1
|
Cao D, Yan Z, Cui D, He D, Chen X, Peng Y, Khan MY, Liu J, Ma X, Tang J, Wang W. Colloidal ionogels: Controlled assembly and self-propulsion upon tunable swelling. J Colloid Interface Sci 2025; 685:522-536. [PMID: 39855093 DOI: 10.1016/j.jcis.2024.12.187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 01/27/2025]
Abstract
Active colloids driven out of thermal equilibrium serve as building blocks for smart materials with tunable structures and functions. Using chemical energy to drive colloids is advantageous but requires precise control over chemical release. To address this, we developed colloidal ionogels-polymer microspheres infused with ionic liquids-that show controlled assembly and self-propulsion upon tunable swelling. For example, we synthesized microspheres of polymethylmethacrylate loaded with ionic liquid [Bmim][PF6], which were released from the colloidal ionogel upon swelling in alcohol-water mixtures and dissociated into cations and anions of different diffusivities. The resulting electric field leads to four types of pair-wise colloidal interactions via ionic diffusiophoresis and diffusioosmosis, giving rise to four types of self-assembled superstructures. These interactions were precisely modulated by altering the swelling conditions and the ionic liquids used. Additionally, partially blocking the ionogel's surface induces anisotropic swelling and asymmetric ion release, turning the colloidal ionogel into a self-propelled Janus colloidal motor powered by ionic self-diffusiophoresis, reaching speeds of several µm/s and lasting about 100 s. These findings indicate that colloidal ionogels are smart colloidal building blocks with highly tunable pair-wise interactions, self-assembled structures, and self-propulsion, offering potential applications in biomedical sensing, environmental monitoring, and photonics.
Collapse
Affiliation(s)
- Dezhou Cao
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Zuyao Yan
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Donghao Cui
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Dongqing He
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Xiaowen Chen
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Yixin Peng
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Mohd Yasir Khan
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Jiayu Liu
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Xing Ma
- Sauvage Laboratory for Smart Materials, School of Integrated Circuits, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Jinyao Tang
- Department of Chemistry, The University of Hong Kong, Hong Kong, China; Materials Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen, China
| | - Wei Wang
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China.
| |
Collapse
|
2
|
Dorsey MA, Velev OD, Hall CK. Chirality-Dependent Magnetization of Colloidal Squares with Offset Magnetic Dipoles. J Chem Theory Comput 2025; 21:2867-2879. [PMID: 40045445 DOI: 10.1021/acs.jctc.4c01342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Colloidal particles with anisotropic geometries and interactions display rich phase behavior and hence have the potential to serve as the basis of functional materials, which can tunably and reversibly self-assemble into different configurations. External fields are one design parameter that can be used to manipulate how systems of colloidal particles assemble with one another. One challenge in designing new materials using anisotropic colloidal particles is understanding how an individual particle's various anisotropic features, like geometry, affect their overall self-assembly. Here, we present the results of simulation studies that explore the self-assembly of 2D colloidal squares with offset magnetic dipoles in the presence of an external field. Annealing simulations are used to measure the equilibrium-phase behavior of systems of these particles in the ground state, when the magnetic interactions dominate over the thermal forces of the system. We find that the magnetic properties of these systems are strongly influenced by the relative number of squares with opposite "handedness", or chirality, that are present within the system. Systems of squares that contain equal numbers of either chirality are extremely responsive to the external field; a relatively weak external field is required to magnetize them. In contrast, systems that contain only one chirality of squares are significantly less responsive to the external field; a significantly stronger external field is required to elicit the same magnetic response. Ultimately, the differing macroscopic magnetic properties of these systems are related to their microscopic self-assembly in an external field. Simulation snapshots and ground state phase diagrams illustrate how the absence of opposite chirality squares prevents systems of these particles from leaving an energetically favorable antiparallel configuration in the presence of an external field. When opposite chirality squares are present, these magnetic particles assemble into a head-to-tail configuration, therefore inducing a magnetic state.
Collapse
Affiliation(s)
- Matthew A Dorsey
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States of America
| | - Orlin D Velev
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States of America
| | - Carol K Hall
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States of America
| |
Collapse
|
3
|
Kimura H. Impact of DC Electric Field Direction on Sedimentation Behavior of Colloidal Particles in Water. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1335. [PMID: 40141619 PMCID: PMC11944156 DOI: 10.3390/ma18061335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025]
Abstract
Colloidal particles in water exhibit increased sedimentation velocity under a horizontal DC electric field of several V/mm compared to no field. Hollow particles with a lower density than water show an increased ascent velocity with the horizontal electric field. These phenomena suggest that colloidal particles form flocs due to the electric field, known as the Electrically Induced Rapid Separation (ERS) effect. This study investigates, for the first time, the impact of the DC electric field direction on the ERS effect. The electric field was defined as horizontal when the inclination angle θ = 0° and vertical at θ = 90°, covering all inclination angles. Results showed that the ERS effect increased for θ < ~20-30° in both upward and downward directions. However, beyond this range, the ERS effect decreased or disappeared. At larger θ values, convection was observed, significantly improving colloidal particle dispersion stability. Additionally, negatively charged particles were observed to be "repelled" near the negative electrode. This study offers new insights into controlling particle dispersion stability using electric fields and suggests potential applications in colloid and material science.
Collapse
Affiliation(s)
- Hiroshi Kimura
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu 501-1193, Japan
| |
Collapse
|
4
|
Barros I, Ramachandran S, Chakraborty I. Structure, dynamics and phase transitions in electric field assembled colloidal crystals and glasses. SOFT MATTER 2025; 21:1884-1894. [PMID: 39935419 DOI: 10.1039/d4sm01242a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Field-induced assembly of colloidal particles into structures of desired configurations is extremely relevant from the viewpoint of producing field-assembled micro-swimmers and reconfigurable smart materials. However, the behaviour of colloidal particles under the influence of alternating current (AC) electric fields remains a topic of ongoing investigation due to the complex and nuanced effects of various control parameters. Here, we examine the role of several factors including particle size, zeta potential, voltage and frequency of the applied field in the formation of different structural configurations in an intermediate frequency range (5-50 kHz) and very low conductivity solutions. We observe a wide range of configurations ranging from crystals to glasses that are normally observed at frequency ranges below 1 kHz. Additionally, we investigate the dynamics: the nature of diffusion and active motion in these out-of-equilibrium systems and show how that is directly interlinked with the formation of close-packed or open (non close-packed) structures. Lastly, we investigate the frequency-driven disorder-order-disorder phase transition in colloidal crystals, which is a starting point for building reconfigurable systems. Our findings contribute to a deeper understanding of interlinked roles of various factors in electric field-induced assembly of colloidal particles in the intermediate frequency-low conductivity regime, which is significant for potential applications in micro-robotics and next generation materials.
Collapse
Affiliation(s)
- Indira Barros
- Department of Physics, Birla Institute of Technology and Science, Pilani-K K Birla Goa Campus, Zuarinagar, Goa 403726, India.
| | - Sayanth Ramachandran
- Department of Physics, Birla Institute of Technology and Science, Pilani-K K Birla Goa Campus, Zuarinagar, Goa 403726, India.
- Max-Planck Institute for Polymer Research Mainz, Ackermannweg 10, 55128 Mainz, Germany
| | - Indrani Chakraborty
- Department of Physics, Birla Institute of Technology and Science, Pilani-K K Birla Goa Campus, Zuarinagar, Goa 403726, India.
| |
Collapse
|
5
|
Al Harraq A, Brahana PJ, Bharti B. Colloid and Interface Science for Understanding Microplastics and Developing Remediation Strategies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:4412-4421. [PMID: 39951827 DOI: 10.1021/acs.langmuir.4c03856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2025]
Abstract
Microplastics (MPs) originate from industrial production of <1 mm polymeric particles and from the progressive breakdown of larger plastic debris. Their environmental behavior is governed by their interfacial properties, which dominate due to their small size. This Perspective highlights the complex surface chemistry of MPs under environmental stressors and discusses how physical attributes like shape and roughness could influence their fate. We further identify wastewater treatment plants (WWTPs) as critical hotspots for MP accumulation, where the MPs are inadvertently transferred to sewage sludge and reintroduced into the environment. We emphasize the potential of colloid and interfacial science not only to improve our fundamental understanding of MPs but also to advance mitigation strategies in hotspots such as WWTPs.
