1
|
Gagnon DG, Park D, Yim K, Morozova S. Optimizing anisotropic transport on bioinspired sawtooth surfaces. SOFT MATTER 2024; 20:4079-4087. [PMID: 38739031 DOI: 10.1039/d3sm01669b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Species ranging from butterflies and other insects, to cactuses and lotus plants have evolved to use geometrically patterned surfaces to influence the transport of water droplets. While this phenomenon is well known, an ideal geometry has yet to be discovered. To determine the impact of surface geometry on droplet transport, we have studied the contact angle and droplet motion across anisotropically wetting patterned surfaces. The surface geometries tested were sawtooth patterns with angles (8.62-26.70°) and lengths (0.56-1.67 μm). The droplet contact angles were measured on 45° angled surfaces to simulate the droplet in motion. Velocities were measured using a high-speed camera shooting at 500 frames per second and the tailing edges of the droplets were hand tracked over 18 frames. It was found that travel along the sawtooth ridges is significantly faster than travel against the ridges for geometries with shallow angles. The optimal geometry was determined to be α = 8.62° and b = 1.67 μm and was replicated using nanoimprint lithography using materials with different surface energies. When replicated with acrylate resins and PDMS, the contact angles remained high, regardless of wettability, but we find that the overall velocity and velocity hysteresis depends on the hydrophobicity. More hydrophobic surfaces have overall higher hysteresis. The ability to tune imprinted surfaces to achieve ideal wetting characteristics using geometry will lead to interesting anisotropic material design.
Collapse
Affiliation(s)
- Dillon G Gagnon
- Department of Macromolecular Science and Engineering, Case Western Reserve University, USA.
| | - Dahbin Park
- Department of Macromolecular Science and Engineering, Case Western Reserve University, USA.
| | - Kevin Yim
- Department of Macromolecular Science and Engineering, Case Western Reserve University, USA.
| | - Svetlana Morozova
- Department of Macromolecular Science and Engineering, Case Western Reserve University, USA.
| |
Collapse
|
2
|
Zheng L, Fang M, Chen W, Huo D, Li H. Enhancement Mechanism of Fish-Scale Surface Texture on Flow Switching and Mixing Efficiency in Microfluidic Chips. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:7396-7407. [PMID: 37186955 DOI: 10.1021/acs.langmuir.3c00502] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Surface textures have a significant influence on surface-functional properties, which provide an alternative solution to create an accurate control of microfluidics flow. This paper studies the modulation ability of fish-scale surface textures on microfluidics flowing behavior on the ground of the early research on vibration machining-induced surface wettability variation. A microfluidic directional flow function is proposed by modifying the wall of the microchannel at the T-junction with different surface textures. The retention force caused by the surface tension difference between the two outlets in the T-junction is studied. In order to investigate the influence of fish-scale textures on the performance of the directional flowing valve and micromixer, T-shaped and Y-shaped microfluidic chips were fabricated. The experimental results indicated that with the aid of the fish-scale surface textures generated by vibration-assisted micromilling, directional liquid flow can be achieved at a specific input pressure range and the mixing efficiency of microfluidics can be improved dramatically.
Collapse
Affiliation(s)
- Lu Zheng
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Mingyu Fang
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Wanqun Chen
- Centre for Precision Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Dehong Huo
- Mechanical Engineering, School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
| | - Haitao Li
- College of Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
3
|
Dynamic wetting of various liquids: Theoretical models, experiments, simulations and applications. Adv Colloid Interface Sci 2023; 313:102861. [PMID: 36842344 DOI: 10.1016/j.cis.2023.102861] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 02/23/2023]
Abstract
Dynamic wetting is a ubiquitous phenomenon and frequently observed in our daily life, as exemplified by the famous lotus effect. It is also an interfacial process of upmost importance involving many cutting-edge applications and has hence received significantly increasing academic and industrial attention for several decades. However, we are still far away to completely understand and predict wetting dynamics for a given system due to the complexity of this dynamic process. The physics of moving contact lines is mainly ascribed to the full coupling with the solid surface on which the liquids contact, the atmosphere surrounding the liquids, and the physico-chemical characteristics of the liquids involved (small-molecule liquids, metal liquids, polymer liquids, and simulated liquids). Therefore, to deepen the understanding and efficiently harness wetting dynamics, we propose to review the major advances in the available literature. After an introduction providing a concise and general background on dynamic wetting, the main theories are presented and critically compared. Next, the dynamic wetting of various liquids ranging from small-molecule liquids to simulated liquids are systematically summarized, in which the new physical concepts (such as surface segregation, contact line fluctuations, etc.) are particularly highlighted. Subsequently, the related emerging applications are briefly presented in this review. Finally, some tentative suggestions and challenges are proposed with the aim to guide future developments.
Collapse
|
4
|
Wang S, Zhou R, Hou Y, Wang M, Hou X. Photochemical effect driven fluid behavior control in microscale pores and channels. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.11.095] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Wu X, Di J, Yang Z, Duan Y. Molecular Dynamics Simulation of Spreading of Mixture Droplets on Chemically Heterogeneous Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8353-8365. [PMID: 35775598 DOI: 10.1021/acs.langmuir.2c00888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The dynamic spreading process of mixed droplets on chemically heterogeneous surfaces has attracted significant attention owing to its extensive industrial applications. The spreading of mixture droplets on a chemically heterogeneous surface is more complex than that for pure fluid droplets and needs to be understood further. In this study, molecular dynamic simulations were performed to investigate the dynamic spreading process of R32/R1234yf mixture droplets and water/ethanol mixture droplets of radius 4.7-6.5 nm with different compositions, on chemically heterogeneous surfaces. The variation in the relative spreading radius with time was analyzed and compared with the molecular kinetic theory. It was observed that for the R32/R1234yf mixture, the actual component mole fraction did not deviate from the nominal one in the triple contact region, and the dynamic spreading behavior was identical to that for the pure fluids. Meanwhile, the converse was true for the ethanol/water mixture. The molecular kinetic theory could accurately predict the spreading of droplets for R32/R1234yf mixtures when the mixture properties were used. However, this was not feasible for ethanol/water mixtures. It was observed that the local physical properties in the triple contact line (including the mole fraction and the lyophilic and lyophobic area ratio) play key roles in the spreading of the ethanol/water mixture droplets. The prediction of the dynamic spreading of water/ethanol mixture droplets on chemically heterogeneous surfaces can be improved significantly by using local properties to modify the molecular kinetic theory.
Collapse
Affiliation(s)
- Xinghui Wu
- Key Laboratory for Thermal Science and Power Engineering of MOE, Tsinghua University, Beijing 100084, P. R. China
| | - Jiawei Di
- Key Laboratory for Thermal Science and Power Engineering of MOE, Tsinghua University, Beijing 100084, P. R. China
| | - Zhen Yang
- Key Laboratory for Thermal Science and Power Engineering of MOE, Tsinghua University, Beijing 100084, P. R. China
| | - Yuanyuan Duan
- Key Laboratory for Thermal Science and Power Engineering of MOE, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
6
|
Mérai L, Deák Á, Dékány I, Janovák L. Fundamentals and utilization of solid/ liquid phase boundary interactions on functional surfaces. Adv Colloid Interface Sci 2022; 303:102657. [PMID: 35364433 DOI: 10.1016/j.cis.2022.102657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/16/2022]
Abstract
The affinity of macroscopic solid surfaces or dispersed nano- and bioparticles towards liquids plays a key role in many areas from fluid transport to interactions of the cells with phase boundaries. Forces between solid interfaces in water become especially important when the surface texture or particles are in the colloidal size range. Although, solid-liquid interactions are still prioritized subjects of materials science and therefore are extensively studied, the related literature still lacks in conclusive approaches, which involve as much information on fundamental aspects as on recent experimental findings related to influencing the wetting and other wetting-related properties and applications of different surfaces. The aim of this review is to fill this gap by shedding light on the mechanism-of-action and design principles of different, state-of-the-art functional macroscopic surfaces, ranging from self-cleaning, photoreactive or antimicrobial coatings to emulsion separation membranes, as these surfaces are gaining distinguished attention during the ongoing global environmental and epidemic crises. As there are increasing numbers of examples for stimulus-responsive surfaces and their interactions with liquids in the literature, as well, this overview also covers different external stimulus-responsive systems, regarding their mechanistic principles and application possibilities.
