1
|
Wang J, Zhao Z, Wang Q, Shi J, Wong DWC, Cheung JCW. Advancements in Nanoparticle-Based Adjuvants for Enhanced Tuberculosis Vaccination: A Review. Vaccines (Basel) 2024; 12:1335. [PMID: 39771997 PMCID: PMC11680411 DOI: 10.3390/vaccines12121335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Tuberculosis (TB) remains a leading cause of morbidity and mortality worldwide, necessitating the development of more effective vaccines. Nanoparticle-based adjuvants represent a promising approach to enhancing tuberculosis vaccine efficacy. This review focuses on the advantages of nanoparticulate-loaded vaccines, emphasizing their ability to improve antigen delivery, safety, and immunogenicity. We discuss the various types of nanoparticles and their unique physicochemical properties that contribute to improved antigen delivery and sustained immune activation. Additionally, we highlight the advantages of nanoparticle-based adjuvants in inducing strong cellular and humoral immunity, enhancing vaccine stability, and reducing adverse effects. Finally, we address current challenges and future perspectives in the application of these novel adjuvants, emphasizing their potential to transform TB vaccine strategies and ultimately contribute to better global health outcomes.
Collapse
Affiliation(s)
- Jiao Wang
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
- Department of Clinical Laboratory, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430073, China
| | - Zian Zhao
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Quan Wang
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Jingyu Shi
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Duo Wai-Chi Wong
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - James Chung-Wai Cheung
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| |
Collapse
|
2
|
Tchounwou C, Jobanputra AJ, Lasher D, Fletcher BJ, Jacinto J, Bhaduri A, Best RL, Fisher WS, Ewert KK, Li Y, Feinstein SC, Safinya CR. Mixtures of Intrinsically Disordered Neuronal Protein Tau and Anionic Liposomes Reveal Distinct Anionic Liposome-Tau Complexes Coexisting with Tau Liquid-Liquid Phase-Separated Coacervates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21041-21051. [PMID: 39340452 DOI: 10.1021/acs.langmuir.4c02471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
Tau, an intrinsically disordered neuronal protein and polyampholyte with an overall positive charge, is a microtubule (MT) associated protein that binds to anionic domains of MTs and suppresses their dynamic instability. Aberrant tau-MT interactions are implicated in Alzheimer's and other neurodegenerative diseases. Here, we studied the interactions between full-length human protein tau and other negatively charged binding substrates, as revealed by differential interference contrast (DIC) and fluorescence microscopy. As a binding substrate, we chose anionic liposomes (ALs) containing either 1,2-dioleoyl-sn-glycero-3-phosphatidylserine (DOPS, -1e) or 1,2-dioleoyl-sn-glycero-3-phosphatidylglycerol (DOPG, -1e) mixed with zwitterionic 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC) to mimic anionic plasma membranes of axons where tau resides. At low salt concentrations (0 to 10 mM KCl or NaCl) with minimal charge screening, reaction mixtures of tau and ALs resulted in the formation of distinct states of AL-tau complexes coexisting with liquid-liquid phase-separated tau self-coacervates arising from the polyampholytic nature of tau containing cationic and anionic domains. AL-tau complexes (i.e. tau-lipoplexes) exhibited distinct types of morphologies. This included large ∼20-30 μm tau-decorated giant vesicles with additional smaller liposomes with bound tau attached to the giant vesicles and tau-mediated finite-size assemblies of small liposomes. As the salt concentration was increased to near and above 150 mM for 1:1 electrolytes, AL-tau complexes remained stable, while tau self-coacervate droplets were found to dissolve, indicative of the breaking of (anionic/cationic) electrostatic bonds between tau chains due to increased charge screening. The findings are consistent with the hypothesis that distinct cationic domains of tau may interact with anionic lipid domains of the lumen-facing monolayer of the axon's plasma membrane, suggesting the possibility of transient yet robust interactions near relevant ionic strengths found in neurons.
Collapse
Affiliation(s)
- Christine Tchounwou
- Materials Department, University of California, Santa Barbara, California 93106, United States
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, United States
| | - Anjali J Jobanputra
- Materials Department, University of California, Santa Barbara, California 93106, United States
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, United States
- Biomolecular Science & Engineering Program, University of California, Santa Barbara, California 93106, United States
| | - Dylan Lasher
- Materials Department, University of California, Santa Barbara, California 93106, United States
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Bretton J Fletcher
- Materials Department, University of California, Santa Barbara, California 93106, United States
- Biomolecular Science & Engineering Program, University of California, Santa Barbara, California 93106, United States
| | - Jorge Jacinto
- Materials Department, University of California, Santa Barbara, California 93106, United States
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, United States
| | - Arjun Bhaduri
- Materials Department, University of California, Santa Barbara, California 93106, United States
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Rebecca L Best
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, United States
- Neuroscience Research Institute, University of California, Santa Barbara, California 93106, United States
| | - William S Fisher
- Materials Department, University of California, Santa Barbara, California 93106, United States
- Biomolecular Science & Engineering Program, University of California, Santa Barbara, California 93106, United States
| | - Kai K Ewert
- Materials Department, University of California, Santa Barbara, California 93106, United States
| | - Youli Li
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Stuart C Feinstein
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, United States
- Neuroscience Research Institute, University of California, Santa Barbara, California 93106, United States
| | - Cyrus R Safinya
- Materials Department, University of California, Santa Barbara, California 93106, United States
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, United States
- Biomolecular Science & Engineering Program, University of California, Santa Barbara, California 93106, United States
- Department of Physics, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
3
|
Tchounwou C, Jobanputra AJ, Lasher D, Fletcher BJ, Jacinto J, Bhaduri A, Best RL, Fisher WS, Ewert KK, Li Y, Feinstein SC, Safinya CR. Mixtures of Intrinsically Disordered Neuronal Protein Tau and Anionic Liposomes Reveal Distinct Anionic Liposome-Tau Complexes Coexisting with Tau Liquid-Liquid Phase Separated Coacervates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.15.603342. [PMID: 39071287 PMCID: PMC11275723 DOI: 10.1101/2024.07.15.603342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Tau, an intrinsically disordered neuronal protein and polyampholyte with an overall positive charge, is a microtubule (MT) associated protein, which binds to anionic domains of MTs and suppresses their dynamic instability. Aberrant tau-MT interactions are implicated in Alzheimer's and other neurodegenerative diseases. Here, we studied the interactions between full length human protein tau and other negatively charged binding substrates, as revealed by differential-interference-contrast (DIC) and fluorescence microscopy. As a binding substrate, we chose anionic liposomes (ALs) containing either 1,2-dioleoyl-sn-glycero-3-phosphatidylserine (DOPS, -1e) or 1,2-dioleoyl-sn-glycero-3-phosphatidylglycerol (DOPG, -1e) mixed with zwitterionic 1,2dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC) to mimic anionic plasma membranes of axons where tau resides. At low salt concentrations (0 to 10 mM KCl or NaCl) with minimal charge screening, reaction mixtures of tau and ALs resulted in the formation of distinct states of AL-tau complexes coexisting with liquid-liquid phase separated tau self-coacervates arising from the polyampholytic nature of tau containing cationic and anionic domains. AL-tau complexes exhibited distinct types of morphologies. This included, large ≈20-30 micron tau-decorated giant vesicles with additional smaller liposomes with bound tau attached to the giant vesicles, and tau-mediated finite-size assemblies of small liposomes. As the ionic strength of the solution was increased to near and above physiological salt concentrations for 1:1 electrolytes (≈150 mM), AL-tau complexes remained stable while tau self-coacervate droplets were found to dissolve indicative of breaking of (anionic/cationic) electrostatic bonds between tau chains due to increased charge screening. The findings are consistent with the hypothesis that distinct cationic domains of tau may interact with anionic lipid domains of the lumen facing monolayer of the axon plasma membrane suggesting the possibility of transient yet robust interactions at physiologically relevant ionic strengths.