Collapse
Affiliation(s)
- Ahmed Al Harraq
- Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544, United States
| | - Philip J Brahana
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Bhuvnesh Bharti
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
6
|
Reich M, Colla T, Likos CN. Structural transitions of ionic microgel solutions driven by circularly polarized electric fields. SOFT MATTER 2025; 21:1516-1528. [PMID: 39879073 DOI: 10.1039/d4sm01414f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
In this work, a theoretical approach is developed to investigate the structural properties of ionic microgels induced by a circularly polarized (CP) electric field. Following a similar study on chain formation in the presence of linearly polarized fields [T. Colla et al., ACS Nano, 2018, 12, 4321-4337], we propose an effective potential between microgels which incorporates the field-induced interactions via a static, time averaged polarizing charge at the particle surface. In such a coarse-graining framework, the induced dipole interactions are controlled by external parameters such as the field strength and frequency, ionic strength, as well as microgel charge and concentration, thus providing a convenient route to induce different self-assembly scenarios through experimentally adjustable quantities. In contrast to the case of linearly polarized fields, dipole interactions in the case of CP light are purely repulsive in the direction perpendicular to the polarization plane, while featuring an in-plane attractive well. As a result, the CP field induces layering of planar sheets arranged perpendicularly to the field direction, in strong contrast to the chain formation observed in the case of linear polarizations. Depending on the field strength and particle concentration, in-plane crystallization can also take place. Combining molecular dynamics (MD) simulations and the liquid-state hypernetted-chain (HNC) formalism, we herein investigate the emergence of layering formation and in-plane crystal ordering as the dipole strength and microgel concentration are changed over a wide region of parameter space.
Collapse
Affiliation(s)
- Markus Reich
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Thiago Colla
- Instituto de Física, Universidade Federal de Ouro Preto, Ouro Preto, 35400-000, Brazil.
| | - Christos N Likos
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| |
Collapse
|
7
|
Dorsey MA, Hall CK. Directed Assembly of Magnetic Colloidal Rods in an External Field. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:3938-3950. [PMID: 39914413 DOI: 10.1021/acs.langmuir.4c03714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2025]
Abstract
In fabricating new colloid-based materials via bottom-up design, particle-particle interactions are engineered to encourage the formation of the desired assemblies. One way to do this is to apply an external field, which orients magnetically polarized particles in the field direction. External fields have the advantage that they can be programmed to change in time (e.g., field rotation or toggling), tunably shifting the system away from equilibrium. Here, we apply a model for ferromagnetic colloidal rods that simulates their phase behavior in the presence of an external magnetic field with constant strength and direction. An annealing process slowly reduces the temperature during molecular dynamics simulations to estimate the system's equilibrium configuration in the ground state when the magnetic interactions between colloidal rods dominate the thermal forces. Numerous annealing simulations are performed at various particle densities and external field strengths. In the absence of an external field, the magnetic rods assemble into antiparallel configurations. When the strength of the external field is sufficiently strong, the magnetic rods are forced to orient in the direction of the field and therefore form head-to-tail structures. The formation of a head-to-tail state is associated with a net magnetic moment that results from the collective alignment of all magnetic particles in the field direction. Furthermore, when systems of magnetic rods assemble into a head-to-tail state, they occupy more space than they do in a phase in which most rods are assembled into antiparallel configurations. Phase diagrams predict that the magnetic properties of systems of rod-like magnetic particles can switch between magnetic and nonmagnetic states by tuning not only the external field strength but also the particle density.
Collapse
Affiliation(s)
- Matthew A Dorsey
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Carol K Hall
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| |
Collapse
|
8
|
Haque MA, Maestas JR, Zhu X, Hanson BL, Wu DT, Wu N. High-Density and Well-Aligned Hierarchical Structures of Colloids Assembled under Orthogonal Magnetic and Electric Fields. ACS NANO 2025; 19:760-770. [PMID: 39745311 DOI: 10.1021/acsnano.4c11957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Colloids can be used either as model systems for directed assembly or as the necessary building blocks for making functional materials. Previous work primarily focused on assembling colloids under a single external field, where controlling particle-particle interactions is limited. This work presents results under a combination of electric and magnetic fields. When these two fields are orthogonally applied, we can independently tune the magnitude and direction of the dipolar attraction and repulsion between the particles. As a result, we obtain well-aligned, highly dense, but individually separated linear chains at intermediate particle concentrations. Both the inter- and intrachain spacings can be tuned by adjusting the particle concentration and relative strengths of both fields. At high particle concentrations and by tuning the electric field frequency, the individual microspheres can assemble into colloidal oligomers such as trimers, tetramers, heptamers, and nonamers in response to the electric field due to the synergy between dipolar and electrohydrodynamic interactions. These oligomers, in turn, serve as building blocks for making hierarchical structures with finer architectures upon superimposing a one-dimensional (1D) magnetic field. In addition to experiments, Monte Carlo (MC) simulations have been performed on colloids confined near the electrode, interacting through a Stockmayer-like potential. They faithfully reproduce key observations in the experiments. Our work demonstrates the potential of using orthogonal electric and magnetic fields to assemble diversified types of highly aligned structures for applications in high-strength composites, optical materials, or structured battery electrodes.
Collapse
Affiliation(s)
- Md Ashraful Haque
- Department of Metallurgical and Materials Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Joseph R Maestas
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Xingrui Zhu
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Benjamin L Hanson
- Department of Physics, Colorado School of Mines, Golden, Colorado 80401, United States
| | - David T Wu
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
- Institute of Chemistry, Academia Sinica, Nangang 115, Taiwan
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Ning Wu
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
9
|
Al Harraq A, Patel R, Lee JG, Owoyele O, Chun J, Bharti B. Non-Reciprocity, Metastability, and Dynamic Reconfiguration in Co-Assembly of Active and Passive Particles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409489. [PMID: 39630594 PMCID: PMC11775524 DOI: 10.1002/advs.202409489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/31/2024] [Indexed: 12/07/2024]
Abstract
Living organisms often exhibit non-reciprocal interactions where the forces acting on the objects are not equal in magnitude or opposite in direction. The combination of reciprocal and non-reciprocal interactions between synthetic building blocks remains largely unexplored. Here, out-of-equilibrium assemblies of non-motile isotropic passive and metal-patched motile active particles are formed by overlapping bulk interactions with directed self-propulsion. An external alternating current (AC) electric field generates concurrent dipolar and induced-charge electrophoretic forces between the particles which are evaluated using microscopy. The interaction force measurements allow to determine the degree of reciprocity in interactions, which is tunable by designing the active particle and its trajectory. While linearly-propelled active particles evade assembly with passive particles, helically propelled active particles form active-passive clusters with dynamic reconfiguration and long-lived metastability. Large clusters display programmable fluctuations and reconfigurability by controlling the fraction of active particles. The study establishes principles of integrating reciprocal and non-reciprocal interactions in guided colloidal assembly of reconfigurable metastable structures.
Collapse
Affiliation(s)
- Ahmed Al Harraq
- Cain Department of Chemical EngineeringLouisiana State UniversityBaton RougeLA70803USA
- Center for the Physics of Biological FunctionPrinceton UniversityPrincetonNJ08544USA
| | - Ruchi Patel
- Cain Department of Chemical EngineeringLouisiana State UniversityBaton RougeLA70803USA
| | - Jin Gyun Lee
- Cain Department of Chemical EngineeringLouisiana State UniversityBaton RougeLA70803USA
- Department of Chemical and Biological EngineeringUniversity of ColoradoBoulderCO80303USA
| | - Ope Owoyele
- Department of Mechanical and Industrial EngineeringLouisiana State UniversityBaton RougeLA70803USA
| | - Jaehun Chun
- Physical and Computational Sciences DirectoratePacific Northwest National LaboratoryRichlandWA99354USA
| | - Bhuvnesh Bharti
- Cain Department of Chemical EngineeringLouisiana State UniversityBaton RougeLA70803USA
| |
Collapse
|
10
|
Silvera Batista CA, Wang K, Blake H, Nwosu-Madueke V, Marbach S. Artificial chemotaxis under electrodiffusiophoresis. J Colloid Interface Sci 2025; 677:171-180. [PMID: 39142158 DOI: 10.1016/j.jcis.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/16/2024]
Abstract
HYPOTHESIS Through a large parameter space, electric fields can tune colloidal interactions and forces leading to diverse static and dynamical structures. So far, however, field-driven interactions have been limited to dipole-dipole and hydrodynamic contributions. Nonetheless, in this work, we propose that under the right conditions, electric fields can also induce interactions based on local chemical fields and diffusiophoretic flows. EXPERIMENTS Herein, we present a strategy to generate and measure 3D chemical gradients under electric fields. In this approach, faradaic reactions at electrodes induce global pH gradients that drive long-range transport through electrodiffusiophoresis. Simultaneously, the electric field induces local pH gradients by driving the particle's double layer far from equilibrium. FINDINGS As a result, while global pH gradients lead to 2D focusing away from electrodes, local pH gradients induce aggregation in the third dimension. Evidence points to a mechanism of interaction based on diffusiophoresis. Interparticle interactions display a strong dependence on surface chemistry, zeta potential and diameter of particles. Furthermore, pH gradients can be readily tuned by adjusting the voltage and frequency of the electric field. For large Péclet numbers, we observed a collective chemotactic-like collapse of particles. Remarkably, such collapse occurs without reactions at a particle's surface. By mixing particles with different sizes, we also demonstrate, through experiments and Brownian dynamics simulations, the emergence of non-reciprocal interactions, where small particles are more drawn towards large ones.