Collapse
|
7
|
Yong J, Yang Q, Hou X, Chen F. Emerging Separation Applications of Surface Superwettability. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:688. [PMID: 35215017 PMCID: PMC8878479 DOI: 10.3390/nano12040688] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 11/17/2022]
Abstract
Human beings are facing severe global environmental problems and sustainable development problems. Effective separation technology plays an essential role in solving these challenges. In the past decades, superwettability (e.g., superhydrophobicity and underwater superoleophobicity) has succeeded in achieving oil/water separation. The mixture of oil and water is just the tip of the iceberg of the mixtures that need to be separated, so the wettability-based separation strategy should be extended to treat other kinds of liquid/liquid or liquid/gas mixtures. This review aims at generalizing the approach of the well-developed oil/water separation to separate various multiphase mixtures based on the surface superwettability. Superhydrophobic and even superoleophobic surface microstructures have liquid-repellent properties, making different liquids keep away from them. Inspired by the process of oil/water separation, liquid polymers can be separated from water by using underwater superpolymphobic materials. Meanwhile, the underwater superaerophobic and superaerophilic porous materials are successfully used to collect or remove gas bubbles in a liquid, thus achieving liquid/gas separation. We believe that the diversified wettability-based separation methods can be potentially applied in industrial manufacture, energy use, environmental protection, agricultural production, and so on.
Collapse
Affiliation(s)
- Jiale Yong
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (J.Y.); (X.H.)
| | - Qing Yang
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China;
| | - Xun Hou
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (J.Y.); (X.H.)
| | - Feng Chen
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (J.Y.); (X.H.)
| |
Collapse
|
8
|
Ding Y, Jia L, Yin L, Dang C, Liu X, Xu J. Anisotropic wetting characteristics of droplet on micro-grooved surface. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Park JH, Shin BS, Jabbarzadeh A. Anisotropic Wettability on One-Dimensional Nanopatterned Surfaces: The Effects of Intrinsic Surface Wettability and Morphology. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14186-14194. [PMID: 34807615 DOI: 10.1021/acs.langmuir.1c02634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Large-scale molecular dynamic simulations were conducted to study anisotropic wettability on one-dimensional (1D) nanopatterned surfaces. Hexadecane (C16H34) and decane (C10H22) nanodroplets were used as wetting liquids. Initially, surfaces with various intrinsic wettability (oleophobic and oleophilic) were produced using surface lattice size as a control parameter. These surfaces were subsequently patterned with 1D grooves of different sizes, and their anisotropic wettability was examined. The results show that anisotropic wettability strongly depends on intrinsic surface wettability and surface morphology. The results also demonstrate that the anisotropy in the contact angle is negligible for oleophobic surfaces. However, the anisotropy becomes more evident for oleophilic surfaces and increases with the degree of oleophilicity. Results suggest that anisotropy also depends on the surface morphology, including the patterns' width and height. Monitoring the droplet shape showed that more significant droplet distortion was associated with higher anisotropy. A clear association was lacking between the roughness ratio, r, and the degree of anisotropy. The observed average contact angle for 1D patterned oleophilic surfaces disagreed with the predicted values from the Wenzel theory. However, the theory could correctly predict the state of the droplet being Cassie-Baxter or Wenzel.
Collapse
Affiliation(s)
- Jun Han Park
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735, Korea
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Bo Sung Shin
- Department of Optics & Mechatronics Engineering, Pusan National University, Busan 609-735 Korea
| | - Ahmad Jabbarzadeh
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
10
|
Yong J, Yang Q, Hou X, Chen F. Underwater superpolymphobicity: Concept, achievement, and applications. NANO SELECT 2020. [DOI: 10.1002/nano.202000212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Jiale Yong
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information School of Electronic Science and Engineering Xi'an Jiaotong University Xi'an 710049 PR China
| | - Qing Yang
- School of Mechanical Engineering Xi'an Jiaotong University Xi'an 710049 PR China
| | - Xun Hou
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information School of Electronic Science and Engineering Xi'an Jiaotong University Xi'an 710049 PR China
| | - Feng Chen
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information School of Electronic Science and Engineering Xi'an Jiaotong University Xi'an 710049 PR China
| |
Collapse
|
11
|
Zhang Y, Gan Y, Zhang L, Zhang D, Chen H. Surface-Tension-Confined Channel with Biomimetic Microstructures for Unidirectional Liquid Spreading. MICROMACHINES 2020; 11:E978. [PMID: 33143205 PMCID: PMC7692703 DOI: 10.3390/mi11110978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/26/2020] [Accepted: 10/29/2020] [Indexed: 06/11/2023]
Abstract
Unidirectional liquid spreading without energy input is of significant interest for the broad applications in diverse fields such as water harvesting, drop transfer, oil-water separation and microfluidic devices. However, the controllability of liquid motion and the simplification of manufacturing process remain challenges. Inspired by the peristome of Nepenthes alata, a surface-tension-confined (STC) channel with biomimetic microcavities was fabricated facilely through UV exposure photolithography and partial plasma treatment. Perfect asymmetric liquid spreading was achieved by combination of microcavities and hydrophobic boundary, and the stability of pinning effect was demonstrated. The influences of structural features of microcavities on both liquid spreading and liquid pinning were investigated and the underlying mechanism was revealed. We also demonstrated the spontaneous unidirectional transport of liquid in 3D space and on tilting slope. In addition, through changing pits arrangement and wettability pattern, complex liquid motion paths and microreactors were realized. This work will open a new way for liquid manipulation and lab-on-chip applications.
Collapse
Affiliation(s)
- Yi Zhang
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China; (Y.Z.); (Y.G.); (L.Z.); (D.Z.)
| | - Yang Gan
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China; (Y.Z.); (Y.G.); (L.Z.); (D.Z.)
| | - Liwen Zhang
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China; (Y.Z.); (Y.G.); (L.Z.); (D.Z.)
| | - Deyuan Zhang
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China; (Y.Z.); (Y.G.); (L.Z.); (D.Z.)
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Huawei Chen
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China; (Y.Z.); (Y.G.); (L.Z.); (D.Z.)
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
12
|
Yong J, Yang Q, Hou X, Chen F. Relationship and Interconversion Between Superhydrophilicity, Underwater Superoleophilicity, Underwater Superaerophilicity, Superhydrophobicity, Underwater Superoleophobicity, and Underwater Superaerophobicity: A Mini-Review. Front Chem 2020; 8:828. [PMID: 33134266 PMCID: PMC7511633 DOI: 10.3389/fchem.2020.00828] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/05/2020] [Indexed: 11/13/2022] Open
Abstract
Superwetting surfaces have received increasing attention because of their rich practical applications. Although various superwettabilities are independently achieved, the relationship between those superwettabilities is still not well-clarified. In this mini-review, we show that superhydrophilicity, underwater superoleophilicity, underwater superaerophilicity, superhydrophobicity, underwater superoleophobicity, and underwater superaerophobicity can be obtained on a same structured surface by the combination of hierarchical surface microstructures and proper chemistry. The relationship and interconversion between the above-mentioned different superwettabilities are also well-discussed. We believe that the current discussion and clarification of the relationship and interconversion between different superwettabilities has important significance in the design, fabrication, and applications of various superwetting materials.