Collapse
Affiliation(s)
- Christine Tchounwou
- Materials Department, University of California, Santa Barbara, California 93106, USA
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, USA
- These authors contributed equally
| | - Anjali J. Jobanputra
- Materials Department, University of California, Santa Barbara, California 93106, USA
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, USA
- Biomolecular Science & Engineering Program, University of California, Santa Barbara, California 93106, USA
- These authors contributed equally
| | - Dylan Lasher
- Materials Department, University of California, Santa Barbara, California 93106, USA
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
| | - Bretton J. Fletcher
- Materials Department, University of California, Santa Barbara, California 93106, USA
- Biomolecular Science & Engineering Program, University of California, Santa Barbara, California 93106, USA
| | - Jorge Jacinto
- Materials Department, University of California, Santa Barbara, California 93106, USA
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, USA
| | - Arjun Bhaduri
- Materials Department, University of California, Santa Barbara, California 93106, USA
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
| | - Rebecca L. Best
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, USA
- Neuroscience Research Institute, University of California, Santa Barbara, California 93106, USA
| | - William S. Fisher
- Materials Department, University of California, Santa Barbara, California 93106, USA
- Biomolecular Science & Engineering Program, University of California, Santa Barbara, California 93106, USA
| | - Kai K. Ewert
- Materials Department, University of California, Santa Barbara, California 93106, USA
| | - Youli Li
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
| | - Stuart C. Feinstein
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, USA
- Neuroscience Research Institute, University of California, Santa Barbara, California 93106, USA
| | - Cyrus R. Safinya
- Materials Department, University of California, Santa Barbara, California 93106, USA
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, USA
- Biomolecular Science & Engineering Program, University of California, Santa Barbara, California 93106, USA
- Department of Physics, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
4
|
Dahal S, Bastola S, Ramamurthi A. JNK2 silencing lipid nanoparticles for elastic matrix repair. J Biomed Mater Res A 2024; 112:562-573. [PMID: 37815147 DOI: 10.1002/jbm.a.37618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/08/2023] [Accepted: 09/07/2023] [Indexed: 10/11/2023]
Abstract
The over-expression of c-Jun N-terminal kinase (JNK2), a stress activated mitogen kinase, in the aortic wall plays a critical role in the formation and progression of abdominal aortic aneurysm (AAA). This triggers chronic downstream upregulation of elastolytic matrix metalloproteinases (MMPs), MMPs2 and 9 to cause progressive proteolytic breakdown of the wall elastic matrix. We have previously shown that siNRA knockdown of JNK2 gene expression in an AAA culture model stimulates downstream elastin gene expression, elastic fiber formation, crosslinking and reduces elastolytic MMPs2 and 9. Since naked siRNA poorly routes to intracellular targets, has poor stability in blood, and could be potentially toxic and immunogenic, this project is aimed to develop PEGylated lipid nanoparticles (LNPs) for delivery of JNK siRNA and to generate evidence of successful JNK2 knockdown and downstream attenuation of MMP2 gene and protein expressions. LNPs were formulated using thin-film hydration technique and had the size of 100-200 nm with zeta-potential ranging between 30 and 40 mV. JNK siRNA loaded PEGylated LNPs successfully knocked down JNK2 in cytokine-activated rat aneurysmal smooth muscle (EaRASMC) cultures. This resulted in a downstream decrease in MMP2 gene and protein expression and an upward trend in expression of genes for proteins critical for elastic fiber assembly such as elastin (ELN) and lysyl oxidase (LOX). Our result indicates cationic LNPs to be potential carriers for JNK siRNA delivery improving potency for elastin homeostasis required for AAA repair which could possibly provide benefits in preventing the progression of small AAAs.
Collapse
Affiliation(s)
- Shataakshi Dahal
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Suraj Bastola
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Anand Ramamurthi
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania, USA
| |
Collapse
|
5
|
Steffes VM, Zhang Z, Ewert KK, Safinya CR. Cryo-TEM Reveals the Influence of Multivalent Charge and PEGylation on Shape Transitions in Fluid Lipid Assemblies: From Vesicles to Discs, Rods, and Spheres. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18424-18436. [PMID: 38051205 PMCID: PMC10799670 DOI: 10.1021/acs.langmuir.3c02664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Lipids, and cationic lipids in particular are of interest as delivery vectors for hydrophobic drugs such as the cancer therapeutic paclitaxel, and the structures of lipid assemblies affect their efficacy. We investigated the effect of incorporating the multivalent cationic lipid MVL5 (+5e) and poly(ethylene glycol)-lipids (PEG-lipids), alone and in combination, on the structure of fluid-phase lipid assemblies of the charge-neutral lipid 1,2-dioleoyl-sn-glycero-phosphocholine (DOPC). This allowed us to elucidate lipid-assembly structure correlations in sonicated formulations with high charge density, which are not accessible with univalent lipids such as the well-studied DOTAP (+1e). Cryogenic transmission electron microscopy (cryo-TEM) allowed us to determine the structure of the lipid assemblies, revealing diverse combinations of vesicles and disc-shaped, worm-like, and spherical micelles. Remarkably, MVL5 forms an essentially pure phase of disc micelles at 50 mol % MVL5. At a higher (75 mol %) content of MVL5, short- and intermediate-length worm-like micellar rods were observed, and in ternary mixtures with PEG-lipid, longer and highly flexible worm-like micelles formed. Independent of their length, the worm-like micelles coexisted with spherical micelles. In stark contrast, DOTAP forms mixtures of vesicles, disc micelles, and spherical micelles at all studied compositions, even when combined with PEG-lipids. The observed similarities and differences in the effects of charge (multivalent versus univalent) and high curvature (multivalent charge versus PEG-lipid) on the assembly structure provide insights into parameters that control the size of fluid lipid nanodiscs, relevant for future applications.
Collapse
Affiliation(s)
- Victoria M. Steffes
- Materials Department, University of California, Santa Barbara, California 93106, USA
- Chemistry and Biochemistry Department, University of California, Santa Barbara, California 93106, USA
| | - Zhening Zhang
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA
- Present Address: Biochemistry and Molecular Biophysics Department, Columbia University Medical Center, New York, NY 10032, USA
| | - Kai K. Ewert
- Materials Department, University of California, Santa Barbara, California 93106, USA
| | - Cyrus R. Safinya
- Materials Department, University of California, Santa Barbara, California 93106, USA
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, USA
- Physics Department, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
6
|
Chen C, Chen C, Li Y, Gu R, Yan X. Characterization of lipid-based nanomedicines at the single-particle level. FUNDAMENTAL RESEARCH 2023; 3:488-504. [PMID: 38933557 PMCID: PMC11197724 DOI: 10.1016/j.fmre.2022.09.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/11/2022] [Accepted: 09/23/2022] [Indexed: 11/08/2022] Open
Abstract
Lipid-based nanomedicines (LBNMs), including liposomes, lipid nanoparticles (LNPs) and extracellular vesicles (EVs), are recognized as one of the most clinically acceptable nano-formulations. However, the bench-to-bedside translation efficiency is far from satisfactory, mainly due to the lack of in-depth understanding of their physical and biochemical attributes at the single-particle level. In this review, we first give a brief introduction of LBNMs, highlighting some milestones and related scientific and clinical achievements in the past several decades, as well as the grand challenges in the characterization of LBNMs. Next, we present an overview of each category of LBNMs as well as the core properties that largely dictate their biological characteristics and clinical performance, such as size distribution, particle concentration, morphology, drug encapsulation and surface properties. Then, the recent applications of several analytical techniques including electron microscopy, atomic force microscopy, fluorescence microscopy, Raman microscopy, nanoparticle tracking analysis, tunable resistive pulse sensing and flow cytometry on the single-particle characterization of LBNMs are thoroughly discussed. Particularly, the comparative advantages of the newly developed nano-flow cytometry that enables quantitative analysis of both the physical and biochemical characteristics of LBNMs smaller than 40 nm with high throughput and statistical robustness are emphasized. The overall aim of this review article is to illustrate the importance, challenges and achievements associated with single-particle characterization of LBNMs.