Collapse
Affiliation(s)
- Carlos A Silvera Batista
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, 37205, United States; Vanderbilt Institute for Nanoscale Science and Engineering, Vanderbilt University, Nashville, 37205, United States.
| | - Kun Wang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, 37205, United States
| | - Hannah Blake
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, 37205, United States
| | - Vivian Nwosu-Madueke
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, 37205, United States
| | - Sophie Marbach
- CNRS, Sorbonne Université, Physicochimie des Electrolytes et Nanosystèmes Interfaciaux, Paris, F-75005, France.
| |
Collapse
|
11
|
Raybin JG, Dunsworth EJ, Guo V, Ginsberg NS. Reversible Electron-Beam Patterning of Colloidal Nanoparticles at Fluid Interfaces. ACS APPLIED MATERIALS & INTERFACES 2024; 16:68611-68620. [PMID: 39625150 DOI: 10.1021/acsami.4c14882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
The directed self-assembly of colloidal nanoparticles (NPs) using external fields guides the formation of sophisticated hierarchical materials but becomes less effective with decreasing particle size. As an alternative, electron-beam-driven assembly offers a potential avenue for targeted nanoscale manipulation, yet remains poorly controlled due to the variety and complexity of beam interaction mechanisms. Here, we investigate the beam-particle interaction of silica NPs pinned to the fluid-vacuum interface of ionic liquid droplets. In these experiments, scanning electron microscopy of the droplet surface resolves NP trajectories over space and time while simultaneously driving their reorganization. With this platform, we demonstrate the ability to direct particle transport and create transient, reversible colloidal patterns on the droplet surface. By tuning the beam voltage, we achieve precise control over both the strength and sign of the beam-particle interaction, with low voltages repelling particles and high voltages attracting them. This response stems from the formation of well-defined solvent flow fields generated from trace radiolysis of the ionic liquid, as determined through statistical analysis of single-particle trajectories under varying solvent composition. Altogether, electron-beam-guided assembly introduces a versatile strategy for nanoscale colloidal manipulation, offering new possibilities for the design of dynamic, reconfigurable systems with applications in adaptive photonics and catalysis.
Collapse
Affiliation(s)
- Jonathan G Raybin
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Ethan J Dunsworth
- Engineering Science Program, University of California, Berkeley, California 94720, United States
| | - Veronica Guo
- Department of Physics, University of California, Los Angeles, California 90024, United States
| | - Naomi S Ginsberg
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Physics, University of California, Berkeley, California 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Materials Sciences and Chemical Sciences Divisions, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kavli Energy NanoScience Institute, Berkeley, California 94720, United States
- STROBE, NSF Science and Technology Center, Berkeley, California 94720, United States
| |
Collapse
|
12
|
Liu Y, Kailasham R, Moerman PG, Khair AS, Zarzar LD. Self-Organized Patterns in Non-Reciprocal Active Droplet Systems. Angew Chem Int Ed Engl 2024; 63:e202409382. [PMID: 39321140 PMCID: PMC11586706 DOI: 10.1002/anie.202409382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 09/27/2024]
Abstract
Non-equilibrium patterns are widespread in nature and often arise from the self-organization of constituents through nonreciprocal chemotactic interactions. In this study, we demonstrate how active oil-in-water droplet mixtures with predator-prey interactions can result in a variety of self-organized patterns. By manipulating physical parameters, the droplet diameter ratio and number ratio, we identify distinct classes of patterns within a binary droplet system, rationalize the pattern formation, and quantify motilities. Experimental results are recapitulated in numerical simulations using a minimal computational model that solely incorporates chemotactic interactions and steric repulsion among the constituents. The time evolution of the patterns is investigated and chemically explained. We also investigate how patterns vary with differing interaction strength by altering surfactant composition. Leveraging insights from the binary droplet system, the framework is extended to a ternary droplet mixture composed of multiple chasing droplet pairs to create chemically directed hierarchical organization. Our findings demonstrate how rationalizable, self-organized patterns can be programmed in a chemically minimal system and provide the basis for exploration of emergent organization and higher order complexity in active colloids.
Collapse
Affiliation(s)
- Yutong Liu
- Department of ChemistryThe Pennsylvania State UniversityUniversity Park16802PAUSA
| | - R. Kailasham
- Department of Chemical EngineeringCarnegie Mellon University15213PittsburghPAUSA
- Present address: Department of Chemical EngineeringIndian Institute of Technology IndoreKhandwa Road453552SimrolMadhya PradeshIndia
| | - Pepijn G. Moerman
- Department of Chemical Engineering and ChemistryEindhoven University of Technology5612, APEindhovenNetherlands
| | - Aditya S. Khair
- Department of Chemical EngineeringCarnegie Mellon University15213PittsburghPAUSA
| | - Lauren D. Zarzar
- Department of ChemistryThe Pennsylvania State UniversityUniversity Park16802PAUSA
- Department of Material Science and EngineeringThe Pennsylvania State UniversityUniversity Park16802PAUSA
| |
Collapse
|
13
|
Yakovlev EV, Simkin IV, Shirokova AA, Kohanovskaya AV, Gursky KD, Dragun MA, Nasyrov AD, Yurchenko SO, Kryuchkov NP. Kinetically blocked self-assembly of colloidal strings with tunable interactions in magnetic fields. J Chem Phys 2024; 161:184907. [PMID: 39540451 DOI: 10.1063/5.0231645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Tunable self-assembly driven by external electric or magnetic fields is of significant interest in modern soft matter physics. While extensively studied in two-dimensional systems, it remains insufficiently explored in three-dimensional systems. In this study, we investigated the formation of vertical strings from an initial monolayer system of particles deposited on a horizontal substrate under the influence of an external magnetic field using experiments, computer simulations, and theoretical frameworks. We demonstrated that the main mechanism of string self-assembly is merging, driven by the interplay between gravity and induced tunable interparticle interactions. During this process, the system has to overcome a saddle point on the energy landscape, whose height increases with the string height. At a certain point, further self-assembly becomes kinetically blocked in a metastable state, far from equilibrium. This contrasts sharply with the typical scenario for tunable self-assembly in two dimensions, where the resulting structures usually correspond to the equilibrium state. Therefore, this finding opens up opportunities for more detailed control of three-dimensional tunable self-assembly by designing and tuning various potential barriers along the kinetic pathways.
Collapse
Affiliation(s)
- Egor V Yakovlev
- Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, 105005 Moscow, Russia
| | - Ivan V Simkin
- Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, 105005 Moscow, Russia
| | - Anastasia A Shirokova
- Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, 105005 Moscow, Russia
| | | | - Konstantin D Gursky
- Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, 105005 Moscow, Russia
| | - Maksim A Dragun
- Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, 105005 Moscow, Russia
| | - Artur D Nasyrov
- Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, 105005 Moscow, Russia
| | - Stanislav O Yurchenko
- Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, 105005 Moscow, Russia
| | - Nikita P Kryuchkov
- Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, 105005 Moscow, Russia
| |
Collapse
|
14
|
Cha C, Jo E, Kim Y, Choi AJ, Han K. 3D-printed shadow masks for micro-patterned electrodes. RSC Adv 2024; 14:34586-34593. [PMID: 39479494 PMCID: PMC11520313 DOI: 10.1039/d4ra06298a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024] Open
Abstract
Microfabrication is critical to the advancement of lab-on-chip devices by enabling the creation of high-precision, complex electrode structures. Traditional photolithography, commonly used to fabricate micro-patterned electrodes, involves complex and multi-step processes that can be costly and time-consuming. In this research, we present a method using 3D-printed shadow masks for electrode fabrication, offering a simpler, cost-effective alternative to traditional methods. Specifically, by leveraging a fused deposition modeling 3D printer, we demonstrate that 3D-printed shadow masks streamline rapid prototyping of micro-patterned electrodes with a range of designs, from simple lines to complex patterns. To assess the lab-on-chip functionality of the electrodes fabricated from 3D-printed shadow masks, we investigate electric field-driven assembly of microparticles in the electrodes. The micro-patterned designs of the electrodes remotely guide the assembly patterns, resulting in the formation of well-defined, multiple chains and anisotropic structures. These results suggest that 3D-printed shadow masks not only simplify the fabrication process, but also maintain the precision required for advanced lab-on-chip applications. The proposed method could pave the way for more accessible and scalable manufacturing of the complex micro-patterned electrodes.