Collapse
Affiliation(s)
- Jiale Yong
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Qing Yang
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Xun Hou
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Feng Chen
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
13
|
Chen H, Cheng F, Chen C, Li H. Study on self‐healing behavior of the layer‐by‐layer assembled polyethylenimine/poly(acrylic acid) film. J Appl Polym Sci 2020. [DOI: 10.1002/app.49169] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Hongxu Chen
- College of Material and Textile EngineeringJiaxing University Jiaxing Zhejiang China
| | - Fengmei Cheng
- College of Material and Textile EngineeringJiaxing University Jiaxing Zhejiang China
| | - Chao Chen
- College of Material and Textile EngineeringJiaxing University Jiaxing Zhejiang China
| | - Haidong Li
- College of Material and Textile EngineeringJiaxing University Jiaxing Zhejiang China
| |
Collapse
|
14
|
Wang S, Yang X, Wu F, Min L, Chen X, Hou X. Inner Surface Design of Functional Microchannels for Microscale Flow Control. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1905318. [PMID: 31793747 DOI: 10.1002/smll.201905318] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/03/2019] [Indexed: 05/05/2023]
Abstract
Fluidic flow behaviors in microfluidics are dominated by the interfaces created between the fluids and the inner surface walls of microchannels. Microchannel inner surface designs, including the surface chemical modification, and the construction of micro-/nanostructures, are good examples of manipulating those interfaces between liquids and surfaces through tuning the chemical and physical properties of the inner walls of the microchannel. Therefore, the microchannel inner surface design plays critical roles in regulating microflows to enhance the capabilities of microfluidic systems for various applications. Most recently, the rapid progresses in micro-/nanofabrication technologies and fundamental materials have also made it possible to integrate increasingly complex chemical and physical surface modification strategies with the preparation of microchannels in microfluidics. Besides, a wave of researches focusing on the ideas of using liquids as dynamic surface materials is identified, and the unique characteristics endowed with liquid-liquid interfaces have revealed that the interesting phenomena can extend the scope of interfacial interactions determining microflow behaviors. This review extensively discusses the microchannel inner surface designs for microflow control, especially evaluates them from the perspectives of the interfaces resulting from the inner surface designs. In addition, prospective opportunities for the development of surface designs of microchannels, and their applications are provided with the potential to attract scientific interest in areas related to the rapid development and applications of various microchannel systems.
Collapse
Affiliation(s)
- Shuli Wang
- College of Chemistry and Chemical Engineering and State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, China
- Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen, 361005, China
| | - Xian Yang
- College of Chemistry and Chemical Engineering and State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, China
| | - Feng Wu
- Bionic and Soft Matter Research Institute, College of Physical Science and Technology, Xiamen University, Xiamen, 361005, China
- Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, 361005, China
| | - Lingli Min
- College of Chemistry and Chemical Engineering and State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, China
| | - Xinyu Chen
- College of Chemistry and Chemical Engineering and State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, China
| | - Xu Hou
- College of Chemistry and Chemical Engineering and State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, China
- Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen, 361005, China
- Bionic and Soft Matter Research Institute, College of Physical Science and Technology, Xiamen University, Xiamen, 361005, China
- Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
15
|
Understanding the wetting properties of nanostructured strontium titanate and its application for recyclable oil/water separation. ADV POWDER TECHNOL 2020. [DOI: 10.1016/j.apt.2020.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Xu D, Ba Y, Sun J, Fu X. A Numerical Study of Micro-Droplet Spreading Behaviors on Wettability-Confined Tracks Using a Three-Dimensional Phase-Field Lattice Boltzmann Model. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:340-353. [PMID: 31851519 DOI: 10.1021/acs.langmuir.9b02731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Wettability-confined tracks have been extensively used in open-surface microfluidic devices for their high capacity of transporting droplet pumplessly. Inspired by the experimental work of Sen et al. [ Langmuir 2018 , 34 , 1899 - 1907 ], in the present study, a three-dimensional phase-field lattice Boltzmann model is developed and used to investigate the spreading behaviors of microdroplet on a series of wettability-confined tracks. The experimental findings are successfully reproduced through our simulation, where three distinct stages of droplet spreading on the horizontal wettability-confined diverging track are fairly exhibited, that is, the initial stage with droplet front spreading quickly, the intermediate stage with both droplet front and bulge moving forward at a constant speed, and the final stage with droplet front decelerating gradually. Moreover, a parametric study of track divergence angle is further performed, and the influential mechanism of track divergence angle on droplet spreading is further revealed. It is demonstrated that track divergence is responsible for the Laplace pressure gradient and capillary force inside the droplet, which drives the droplet bulge to move forward on the diverging track. With an increase in divergence angle, the capillary force increases linearly, which increases the droplet spreading speed at the initial and intermediate stages, while the peak capillary force comes earlier, and consequently the final decelerating stage comes earlier. On the basis of the parametric study and droplet volume conservation rule, a power law relation between track divergence angle and droplet spreading is proposed, which helps to identify the start of final decelerating stage. Finally, the droplet spreading over various inclined tracks is explored, which can be achieved only when the capillary force at the beginning is larger than the droplet gravity component along the inclined track surface.
Collapse
Affiliation(s)
- Da Xu
- School of Energy and Power Engineering , Xi'an Jiaotong University , 28 West Xianning Road , Xi'an 710049 , China
| | - Yan Ba
- School of Astronautics , Northwestern Polytechnical University , 127 West Youyi Road , Xi'an 710072 , China
| | - Jinju Sun
- School of Energy and Power Engineering , Xi'an Jiaotong University , 28 West Xianning Road , Xi'an 710049 , China
| | - Xiaojin Fu
- School of Energy and Power Engineering , Xi'an Jiaotong University , 28 West Xianning Road , Xi'an 710049 , China
| |
Collapse
|
17
|
Fan P, Pan R, Zhong M. Ultrafast Laser Enabling Hierarchical Structures for Versatile Superhydrophobicity with Enhanced Cassie-Baxter Stability and Durability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:16693-16711. [PMID: 31782653 DOI: 10.1021/acs.langmuir.9b02986] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The controllable and facile fabrication of surface micro/nanostructures with the required dimensions and morphologies is the key to achieving surface superhydrophobicity. With the advantages of being a noncontact, maskless, programmable, and one-step process, ultrafast laser irradiation is a very flexible and adaptive technique for fabricating various microscale, nanoscale, and micro/nanomultiscale surface structures on diverse solids, thus realizing superhydrophobicity on their surfaces. In this feature article, a comprehensive review of our recent research advances on versatile superhydrophobic surfaces enabled by ultrafast lasers is presented from the perspectives of materials, methodologies, and functionalization. The realization of superhydrophobicity and even superamphiphobicity on varied solid surfaces through ultrafast laser treatment and the underlying mechanisms for the wettability transition of ultrafast-laser-processed surfaces from superhydrophilicity to superhydrophobicity will be discussed. For the sake of practical applications, the ultrafast-laser-based strategies for the large-scale and cost-effective fabrication of superhydrophobic surface micro/nanostructures will be introduced. A special focus will be devoted to the enhancement of structural durability and the Cassie-Baxter stability of ultrafast-laser-enabled superhydrophobic surfaces. Beyond that, the achievement of integrated surface functions including remarkable wetting functions such as the directional collection of water droplets and superhydrophobic surfaces simultaneously with unique optical properties will also be presented.
Collapse
Affiliation(s)
- Peixun Fan
- Laser Materials Processing Research Centre, School of Materials Science and Engineering , Tsinghua University , Beijing 100084 , P. R. China
| | - Rui Pan
- Laser Materials Processing Research Centre, School of Materials Science and Engineering , Tsinghua University , Beijing 100084 , P. R. China
| | - Minlin Zhong
- Laser Materials Processing Research Centre, School of Materials Science and Engineering , Tsinghua University , Beijing 100084 , P. R. China
| |
Collapse
|
18
|
Pascual M, Kerdraon M, Rezard Q, Jullien MC, Champougny L. Wettability patterning in microfluidic devices using thermally-enhanced hydrophobic recovery of PDMS. SOFT MATTER 2019; 15:9253-9260. [PMID: 31657428 DOI: 10.1039/c9sm01792e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Spatial control of wettability is key to many applications of microfluidic devices, ranging from double emulsion generation to localized cell adhesion. A number of techniques, often based on masking, have been developed to produce spatially-resolved wettability patterns at the surface of poly(dimethylsiloxane) (PDMS) elastomers. A major impediment they face is the natural hydrophobic recovery of PDMS: hydrophilized PDMS surfaces tend to return to hydrophobicity with time, mainly because of diffusion of low molecular weight silicone species to the surface. Instead of trying to avoid this phenomenon, we propose in this work to take advantage of hydrophobic recovery to modulate spatially the surface wettability of PDMS. Because temperature speeds up the rate of hydrophobic recovery, we show that space-resolved hydrophobic patterns can be produced by locally heating a plasma-hydrophilized PDMS surface with microresistors. Importantly, local wettability is quantified in microchannels using a fluorescent probe. This "thermo-patterning" technique provides a simple route to in situ wettability patterning in closed PDMS chips, without requiring further surface chemistry.