Collapse
Affiliation(s)
- Chaoxiang Chen
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China
| | - Chen Chen
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Yurou Li
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Ruilan Gu
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China
| | - Xiaomei Yan
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
7
|
Simón-Gracia L, Scodeller P, Fisher WS, Sidorenko V, Steffes VM, Ewert KK, Safinya CR, Teesalu T. Paclitaxel-Loaded Cationic Fluid Lipid Nanodiscs and Liposomes with Brush-Conformation PEG Chains Penetrate Breast Tumors and Trigger Caspase-3 Activation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56613-56622. [PMID: 36521233 PMCID: PMC9879205 DOI: 10.1021/acsami.2c17961] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Novel approaches are required to address the urgent need to develop lipid-based carriers of paclitaxel (PTX) and other hydrophobic drugs for cancer chemotherapy. Carriers based on cationic liposomes (CLs) with fluid (i.e., chain-melted) membranes (e.g., EndoTAG-1) have shown promise in preclinical and late-stage clinical studies. Recent work found that the addition of a cone-shaped poly(ethylene glycol)-lipid (PEG-lipid) to PTX-loaded CLs (CLsPTX) promotes a transition to sterically stabilized, higher-curvature (smaller) nanoparticles consisting of a mixture of PEGylated CLsPTX and PTX-containing fluid lipid nanodiscs (nanodiscsPTX). These CLsPTX and nanodiscsPTX show significantly improved uptake and cytotoxicity in cultured human cancer cells at PEG coverage in the brush regime (10 mol % PEG-lipid). Here, we studied the PTX loading, in vivo circulation half-life, and biodistribution of systemically administered CLsPTX and nanodiscsPTX and assessed their ability to induce apoptosis in triple-negative breast-cancer-bearing immunocompetent mice. We focused on fluid rather than solid lipid nanodiscs because of the significantly higher solubility of PTX in fluid membranes. At 5 and 10 mol % of a PEG-lipid (PEG5K-lipid, molecular weight of PEG 5000 g/mol), the mixture of PEGylated CLsPTX and nanodiscsPTX was able to incorporate up to 2.5 mol % PTX without crystallization for at least 20 h. Remarkably, compared to preparations containing 2 and 5 mol % PEG5K-lipid (with the PEG chains in the mushroom regime), the particles at 10 mol % (with PEG chains in the brush regime) showed significantly higher blood half-life, tumor penetration, and proapoptotic activity. Our study suggests that increasing the PEG coverage of CL-based drug nanoformulations can improve their pharmacokinetics and therapeutic efficacy.
Collapse
Affiliation(s)
- Lorena Simón-Gracia
- Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, Centre of Excellence for Translational Medicine, University of Tartu, Ravila 14b, 50411 Tartu, Estonia
| | - Pablo Scodeller
- Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, Centre of Excellence for Translational Medicine, University of Tartu, Ravila 14b, 50411 Tartu, Estonia
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Calle Darwin 3, 28049, Madrid, Spain
| | - William S. Fisher
- Materials Department, Molecular, Cellular, and Developmental Biology Department, Physics Department, and Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106, USA
| | - Valeria Sidorenko
- Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, Centre of Excellence for Translational Medicine, University of Tartu, Ravila 14b, 50411 Tartu, Estonia
| | - Victoria M. Steffes
- Materials Department, Molecular, Cellular, and Developmental Biology Department, Physics Department, and Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106, USA
| | - Kai K. Ewert
- Materials Department, Molecular, Cellular, and Developmental Biology Department, Physics Department, and Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106, USA
| | - Cyrus R. Safinya
- Materials Department, Molecular, Cellular, and Developmental Biology Department, Physics Department, and Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106, USA
| | - Tambet Teesalu
- Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, Centre of Excellence for Translational Medicine, University of Tartu, Ravila 14b, 50411 Tartu, Estonia
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
8
|
Ewert KK, Scodeller P, Simón-Gracia L, Steffes VM, Wonder EA, Teesalu T, Safinya CR. Cationic Liposomes as Vectors for Nucleic Acid and Hydrophobic Drug Therapeutics. Pharmaceutics 2021; 13:1365. [PMID: 34575441 PMCID: PMC8465808 DOI: 10.3390/pharmaceutics13091365] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/09/2021] [Accepted: 08/21/2021] [Indexed: 12/15/2022] Open
Abstract
Cationic liposomes (CLs) are effective carriers of a variety of therapeutics. Their applications as vectors of nucleic acids (NAs), from long DNA and mRNA to short interfering RNA (siRNA), have been pursued for decades to realize the promise of gene therapy, with approvals of the siRNA therapeutic patisiran and two mRNA vaccines against COVID-19 as recent milestones. The long-term goal of developing optimized CL-based NA carriers for a broad range of medical applications requires a comprehensive understanding of the structure of these vectors and their interactions with cell membranes and components that lead to the release and activity of the NAs within the cell. Structure-activity relationships of lipids for CL-based NA and drug delivery must take into account that these lipids act not individually but as components of an assembly of many molecules. This review summarizes our current understanding of how the choice of the constituting lipids governs the structure of their CL-NA self-assemblies, which constitute distinct liquid crystalline phases, and the relation of these structures to their efficacy for delivery. In addition, we review progress toward CL-NA nanoparticles for targeted NA delivery in vivo and close with an outlook on CL-based carriers of hydrophobic drugs, which may eventually lead to combination therapies with NAs and drugs for cancer and other diseases.
Collapse
Affiliation(s)
- Kai K. Ewert
- Materials, Physics, and Molecular, Cellular, and Developmental Biology Departments, and Biomolecular Science and Engineering Program, University of California at Santa Barbara, Santa Barbara, CA 93106, USA; (V.M.S.); (E.A.W.)
| | - Pablo Scodeller
- Laboratory of Precision- and Nanomedicine, Institute of Biomedicine and Translational Medicine, Centre of Excellence for Translational Medicine, University of Tartu, Ravila 14b, 50411 Tartu, Estonia; (P.S.); (L.S.-G.)
| | - Lorena Simón-Gracia
- Laboratory of Precision- and Nanomedicine, Institute of Biomedicine and Translational Medicine, Centre of Excellence for Translational Medicine, University of Tartu, Ravila 14b, 50411 Tartu, Estonia; (P.S.); (L.S.-G.)
| | - Victoria M. Steffes
- Materials, Physics, and Molecular, Cellular, and Developmental Biology Departments, and Biomolecular Science and Engineering Program, University of California at Santa Barbara, Santa Barbara, CA 93106, USA; (V.M.S.); (E.A.W.)
| | - Emily A. Wonder
- Materials, Physics, and Molecular, Cellular, and Developmental Biology Departments, and Biomolecular Science and Engineering Program, University of California at Santa Barbara, Santa Barbara, CA 93106, USA; (V.M.S.); (E.A.W.)
| | - Tambet Teesalu
- Laboratory of Precision- and Nanomedicine, Institute of Biomedicine and Translational Medicine, Centre of Excellence for Translational Medicine, University of Tartu, Ravila 14b, 50411 Tartu, Estonia; (P.S.); (L.S.-G.)
- Center for Nanomedicine and Department of Cell, Molecular and Developmental Biology, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
| | - Cyrus R. Safinya
- Materials, Physics, and Molecular, Cellular, and Developmental Biology Departments, and Biomolecular Science and Engineering Program, University of California at Santa Barbara, Santa Barbara, CA 93106, USA; (V.M.S.); (E.A.W.)
| |
Collapse
|
9
|
Chatzikleanthous D, O'Hagan DT, Adamo R. Lipid-Based Nanoparticles for Delivery of Vaccine Adjuvants and Antigens: Toward Multicomponent Vaccines. Mol Pharm 2021; 18:2867-2888. [PMID: 34264684 DOI: 10.1021/acs.molpharmaceut.1c00447] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Despite the many advances that have occurred in the field of vaccine adjuvants, there are still unmet needs that may enable the development of vaccines suitable for more challenging pathogens (e.g., HIV and tuberculosis) and for cancer vaccines. Liposomes have already been shown to be highly effective as adjuvant/delivery systems due to their versatility and likely will find further uses in this space. The broad potential of lipid-based delivery systems is highlighted by the recent approval of COVID-19 vaccines comprising lipid nanoparticles with encapsulated mRNA. This review provides an overview of the different approaches that can be evaluated for the design of lipid-based vaccine adjuvant/delivery systems for protein, carbohydrate, and nucleic acid-based antigens and how these strategies might be combined to develop multicomponent vaccines.