Collapse
Affiliation(s)
- Chanwook Cha
- Department of Chemical Engineering, Kyungpook National University Daegu Republic of Korea
| | - Eunhwa Jo
- Department of Chemical Engineering, Kyungpook National University Daegu Republic of Korea
| | - Yeongjun Kim
- Department of Chemical Engineering, Kyungpook National University Daegu Republic of Korea
| | - Andrew Jaeyong Choi
- School of Computing, Dept. of AI-SW, Gachon University 1342 Seongnam-daero, Sujeong-gu Seongnam 13306 Republic of Korea
| | - Koohee Han
- Department of Chemical Engineering, Kyungpook National University Daegu Republic of Korea
| |
Collapse
|
15
|
Gauri HM, Patel R, Lombardo NS, Bevan MA, Bharti B. Field-Directed Motion, Cargo Capture, and Closed-Loop Controlled Navigation of Microellipsoids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403007. [PMID: 39126239 DOI: 10.1002/smll.202403007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/01/2024] [Indexed: 08/12/2024]
Abstract
Microrobots have the potential for diverse applications, including targeted drug delivery and minimally invasive surgery. Despite advancements in microrobot design and actuation strategies, achieving precise control over their motion remains challenging due to the dominance of viscous drag, system disturbances, physicochemical heterogeneities, and stochastic Brownian forces. Here, a precise control over the interfacial motion of model microellipsoids is demonstrated using time-varying rotating magnetic fields. The impacts of microellipsoid aspect ratio, field characteristics, and magnetic properties of the medium and the particle on the motion are investigated. The role of mobile micro-vortices generated is highlighted by rotating microellipsoids in capturing, transporting, and releasing cargo objects. Furthermore, an approach is presented for controlled navigation through mazes based on real-time particle and obstacle sensing, path planning, and magnetic field actuation without human intervention. The study introduces a mechanism of directing motion of microparticles using rotating magnetic fields, and a control scheme for precise navigation and delivery of micron-sized cargo using simple microellipsoids as microbots.
Collapse
Affiliation(s)
- Hashir M Gauri
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Ruchi Patel
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Nicholas S Lombardo
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Michael A Bevan
- Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Bhuvnesh Bharti
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| |
Collapse
|
16
|
Arnon ZA, Piperno S, Redeker DC, Randall E, Tkachenko AV, Shpaisman H, Gang O. Acoustically shaped DNA-programmable materials. Nat Commun 2024; 15:6875. [PMID: 39128914 PMCID: PMC11317520 DOI: 10.1038/s41467-024-51049-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/26/2024] [Indexed: 08/13/2024] Open
Abstract
Recent advances in DNA nanotechnology allow for the assembly of nanocomponents with nanoscale precision, leading to the emergence of DNA-based material fabrication approaches. Yet, transferring these nano- and micron-scale structural arrangements to the macroscale morphologies remains a challenge, which limits the development of materials and devices based on DNA nanotechnology. Here, we demonstrate a materials fabrication approach that combines DNA-programmable assembly with actively driven processes controlled by acoustic fields. This combination provides a prescribed nanoscale order, as dictated by equilibrium assembly through DNA-encoded interactions, and field-shaped macroscale morphology, as regulated by out-of-equilibrium materials formation through specific acoustic stimulation. Using optical and electron microscopy imaging and x-ray scattering, we further revealed the nucleation processes, domain fusion, and crystal growth under different acoustically stimulated conditions. The developed approach provides a pathway for the fabrication of complexly shaped macroscale morphologies for DNA-programmable nanomaterials by controlling spatiotemporal characteristics of the acoustic fields.
Collapse
Affiliation(s)
- Z A Arnon
- Department of Chemical Engineering, Columbia University, New York, NY, USA
| | - S Piperno
- Department of Chemistry and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - D C Redeker
- Department of Chemical Engineering, Columbia University, New York, NY, USA
| | - E Randall
- Department of Chemical Engineering, Columbia University, New York, NY, USA
| | - A V Tkachenko
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, USA
| | - H Shpaisman
- Department of Chemistry and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - O Gang
- Department of Chemical Engineering, Columbia University, New York, NY, USA.
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, USA.
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, USA.
| |
Collapse
|
17
|
Wei H, Pascual-Herrero H, Selmani S, Marroquin S, Reginato GD, Guan Z, Ragan R. Nanoantennas report dissipative assembly in oscillatory electric fields. J Colloid Interface Sci 2024; 666:629-638. [PMID: 38615402 DOI: 10.1016/j.jcis.2024.03.203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/15/2024] [Accepted: 03/30/2024] [Indexed: 04/16/2024]
Abstract
Understanding driving forces for dissipative, i.e., out of equilibrium, assembly of nanoparticles from colloidal solution at liquid-solid interfaces provides the ability to design external cues for reconfigurable device response. Here electrohydrodynamic flow (EHD) at an electrode-liquid interface is investigated as a dissipative driving force for tuning optical response. EHD results from an oscillatory electric field in a liquid cell between two electrodes and drives assembly of gold nanoparticles (NP) into two-dimensional clusters on electrode surfaces. Clusters are chemically crosslinked during assembly to freeze assemblies for electron microscopy characterization in order to understand how to 'nucleate' cluster formation. Electron microscopy images show deposition with a potential having an amplitude of 5 V and frequency of 100 Hz produces surfaces with isolated NP, which can seed EHD flow. A second deposition step at 5 V and 500 Hz produces a high density of quadramers on surfaces. When exciting near the local surface plasmon resonance of the Au NP clusters formed during assembly, Au NPs serve as in situ nanoantenna reporters of assembly and disassembly. Surface enhanced Raman scattering (SERS) measurements of Au NP capped with 4-mercaptobenzoic acid show order of magnitude signal enhancements occur during cluster formation in the presence of an oscillatory field, which occurs on a time scale of seconds. Confocal fluorescence spectroscopy is used to monitor the dissipative assembly of Au NP over multiple cycles. Results provide insight on how electrical stimuli and seeding local perturbations affects formation of NP clusters and resultant optical response provides insight on how to tune response of optically active surfaces.
Collapse
Affiliation(s)
- Hong Wei
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, CA 92697-2585, United States; Center for Complex and Active Materials, University of California, Irvine, Irvine, CA 92697, United States.
| | - Héctor Pascual-Herrero
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, CA 92697-2585, United States; Center for Complex and Active Materials, University of California, Irvine, Irvine, CA 92697, United States.
| | - Serxho Selmani
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, United States; Center for Complex and Active Materials, University of California, Irvine, Irvine, CA 92697, United States.
| | - Sebastian Marroquin
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, CA 92697-2585, United States; Center for Complex and Active Materials, University of California, Irvine, Irvine, CA 92697, United States.
| | - Gabriel D Reginato
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, CA 92697-2585, United States; Center for Complex and Active Materials, University of California, Irvine, Irvine, CA 92697, United States.
| | - Zhibin Guan
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, CA 92697-2585, United States; Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, United States; Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, CA 92697-2580, United States; Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697-2715, United States; Center for Complex and Active Materials, University of California, Irvine, Irvine, CA 92697, United States.
| | - Regina Ragan
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, CA 92697-2585, United States; Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, CA 92697-2580, United States; Center for Complex and Active Materials, University of California, Irvine, Irvine, CA 92697, United States.
| |
Collapse
|
18
|
Wu X, Xue H, Fink Z, Helms BA, Ashby PD, Omar AK, Russell TP. Oversaturating Liquid Interfaces with Nanoparticle-Surfactants. Angew Chem Int Ed Engl 2024; 63:e202403790. [PMID: 38589294 DOI: 10.1002/anie.202403790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/10/2024]
Abstract
Assemblies of nanoparticles at liquid interfaces hold promise as dynamic "active" systems when there are convenient methods to drive the system out of equilibrium via crowding. To this end, we show that oversaturated assemblies of charged nanoparticles can be realized and held in that state with an external electric field. Upon removal of the field, strong interparticle repulsive forces cause a high in-plane electrostatic pressure that is released in an explosive emulsification. We quantify the packing of the assembly as it is driven into the oversaturated state under an applied electric field. Physiochemical conditions substantially affect the intensity of the induced explosive emulsification, underscoring the crucial role of interparticle electrostatic repulsion.