Collapse
Affiliation(s)
- Marc Pascual
- Gulliver, CNRS, ESPCI Paris, PSL University, 10 rue Vauquelin, 75005 Paris, France.
| | - Margaux Kerdraon
- Gulliver, CNRS, ESPCI Paris, PSL University, 10 rue Vauquelin, 75005 Paris, France.
| | - Quentin Rezard
- Gulliver, CNRS, ESPCI Paris, PSL University, 10 rue Vauquelin, 75005 Paris, France.
| | - Marie-Caroline Jullien
- Gulliver, CNRS, ESPCI Paris, PSL University, 10 rue Vauquelin, 75005 Paris, France. and Institut de Physique de Rennes, UMR CNRS 6251, Bât. 11A, Campus de Beaulieu, 263 avenue du Général Leclerc, 35042 Rennes Cedex, France
| | - Lorène Champougny
- Gulliver, CNRS, ESPCI Paris, PSL University, 10 rue Vauquelin, 75005 Paris, France. and Grupo de Mecánica de Fluidos, Departamento de Ingeniería Térmica y de Fluidos, Universidad Carlos III de Madrid, Av. Universidad 30, 28911 Leganés (Madrid), Spain
| |
Collapse
|
19
|
Yong J, Singh SC, Zhan Z, EIKabbash M, Chen F, Guo C. Femtosecond-Laser-Produced Underwater "Superpolymphobic" Nanorippled Surfaces: Repelling Liquid Polymers in Water for Applications of Controlling Polymer Shape and Adhesion. ACS APPLIED NANO MATERIALS 2019; 2:7362-7371. [PMID: 31788665 PMCID: PMC6878214 DOI: 10.1021/acsanm.9b01869] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 10/25/2019] [Indexed: 05/31/2023]
Abstract
A femtosecond (fs)-laser-processed surface that repels liquid polymer in water is reported in this paper. We define this phenomenon as the "superpolymphobicity". Three-level microstructures (including microgrooves, micromountains/microholes between the microgrooves, and nanoripples on the whole surface) were directly created on the stainless steel surface via fs laser processing. A liquid polydimethylsiloxane (PDMS) droplet on the textured surface had the contact angle of 156 ± 3° and contact angle hysteresis less than 4° in water, indicating excellent underwater superpolymphobicity of the fs-laser-induced hierarchical microstructures. The contact between the resultant superhydrophilic hierarchical microstructures and the submerged liquid PDMS droplet is verified at the underwater Cassie state. The underwater superpolymphobicity enables to design the shape of cured PDMS and selectively avoid the adhesion at the PDMS/substrate interface, different from the previously reported superwettabilities. As the examples, the microlens array and microfluidics system were prepared based on the laser-induced underwater superpolymphobic microstructures.
Collapse
Affiliation(s)
- Jiale Yong
- The
Institute of Optics, University of Rochester, Rochester, New York 14627, United States
- Shaanxi
Key Laboratory of Photonics Technology for Information, School of
Electronics & Information Engineering, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Subhash C. Singh
- The
Institute of Optics, University of Rochester, Rochester, New York 14627, United States
| | - Zhibing Zhan
- The
Institute of Optics, University of Rochester, Rochester, New York 14627, United States
| | - Mohamed EIKabbash
- The
Institute of Optics, University of Rochester, Rochester, New York 14627, United States
| | - Feng Chen
- Shaanxi
Key Laboratory of Photonics Technology for Information, School of
Electronics & Information Engineering, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Chunlei Guo
- The
Institute of Optics, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
20
|
He L, Sun Y, Sui X, Wang Z, Liang W. Modeling and Measurement on the Sliding Behavior of Microgrooved Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14133-14140. [PMID: 31573206 DOI: 10.1021/acs.langmuir.9b02418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The sliding behavior of anisotropic surfaces is a crucial property to their applications from fundamental research to practical fields. Herein, we propose a theoretical model for analyzing the sliding behavior based on the concept of adhesion energy. Surface Evolver simulation is conducted to determine the adhesion energy per unit area. The microgrooved surfaces are fabricated and characterized to validate the proposed theory. It is found that the apparent contact angle measured along the direction parallel to the strips increases with the increase of microgroove width, while the corresponding sliding angles exhibit an opposite trend. The adhesion energy per unit area has a constant value regardless of the droplet volume. The different sliding behaviors of anisotropic surfaces along the perpendicular and parallel directions are attributed to the difference in the corresponding adhesion energies per unit area. The proposed model is expected to be used for predicting the sliding behavior of anisotropic surfaces.
Collapse
Affiliation(s)
- Liang He
- College of Aerospace and Civil Engineering , Harbin Engineering University , Nantong Street , Harbin 150001 , China
- AVIC Xi'an Aircraft Industry (Group) Company Ltd. , Xifei Road , Xi'an 710089 , China
- Department of Bioresource Engineering , McGill University , 21111 Lakeshore Road , Sainte-Anne-de-Bellevue , QC H9X 3V9 , Canada
| | - Yongyang Sun
- College of Aerospace and Civil Engineering , Harbin Engineering University , Nantong Street , Harbin 150001 , China
| | - Xin Sui
- College of Aerospace and Civil Engineering , Harbin Engineering University , Nantong Street , Harbin 150001 , China
| | - Zhefeng Wang
- College of Aerospace and Civil Engineering , Harbin Engineering University , Nantong Street , Harbin 150001 , China
| | - Wenyan Liang
- College of Aerospace and Civil Engineering , Harbin Engineering University , Nantong Street , Harbin 150001 , China
| |
Collapse
|
21
|
Surface topographies of biomimetic superamphiphobic materials: design criteria, fabrication and performance. Adv Colloid Interface Sci 2019; 269:87-121. [PMID: 31059923 DOI: 10.1016/j.cis.2019.04.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/15/2019] [Accepted: 04/24/2019] [Indexed: 12/26/2022]
Abstract
Superamphiphobicity is a wetting phenomenon that not only water but also oils or organic solvents with low surface tension exhibit large contact angles above 150° along with low contact angle hysteresis on solid surface. It is well known that both chemical constituent and surface roughness have impacts on the wettability of solid surface. Herein, several fundamental wetting states and design criteria for re-entrant structures are introduced first. Then, various chemical modification materials endowing solid substrates low surface energy are summarized subsequently. Furthermore, roughening processes conferring hierarchical or re-entrant topographic structures on surfaces are classified based on different types of topographies abstracted from the natural oil-repellent creatures (mushroom-like structures) as well as bio-inspired superamphiphobic surfaces (i.e., randomly distributed nanostructures, regularly patterned microstructures and other complex hierarchical structures). Significantly, the impalement pressure and formulated rules of various re-entrant profiles are recommended in detail. At the same time, fabrication, outstanding performances such as mechanical durability, chemical stability are also mentioned according to different types of morphologies. Beyond that, current fabrication obstacles and future prospects are proposed simultaneously in the end.
Collapse
|
22
|
Yong J, Singh SC, Zhan Z, Chen F, Guo C. How To Obtain Six Different Superwettabilities on a Same Microstructured Pattern: Relationship between Various Superwettabilities in Different Solid/Liquid/Gas Systems. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:921-927. [PMID: 30609378 PMCID: PMC6354231 DOI: 10.1021/acs.langmuir.8b03726] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/04/2018] [Indexed: 05/24/2023]
Abstract
A range of different superwettabilities were obtained on femtosecond laser-structured Al surfaces. The formation mechanism of each superwetting state is discussed in this paper. It is revealed that the underwater oil droplet and bubble wettabilities of a solid surface have a close relationship with its water wettability. The laser-induced hierarchical microstructures showed superhydrophilicity in air but showed superoleophobicity/superaerophobicity after immersion in water. When such microstructures were further modified with a low-surface-energy monolayer, the wettability of the resultant surface would turn to superhydrophobicity with ultralow water adhesion in air and superoleophilicity/superaerophilicity in water. The understanding of the relationship among the above-mentioned six different superwettabilities is highly important in the design of various superwetting microstructures, transforming the structures from one superwetting state to another state and better using the artificial superwetting materials.