Collapse
Affiliation(s)
- Despo Chatzikleanthous
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, G4 0RE Glasgow, U.K.,GSK, Via Fiorentina 1, 53100 Siena, Italy
| | | | | |
Collapse
|
10
|
Gómez-Varela AI, Gaspar R, Miranda A, Assis JL, Valverde RHF, Einicker-Lamas M, Silva BFB, De Beule PAA. Fluorescence cross-correlation spectroscopy as a valuable tool to characterize cationic liposome-DNA nanoparticle assembly. JOURNAL OF BIOPHOTONICS 2021; 14:e202000200. [PMID: 32827206 DOI: 10.1002/jbio.202000200] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
The development of nonviral gene delivery vehicles for therapeutic applications requires methods capable of quantifying the association between the genes and their carrier counterparts. Here we investigate the potential of fluorescence cross-correlation spectroscopy (FCCS) to characterize and optimize the assembly of nonviral cationic liposome (CL)-DNA complexes based on a CL formulation consisting of the cationic lipid DOTAP and zwitterionic lipid DOPC. We use a DNA plasmid for lipoplex loading encoding the Oct4 gene, critically involved in reprogramming somatic cells into induced pluripotent stem cells. We demonstrate that FCCS is able to quantitatively determine the extent of the association between DNA and the liposomes and assess its loading capacity. We also establish that the cationic lipid fraction, being proportional to the liposome membrane charge density, as well as charge ratio between the CLs and anionic DNA play an important role in the degree of interaction between the liposomes and DNA.
Collapse
Affiliation(s)
- Ana I Gómez-Varela
- International Iberian Nanotechnology Laboratory, Braga, Portugal
- Department of Applied Physics, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Ricardo Gaspar
- International Iberian Nanotechnology Laboratory, Braga, Portugal
| | - Adelaide Miranda
- International Iberian Nanotechnology Laboratory, Braga, Portugal
| | - Juliane L Assis
- Biomembranes Laboratory, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafael H F Valverde
- Biomembranes Laboratory, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo Einicker-Lamas
- Biomembranes Laboratory, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruno F B Silva
- International Iberian Nanotechnology Laboratory, Braga, Portugal
| | | |
Collapse
|
11
|
Aksoy YA, Yang B, Chen W, Hung T, Kuchel RP, Zammit NW, Grey ST, Goldys EM, Deng W. Spatial and Temporal Control of CRISPR-Cas9-Mediated Gene Editing Delivered via a Light-Triggered Liposome System. ACS APPLIED MATERIALS & INTERFACES 2020; 12:52433-52444. [PMID: 33174413 DOI: 10.1021/acsami.0c16380] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The CRISPR-Cas9 and related systems offer a unique genome-editing tool allowing facile and efficient introduction of heritable and locus-specific sequence modifications in the genome. Despite its molecular precision, temporal and spatial control of gene editing with the CRISPR-Cas9 system is very limited. We developed a light-sensitive liposome delivery system that offers a high degree of spatial and temporal control of gene editing with the CRISPR-Cas9 system. We demonstrated its efficient protein release by respectively assessing the targeted knockout of the eGFP gene in human HEK293/GFP cells and the TNFAIP3 gene in TNFα-induced HEK293 cells. We further validated our results at a single-cell resolution using an in vivo eGFP reporter system in zebrafish (77% knockout). These findings indicate that light-triggered liposomes may have new options for precise control of CRISPR-Cas9 release and editing.
Collapse
Affiliation(s)
- Yagiz Alp Aksoy
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Centre for Motor Neuron Disease Research, Macquarie University, Sydney, NSW 2109, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
| | - Biyao Yang
- ARC Centre of Excellence for Nanoscale Biophotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Wenjie Chen
- Center for Pharmaceutical Engineering and Sciences, Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Tzongtyng Hung
- The Biological Resource Imaging Laboratory, University of New South Wales, Sydney, NSW 2052, Australia
| | - Rhiannon P Kuchel
- Electron Microscope Unit, University of New South Wales, Sydney, NSW 2052, Australia
| | - Nathan W Zammit
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Shane T Grey
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ewa M Goldys
- ARC Centre of Excellence for Nanoscale Biophotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Wei Deng
- ARC Centre of Excellence for Nanoscale Biophotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
12
|
Lipid-Nucleic Acid Complexes: Physicochemical Aspects and Prospects for Cancer Treatment. Molecules 2020; 25:molecules25215006. [PMID: 33126767 PMCID: PMC7662579 DOI: 10.3390/molecules25215006] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer is an extremely complex disease, typically caused by mutations in cancer-critical genes. By delivering therapeutic nucleic acids (NAs) to patients, gene therapy offers the possibility to supplement, repair or silence such faulty genes or to stimulate their immune system to fight the disease. While the challenges of gene therapy for cancer are significant, the latter approach (a type of immunotherapy) starts showing promising results in early-stage clinical trials. One important advantage of NA-based cancer therapies over synthetic drugs and protein treatments is the prospect of a more universal approach to designing therapies. Designing NAs with different sequences, for different targets, can be achieved by using the same technologies. This versatility and scalability of NA drug design and production on demand open the way for more efficient, affordable and personalized cancer treatments in the future. However, the delivery of exogenous therapeutic NAs into the patients’ targeted cells is also challenging. Membrane-type lipids exhibiting permanent or transient cationic character have been shown to associate with NAs (anionic), forming nanosized lipid-NA complexes. These complexes form a wide variety of nanostructures, depending on the global formulation composition and properties of the lipids and NAs. Importantly, these different lipid-NA nanostructures interact with cells via different mechanisms and their therapeutic potential can be optimized to promising levels in vitro. The complexes are also highly customizable in terms of surface charge and functionalization to allow a wide range of targeting and smart-release properties. Most importantly, these synthetic particles offer possibilities for scaling-up and affordability for the population at large. Hence, the versatility and scalability of these particles seem ideal to accommodate the versatility that NA therapies offer. While in vivo efficiency of lipid-NA complexes is still poor in most cases, the advances achieved in the last three decades are significant and very recently a lipid-based gene therapy medicine was approved for the first time (for treatment of hereditary transthyretin amyloidosis). Although the path to achieve efficient NA-delivery in cancer therapy is still long and tenuous, these advances set a new hope for more treatments in the future. In this review, we attempt to cover the most important biophysical and physicochemical aspects of non-viral lipid-based gene therapy formulations, with a perspective on future cancer treatments in mind.
Collapse
|
13
|
Aburai K, Hatanaka K, Takano S, Fujii S, Sakurai K. Characterizing an siRNA-Containing Lipid-Nanoparticle Prepared by a Microfluidic Reactor: Small-Angle X-ray Scattering and Cryotransmission Electron Microscopic Studies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:12545-12554. [PMID: 32988200 DOI: 10.1021/acs.langmuir.0c01079] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A new cationic-lipid/siRNA particle that was designed to deliver siRNA was investigated by the combination of small-angle X-ray scattering (SAXS), asymmetric field flow fractionation coupled with multiangle light scattering, and cryotransmission electron microscopy (cryo-TEM). The particle was prepared through two-step mixing using a microfluidic technique. In the first step, siRNA was premixed with a cationic lipid in an EtOH-rich solution. In the second step, the premixed solution was mixed with other lipids, followed by solvent exchange with water. SAXS showed formation of a siRNA/cationic lipid pair in the first step, and this pair consisted of the major part of the core in the final particle. The relationship between the hydrodynamic radius and the radius of gyration indicated the formation of a densely packed core and PEG-rich shell, confirming a well-known core-shell model. SAXS and cryo-TEM showed that the ordering of the core structure enhanced as the siRNA content increased.