Collapse
Affiliation(s)
- Xuefei Wu
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA-94720, USA
| | - Han Xue
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA-94720, USA
| | - Zachary Fink
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA-94720, USA
- Polymer Science and Engineering Department, University of Massachusetts, Amherst, MA-01003, USA
| | - Brett A Helms
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA-94720, USA
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA-94720, USA
| | - Paul D Ashby
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA-94720, USA
| | - Ahmad K Omar
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA-94720, USA
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA-94720, USA
| | - Thomas P Russell
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA-94720, USA
- Polymer Science and Engineering Department, University of Massachusetts, Amherst, MA-01003, USA
- Advanced Institute for Materials Research (AIMR), Tohoku University, 2-1-1 Katahira, Aoba, Sendai, 980-8577, Japan
| |
Collapse
|
19
|
Wu X, Xue H, Bordia G, Fink Z, Kim PY, Streubel R, Han J, Helms BA, Ashby PD, Omar AK, Russell TP. Self-Propulsion by Directed Explosive Emulsification. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310435. [PMID: 38386499 DOI: 10.1002/adma.202310435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 02/15/2024] [Indexed: 02/24/2024]
Abstract
An active droplet system, programmed to repeatedly move autonomously at a specific velocity in a well-defined direction, is demonstrated. Coulombic energy is stored in oversaturated interfacial assemblies of charged nanoparticle-surfactants by an applied DC electric field and can be released on demand. Spontaneous emulsification is suppressed by an increase in the stiffness of the oversaturated assemblies. Rapidly removing the field releases the stored energy in an explosive event that propels the droplet, where thousands of charged microdroplets are ballistically ejected from the surface of the parent droplet. The ejection is made directional by a symmetry breaking of the interfacial assembly, and the combined interaction force of the microdroplet plume on one side of the droplet propels the droplet distances tens of times its size, making the droplet active. The propulsion is autonomous, repeatable, and agnostic to the chemical composition of the nanoparticles. The symmetry-breaking in the nanoparticle assembly controls the microdroplet velocity and direction of propulsion. This mechanism of droplet propulsion will advance soft micro-robotics, establishes a new type of active matter, and introduces new vehicles for compartmentalized delivery.
Collapse
Affiliation(s)
- Xuefei Wu
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Han Xue
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Gautam Bordia
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Zachary Fink
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Polymer Science and Engineering Department, University of Massachusetts, Amherst, MA, 01003, USA
| | - Paul Y Kim
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Robert Streubel
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Jiale Han
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Brett A Helms
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Paul D Ashby
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Ahmad K Omar
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Thomas P Russell
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Polymer Science and Engineering Department, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
20
|
Al Harraq A, Feng M, Gauri HM, Devireddy R, Gupta A, Sun Q, Bharti B. Magnetic Control of Nonmagnetic Living Organisms. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17339-17346. [PMID: 38531044 PMCID: PMC11009914 DOI: 10.1021/acsami.4c02325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024]
Abstract
Living organisms inspire the design of microrobots, but their functionality is unmatched. Next-generation microrobots aim to leverage the sensing and communication abilities of organisms through magnetic hybridization, attaching magnetic particles to them for external control. However, the protocols used for magnetic hybridization are morphology specific and are not generalizable. We propose an alternative approach that leverages the principles of negative magnetostatics and magnetophoresis to control nonmagnetic organisms with external magnetic fields. To do this, we disperse model organisms in dispersions of Fe3O4 nanoparticles and expose them to either uniform or gradient magnetic fields. In uniform magnetic fields, living organisms align with the field due to external torque, while gradient magnetic fields generate a negative magnetophoretic force, pushing objects away from external magnets. The magnetic fields enable controlling the position and orientation of Caenorhabditis elegans larvae and flagellated bacteria through directional interactions and magnitude. This control is diminished in live spermatozoa and adult C. elegans due to stronger internal biological activity, i.e., force/torque. Our study presents a method for spatiotemporal organization of living organisms without requiring magnetic hybridization, opening the way for the development of controllable living microbiorobots.
Collapse
Affiliation(s)
- Ahmed Al Harraq
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| | - Min Feng
- McFerrin
Department of Chemical Engineering, Texas
A&M University, College
Station, Texas 77843, United States
| | - Hashir M. Gauri
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| | - Ram Devireddy
- Department
of Mechanical and Industrial Engineering, Louisiana State University, Baton
Rouge, Louisiana 70803, United States
| | - Ankur Gupta
- Department
of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Qing Sun
- McFerrin
Department of Chemical Engineering, Texas
A&M University, College
Station, Texas 77843, United States
| | - Bhuvnesh Bharti
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| |
Collapse
|
21
|
Eftekhari K, Parakhonskiy BV, Grigoriev D, Skirtach AG. Advances in Nanoarchitectonics: A Review of "Static" and "Dynamic" Particle Assembly Methods. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1051. [PMID: 38473523 PMCID: PMC10935451 DOI: 10.3390/ma17051051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/20/2024] [Accepted: 02/09/2024] [Indexed: 03/14/2024]
Abstract
Particle assembly is a promising technique to create functional materials and devices from nanoscale building blocks. However, the control of particle arrangement and orientation is challenging and requires careful design of the assembly methods and conditions. In this study, the static and dynamic methods of particle assembly are reviewed, focusing on their applications in biomaterial sciences. Static methods rely on the equilibrium interactions between particles and substrates, such as electrostatic, magnetic, or capillary forces. Dynamic methods can be associated with the application of external stimuli, such as electric fields, magnetic fields, light, or sound, to manipulate the particles in a non-equilibrium state. This study discusses the advantages and limitations of such methods as well as nanoarchitectonic principles that guide the formation of desired structures and functions. It also highlights some examples of biomaterials and devices that have been fabricated by particle assembly, such as biosensors, drug delivery systems, tissue engineering scaffolds, and artificial organs. It concludes by outlining the future challenges and opportunities of particle assembly for biomaterial sciences. This review stands as a crucial guide for scholars and professionals in the field, fostering further investigation and innovation. It also highlights the necessity for continuous research to refine these methodologies and devise more efficient techniques for nanomaterial synthesis. The potential ramifications on healthcare and technology are substantial, with implications for drug delivery systems, diagnostic tools, disease treatments, energy storage, environmental science, and electronics.
Collapse
Affiliation(s)
- Karaneh Eftekhari
- Nanobiotechnology Group, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| | - Bogdan V. Parakhonskiy
- Nanobiotechnology Group, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| | - Dmitry Grigoriev
- Multifunctional Colloids and Coatings, Division Life Science and Bioprocesses, Fraunhofer Institute for Applied Polymer Research (IAP), 14476 Potsdam-Golm, Germany;
| | - Andre G. Skirtach
- Nanobiotechnology Group, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| |
Collapse
|
22
|
Emerse M, Lama H, Basavaraj MG, Singh R, Satapathy DK. Morphologies of electric-field-driven cracks in dried dispersions of ellipsoids. Phys Rev E 2024; 109:024604. [PMID: 38491700 DOI: 10.1103/physreve.109.024604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/18/2024] [Indexed: 03/18/2024]
Abstract
We report an experimental and theoretical study of the morphology of desiccation cracks formed in deposits of hematite ellipsoids dried in an externally applied alternating current (ac) electric field. A series of transitions in the crack morphology is observed by modulating the frequency and the strength of the applied field. We also found a clear transition in the morphology of cracks as a function of the aspect ratio of the ellipsoid. We show that these transitions in the crack morphology can be explained by a linear stability analysis of the equation describing the effective dynamics of an ellipsoid placed in an externally applied ac electric field.
Collapse
Affiliation(s)
- Megha Emerse
- Department of Physics, IIT Madras, Chennai 600036, India
| | - Hisay Lama
- Department of Physics, IIT Madras, Chennai 600036, India
| | - Madivala G Basavaraj
- PECS Laboratory, Department of Chemical Engineering, IIT Madras, Chennai 600036, India
- Center for Soft and Biological Matter, IIT Madras, Chennai 600036, India
| | - Rajesh Singh
- Department of Physics, IIT Madras, Chennai 600036, India
- Center for Soft and Biological Matter, IIT Madras, Chennai 600036, India
| | - Dillip K Satapathy
- Department of Physics, IIT Madras, Chennai 600036, India
- Center for Soft and Biological Matter, IIT Madras, Chennai 600036, India
| |
Collapse
|
23
|
Kach JI, Walker LM, Khair AS. Nonequilibrium structure formation in electrohydrodynamic emulsions. SOFT MATTER 2023; 19:9179-9194. [PMID: 37997174 DOI: 10.1039/d3sm01110k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Application of an electric field across the interface of two fluids with low, but non-zero, conductivities gives rise to a sustained electrohydrodynamic (EHD) fluid flow. In the presence of neighboring drops, drops interact via the EHD flows of their neighbors, as well as through a dielectrophoretic (DEP) force, a consequence of drops encountering disturbance electric fields around their neighbors. We explore the collective dynamics of emulsions with drops undergoing EHD and DEP interactions. The interplay between EHD and DEP results in a rich set of emergent behaviors. We simulate the collective behavior of large numbers of drops; in two dimensions, where drops are confined to a plane; and three dimensions. In monodisperse emulsions, drops in two dimensions cluster or crystallize depending on the relative strengths of EHD and DEP, and form spaced clusters when EHD and DEP balance. In three dimensions, chain formation observed under DEP alone is suppressed by EHD, and lost entirely when EHD dominates. When a second population of drops are introduced, such that the electrical conductivity, permittivity, or viscosity are different from the first population of drops, the interaction between the drops becomes non-reciprocal, an apparent violation of Newton's Third Law. The breadth of consequences due to these non-reciprocal interactions are vast: we show selected cases in two dimensions, where drops cluster into active dimers, trimers, and larger clusters that continue to translate and rotate over long timescales; and three dimensions, where drops form stratified chains, or combine into a single dynamic sheet.
