1
|
Cui G, Man J, Ji M, Song X, Zhang Y, Zhang X, Li J, Li J. Ionic Response Mechanism of Lubricating Properties of Zwitterionic Polymer Brushes through Molecular Dynamics. ACS APPLIED MATERIALS & INTERFACES 2025; 17:24451-24464. [PMID: 40213852 DOI: 10.1021/acsami.5c02327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Zwitterionic materials are an important class of lubricating biomaterials for various applications. Despite such desirable lubricating properties, the molecular-level understanding of the lubrication mechanism of zwitterionic polymer brushes in salt solutions remains to be elucidated. In this work, we computationally studied the surface hydration, the effect of cations, and the lubricating property of three zwitterionic polymer brushes of poly(carboxybetaine methacrylate), poly(sulfobetaine methacrylate), and poly((2(methacryloyloxy)ethyl)phosporylcoline) brushes using a combination of molecular dynamics (MD) and steered MD (SMD) simulations. We studied the structure, dynamics, and orientation of the hydrated layer on the three zwitterionic moieties, while the effect of cations on the hydration. Next, SMD simulations were used to study the friction behavior of the polymer brush surface. The results showed that salt ions would increase the friction resistance of polymer brush surfaces mainly by decreasing the diffusion rate of water molecules. However, at low concentrations, the change in the diffusion rate of water molecules is insignificant, and the salt ions change the friction resistance by affecting the polymer brushes, which is related to the nature of the polymer brushes themselves. Hopefully, this work will provide some structural insights into designing zwitterionic lubricating materials.
Collapse
Affiliation(s)
- Guanghui Cui
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, P.R. China
- Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, P.R. China
| | - Jia Man
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, P.R. China
- Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, P.R. China
| | - Maocheng Ji
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, P.R. China
- Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, P.R. China
| | - Xinzhong Song
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, P.R. China
- Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, P.R. China
| | - Yongqi Zhang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, P.R. China
- Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, P.R. China
| | - Xiangkuan Zhang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, P.R. China
- Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, P.R. China
| | - Jianyong Li
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, P.R. China
- Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, P.R. China
| | - Jianfeng Li
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, P.R. China
- Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, P.R. China
| |
Collapse
|
2
|
Cho H, Choi M, Park JM, Choi J, Kwon YJ, Lee SM, Kang HC. Autophagic Cell Survival-to-Death Switch Induced by Cisplatin and Zn(II) Dual-Loaded Dispersity-Tunable Zwitterionic Hybrid Polyion Nanocomplex. ACS APPLIED MATERIALS & INTERFACES 2025; 17:23774-23785. [PMID: 40226983 DOI: 10.1021/acsami.5c04242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Engineered nanomaterials, with their tunable size and surface characteristics, have played a pivotal role in biomedical delivery systems by modulating specific cellular processes such as autophagy and apoptosis, thereby influencing cellular homeostasis and cytotoxicity. Recently, zwitterionic poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) has gained attention for its enhanced biocompatibility and antifouling properties, presenting potential as a promising alternative to poly(ethylene glycol) (PEG) in various biomedical applications. This study investigates the relationship between metal-chelated nanomaterial structures and their biochemical activity using core-corona nanoparticles (NPs) composed of a metallic pharmacophore core and a zwitterionic PMPC polymer shell. Two NP systems were designed, both containing aquated cisplatin (cis-[Pt(NH3)2(H2O)2]2+) and a Zn(II) adjuvant, with identical surface structures but contrasting core stabilities, leading to distinct drug release profiles: (1) labile NPs with pH-responsive drug release and variable size dispersity under endosomal conditions and (2) inert NPs characterized by slow drug release and low dispersity due to stable heterometallic Lewis complex formation at the core. The labile NP combinations exhibited strong drug synergism in cytotoxicity through apoptosis and ferroptosis, with cisplatin driving the primary pharmacological effects, while Zn-NPs modulated prosurvival autophagy toward autophagic cell death, which demonstrated the potential of Zn-NPs as a synergistic adjuvant in cisplatin delivery. In contrast, Pt/Zn-coloaded inert NPs exhibited controlled drug release and cytotoxicity, showing approximately 8-11 times higher IC50 values than those of labile NP combinations, depending on the combination ratio. These results demonstrate the critical role of the NP structure in modulating cytotoxicity and autophagy, providing insights for the rational design of effective drug delivery systems.
