, natural polymers, and so forth. One of the smart and stimuli-responsive polymers is poly(vinyl alcohol) (PVA). In addition to numerous applications of PVA like medicine, environmental fields, etc., researchers are showing a tendency to use PVA in 3D/4D printing technologies. The main reasons for PVA's increased interest in 3D/4D printing technologies are suitable flowability, stimuli-responsivity, extrudability, biocompatibility, biodegradability, cost-effectiveness, and other features. This review aims to introduce the 3D/4D printing technologies' knowledge and then the applications of PVA as a feed in these novel technologies.
Collapse
Affiliation(s)
- Shadpour Mallakpour
- Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran.
| | - Farbod Tabesh
- Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark N J 07102, USA
| |
Collapse
|
5
|
Cook SR, Musgrove HB, Throckmorton AL, Pompano RR. Microscale impeller pump for recirculating flow in organs-on-chip and microreactors. LAB ON A CHIP 2022; 22:605-620. [PMID: 34988560 PMCID: PMC8892988 DOI: 10.1039/d1lc01081f] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Fluid flow is an integral part of microfluidic and organ-on-chip technology, ideally providing biomimetic fluid, cell, and nutrient exchange as well as physiological or pathological shear stress. Currently, many of the pumps that actively perfuse fluid at biomimetic flow rates are incompatible with use inside cell culture incubators, require many tubing connections, or are too large to run many devices in a confined space. To address these issues, we developed a user-friendly impeller pump that uses a 3D-printed device and impeller to recirculate fluid and cells on-chip. Impeller rotation was driven by a rotating magnetic field generated by magnets mounted on a computer fan; this pump platform required no tubing connections and could accommodate up to 36 devices at once in a standard cell culture incubator. A computational model was used to predict shear stress, velocity, and changes in pressure throughout the device. The impeller pump generated biomimetic fluid velocities (50-6400 μm s-1) controllable by tuning channel and inlet dimensions and the rotational speed of the impeller, which were comparable to the order of magnitude of the velocities predicted by the computational model. Predicted shear stress was in the physiological range throughout the microchannel and over the majority of the impeller. The impeller pump successfully recirculated primary murine splenocytes for 1 h and Jurkat T cells for 24 h with no impact on cell viability, showing the impeller pump's feasibility for white blood cell recirculation on-chip. In the future, we envision that this pump will be integrated into single- or multi-tissue platforms to study communication between organs.
Collapse
Affiliation(s)
- Sophie R Cook
- Departments of Chemistry and Biomedical Engineering, University of Virginia, 248 McCormick Rd, Charlottesville, VA 22904, USA.
| | - Hannah B Musgrove
- Departments of Chemistry and Biomedical Engineering, University of Virginia, 248 McCormick Rd, Charlottesville, VA 22904, USA.
| | - Amy L Throckmorton
- BioCirc Research Laboratory, School of Biomedical Engineering, Science, and Health Systems, Philadelphia, Drexel University, Philadelphia, PA, USA
| | - Rebecca R Pompano
- Departments of Chemistry and Biomedical Engineering, University of Virginia, 248 McCormick Rd, Charlottesville, VA 22904, USA.
| |
Collapse
|
6
|
Catterton MA, Ball AG, Pompano RR. Rapid Fabrication by Digital Light Processing 3D Printing of a SlipChip with Movable Ports for Local Delivery to Ex Vivo Organ Cultures. MICROMACHINES 2021; 12:993. [PMID: 34442615 PMCID: PMC8399530 DOI: 10.3390/mi12080993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 12/28/2022]
Abstract
SlipChips are two-part microfluidic devices that can be reconfigured to change fluidic pathways for a wide range of functions, including tissue stimulation. Currently, fabrication of these devices at the prototype stage requires a skilled microfluidic technician, e.g., for wet etching or alignment steps. In most cases, SlipChip functionality requires an optically clear, smooth, and flat surface that is fluorophilic and hydrophobic. Here, we tested digital light processing (DLP) 3D printing, which is rapid, reproducible, and easily shared, as a solution for fabrication of SlipChips at the prototype stage. As a case study, we sought to fabricate a SlipChip intended for local delivery to live tissue slices through a movable microfluidic port. The device was comprised of two multi-layer components: an enclosed channel with a delivery port and a culture chamber for tissue slices with a permeable support. Once the design was optimized, we demonstrated its function by locally delivering a chemical probe to slices of hydrogel and to living tissue with up to 120 µm spatial resolution. By establishing the design principles for 3D printing of SlipChip devices, this work will enhance the ability to rapidly prototype such devices at mid-scale levels of production.
Collapse
Affiliation(s)
- Megan A Catterton
- Department of Chemistry, University of Virginia College of Arts and Science, Charlottesville, VA 22904, USA;
| | - Alexander G Ball
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA;
| | - Rebecca R Pompano
- Department of Chemistry, University of Virginia College of Arts and Science, Charlottesville, VA 22904, USA;
- Carter Immunology Center and UVA Cancer Center, University of Virginia, Charlottesville, VA 22903, USA
- Department of Biomedical Engineering, University of Virginia School of Engineering and Applied Sciences, Charlottesville, VA 22904-4259, USA
| |
Collapse
|