Collapse
Affiliation(s)
- Jeremy I Kach
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA.
| | - Lynn M Walker
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA.
| | - Aditya S Khair
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA.
| |
Collapse
|
24
|
Lee JG, Thome CP, Cruse ZA, Ganguly A, Gupta A, Shields CW. Magnetically locked Janus particle clusters with orientation-dependent motion in AC electric fields. NANOSCALE 2023; 15:16268-16276. [PMID: 37800377 PMCID: PMC10598768 DOI: 10.1039/d3nr03744d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Active particles, or micromotors, locally dissipate energy to drive locomotion at small length scales. The type of trajectory is generally fixed and dictated by the geometry and composition of the particle, which can be challenging to tune using conventional fabrication procedures. Here, we report a simple, bottom-up method to magnetically assemble gold-coated polystyrene Janus particles into "locked" clusters that display diverse trajectories when stimulated by AC electric fields. The orientation of particles within each cluster gives rise to distinct modes of locomotion, including translational, rotational, trochoidal, helical, and orbital. We model this system using a simplified rigid beads model and demonstrate qualitative agreement between the predicted and experimentally observed cluster trajectories. Overall, this system provides a facile means to scalably create micromotors with a range of well-defined motions from discrete building blocks.
Collapse
Affiliation(s)
- Jin Gyun Lee
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA.
| | - Cooper P Thome
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA.
| | - Zoe A Cruse
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA.
| | - Arkava Ganguly
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA.
| | - Ankur Gupta
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA.
| | - C Wyatt Shields
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA.
| |
Collapse
|
25
|
Wang Z, Miksis MJ, Vlahovska PM. Electrostatic force on a spherical particle confined between two planar surfaces. SOFT MATTER 2023; 19:7663-7672. [PMID: 37782279 DOI: 10.1039/d3sm00934c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
A charge-free particle in a uniform electric field experiences no net force in an unbounded domain. A boundary, however, breaks the symmetry and the particle can be attracted or repelled to it, depending on the applied field direction [Z. Wang et al., Phys. Rev. E, 2022, 106, 034607]. Here, we investigate the effect of a second boundary because of its common occurrence in practical applications. We consider a spherical particle suspended between two parallel walls and subjected to a uniform electric field, applied in a direction either normal or tangential to the surfaces. All media are modeled as leaky dielectrics, thus allowing for the accumulation of free charge at interfaces, while bulk media remain charge-free. The Laplace equation for the electric potential is solved using a multipole expansion and the boundaries are accounted for by a set of images. The results show that in the case of a normal electric field, which corresponds to a particle between two electrodes, the force is always attractive to the nearer boundary and, in general, weaker that the case of only one wall. Intriguingly, for a given particle-wall separation we find that the force may vary nonmonotonically with confinement and its magnitude may exceed the one-wall value. In the case of tangential electric field, which corresponds to a particle between insulating boundaries, the force follows the same trends but it is always repulsive.
Collapse
Affiliation(s)
- Zhanwen Wang
- Theoretical and Applied Mechanics Program, Northwestern University, Evanston, IL 60208, USA
| | - Michael J Miksis
- Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL 60208, USA.
| | - Petia M Vlahovska
- Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
26
|
Wu M, Huang D, Lai F, Yang R, Liu Y, Fang J, Zhai T, Liu Y. Sequential *CO management via controlling in situ reconstruction for efficient industrial-current-density CO 2-to-C 2+ electroreduction. Proc Natl Acad Sci U S A 2023; 120:e2302851120. [PMID: 37748076 PMCID: PMC10556611 DOI: 10.1073/pnas.2302851120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 08/10/2023] [Indexed: 09/27/2023] Open
Abstract
Sequentially managing the coverage and dimerization of *CO on the Cu catalysts is desirable for industrial-current-density CO2 reduction (CO2R) to C2+, which required the multiscale design of the surface atom/architecture. However, the oriented design is colossally difficult and even no longer valid due to unpredictable reconstruction. Here, we leverage the synchronous leaching of ligand molecules to manipulate the seeding-growth process during CO2R reconstruction and construct Cu arrays with favorable (100) facets. The gradient diffusion in the reconstructed array guarantees a higher *CO coverage, which can continuously supply the reactant to match its high-rate consumption for high partial current density for C2+. Sequentially, the lower energy barriers of *CO dimerization on the (100) facets contribute to the high selectivity of C2+. Profiting from this sequential *CO management, the reconstructed Cu array delivers an industrial-relevant FEC2+ of 86.1% and an FEC2H4 of 60.8% at 700 mA cm-2. Profoundly, the atomic-molecular scale delineation for the evolution of catalysts and reaction intermediates during CO2R can undoubtedly facilitate various electrocatalytic reactions.
Collapse
Affiliation(s)
- Mao Wu
- State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, Hubei430074, People’s Republic of China
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei430074, People’s Republic of China
| | - Danji Huang
- State Key Lab of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei430074, People’s Republic of China
- School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, Hubei430074, People’s Republic of China
| | - Feili Lai
- Department of Chemistry, Katholieke Universiteit Leuven, Leuven3001, Belgium
| | - Ruoou Yang
- State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, Hubei430074, People’s Republic of China
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei430074, People’s Republic of China
| | - Yan Liu
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui241000, People’s Republic of China
| | - Jiakun Fang
- State Key Lab of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei430074, People’s Republic of China
- School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, Hubei430074, People’s Republic of China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, Hubei430074, People’s Republic of China
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei430074, People’s Republic of China
| | - Youwen Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, Hubei430074, People’s Republic of China
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei430074, People’s Republic of China
| |
Collapse
|
27
|
Lee JG, Raj RR, Thome CP, Day NB, Martinez P, Bottenus N, Gupta A, Shields CW. Bubble-Based Microrobots with Rapid Circular Motions for Epithelial Pinning and Drug Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300409. [PMID: 37058137 PMCID: PMC10524026 DOI: 10.1002/smll.202300409] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/14/2023] [Indexed: 06/19/2023]
Abstract
Remotely powered microrobots are proposed as next-generation vehicles for drug delivery. However, most microrobots swim with linear trajectories and lack the capacity to robustly adhere to soft tissues. This limits their ability to navigate complex biological environments and sustainably release drugs at target sites. In this work, bubble-based microrobots with complex geometries are shown to efficiently swim with non-linear trajectories in a mouse bladder, robustly pin to the epithelium, and slowly release therapeutic drugs. The asymmetric fins on the exterior bodies of the microrobots induce a rapid rotational component to their swimming motions of up to ≈150 body lengths per second. Due to their fast speeds and sharp fins, the microrobots can mechanically pin themselves to the bladder epithelium and endure shear stresses commensurate with urination. Dexamethasone, a small molecule drug used for inflammatory diseases, is encapsulated within the polymeric bodies of the microrobots. The sustained release of the drug is shown to temper inflammation in a manner that surpasses the performance of free drug controls. This system provides a potential strategy to use microrobots to efficiently navigate large volumes, pin at soft tissue boundaries, and release drugs over several days for a range of diseases.
Collapse
Affiliation(s)
- Jin Gyun Lee
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Ave, Boulder, CO 80303, United States
| | - Ritu R. Raj
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Ave, Boulder, CO 80303, United States
| | - Cooper P. Thome
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Ave, Boulder, CO 80303, United States
| | - Nicole B. Day
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Ave, Boulder, CO 80303, United States
| | - Payton Martinez
- Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Drive, UCB 427, Boulder, CO 80309, United States
- Biomedical Engineering Program, University of Colorado Boulder, 1111 Engineering Drive, UCB 422, Boulder, CO 80309, United States
| | - Nick Bottenus
- Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Drive, UCB 427, Boulder, CO 80309, United States
- Biomedical Engineering Program, University of Colorado Boulder, 1111 Engineering Drive, UCB 422, Boulder, CO 80309, United States
| | - Ankur Gupta
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Ave, Boulder, CO 80303, United States
| | - C. Wyatt Shields
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Ave, Boulder, CO 80303, United States
- Biomedical Engineering Program, University of Colorado Boulder, 1111 Engineering Drive, UCB 422, Boulder, CO 80309, United States
| |
Collapse
|
28
|
Abstract
Active colloids use energy input at the particle level to propel persistent motion and direct dynamic assemblies. We consider three types of colloids animated by chemical reactions, time-varying magnetic fields, and electric currents. For each type, we review the basic propulsion mechanisms at the particle level and discuss their consequences for collective behaviors in particle ensembles. These microscopic systems provide useful experimental models of nonequilibrium many-body physics in which dissipative currents break time-reversal symmetry. Freed from the constraints of thermodynamic equilibrium, active colloids assemble to form materials that move, reconfigure, heal, and adapt. Colloidal machines based on engineered particles and their assemblies provide a basis for mobile robots with increasing levels of autonomy. This review provides a conceptual framework for understanding and applying active colloids to create material systems that mimic the functions of living matter. We highlight opportunities for chemical engineers to contribute to this growing field.