Collapse
Affiliation(s)
- Kenichi Aburai
- Research Function Units, R&D Division, Kyowa Kirin Company, Ltd., 3-6-6, Asahi-machi, Machida-shi, Tokyo 194-8533, Japan
| | - Kentaro Hatanaka
- Research Function Units, R&D Division, Kyowa Kirin Company, Ltd., 3-6-6, Asahi-machi, Machida-shi, Tokyo 194-8533, Japan
| | - Shin Takano
- Department of Chemistry and Biochemistry, Faculty of Engineering, University of Kitakyushu, 1-1, Hibikino, Kitakyushu 808-0135, Japan
| | - Shota Fujii
- Department of Chemistry and Biochemistry, Faculty of Engineering, University of Kitakyushu, 1-1, Hibikino, Kitakyushu 808-0135, Japan
| | - Kazuo Sakurai
- Department of Chemistry and Biochemistry, Faculty of Engineering, University of Kitakyushu, 1-1, Hibikino, Kitakyushu 808-0135, Japan
| |
Collapse
|
14
|
Wonder EA, Ewert KK, Liu C, Steffes VM, Kwak J, Qahar V, Majzoub RN, Zhang Z, Carragher B, Potter CS, Li Y, Qiao W, Safinya CR. Assembly of Building Blocks by Double-End-Anchored Polymers in the Dilute Regime Mediated by Hydrophobic Interactions at Controlled Distances. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45728-45743. [PMID: 32960036 PMCID: PMC7671076 DOI: 10.1021/acsami.0c10972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hierarchical assembly of building blocks via competing, orthogonal interactions is a hallmark of many of nature's composite materials that do not require highly specific ligand-receptor interactions. To mimic this assembly mechanism requires the development of building blocks capable of tunable interactions. In the present work, we explored the interplay between repulsive (steric and electrostatic) and attractive hydrophobic forces. The designed building blocks allow hydrophobic forces to effectively act at controlled, large distances, to create and tune the assembly of membrane-based building blocks under dilute conditions, and to affect their interactions with cellular membranes via physical cross-bridges. Specifically, we employed double-end-anchored poly(ethylene glycol)s (DEA-PEGs)-hydrophilic PEG tethers with hydrophobic tails on both ends. Using differential-interference-contrast optical microscopy, synchrotron small-angle X-ray scattering (SAXS), and cryogenic electron microscopy, we investigated the ability of DEA-PEGs to mediate assembly in the dilute regime on multiple length scales and on practical time scales. The PEG length, anchor hydrophobicity, and molar fraction of DEA-PEG molecules within a membrane strongly affect the assembly properties. Additional tuning of the intermembrane interactions can be achieved by adding repulsive interactions via PEG-lipids (steric) or cationic lipids to the DEA-PEG-mediated attractions. While the optical and electron microscopy imaging methods provided qualitative evidence of the ability of DEA-PEGs to assemble liposomes, the SAXS measurements and quantitative line-shape analysis in dilute preparations demonstrated that the ensemble average of loosely organized liposomal assemblies maintains DEA-PEG concentration-dependent tethering on defined nanometer length scales. For cationic liposome-DNA nanoparticles (CL-DNA NPs), aggregation induced by DEA-PEGs decreased internalization of NPs by cells, but tuning the DEA-PEG-induced attractions by adding repulsive steric interactions via PEG-lipids limited aggregation and increased NP uptake. Furthermore, confocal microscopy imaging together with colocalization studies with Rab11 and LysoTracker as markers of intracellular pathways showed that modifying CL-DNA NPs with DEA-PEGs alters their interactions with the plasma and endosomal membranes.
Collapse
Affiliation(s)
- Emily A. Wonder
- Materials, Physics, and Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, USA
| | - Kai K. Ewert
- Materials, Physics, and Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, USA
| | - Chenyu Liu
- Materials, Physics, and Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, USA
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Victoria M. Steffes
- Materials, Physics, and Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, USA
| | - Jasmin Kwak
- Materials, Physics, and Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, USA
| | - Vikar Qahar
- Materials, Physics, and Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, USA
| | - Ramsey N. Majzoub
- Materials, Physics, and Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, USA
| | - Zhening Zhang
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA
| | - Bridget Carragher
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA
| | - Clinton S. Potter
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA
| | - Youli Li
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
| | - Weihong Qiao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Cyrus R. Safinya
- Materials, Physics, and Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
15
|
Nosova AS, Koloskova OO, Nikonova AA, Simonova VA, Smirnov VV, Kudlay D, Khaitov MR. Diversity of PEGylation methods of liposomes and their influence on RNA delivery. MEDCHEMCOMM 2019; 10:369-377. [PMID: 31015904 PMCID: PMC6457174 DOI: 10.1039/c8md00515j] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 02/10/2019] [Indexed: 12/18/2022]
Abstract
Gene therapy is a promising approach for personalized medicine, but its application in humans requires development of efficient and safe vehicles. PEGylated liposomes are some of the most suitable delivery systems for nucleic acids because of their stability under physiological conditions and prolonged circulation time, compared to conventional and other types of "stealth" liposomes. In vitro/in vivo activity of PEGylated liposomes is highly dependent on PEG motif abundance. The process of "stealth" coverage formation is a very important parameter for efficient transfection assays and further fate determination of the PEG layer after tissue penetration. In this review, we discuss the latest methods of PEGylated liposome preparation.
Collapse
Affiliation(s)
- A S Nosova
- NRC Institute of Immunology FMBA of Russia , Moscow , Russia .
| | - O O Koloskova
- NRC Institute of Immunology FMBA of Russia , Moscow , Russia .
| | - A A Nikonova
- NRC Institute of Immunology FMBA of Russia , Moscow , Russia .
- Mechnikov Research Institute of Vaccines and Sera , Moscow , Russia
| | - V A Simonova
- I. M. Sechenov First Moscow State Medical University , Moscow , Russia
| | - V V Smirnov
- NRC Institute of Immunology FMBA of Russia , Moscow , Russia .
- I. M. Sechenov First Moscow State Medical University , Moscow , Russia
| | - D Kudlay
- NRC Institute of Immunology FMBA of Russia , Moscow , Russia .
| | - M R Khaitov
- NRC Institute of Immunology FMBA of Russia , Moscow , Russia .
| |
Collapse
|
16
|
Nosova AS, Koloskova OO, Nikonova AA, Simonova VA, Smirnov VV, Kudlay D, Khaitov MR. Diversity of PEGylation methods of liposomes and their influence on RNA delivery. MEDCHEMCOMM 2019. [DOI: 10.1039/c8md00515j%0a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A brief review and comparison of the methods of PEGylation of liposomal particles and their influence on the delivery of RNA.