Collapse
Affiliation(s)
- Jiale Yong
- The
Institute of Optics, University of Rochester, Rochester, New York 14627, United States
- Shaanxi
Key Laboratory of Photonics Technology for Information, School of
Electronics & Information Engineering, Xi’an Jiaotong University, Xi’an, 710049, People’s Republic of China
| | - Subhash C. Singh
- The
Institute of Optics, University of Rochester, Rochester, New York 14627, United States
| | - Zhibing Zhan
- The
Institute of Optics, University of Rochester, Rochester, New York 14627, United States
| | - Feng Chen
- Shaanxi
Key Laboratory of Photonics Technology for Information, School of
Electronics & Information Engineering, Xi’an Jiaotong University, Xi’an, 710049, People’s Republic of China
| | - Chunlei Guo
- The
Institute of Optics, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
23
|
Yang SH, Park J, Youn JR, Song YS. Programmable microfluidic logic device fabricated with a shape memory polymer. LAB ON A CHIP 2018; 18:2865-2872. [PMID: 30105331 DOI: 10.1039/c8lc00627j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Manipulation of particles in a microfluidic system is an important research subject in biomedical engineering. However, most conventional passive techniques for particle control have difficulties in integrating other functions into microfluidic channels. A unique microfluidic valve was proposed in this study for switchable particle control by employing a shape memory polymer (SMP). A microfluidic logic device can be programmed based on deformation of the SMP microchannel constructed on a poly(dimethylsiloxane) (PDMS) film. Particles in a viscoelastic flow were focused at preferred equilibrium locations by the competition between inertia and elastic forces. The channel shape played an important role in determining those forces in the channel. Hydrodynamic behavior and shape recovery behavior of the SMP microchannel were modeled theoretically. It was confirmed that the particle valve prepared with the SMP implemented a programmable binary logic operation in the microfluidic channel.
Collapse
Affiliation(s)
- Sei Hyun Yang
- Research Institute of Advanced Materials (RIAM), Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea.
| | | | | | | |
Collapse
|
24
|
Cook MJ, Johnston JH, Leveneur J. Combining a Fluoroalkylsiloxane and Ion Implantation for Hydrophilic/Hydrophobic Patterning on a Microstructured Anisotropic Polymer Surface. ChemistrySelect 2018. [DOI: 10.1002/slct.201800443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Michelle J. Cook
- School of Chemical and Physical SciencesVictoria University of Wellington PO Box 600 Wellington New Zealand
| | - James H. Johnston
- School of Chemical and Physical SciencesVictoria University of Wellington PO Box 600 Wellington New Zealand
| | - Jérôme Leveneur
- GNS ScienceNational Isotope Centre, PO Box 31312 Lower Hutt New Zealand
| |
Collapse
|
25
|
Kakekhani A, Roling LT, Kulkarni A, Latimer AA, Abroshan H, Schumann J, AlJama H, Siahrostami S, Ismail-Beigi S, Abild-Pedersen F, Nørskov JK. Nature of Lone-Pair–Surface Bonds and Their Scaling Relations. Inorg Chem 2018; 57:7222-7238. [DOI: 10.1021/acs.inorgchem.8b00902] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Arvin Kakekhani
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Luke T. Roling
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Ambarish Kulkarni
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Allegra A. Latimer
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Hadi Abroshan
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Julia Schumann
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Hassan AlJama
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Samira Siahrostami
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Sohrab Ismail-Beigi
- Department of Applied Physics, Yale University, New Haven, Connecticut 06520, United States
| | - Frank Abild-Pedersen
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Jens K. Nørskov
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| |
Collapse
|
26
|
Wang S, Liu Y, Ge P, Kan Q, Yu N, Wang J, Nan J, Ye S, Zhang J, Xu W, Yang B. Colloidal lithography-based fabrication of highly-ordered nanofluidic channels with an ultra-high surface-to-volume ratio. LAB ON A CHIP 2018; 18:979-988. [PMID: 29485661 DOI: 10.1039/c7lc01326d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This article shows a new strategy for the fabrication of nanofluidics based on nanoscale gaps in nanopillar arrays. Silicon nanopillar arrays are prepared in a designed position by combining conventional photolithography with colloidal lithography. The nanogaps between the pillars are used as nanochannels for the connection of two polydimethylsiloxane-based microchannels in microfluidics. The gap between neighbouring nanopillars can be accurately controlled by changing the size of initial colloidal spheres and by an etching process, which further determines the dimensions of the nanochannels. At a low ionic strength, the surface charge-governed ion transportation shows that the nanochannels possess the same electrokinetic properties as typical nanofluidics. Benefiting from the advantage of photolithography, large-area nanochannel arrays can be prepared in a parallel manner. Due to the perm-selectivity of the nanochannels, the nanofluidic chips can be used to preconcentrate low concentration samples. The large-area ordered nanostructures preserve their high-throughput property and large surface-to-volume ratio, which shows their great potential in the development of nanofluidics and their applications, such as in the separation of small molecules, energy conversion, etc.
Collapse
Affiliation(s)
- Shuli Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Song YY, Liu Y, Jiang HB, Li SY, Kaya C, Stegmaier T, Han ZW, Ren LQ. Temperature-tunable wettability on a bioinspired structured graphene surface for fog collection and unidirectional transport. NANOSCALE 2018; 10:3813-3822. [PMID: 29412200 DOI: 10.1039/c7nr07728a] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We designed a type of smart bioinspired wettable surface with tip-shaped patterns by combining polydimethylsiloxane (PDMS) and graphene (PDMS/G). The laser etched porous graphene surface can produce an obvious wettability change between 200 °C and 0 °C due to a change in aperture size and chemical components. We demonstrate that the cooperation of the geometrical structure and the controllable wettability play an important role in water gathering, and surfaces with tip-shaped wettability patterns can quickly drive tiny water droplets toward more wettable regions, so making a great contribution to the improvement of water collection efficiency. In addition, due to the effective cooperation between super hydrophobic and hydrophilic regions of the special tip-shaped pattern, unidirectional water transport on the 200 °C heated PDMS/G surface can be realized. This study offers a novel insight into the design of temperature-tunable materials with interphase wettability that may enhance fog collection efficiency in engineering liquid harvesting equipment, and realize unidirectional liquid transport, which could potentially be applied to the realms of microfluidics, medical devices and condenser design.
Collapse
Affiliation(s)
- Yun-Yun Song
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, P.R. China.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Yong J, Chen F, Fang Y, Huo J, Yang Q, Zhang J, Bian H, Hou X. Bioinspired Design of Underwater Superaerophobic and Superaerophilic Surfaces by Femtosecond Laser Ablation for Anti- or Capturing Bubbles. ACS APPLIED MATERIALS & INTERFACES 2017; 9:39863-39871. [PMID: 29067804 DOI: 10.1021/acsami.7b14819] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A micro-/nanoscale hierarchical rough structure inspired by the underwater superaerophobicity of fish scales was fabricated by ablation of a silicon surface by a femtosecond laser. The resultant silicon surface showed superhydrophilicity in air and became superaerophobic after immersion in water. Additionally, inspired by the underwater superaerophilicity of lotus leaves, we showed that the polydimethylsiloxane surface after femtosecond laser ablation exhibits superhydrophobicity in air and becomes superaerophilic in water. The underwater superaerophobic surface showed excellent antibubble ability, whereas the underwater superaerophilic surface could absorb and capture air bubbles in a water medium. The experimental results revealed that the in-air superhydrophilic surface generally shows superaerophobicity in water and that the in-air superhydrophobic surface generally shows underwater superaerophilicity. An underwater superaerophobic porous aluminum sheet with through microholes was prepared, and this sheet was able to intercept underwater bubbles and further remove bubbles from water. In contrast, the underwater superaerophilic porous polytetrafluoroethylene sheet could allow the bubbles to pass through the sheet. We believe that these results are highly significant for providing guidance to researchers and engineers for obtaining excellent control of bubbles' behavior on a solid surface in a water medium.