Collapse
Affiliation(s)
- Kyle J M Bishop
- Department of Chemical Engineering, Columbia University, New York, NY, USA;
| | - Sibani Lisa Biswal
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas, USA
| | - Bhuvnesh Bharti
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
29
|
Spatafora-Salazar A, Kuei S, Cunha LHP, Biswal SL. Coiling of semiflexible paramagnetic colloidal chains. SOFT MATTER 2023; 19:2385-2396. [PMID: 36920868 DOI: 10.1039/d3sm00066d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Semiflexible filaments deform into a variety of configurations that dictate different phenomena manifesting at low Reynolds number. Harnessing the elasticity of these filaments to perform transport-related processes at the microfluidic scale requires structures that can be directly manipulated to attain controllable geometric features during their deformation. The configuration of semiflexible chains assembled from paramagnetic colloids can be readily controlled upon the application of external time-varying magnetic fields. In circularly rotating magnetic fields, these chains undergo coiling dynamics in which their ends close into loops that wrap inward, analogous to the curling of long nylon filaments under shear. The coiling is promising for the precise loading and targeted transport of small materials, however effective implementation requires an understanding of the role that field parameters and chain properties play on the coiling features. Here, we investigate the formation of coils in semiflexible paramagnetic chains using numerical simulations. We demonstrate that the size and shape of the initial coils are governed by the Mason and elastoviscous numbers, related to the field parameters and the chain bending stiffness. The size of the initial coil follows a nonmonotonic behavior with Mason number from which two regions are identified: (1) an elasticity-dependent nonlinear regime in which the coil size decreases with increasing field strength and for which loop shape tends to be circular, and (2) an elasticity-independent linear regime where the size increases with field strength and the shape become more elliptical. From the time scales associated to these regimes, we identify distinct coiling mechanisms for each case that relate the coiling dynamics to two other configurational dynamics of paramagnetic chains: wagging and folding behaviors.
Collapse
Affiliation(s)
- Aldo Spatafora-Salazar
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA.
| | - Steve Kuei
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA.
| | - Lucas H P Cunha
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA.
| | - Sibani Lisa Biswal
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA.
| |
Collapse
|
30
|
Thome C, Hoertdoerfer WS, Bendorf JR, Lee JG, Shields CW. Electrokinetic Active Particles for Motion-Based Biomolecule Detection. NANO LETTERS 2023; 23:2379-2387. [PMID: 36881680 PMCID: PMC10038089 DOI: 10.1021/acs.nanolett.3c00319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Detection of biomolecules is essential for patient diagnosis, disease management, and numerous other applications. Recently, nano- and microparticle-based detection has been explored for improving traditional assays by reducing required sample volumes and assay times as well as enhancing tunability. Among these approaches, active particle-based assays that couple particle motion to biomolecule concentration expand assay accessibility through simplified signal outputs. However, most of these approaches require secondary labeling, which complicates workflows and introduces additional points of error. Here, we show a proof-of-concept for a label-free, motion-based biomolecule detection system using electrokinetic active particles. We prepare induced-charge electrophoretic microsensors (ICEMs) for the capture of two model biomolecules, streptavidin and ovalbumin, and show that the specific capture of the biomolecules leads to direct signal transduction through ICEM speed suppression at concentrations as low as 0.1 nM. This work lays the foundation for a new paradigm of rapid, simple, and label-free biomolecule detection using active particles.
Collapse
Affiliation(s)
- Cooper
P. Thome
- Department of Chemical and
Biological Engineering, University of Colorado
Boulder, Boulder, Colorado 80303, United States
| | - Wren S. Hoertdoerfer
- Department of Chemical and
Biological Engineering, University of Colorado
Boulder, Boulder, Colorado 80303, United States
| | - Julia R. Bendorf
- Department of Chemical and
Biological Engineering, University of Colorado
Boulder, Boulder, Colorado 80303, United States
| | - Jin Gyun Lee
- Department of Chemical and
Biological Engineering, University of Colorado
Boulder, Boulder, Colorado 80303, United States
| | - C. Wyatt Shields
- Department of Chemical and
Biological Engineering, University of Colorado
Boulder, Boulder, Colorado 80303, United States
| |
Collapse
|
31
|
Han K. Electric and Magnetic Field-Driven Dynamic Structuring for Smart Functional Devices. MICROMACHINES 2023; 14:661. [PMID: 36985068 PMCID: PMC10057767 DOI: 10.3390/mi14030661] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
The field of soft matter is rapidly growing and pushing the limits of conventional materials science and engineering. Soft matter refers to materials that are easily deformed by thermal fluctuations and external forces, allowing for better adaptation and interaction with the environment. This has opened up opportunities for applications such as stretchable electronics, soft robotics, and microfluidics. In particular, soft matter plays a crucial role in microfluidics, where viscous forces at the microscale pose a challenge to controlling dynamic material behavior and operating functional devices. Field-driven active colloidal systems are a promising model system for building smart functional devices, where dispersed colloidal particles can be activated and controlled by external fields such as magnetic and electric fields. This review focuses on building smart functional devices from field-driven collective patterns, specifically the dynamic structuring of hierarchically ordered structures. These structures self-organize from colloidal building blocks and exhibit reconfigurable collective patterns that can implement smart functions such as shape shifting and self-healing. The review clarifies the basic mechanisms of field-driven particle dynamic behaviors and how particle-particle interactions determine the collective patterns of dynamic structures. Finally, the review concludes by highlighting representative application areas and future directions.
Collapse
Affiliation(s)
- Koohee Han
- Department of Chemical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
32
|
McDonald MN, Zhu Q, Paxton WF, Peterson CK, Tree DR. Active control of equilibrium, near-equilibrium, and far-from-equilibrium colloidal systems. SOFT MATTER 2023; 19:1675-1694. [PMID: 36790855 DOI: 10.1039/d2sm01447e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The development of top-down active control over bottom-up colloidal assembly processes has the potential to produce materials, surfaces, and objects with applications in a wide range of fields spanning from computing to materials science to biomedical engineering. In this review, we summarize recent progress in the field using a taxonomy based on how active control is used to guide assembly. We find there are three distinct scenarios: (1) navigating kinetic pathways to reach a desirable equilibrium state, (2) the creation of a desirable metastable, kinetically trapped, or kinetically arrested state, and (3) the creation of a desirable far-from-equilibrium state through continuous energy input. We review seminal works within this framework, provide a summary of important application areas, and present a brief introduction to the fundamental concepts of control theory that are necessary for the soft materials community to understand this literature. In addition, we outline current and potential future applications of actively-controlled colloidal systems, and we highlight important open questions and future directions.
Collapse
Affiliation(s)
- Mark N McDonald
- Department of Chemical Engineering, Brigham Young University, Provo, Utah, USA.
| | - Qinyu Zhu
- Department of Chemical Engineering, Brigham Young University, Provo, Utah, USA.
| | - Walter F Paxton
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA
| | - Cameron K Peterson
- Department of Electrical and Computer Engineering, Brigham Young University, Provo, Utah, USA
| | - Douglas R Tree
- Department of Chemical Engineering, Brigham Young University, Provo, Utah, USA.
| |
Collapse
|
33
|
Matsuo M, Hashishita H, Tanaka S, Nakata S. Sequentially Selective Coalescence of Binary Self-Propelled Droplets upon Collective Motion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:2073-2079. [PMID: 36692295 DOI: 10.1021/acs.langmuir.2c03344] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Subsequent synthesis and detection using droplets as microreactors have shown promise in the development of novel materials and drugs because microreactors enable small-scale synthesis and detection of covalent/non-covalent intermolecular interactions. Self-organization exhibited by autonomous droplets under non-equilibrium conditions is beneficial for manipulating the sequentiality and selectivity of droplet coalescence because expensive equipment or elaborate techniques are not required with the autonomy of droplets. However, to our knowledge, selective coalescence caused by the collective motion of self-propelled droplets has not been demonstrated in inanimate systems. Here, we report sequentially selective coalescence based on the dynamic collective pattern of self-propelled droplets composed of ethyl salicylate (ES) or butyl salicylate (BS). When ES and BS droplets were placed on an aqueous sodium dodecyl sulfate (SDS) solution, the collective motion of droplets resulted in three stages of selective coalescence on the time development. Initially, coalescence was observed only between different types of self-propelled droplets. Subsequently, the formed droplets selectively coalesced with ES droplets. Finally, mature droplets merged with BS droplets. The sequentially selective coalescence was discussed from the dynamic pattern formation of swarming droplets and the collapse of the SDS monolayer at the o/w interface caused by the difference in Laplace pressure and the interfacial instability at the contact point between droplets. Thus, this study formulates a strategy of sequentially selective coalescence of droplets via the collective motion of non-identical self-propelled droplets, promoting a new type of powerful and efficient automation technology based on an autonomous inanimate manner of spatiotemporal pattern formation under non-equilibrium conditions for the droplet manipulation.