Collapse
Affiliation(s)
- A. S. Nosova
- NRC Institute of Immunology FMBA of Russia
- Moscow
- Russia
| | | | - A. A. Nikonova
- NRC Institute of Immunology FMBA of Russia
- Moscow
- Russia
- Mechnikov Research Institute of Vaccines and Sera
- Moscow
| | - V. A. Simonova
- I. M. Sechenov First Moscow State Medical University
- Moscow
- Russia
| | - V. V. Smirnov
- NRC Institute of Immunology FMBA of Russia
- Moscow
- Russia
- I. M. Sechenov First Moscow State Medical University
- Moscow
| | - D. Kudlay
- NRC Institute of Immunology FMBA of Russia
- Moscow
- Russia
| | - M. R. Khaitov
- NRC Institute of Immunology FMBA of Russia
- Moscow
- Russia
| |
Collapse
|
17
|
Chen W, Deng W, Xu X, Zhao X, Vo JN, Anwer AG, Williams TC, Cui H, Goldys EM. Photoresponsive endosomal escape enhances gene delivery using liposome-polycation-DNA (LPD) nanovectors. J Mater Chem B 2018; 6:5269-5281. [PMID: 32254764 DOI: 10.1039/c8tb00994e] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Lipid-based nanocarriers with stimuli responsiveness have been utilized as controlled release systems for gene/drug delivery applications. In our work, by taking advantage of the high complexation capability of polycations and the light triggered properties, we designed a novel photoresponsive liposome-polycation-DNA (LPD) platform. This LPD carrier incorporates verteporfin (VP) in lipid bilayers and the complex of polyethylenimine (PEI)/plasmid DNA (pDNA) encoding EGFP (polyplex) in the central cavities of the liposomes. The liposomes were formulated with cationic lipids, PEGylated neutral lipids and cholesterol molecules, which improve their stability and cellular uptake in the serum-containing media. We evaluated the nanocomplex stability by monitoring size changes over six days, and the cellular uptake of the nanocomplex by imaging the intracellular route. We also demonstrated that light triggered the cytoplasmic release of pDNA upon irradiation with a 690 nm LED light source. Furthermore, this light triggered mechanism has been studied at the subcellular level. The activated release is driven by the generation of reactive oxygen species (ROS) from VP after light illumination. These ROS oxidize and destabilize the liposomal and endolysosomal membranes, leading to the release of pDNA into the cytosol and subsequent gene transfer activities. Light-triggered endolysosomal escape of pDNA at different time points was confirmed by a quantitative analysis of colocalization between pDNA and endolysosomes. The increased expression of the reporter EGFP in human colorectal cancer cells was also quantified after light illumination at various time points. The efficiency of this photo-induced gene transfection was demonstrated to be more than double compared to non-irradiated controls. Additionally, we observed a reduced cytotoxicity of the LPDs compared with the polyplexes alone. This study has thus shown that light-triggered and biocompatible LPDs enable an improved control of efficient gene delivery, which will be beneficial for future gene therapies.
Collapse
Affiliation(s)
- Wenjie Chen
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Department of Physics and Astronomy, Macquarie University, Sydney, New South Wales 2109, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Wonder E, Simón-Gracia L, Scodeller P, Majzoub RN, Kotamraju VR, Ewert KK, Teesalu T, Safinya CR. Competition of charge-mediated and specific binding by peptide-tagged cationic liposome-DNA nanoparticles in vitro and in vivo. Biomaterials 2018; 166:52-63. [PMID: 29544111 PMCID: PMC5944340 DOI: 10.1016/j.biomaterials.2018.02.052] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/14/2018] [Accepted: 02/27/2018] [Indexed: 12/31/2022]
Abstract
Cationic liposome-nucleic acid (CL-NA) complexes, which form spontaneously, are a highly modular gene delivery system. These complexes can be sterically stabilized via PEGylation [PEG: poly (ethylene glycol)] into nanoparticles (NPs) and targeted to specific tissues and cell types via the conjugation of an affinity ligand. However, there are currently no guidelines on how to effectively navigate the large space of compositional parameters that modulate the specific and nonspecific binding interactions of peptide-targeted NPs with cells. Such guidelines are desirable to accelerate the optimization of formulations with novel peptides. Using PEG-lipids functionalized with a library of prototypical tumor-homing peptides, we varied the peptide density and other parameters (binding motif, peptide charge, CL/DNA charge ratio) to study their effect on the binding and uptake of the corresponding NPs. We used flow cytometry to quantitatively assess binding as well as internalization of NPs by cultured cancer cells. Surprisingly, full peptide coverage resulted in less binding and internalization than intermediate coverage, with the optimum coverage varying between cell lines. In, addition, our data revealed that great care must be taken to prevent nonspecific electrostatic interactions from interfering with the desired specific binding and internalization. Importantly, such considerations must take into account the charge of the peptide ligand as well as the membrane charge density and the CL/DNA charge ratio. To test our guidelines, we evaluated the in vivo tumor selectivity of selected NP formulations in a mouse model of peritoneally disseminated human gastric cancer. Intraperitoneally administered peptide-tagged CL-DNA NPs showed tumor binding, minimal accumulation in healthy control tissues, and preferential penetration of smaller tumor nodules, a highly clinically relevant target known to drive recurrence of the peritoneal cancer.
Collapse
Affiliation(s)
- Emily Wonder
- Materials, Physics, and Molecular, Cellular, & Developmental Biology Departments, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
| | - Lorena Simón-Gracia
- Laboratory of Cancer Biology, Institute of Biomedicine and Translational Medicine, Centre of Excellence for Translational Medicine, University of Tartu, Ravila 14b, 50411 Tartu, Estonia
| | - Pablo Scodeller
- Laboratory of Cancer Biology, Institute of Biomedicine and Translational Medicine, Centre of Excellence for Translational Medicine, University of Tartu, Ravila 14b, 50411 Tartu, Estonia; Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ramsey N Majzoub
- Materials, Physics, and Molecular, Cellular, & Developmental Biology Departments, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
| | - Venkata Ramana Kotamraju
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Kai K Ewert
- Materials, Physics, and Molecular, Cellular, & Developmental Biology Departments, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
| | - Tambet Teesalu
- Materials, Physics, and Molecular, Cellular, & Developmental Biology Departments, University of California at Santa Barbara, Santa Barbara, CA 93106, USA; Laboratory of Cancer Biology, Institute of Biomedicine and Translational Medicine, Centre of Excellence for Translational Medicine, University of Tartu, Ravila 14b, 50411 Tartu, Estonia; Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Cyrus R Safinya
- Materials, Physics, and Molecular, Cellular, & Developmental Biology Departments, University of California at Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
19
|
Watanabe A, Niu J, Lunn DJ, Lawrence J, Knight AS, Zhang M, Hawker CJ. PET‐RAFT as a facile strategy for preparing functional lipid–polymer conjugates. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/pola.29007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Akira Watanabe
- Materials Research LaboratoryUniversity of CaliforniaSanta Barbara California93106
| | - Jia Niu
- Department of ChemistryBoston CollegeChestnut Hill Massachusetts02467
- California NanoSystems Institute, University of CaliforniaSanta Barbara California93106
| | - David J. Lunn
- Materials Research LaboratoryUniversity of CaliforniaSanta Barbara California93106
- Department of ChemistryUniversity of OxfordOxfordOX1 3TA United Kingdom
| | - Jimmy Lawrence
- Materials Research LaboratoryUniversity of CaliforniaSanta Barbara California93106
| | - Abigail S. Knight
- Materials Research LaboratoryUniversity of CaliforniaSanta Barbara California93106
| | - Mengwen Zhang
- Department of Chemical EngineeringUniversity of CaliforniaSanta Barbara California93106
| | - Craig J. Hawker
- Materials Research LaboratoryUniversity of CaliforniaSanta Barbara California93106
- California NanoSystems Institute, University of CaliforniaSanta Barbara California93106
- Materials DepartmentUniversity of CaliforniaSanta Barbara California93106
- Department of Chemistry & BiochemistryUniversity of CaliforniaSanta Barbara California93106
| |
Collapse
|
20
|
Liu K, Zheng L, Ma C, Göstl R, Herrmann A. DNA-surfactant complexes: self-assembly properties and applications. Chem Soc Rev 2018; 46:5147-5172. [PMID: 28686247 DOI: 10.1039/c7cs00165g] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Over the last few years, DNA-surfactant complexes have gained traction as unique and powerful materials for potential applications ranging from optoelectronics to biomedicine because they self-assemble with outstanding flexibility spanning packing modes from ordered lamellar, hexagonal and cubic structures to disordered isotropic phases. These materials consist of a DNA backbone from which the surfactants protrude as non-covalently bound side chains. Their formation is electrostatically driven and they form bulk films, lyotropic as well as thermotropic liquid crystals and hydrogels. This structural versatility and their easy-to-tune properties render them ideal candidates for assembly in bulk films, for example granting directional conductivity along the DNA backbone, for dye dispersion minimizing fluorescence quenching allowing applications in lasing and nonlinear optics or as electron blocking and hole transporting layers, such as in LEDs or photovoltaic cells, owing to their extraordinary dielectric properties. However, they do not only act as host materials but also function as a chromophore itself. They can be employed within electrochromic DNA-surfactant liquid crystal displays exhibiting remarkable absorptivity in the visible range whose volatility can be controlled by the external temperature. Concomitantly, applications in the biological field based on DNA-surfactant bulk films, liquid crystals and hydrogels are rendered possible by their excellent gene and drug delivery capabilities. Beyond the mere exploitation of their material properties, DNA-surfactant complexes proved outstandingly useful for synthetic chemistry purposes when employed as scaffolds for DNA-templated reactions, nucleic acid modifications or polymerizations. These promising examples are by far not exhaustive but foreshadow their potential applications in yet unexplored fields. Here, we will give an insight into the peculiarities and perspectives of each material and are confident to inspire future developments and applications employing this emerging substance class.