Collapse
Affiliation(s)
- Jiale Yong
- State Key Laboratory for Manufacturing System Engineering and Key Laboratory of Photonics Technology for Information of Shaanxi Province, School of Electronics & Information Engineering, and ‡School of Mechanical Engineering, Xi'an Jiaotong University , Xi'an 710049, PR China
| | - Feng Chen
- State Key Laboratory for Manufacturing System Engineering and Key Laboratory of Photonics Technology for Information of Shaanxi Province, School of Electronics & Information Engineering, and ‡School of Mechanical Engineering, Xi'an Jiaotong University , Xi'an 710049, PR China
| | - Yao Fang
- State Key Laboratory for Manufacturing System Engineering and Key Laboratory of Photonics Technology for Information of Shaanxi Province, School of Electronics & Information Engineering, and ‡School of Mechanical Engineering, Xi'an Jiaotong University , Xi'an 710049, PR China
| | - Jinglan Huo
- State Key Laboratory for Manufacturing System Engineering and Key Laboratory of Photonics Technology for Information of Shaanxi Province, School of Electronics & Information Engineering, and ‡School of Mechanical Engineering, Xi'an Jiaotong University , Xi'an 710049, PR China
| | - Qing Yang
- State Key Laboratory for Manufacturing System Engineering and Key Laboratory of Photonics Technology for Information of Shaanxi Province, School of Electronics & Information Engineering, and ‡School of Mechanical Engineering, Xi'an Jiaotong University , Xi'an 710049, PR China
| | - Jingzhou Zhang
- State Key Laboratory for Manufacturing System Engineering and Key Laboratory of Photonics Technology for Information of Shaanxi Province, School of Electronics & Information Engineering, and ‡School of Mechanical Engineering, Xi'an Jiaotong University , Xi'an 710049, PR China
| | - Hao Bian
- State Key Laboratory for Manufacturing System Engineering and Key Laboratory of Photonics Technology for Information of Shaanxi Province, School of Electronics & Information Engineering, and ‡School of Mechanical Engineering, Xi'an Jiaotong University , Xi'an 710049, PR China
| | - Xun Hou
- State Key Laboratory for Manufacturing System Engineering and Key Laboratory of Photonics Technology for Information of Shaanxi Province, School of Electronics & Information Engineering, and ‡School of Mechanical Engineering, Xi'an Jiaotong University , Xi'an 710049, PR China
| |
Collapse
|
29
|
Bioinspired Fabrication of one dimensional graphene fiber with collection of droplets application. Sci Rep 2017; 7:12056. [PMID: 28935872 PMCID: PMC5608905 DOI: 10.1038/s41598-017-12238-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/06/2017] [Indexed: 11/28/2022] Open
Abstract
We designed a kind of smart bioinspired fiber with multi-gradient and multi-scale spindle knots by combining polydimethylsiloxane (PDMS) and graphene oxide (GO). Multilayered graphene structures can produce obvious wettability change after laser etching due to increased roughness. We demonstrate that the cooperation between curvature and the controllable wettability play an important role in water gathering, which regulate effectively the motion of tiny water droplets. In addition, due to the effective cooperation of multi-gradient and multi-scale hydrophilic spindle knots, the length of the three-phase contact line (TCL) can be longer, which makes a great contribution to the improvement of collecting efficiency and water-hanging ability. This study offers a novel insight into the design of smart materials that may control the transport of tiny drops reversibly in directions, which could potentially be extended to the realms of in microfluidics, fog harvesting filtration and condensers designs, and further increase water collection efficiency and hanging ability.
Collapse
|
30
|
Wu H, Zhu K, Cao B, Zhang Z, Wu B, Liang L, Chai G, Liu A. Smart design of wettability-patterned gradients on substrate-independent coated surfaces to control unidirectional spreading of droplets. SOFT MATTER 2017; 13:2995-3002. [PMID: 28367564 DOI: 10.1039/c6sm02864k] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Highly adherent wettability patterns on the substrate-independent superhydrophobic surfaces of trimethoxyoctadecylsilane modified titanium dioxide (TiO2)-based coatings were prepared by using commercial photolithography. Three custom unidirectional channels with gradient wettability patterns were obtained by spatially selective wettability conversion from superhydrophobic to superhydrophilic when the coatings were exposed to ultraviolet light (∼365 nm). The movement behavior of droplets on these unidirectional channels was studied and the displacement of droplet movement was effectively controlled. Integrating the idea of gradient wettability patterns into planar microfluidic devices (microreactors), a self-driven fluid transport was achieved to realize droplet metering, merging or reaction, and rapid transport. This self-driven fluid transport with gradient wettability patterns has great potential in fabricating a new category of pump-free microfluidic systems that can be used in various conditions.
Collapse
Affiliation(s)
- Huaping Wu
- Key Laboratory of E&M (Zhejiang University of Technology), Ministry of Education & Zhejiang Province, Hangzhou 310014, China.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Zhang P, Chen H, Li L, Liu H, Liu G, Zhang L, Zhang D, Jiang L. Bioinspired Smart Peristome Surface for Temperature-Controlled Unidirectional Water Spreading. ACS APPLIED MATERIALS & INTERFACES 2017; 9:5645-5652. [PMID: 28106363 DOI: 10.1021/acsami.6b15802] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Unidirectional liquid spreading without energy input has attracted considerable attention due to various potential applications such as biofluidics devices and self-lubrication. Introducing a surface wettable gradient or asymmetric nanostructures onto the surface has successfully harnessed the liquid to spread unidirectionally. However, these surfaces are still plagued with problems that restrict their practical applications: fixed spreading state for a fixed surface, and spreading slowly over a short distance. Herein, bioinspired from the fast continuous unidirectional water transport on the peristome of Nepenthes alata, we report a smart peristome with temperature-controlled unidirectional water spreading. The smart artificial peristome was fabricated by grafting the thermoresponsive material PNIPAAm onto the artificial PDMS peristome. Unidirectional water spreading on the smart peristome can be dynamically regulated by changing the surface temperature. Besides, the water spreading is demonstrated with a remarkable reversibility and stability. By investigating the relationship between liquid spreading distance and wettability, the underlying mechanism was revealed. This work gives a new way to achieve the control of unidirectional liquid spreading available for controllable microfluidics and medical devices.
Collapse
Affiliation(s)
- Pengfei Zhang
- School of Mechanical Engineering and Automation, Beihang University , Beijing 100191, China
| | - Huawei Chen
- School of Mechanical Engineering and Automation, Beihang University , Beijing 100191, China
| | - Li Li
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | - Hongliang Liu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | - Guang Liu
- School of Mechanical Engineering and Automation, Beihang University , Beijing 100191, China
| | - Liwen Zhang
- School of Mechanical Engineering and Automation, Beihang University , Beijing 100191, China
| | - Deyuan Zhang
- School of Mechanical Engineering and Automation, Beihang University , Beijing 100191, China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| |
Collapse
|
32
|
Yu N, Wang S, Liu Y, Xue P, Ge P, Nan J, Ye S, Liu W, Zhang J, Yang B. Thermal-Responsive Anisotropic Wetting Microstructures for Manipulation of Fluids in Microfluidics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:494-502. [PMID: 27998059 DOI: 10.1021/acs.langmuir.6b03896] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We show morphology-patterned stripes modified by thermal-responsive polymer for smartly guiding flow motion of fluid in chips. With a two-step modification process, we fabricated PNIPAAm-modified Si stripes on silicon slides, which were employed as substrates for fluid manipulation in microchannels. When the system temperature switches between above and below the lower critical solution temperature (LCST) of PNIPAAm, the wettability of the substrates also switches between strong anisotropy and weak anisotropy, which resulted in anisotropic (even unidirectional) flow and isotropic flow behavior of liquid in microchannels. The thermal-responsive flow motion of fluid in the chip is influenced by the applied pressure, the thickness of PNIPAAm, and dimension of the microchannels. Moreover, we measured the feasible applied pressure scopes under different structure factors. Because of the excellent reversibility and quick switching speed, the chip could be used as a thermal-responsive microvalve. Through tuning the system temperature and adding the assistant gas, we realized successive "valve" function. We believe that the practical and simple chip could be widely utilized in medical detection, immunodetection, protein analysis, and cell cultures.