Collapse
Affiliation(s)
- Muneyuki Matsuo
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Hiromi Hashishita
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Shinpei Tanaka
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Satoshi Nakata
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| |
Collapse
|
34
|
Mester S, Horváth B, Szalai I. Polarizabilities and electric field-induced forces in periodic two-component linear dielectric sphere chains. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2022.120939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
35
|
Wang K, Leville S, Behdani B, Silvera Batista CA. Long-range transport and directed assembly of charged colloids under aperiodic electrodiffusiophoresis. SOFT MATTER 2022; 18:5949-5959. [PMID: 35920440 DOI: 10.1039/d2sm00631f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Faradaic reactions often lead to undesirable side effects during the application of electric fields. Therefore, experimental designs often avoid faradaic reactions by working at low voltages or at high frequencies, where the electrodes behave as ideally polarizable. In this work, we show how faradaic processes under ac fields can be used advantageously to effect long-range transport, focusing and assembly of charged colloids. Herein, we use confocal microscopy and ratiometric analysis to confirm that ac fields applied in media of low conductivity induce significant pH gradients below and above the electrode charging frequency of the system. At voltages above 1 Vpp, and frequencies below 1.7 kHz, the pH profile becomes highly nonlinear. Charged particles respond to such conditions by migrating towards the point of highest pH, thereby focusing tens of microns away from both electrodes. Under the combination of oscillating electric fields and concentration gradients of electroactive species, particles experience aperiodic electrodiffusiophoresis (EDP). The theory of EDP, along with a mass transport model, describes the dynamics of particles. Furthermore, the high local concentration of particles near the focusing point leads to disorder-order transitions, whereby particles form crystals. The position and order within the levitating crystalline sheet can be readily tuned by adjusting the voltage and frequency. These results not only have significant implications for the fundamental understanding of ac colloidal electrokinetics, but also provide new possibilities for the manipulation and directed assembly of charged colloids.
Collapse
Affiliation(s)
- Kun Wang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA.
| | - Samuel Leville
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA.
| | - Behrouz Behdani
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA.
| | - Carlos A Silvera Batista
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Institute for Nanoscale Science and Engineering, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
36
|
Gupta A, Soni S, Chauhan N, Khanuja M, Jain U. Nanobots-based advancement in targeted drug delivery and imaging: An update. J Control Release 2022; 349:97-108. [PMID: 35718213 DOI: 10.1016/j.jconrel.2022.06.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/11/2022] [Accepted: 06/12/2022] [Indexed: 10/17/2022]
Abstract
Manipulation and targeted navigation of nanobots in complex biological conditions can be achieved by chemical reactions, by applying external forces, and via motile cells. Several studies have applied fuel-based and fuel-free propulsion mechanisms for nanobots movements in environmental sciences and robotics. However, their applications in biomedical sciences are still in the budding phase. Therefore, the current review introduces the fundamentals of different propulsion strategies based on the advantageous features of applied nanomaterials or cellular components. Furthermore, the recent developments reported in various literatures on next-generation nanobots, such as Xenobots with applications of in-vitro and in-vivo drug delivery and imaging were also explored in detail. The challenges and the future prospects are also highlighted with corresponding advantages and limitations of nanobots in biomedical applications. This review concludes that with ever booming research enthusiasm in this field and increasing multidisciplinary cooperation, micro-/nanorobots with intelligence and multifunctions will emerge in the near future, which would have a profound impact on the treatment of diseases.
Collapse
Affiliation(s)
- Abhinandan Gupta
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Sector-125, Noida 201313, India
| | - Shringika Soni
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Sector-125, Noida 201313, India
| | - Nidhi Chauhan
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Sector-125, Noida 201313, India
| | - Manika Khanuja
- Centre for Nanoscience & Nanotechnology, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Utkarsh Jain
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Sector-125, Noida 201313, India.
| |
Collapse
|
37
|
Piskunen P, Huusela M, Linko V. Nanoswimmers Based on Capped Janus Nanospheres. MATERIALS 2022; 15:ma15134442. [PMID: 35806570 PMCID: PMC9267829 DOI: 10.3390/ma15134442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023]
Abstract
Nanoswimmers are synthetic nanoscale objects that convert the available surrounding free energy to a directed motion. For example, bacteria with various flagella types serve as textbook examples of the minuscule swimmers found in nature. Along these lines, a plethora of artificial hybrid and non-hybrid nanoswimmers have been introduced, and they could find many uses, e.g., for targeted drug delivery systems (TDDSs) and controlled drug treatments. Here, we discuss a certain class of nanoparticles, i.e., functional, capped Janus nanospheres that can be employed as nanoswimmers, their subclasses and properties, as well as their various implementations. A brief outlook is given on different fabrication and synthesis methods, as well as on the diverse compositions used to prepare nanoswimmers, with a focus on the particle types and materials suitable for biomedical applications. Several recent studies have shown remarkable success in achieving temporally and spatially controlled drug delivery in vitro using Janus-particle-based TDDSs. We believe that this review will serve as a concise introductory synopsis for the interested readers. Therefore, we hope that it will deepen the general understanding of nanoparticle behavior in biological matrices.
Collapse
Affiliation(s)
- Petteri Piskunen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, 00076 Aalto, Finland; (P.P.); (M.H.)
| | - Martina Huusela
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, 00076 Aalto, Finland; (P.P.); (M.H.)
| | - Veikko Linko
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, 00076 Aalto, Finland; (P.P.); (M.H.)
- LIBER Center of Excellence, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
- Correspondence:
| |
Collapse
|
38
|
Al Harraq A, Hymel AA, Lin E, Truskett TM, Bharti B. Dual nature of magnetic nanoparticle dispersions enables control over short-range attraction and long-range repulsion interactions. Commun Chem 2022; 5:72. [PMID: 36697688 PMCID: PMC9814898 DOI: 10.1038/s42004-022-00687-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/26/2022] [Indexed: 01/28/2023] Open
Abstract
Competition between attractive and repulsive interactions drives the formation of complex phases in colloidal suspensions. A major experimental challenge lies in decoupling independent roles of attractive and repulsive forces in governing the equilibrium morphology and long-range spatial distribution of assemblies. Here, we uncover the 'dual nature' of magnetic nanoparticle dispersions, particulate and continuous, enabling control of the short-range attraction and long-range repulsion (SALR) between suspended microparticles. We show that non-magnetic microparticles suspended in an aqueous magnetic nanoparticle dispersion simultaneously experience a short-range depletion attraction due to the particulate nature of the fluid in competition with an in situ tunable long-range magnetic dipolar repulsion attributed to the continuous nature of the fluid. The study presents an experimental platform for achieving in situ control over SALR between colloids leading to the formation of reconfigurable structures of unusual morphologies, which are not obtained using external fields or depletion interactions alone.
Collapse
Affiliation(s)
- Ahmed Al Harraq
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Aubry A Hymel
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Emily Lin
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Thomas M Truskett
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Bhuvnesh Bharti
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
39
|
Mhanna R, Gao Y, Van Tol I, Springer E, Wu N, Marr DWM. Chain Assembly Kinetics from Magnetic Colloidal Spheres. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5730-5737. [PMID: 35486385 DOI: 10.1021/acs.langmuir.2c00343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Magnetic colloidal chains are a microrobotic system with promising applications due to their versatility, biocompatibility, and ease of manipulation under magnetic fields. Their synthesis involves kinetic pathways that control chain quality, length, and flexibility, a process performed by first aligning superparamagnetic particles under a one-dimensional magnetic field and then chemically linking them using a four-armed maleimide-functionalized poly(ethylene glycol). Here, we systematically vary the concentration of the poly(ethylene glycol) linkers, the reaction temperature, and the magnetic field strength to study their impact on the physical properties of synthesized chains, including the chain length distribution, reaction temperature, and bending modulus. We find that this chain fabrication process resembles step-growth polymerization and can be accurately described by the Flory-Schulz model. Under optimized experimental conditions, we have successfully synthesized long flexible colloidal chains with a bending modulus, which is 4 orders of magnitude smaller than previous studies. Such flexible and long chains can be folded entirely into concentric rings and helices with multiple turns, demonstrating the potential for investigating the actuation, assembly, and folding behaviors of these colloidal polymer analogues.
Collapse
Affiliation(s)
- Ramona Mhanna
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Yan Gao
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Isaac Van Tol
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Ela Springer
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Ning Wu
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - David W M Marr
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|