Collapse
Affiliation(s)
- Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry of Chinese Academy of Sciences, 130022, Changchun, China
| | | | | | | | | |
Collapse
|
21
|
Majzoub RN, Ewert KK, Safinya CR. Cationic liposome-nucleic acid nanoparticle assemblies with applications in gene delivery and gene silencing. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2016; 374:20150129. [PMID: 27298431 PMCID: PMC4920278 DOI: 10.1098/rsta.2015.0129] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/18/2016] [Indexed: 05/29/2023]
Abstract
Cationic liposomes (CLs) are synthetic carriers of nucleic acids in gene delivery and gene silencing therapeutics. The introduction will describe the structures of distinct liquid crystalline phases of CL-nucleic acid complexes, which were revealed in earlier synchrotron small-angle X-ray scattering experiments. When mixed with plasmid DNA, CLs containing lipids with distinct shapes spontaneously undergo topological transitions into self-assembled lamellar, inverse hexagonal, and hexagonal CL-DNA phases. CLs containing cubic phase lipids are observed to readily mix with short interfering RNA (siRNA) molecules creating double gyroid CL-siRNA phases for gene silencing. Custom synthesis of multivalent lipids and a range of novel polyethylene glycol (PEG)-lipids with attached targeting ligands and hydrolysable moieties have led to functionalized equilibrium nanoparticles (NPs) optimized for cell targeting, uptake or endosomal escape. Very recent experiments are described with surface-functionalized PEGylated CL-DNA NPs, including fluorescence microscopy colocalization with members of the Rab family of GTPases, which directly reveal interactions with cell membranes and NP pathways. In vitro optimization of CL-DNA and CL-siRNA NPs with relevant primary cancer cells is expected to impact nucleic acid therapeutics in vivo. This article is part of the themed issue 'Soft interfacial materials: from fundamentals to formulation'.
Collapse
Affiliation(s)
- Ramsey N Majzoub
- Department of Materials, University of California, Santa Barbara, CA 93106, USA Department of Physics, University of California, Santa Barbara, CA 93106, USA Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA
| | - Kai K Ewert
- Department of Materials, University of California, Santa Barbara, CA 93106, USA Department of Physics, University of California, Santa Barbara, CA 93106, USA Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA
| | - Cyrus R Safinya
- Department of Materials, University of California, Santa Barbara, CA 93106, USA Department of Physics, University of California, Santa Barbara, CA 93106, USA Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
22
|
Majzoub RN, Wonder E, Ewert KK, Kotamraju VR, Teesalu T, Safinya CR. Rab11 and Lysotracker Markers Reveal Correlation between Endosomal Pathways and Transfection Efficiency of Surface-Functionalized Cationic Liposome-DNA Nanoparticles. J Phys Chem B 2016; 120:6439-53. [PMID: 27203598 PMCID: PMC4936928 DOI: 10.1021/acs.jpcb.6b04441] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cationic liposomes (CLs) are widely studied as carriers of DNA and short-interfering RNA for gene delivery and silencing, and related clinical trials are ongoing. Optimization of transfection efficiency (TE) requires understanding of CL-nucleic acid nanoparticle (NP) interactions with cells, NP endosomal pathways, endosomal escape, and events leading to release of active nucleic acid from the lipid carrier. Here, we studied endosomal pathways and TE of surface-functionalized CL-DNA NPs in PC-3 prostate cancer cells displaying overexpressed integrin and neuropilin-1 receptors. The NPs contained RGD-PEG-lipid or RPARPAR-PEG-lipid, targeting integrin, and neuropilin-1 receptors, respectively, or control PEG-lipid. Fluorescence colocalization using Rab11-GFP and Lysotracker enabled simultaneous colocalization of NPs with recycling endosome (Rab11) and late endosome/lysosome (Rab7/Lysotracker) pathways at increasing mole fractions of pentavalent MVL5 (+5 e) at low (10 mol %), high (50 mol %), and very high (70 mol %) membrane charge density (σM). For these cationic NPs (lipid/DNA molar charge ratio, ρchg = 5), the influence of membrane charge density on pathway selection and transfection efficiency is similar for both peptide-PEG NPs, although, quantitatively, the effect is larger for RGD-PEG compared to RPARPAR-PEG NPs. At low σM, peptide-PEG NPs show preference for the recycling endosome over the late endosome/lysosome pathway. Increases in σM, from low to high, lead to decreases in colocalization with recycling endosomes and simultaneous increases in colocalization with the late endosome/lysosome pathway. Combining colocalization and functional TE data at low and high σM shows that higher TE correlates with a larger fraction of NPs colocalized with the late endosome/lysosome pathway while lower TE correlates with a larger fraction of NPs colocalized with the Rab11 recycling pathway. The findings lead to a hypothesis that increases in σM, leading to enhanced late endosome/lysosome pathway selection and higher TE, result from increased nonspecific electrostatic attractions between NPs and endosome luminal membranes, and conversely, enhanced recycling pathway for NPs and lower TE are due to weaker attractions. Surprisingly, at very high σM, the inverse relation between the two pathways observed at low and high σM breaks down, pointing to a more complex NP pathway behavior.
Collapse
Affiliation(s)
- Ramsey N. Majzoub
- Physics Department, Materials Department, and Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, California 93106, United States of America
| | - Emily Wonder
- Physics Department, Materials Department, and Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, California 93106, United States of America
| | - Kai K. Ewert
- Physics Department, Materials Department, and Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, California 93106, United States of America
| | - Venkata Ramana Kotamraju
- Cancer Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States of America
| | - Tambet Teesalu
- Cancer Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States of America
- Center for Nanomedicine and Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, California 93106, United States of America
- Laboratory of Cancer Biology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu 50411, Estonia
| | - Cyrus R. Safinya
- Physics Department, Materials Department, and Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, California 93106, United States of America
| |
Collapse
|
23
|
Ewert KK, Kotamraju VR, Majzoub RN, Steffes VM, Wonder EA, Teesalu T, Ruoslahti E, Safinya CR. Synthesis of linear and cyclic peptide-PEG-lipids for stabilization and targeting of cationic liposome-DNA complexes. Bioorg Med Chem Lett 2016. [PMID: 26874401 DOI: 10.1016/lbmcl.2016.0l079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Because nucleic acids (NAs) have immense potential value as therapeutics, the development of safe and effective synthetic NA vectors continues to attract much attention. In vivo applications of NA vectors require stabilized, nanometer-scale particles, but the commonly used approaches of steric stabilization with a polymer coat (e.g., PEGylation; PEG=poly(ethylene glycol)) interfere with attachment to cells, uptake, and endosomal escape. Conjugation of peptides to PEG-lipids can improve cell attachment and uptake for cationic liposome-DNA (CL-DNA) complexes. We present several synthetic approaches to peptide-PEG-lipids and discuss their merits and drawbacks. A lipid-PEG-amine building block served as the common key intermediate in all synthetic routes. Assembling the entire peptide-PEG-lipid by manual solid phase peptide synthesis (employing a lipid-PEG-carboxylic acid) allowed gram-scale synthesis but is mostly applicable to linear peptides connected via their N-terminus. Conjugation via thiol-maleimide or strain-promoted (copper-free) azide-alkyne cycloaddition chemistry is highly amenable to on-demand preparation of peptide-PEG-lipids, and the appropriate PEG-lipid precursors are available in a single chemical step from the lipid-PEG-amine building block. Azide-alkyne cycloaddition is especially suitable for disulfide-bridged peptides such as iRGD (cyclic CRGDKGPDC). Added at 10 mol% of a cationic/neutral lipid mixture, the peptide-PEG-lipids stabilize the size of CL-DNA complexes. They also affect cell attachment and uptake of nanoparticles in a peptide-dependent manner, thereby providing a platform for preparing stabilized, affinity-targeted CL-DNA nanoparticles.