Collapse
Affiliation(s)
- Nianzuo Yu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , Jilin 130012, P. R. China
| | - Shuli Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , Jilin 130012, P. R. China
| | - Yongshun Liu
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences , Beijing 130033, P. R. China
| | - Peihong Xue
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , Jilin 130012, P. R. China
| | - Peng Ge
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , Jilin 130012, P. R. China
| | - Jingjie Nan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , Jilin 130012, P. R. China
| | - Shunsheng Ye
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , Jilin 130012, P. R. China
| | - Wendong Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , Jilin 130012, P. R. China
| | - Junhu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , Jilin 130012, P. R. China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , Jilin 130012, P. R. China
| |
Collapse
|
33
|
Wang H, Wang SG, Kan JJ, Deng XY, Wang WC, Wu MH, Lei Y. Low voltage driven surface micro-flow by Joule heating. RSC Adv 2017. [DOI: 10.1039/c7ra03259e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
We report a low voltage driven surface microfluidic system simply by Joule heating.
Collapse
Affiliation(s)
- H. Wang
- Institute of Nanochemistry and Nanobiology
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai
- P. R. China
| | - S. G. Wang
- Institute of Nanochemistry and Nanobiology
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai
- P. R. China
| | - J. J. Kan
- Institute of Nanochemistry and Nanobiology
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai
- P. R. China
| | - X. Y. Deng
- Institute of Nanochemistry and Nanobiology
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai
- P. R. China
| | - W. C. Wang
- Institute of Nanochemistry and Nanobiology
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai
- P. R. China
| | - M. H. Wu
- Shanghai Applied Radiation Institute
- Shanghai University
- P. R. China
| | - Y. Lei
- Institute of Nanochemistry and Nanobiology
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai
- P. R. China
| |
Collapse
|
34
|
Abstract
This review systematically summarizes the recent developments of superoleophobic surfaces, focusing on their design, fabrication, characteristics, functions, and important applications.
Collapse
Affiliation(s)
- Jiale Yong
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information
- School of Electronics & Information Engineering
- Xi’an Jiaotong University
- Xi’an
- P. R. China
| | - Feng Chen
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information
- School of Electronics & Information Engineering
- Xi’an Jiaotong University
- Xi’an
- P. R. China
| | - Qing Yang
- School of Mechanical Engineering
- Xi’an Jiaotong University
- Xi’an
- P. R. China
| | - Jinglan Huo
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information
- School of Electronics & Information Engineering
- Xi’an Jiaotong University
- Xi’an
- P. R. China
| | - Xun Hou
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information
- School of Electronics & Information Engineering
- Xi’an Jiaotong University
- Xi’an
- P. R. China
| |
Collapse
|
35
|
Lu Y, Yu L, Zhang Z, Wu S, Li G, Wu P, Hu Y, Li J, Chu J, Wu D. Biomimetic surfaces with anisotropic sliding wetting by energy-modulation femtosecond laser irradiation for enhanced water collection. RSC Adv 2017. [DOI: 10.1039/c6ra28174e] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Inspired by natural rice leaf surfaces, we report a simple method to prepare three-level macrogrooves and micro/nanostructures on PDMS films by using energy-modulation femtosecond laser scanning for potential applications in water collection.
Collapse
Affiliation(s)
- Yang Lu
- Precision and Equipment Support Laboratory
- Department of Instrument Science & Opto-electronics Engineering
- Hefei University of Technology
- Hefei
- People's Republic of China
| | - Liandong Yu
- Precision and Equipment Support Laboratory
- Department of Instrument Science & Opto-electronics Engineering
- Hefei University of Technology
- Hefei
- People's Republic of China
| | - Zhen Zhang
- Department of Precision Machinery and Precision Instrumentation
- University of Science and Technology of China
- Hefei
- People's Republic of China
| | - Sizhu Wu
- Precision and Equipment Support Laboratory
- Department of Instrument Science & Opto-electronics Engineering
- Hefei University of Technology
- Hefei
- People's Republic of China
| | - Guoqiang Li
- Department of Precision Machinery and Precision Instrumentation
- University of Science and Technology of China
- Hefei
- People's Republic of China
| | - Peichao Wu
- Department of Precision Machinery and Precision Instrumentation
- University of Science and Technology of China
- Hefei
- People's Republic of China
| | - Yanlei Hu
- Department of Precision Machinery and Precision Instrumentation
- University of Science and Technology of China
- Hefei
- People's Republic of China
| | - Jiawen Li
- Department of Precision Machinery and Precision Instrumentation
- University of Science and Technology of China
- Hefei
- People's Republic of China
| | - Jiaru Chu
- Department of Precision Machinery and Precision Instrumentation
- University of Science and Technology of China
- Hefei
- People's Republic of China
| | - Dong Wu
- Department of Precision Machinery and Precision Instrumentation
- University of Science and Technology of China
- Hefei
- People's Republic of China
| |
Collapse
|
36
|
Wang T, Jiang L, Li X, Hu J, Wang Q, Ye S, Zhang H, Lu Y. Controllable anisotropic wetting characteristics on silicon patterned by slit-based spatial focusing of femtosecond laser. OPTICS EXPRESS 2016; 24:25732-25741. [PMID: 27828508 DOI: 10.1364/oe.24.025732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We propose a promising method to fabricate controllable anisotropic morphologies in which the slit-based spatial focusing of femtosecond laser is used to create an elliptical-shaped intensity distribution at focal plane, inducing elliptical-shaped morphology with micro/nano-dual-scale structures. Our study shows that 1) by increasing slit width, minor axis increases while major axis and axial ratio decrease; 2) with fixed slit width and laser fluence above the threshold, axial ratio is independent of irradiation pulse number; and 3) when polarization direction is changed from 0° to 90°, the axial ratio of anisotropic morphology declines. As a case study, large-area periodic anisotropic hierarchical structures are fabricated with the bidirectional anisotropic wetting.
Collapse
|
37
|
Wang S, Yu N, Wang T, Ge P, Ye S, Xue P, Liu W, Shen H, Zhang J, Yang B. Morphology-Patterned Anisotropic Wetting Surface for Fluid Control and Gas-Liquid Separation in Microfluidics. ACS APPLIED MATERIALS & INTERFACES 2016; 8:13094-13103. [PMID: 27128986 DOI: 10.1021/acsami.6b01785] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This article shows morphology-patterned stripes as a new platform for directing flow guidance of the fluid in microfluidic devices. Anisotropic (even unidirectional) spreading behavior due to anisotropic wetting of the underlying surface is observed after integrating morphology-patterned stripes with a Y-shaped microchannel. The anisotropic wetting flow of the fluid is influenced by the applied pressure, dimensions of the patterns, including the period and depth of the structure, and size of the channels. Fluids with different surface tensions show different flowing anisotropy in our microdevice. Moreover, the morphology-patterned surfaces could be used as a microvalve, and gas-water separation in the microchannel was realized using the unidirectional flow of water. Therefore, benefiting from their good performance and simple fabrication process, morphology-patterned surfaces are good candidates to be applied in controlling the fluid behavior in microfluidics.
Collapse
Affiliation(s)
- Shuli Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , Changchun 130012, P. R. China
| | - Nianzuo Yu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , Changchun 130012, P. R. China
| | - Tieqiang Wang
- Research Center for Molecular Science and Engineering, Northeastern University , Shenyang 110004, P. R. China
| | - Peng Ge
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , Changchun 130012, P. R. China
| | - Shunsheng Ye
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , Changchun 130012, P. R. China
| | - Peihong Xue
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , Changchun 130012, P. R. China
| | - Wendong Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , Changchun 130012, P. R. China
| | - Huaizhong Shen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , Changchun 130012, P. R. China
| | - Junhu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , Changchun 130012, P. R. China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , Changchun 130012, P. R. China
| |
Collapse
|
38
|
Kim GH, Lee BH, Im H, Jeon SB, Kim D, Seol ML, Hwang H, Choi YK. Controlled anisotropic wetting of scalloped silicon nanogroove. RSC Adv 2016. [DOI: 10.1039/c6ra06379a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The anisotropic wetting characteristics of SNGs were investigated in dynamic and static regimes. The anisotropic wettability of the SNGs was successfully employed to control fluid flows in microfluidic channels.