Collapse
Affiliation(s)
- Kai K Ewert
- Department of Materials, University of California, Santa Barbara, CA 93106, United States; Department of Physics, University of California, Santa Barbara, CA 93106, United States; Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, United States.
| | - Venkata Ramana Kotamraju
- Cancer Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, United States
| | - Ramsey N Majzoub
- Department of Materials, University of California, Santa Barbara, CA 93106, United States; Department of Physics, University of California, Santa Barbara, CA 93106, United States; Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, United States
| | - Victoria M Steffes
- Department of Materials, University of California, Santa Barbara, CA 93106, United States; Department of Physics, University of California, Santa Barbara, CA 93106, United States; Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, United States; Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, United States
| | - Emily A Wonder
- Department of Materials, University of California, Santa Barbara, CA 93106, United States; Department of Physics, University of California, Santa Barbara, CA 93106, United States; Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, United States
| | - Tambet Teesalu
- Cancer Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, United States; Center for Nanomedicine and Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, United States; Laboratory of Cancer Biology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu 50411, Estonia
| | - Erkki Ruoslahti
- Cancer Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, United States; Center for Nanomedicine and Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, United States
| | - Cyrus R Safinya
- Department of Materials, University of California, Santa Barbara, CA 93106, United States; Department of Physics, University of California, Santa Barbara, CA 93106, United States; Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, United States.
| |
Collapse
|
24
|
Ewert KK, Kotamraju VR, Majzoub RN, Steffes VM, Wonder EA, Teesalu T, Ruoslahti E, Safinya CR. Synthesis of linear and cyclic peptide-PEG-lipids for stabilization and targeting of cationic liposome-DNA complexes. Bioorg Med Chem Lett 2016; 26:1618-1623. [PMID: 26874401 DOI: 10.1016/j.bmcl.2016.01.079] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 01/27/2016] [Accepted: 01/29/2016] [Indexed: 11/29/2022]
Abstract
Because nucleic acids (NAs) have immense potential value as therapeutics, the development of safe and effective synthetic NA vectors continues to attract much attention. In vivo applications of NA vectors require stabilized, nanometer-scale particles, but the commonly used approaches of steric stabilization with a polymer coat (e.g., PEGylation; PEG=poly(ethylene glycol)) interfere with attachment to cells, uptake, and endosomal escape. Conjugation of peptides to PEG-lipids can improve cell attachment and uptake for cationic liposome-DNA (CL-DNA) complexes. We present several synthetic approaches to peptide-PEG-lipids and discuss their merits and drawbacks. A lipid-PEG-amine building block served as the common key intermediate in all synthetic routes. Assembling the entire peptide-PEG-lipid by manual solid phase peptide synthesis (employing a lipid-PEG-carboxylic acid) allowed gram-scale synthesis but is mostly applicable to linear peptides connected via their N-terminus. Conjugation via thiol-maleimide or strain-promoted (copper-free) azide-alkyne cycloaddition chemistry is highly amenable to on-demand preparation of peptide-PEG-lipids, and the appropriate PEG-lipid precursors are available in a single chemical step from the lipid-PEG-amine building block. Azide-alkyne cycloaddition is especially suitable for disulfide-bridged peptides such as iRGD (cyclic CRGDKGPDC). Added at 10 mol% of a cationic/neutral lipid mixture, the peptide-PEG-lipids stabilize the size of CL-DNA complexes. They also affect cell attachment and uptake of nanoparticles in a peptide-dependent manner, thereby providing a platform for preparing stabilized, affinity-targeted CL-DNA nanoparticles.
Collapse
Affiliation(s)
- Kai K Ewert
- Department of Materials, University of California, Santa Barbara, CA 93106, United States; Department of Physics, University of California, Santa Barbara, CA 93106, United States; Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, United States.
| | - Venkata Ramana Kotamraju
- Cancer Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, United States
| | - Ramsey N Majzoub
- Department of Materials, University of California, Santa Barbara, CA 93106, United States; Department of Physics, University of California, Santa Barbara, CA 93106, United States; Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, United States
| | - Victoria M Steffes
- Department of Materials, University of California, Santa Barbara, CA 93106, United States; Department of Physics, University of California, Santa Barbara, CA 93106, United States; Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, United States; Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, United States
| | - Emily A Wonder
- Department of Materials, University of California, Santa Barbara, CA 93106, United States; Department of Physics, University of California, Santa Barbara, CA 93106, United States; Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, United States
| | - Tambet Teesalu
- Cancer Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, United States; Center for Nanomedicine and Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, United States; Laboratory of Cancer Biology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu 50411, Estonia
| | - Erkki Ruoslahti
- Cancer Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, United States; Center for Nanomedicine and Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, United States
| | - Cyrus R Safinya
- Department of Materials, University of California, Santa Barbara, CA 93106, United States; Department of Physics, University of California, Santa Barbara, CA 93106, United States; Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, United States.
| |
Collapse
|
25
|
Majzoub RN, Ewert KK, Safinya CR. Quantitative Intracellular Localization of Cationic Lipid-Nucleic Acid Nanoparticles with Fluorescence Microscopy. Methods Mol Biol 2016; 1445:77-108. [PMID: 27436314 PMCID: PMC4957706 DOI: 10.1007/978-1-4939-3718-9_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Current activity in developing synthetic carriers of nucleic acids (NA) and small molecule drugs for therapeutic applications is unprecedented. One promising class of synthetic vectors for the delivery of therapeutic NA is PEGylated cationic liposome (CL)-NA nanoparticles (NPs). Chemically modified PEG-lipids can be used to surface-functionalize lipid-NA nanoparticles, allowing researchers to design active nanoparticles that can overcome the various intracellular and extracellular barriers to efficient delivery. Optimization of these functionalized vectors requires a comprehensive understanding of their intracellular pathways. In this chapter we present two distinct methods for investigating the intracellular activity of PEGylated CL-NA NPs using quantitative analysis with fluorescence microscopy.The first method, spatial localization, describes how to prepare fluorescently labeled CL-NA NPs, perform fluorescence microscopy and properly analyze the data to measure the intracellular distribution of nanoparticles and fluorescent signal. We provide software which allows data from multiple cells to be averaged together and yield statistically significant results. The second method, fluorescence colocalization, describes how to label endocytic organelles via Rab-GFPs and generate micrographs for software-assisted NP-endocytic marker colocalization measurements. These tools will allow researchers to study the endosomal trafficking of CL-NA NPs which can guide their design and improve their efficiency.
Collapse
Affiliation(s)
- Ramsey N Majzoub
- Physics Department, University of California at Santa Barbara, Santa Barbara, CA, 93117, USA
- Materials Department, University of California at Santa Barbara, Santa Barbara, CA, 93117, USA
- Molecular, Cellular and Developmental Biology Department, University of California at Santa Barbara, Santa Barbara, CA, 93117, USA
| | - Kai K Ewert
- Physics Department, University of California at Santa Barbara, Santa Barbara, CA, 93117, USA
- Materials Department, University of California at Santa Barbara, Santa Barbara, CA, 93117, USA
- Molecular, Cellular and Developmental Biology Department, University of California at Santa Barbara, Santa Barbara, CA, 93117, USA
| | - Cyrus R Safinya
- Physics Department, University of California at Santa Barbara, Santa Barbara, CA, 93117, USA.
- Materials Department, University of California at Santa Barbara, Santa Barbara, CA, 93117, USA.
- Molecular, Cellular and Developmental Biology Department, University of California at Santa Barbara, Santa Barbara, CA, 93117, USA.
| |
Collapse
|