Collapse
Affiliation(s)
- Gun-Hee Kim
- School of Electrical Engineering
- KAIST
- Daejeon 34141
- Republic of Korea
| | - Byung-Hyun Lee
- School of Electrical Engineering
- KAIST
- Daejeon 34141
- Republic of Korea
| | - Hwon Im
- School of Electrical Engineering
- KAIST
- Daejeon 34141
- Republic of Korea
| | - Seung-Bae Jeon
- School of Electrical Engineering
- KAIST
- Daejeon 34141
- Republic of Korea
| | - Daewon Kim
- School of Electrical Engineering
- KAIST
- Daejeon 34141
- Republic of Korea
| | - Myeong-Lok Seol
- School of Electrical Engineering
- KAIST
- Daejeon 34141
- Republic of Korea
| | - Hyundoo Hwang
- School of Engineering and Sciences
- Tecnológico de Monterrey
- Monterrey
- Mexico
| | - Yang-Kyu Choi
- School of Electrical Engineering
- KAIST
- Daejeon 34141
- Republic of Korea
| |
Collapse
|
39
|
Liu W, Liu X, Ge P, Fang L, Xiang S, Zhao X, Shen H, Yang B. Hierarchical-Multiplex DNA Patterns Mediated by Polymer Brush Nanocone Arrays That Possess Potential Application for Specific DNA Sensing. ACS APPLIED MATERIALS & INTERFACES 2015; 7:24760-24771. [PMID: 26497053 DOI: 10.1021/acsami.5b07577] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This paper provides a facile and cost-efficient method to prepare single-strand DNA (ssDNA) nanocone arrays and hierarchical DNA patterns that were mediated by poly(2-hydroxyethyl methacrylate) (PHEMA) brush. The PHEMA brush nanocone arrays with different morphology and period were fabricated via colloidal lithography. The hierarchical structure was prepared through the combination of colloidal lithography and traditional photolithography. The DNA patterns were easily achieved via grafting the amino group modified ssDNA onto the side chain of polymer brush, and the anchored DNA maintained their reactivity. The as-prepared ssDNA nanocone arrays can be applied for target DNA sensing with the detection limit reaching 1.65 nM. Besides, with the help of introducing microfluidic ideology, the hierarchical-multiplex DNA patterns on the same substrate could be easily achieved with each kind of pattern possessing one kind of ssDNA, which are promising surfaces for the preparation of rapid, visible, and multiplex DNA sensors.
Collapse
Affiliation(s)
- Wendong Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , Changchun 130012, People's Republic of China
| | - Xueyao Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , Changchun 130012, People's Republic of China
| | - Peng Ge
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , Changchun 130012, People's Republic of China
| | - Liping Fang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , Changchun 130012, People's Republic of China
| | - Siyuan Xiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , Changchun 130012, People's Republic of China
| | - Xiaohuan Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , Changchun 130012, People's Republic of China
| | - Huaizhong Shen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , Changchun 130012, People's Republic of China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , Changchun 130012, People's Republic of China
| |
Collapse
|
40
|
Forner-Cuenca A, Biesdorf J, Gubler L, Kristiansen PM, Schmidt TJ, Boillat P. Engineered Water Highways in Fuel Cells: Radiation Grafting of Gas Diffusion Layers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:6317-22. [PMID: 26395373 DOI: 10.1002/adma.201503557] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 08/22/2015] [Indexed: 05/09/2023]
Abstract
A novel method to produce gas diffusion layers with patterned wettability for fuel cells is presented. The local irradiation and subsequent grafting permits full design flexibility and wettability tuning, while modifying throughout the whole material thickness. These water highways have improved operando performance due to an optimized water management inside the cells.
Collapse
Affiliation(s)
- Antoni Forner-Cuenca
- Electrochemistry Laboratory, Paul Scherrer Institute (PSI), 5232, Villigen, Switzerland
| | - Johannes Biesdorf
- Electrochemistry Laboratory, Paul Scherrer Institute (PSI), 5232, Villigen, Switzerland
| | - Lorenz Gubler
- Electrochemistry Laboratory, Paul Scherrer Institute (PSI), 5232, Villigen, Switzerland
| | - Per Magnus Kristiansen
- Institute of Polymer Nanotechnology, University of Applied Sciences and Arts Northwestern Switzerland (FHNW), 5210, Windisch, Switzerland
| | - Thomas Justus Schmidt
- Electrochemistry Laboratory, Paul Scherrer Institute (PSI), 5232, Villigen, Switzerland
- Laboratory of Physical Chemistry, ETH Zurich, 8093, Zurich, Switzerland
| | - Pierre Boillat
- Electrochemistry Laboratory, Paul Scherrer Institute (PSI), 5232, Villigen, Switzerland
- Neutron Imaging and Activation Group, Paul Scherrer Institut (PSI), 5232, Villigen, Switzerland
| |
Collapse
|
41
|
Chen CM, Chiang CL, Yang S. Programming Tilting Angles in Shape Memory Polymer Janus Pillar Arrays with Unidirectional Wetting against the Tilting Direction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:9523-9526. [PMID: 26305291 DOI: 10.1021/acs.langmuir.5b02622] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
By coating a thin layer of metal, including gold and gold-palladium alloy, of different thickness on the deformed shape memory polymer (SMP) pillars, we manipulate the degree of recovery of the SMP pillars. Pillars of different tilting angles were obtained as a result of balancing the strain recovery energy of the SMP pillars that favor the original straight state and the elastic energy of the metal layers that prefer the bent state. With this selective coating of a metal layer on the tilted pillars, we report a unique anisotropic liquid spreading behavior, where the water droplet is fully pinned in the direction of pillar tilting but advances in the reverse direction. This phenomenon is explained by the interplay of the surface chemistry and topography.
Collapse
Affiliation(s)
- Chi-Mon Chen
- Department of Materials Science and Engineering, University of Pennsylvania , 3231 Walnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Chang-Lung Chiang
- Department of Materials Science and Engineering, University of Pennsylvania , 3231 Walnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Shu Yang
- Department of Materials Science and Engineering, University of Pennsylvania , 3231 Walnut Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
42
|
Vourdas N, Dalamagkidis K, Stathopoulos VN. Active porous valves for plug actuation and plug flow manipulation in open channel fluidics. RSC Adv 2015. [DOI: 10.1039/c5ra21263d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The fluidic channel has porous hydrophobic walls. Reversible transitions from sticky to slippery state are leveraged by backpressure application, resulting to valve switching from “off” to “on”. Ultra-low energy demands for small cross-sections.
Collapse
Affiliation(s)
- N. Vourdas
- School of Technological Applications
- Technological Educational Institute of Sterea Ellada
- Psahna
- Greece
| | - K. Dalamagkidis
- School of Technological Applications
- Technological Educational Institute of Sterea Ellada
- Psahna
- Greece
| | - V. N. Stathopoulos
- School of Technological Applications
- Technological Educational Institute of Sterea Ellada
- Psahna
- Greece
| |
Collapse
|
43
|
Tang Y, Xu X, Hou G, Huazhen C, Guoqu Z. Facile approach to prepare a quasi-one-dimensional anisotropic wetting surface on copper substrate and its wetting properties. RSC Adv 2015. [DOI: 10.1039/c5ra08409a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this paper, a facile method was reported to prepare a novel quasi-one-dimensional (Q-1-D) anisotropic wetting surface on copper substrate.
Collapse
Affiliation(s)
- Yiping Tang
- College of Material Science and Engineering
- Zhejiang University of Technology
- Hangzhou
- China
| | - Xin Xu
- College of Material Science and Engineering
- Zhejiang University of Technology
- Hangzhou
- China
| | - Guangya Hou
- College of Material Science and Engineering
- Zhejiang University of Technology
- Hangzhou
- China
| | - Cao Huazhen
- College of Material Science and Engineering
- Zhejiang University of Technology
- Hangzhou
- China
| | - Zheng Guoqu
- College of Material Science and Engineering
- Zhejiang University of Technology
- Hangzhou
- China
| |
Collapse
|