Collapse
Affiliation(s)
- Hana Cho
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Korea
- Department of Biopharmaceutical Science, Soonchunhyang University, Asan, Chungcheongnam-do 31538, Korea
| | - Minho Choi
- Department of Chemistry, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Korea
| | - Jeong-Min Park
- Department of Chemistry, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Korea
| | - Jiye Choi
- Department of Chemistry, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Korea
| | - Young Jik Kwon
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697, United States
| | - Sang-Min Lee
- Department of Chemistry, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Korea
| | - Han Chang Kang
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Korea
- Research Institute for Controls and Materials of Regulated Cell Death, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Korea
| |
Collapse
|
3
|
Csányi E, Hammond DB, Bower B, Johnson EC, Lishchuk A, Armes SP, Dong Z, Leggett GJ. XPS Depth-Profiling Studies of Chlorophyll Binding to Poly(cysteine methacrylate) Scaffolds in Pigment-Polymer Antenna Complexes Using a Gas Cluster Ion Source. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14527-14539. [PMID: 38954522 PMCID: PMC11256746 DOI: 10.1021/acs.langmuir.4c01361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
X-ray photoelectron spectroscopy (XPS) depth-profiling with an argon gas cluster ion source (GCIS) was used to characterize the spatial distribution of chlorophyll a (Chl) within a poly(cysteine methacrylate) (PCysMA) brush grown by surface-initiated atom-transfer radical polymerization (ATRP) from a planar surface. The organization of Chl is controlled by adjusting the brush grafting density and polymerization time. For dense brushes, the C, N, S elemental composition remains constant throughout the 36 nm brush layer until the underlying gold substrate is approached. However, for either reduced density brushes (mean thickness ∼20 nm) or mushrooms grown with reduced grafting densities (mean thickness 6-9 nm), elemental intensities decrease continuously throughout the brush layer, because photoelectrons are less strongly attenuated for such systems. For all brushes, the fraction of positively charged nitrogen atoms (N+/N0) decreases with increasing depth. Chl binding causes a marked reduction in N+/N0 within the brushes and produces a new feature at 398.1 eV in the N1s core-line spectrum assigned to tetrapyrrole ring nitrogen atoms coordinated to Zn2+. For all grafting densities, the N/S atomic ratio remains approximately constant as a function of brush depth, which indicates a uniform distribution of Chl throughout the brush layer. However, a larger fraction of repeat units bound to Chl is observed at lower grafting densities, reflecting a progressive reduction in steric congestion that enables more uniform distribution of the bulky Chl units throughout the brush layer. In summary, XPS depth-profiling using a GCIS is a powerful tool for characterization of these complex materials.
Collapse
Affiliation(s)
- Evelin Csányi
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
- Institute
of Materials Research and Engineering, A*STAR
(Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-03 Innovis, 138634 Singapore
| | - Deborah B. Hammond
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| | - Benjamin Bower
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| | - Edwin C. Johnson
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| | - Anna Lishchuk
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| | - Steven P. Armes
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| | - Zhaogang Dong
- Institute
of Materials Research and Engineering, A*STAR
(Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-03 Innovis, 138634 Singapore
| | - Graham J. Leggett
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| |
Collapse
|
4
|
Zhou Z, Shi Q. Bioinspired Dopamine and N-Oxide-Based Zwitterionic Polymer Brushes for Fouling Resistance Surfaces. Polymers (Basel) 2024; 16:1634. [PMID: 38931984 PMCID: PMC11207554 DOI: 10.3390/polym16121634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Biofouling is a great challenge for engineering material in medical-, marine-, and pharmaceutical-related applications. In this study, a novel trimethylamine N-oxide (TMAO)-analog monomer, 3-(2-methylacrylamido)-N,N-dimethylpropylamine N-oxide (MADMPAO), was synthesized and applied for the grafting of poly(MADMPAO) (pMPAO) brushes on quartz crystal microbalance (QCM) chips by the combination of bio-inspired poly-dopamine (pDA) and surface-initiated atom transfer radical polymerization technology. The result of ion adsorption exhibited that a sequential pDA and pMPAO arrangement from the chip surface had different characteristics from a simple pDA layer. Ion adsorption on pMPAO-grafted chips was greatly inhibited at low salt concentrations of 1 and 10 mmol/L due to strong surface hydration in the presence of charged N+ and O- of zwitterionic pMPAO brushes on the outer layer on the chip surface, well known as the "anti-polyelectrolyte" effect. During BSA adsorption, pMPAO grafting also led to a marked decrease in frequency shift, indicating great inhibition of protein adsorption. It was attributed to weaker BSA-pMPAO interaction. In this study, the Au@pDA-4-pMPAO chip with the highest coating concentration of DA kept stable dissipation in BSA adsorption, signifying that the chip had a good antifouling property. The research provided a novel monomer for zwitterionic polymer and demonstrated the potential of pMPAO brushes in the development and modification of antifouling materials.
Collapse
Affiliation(s)
- Zhen Zhou
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China;
| | - Qinghong Shi
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China;
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| |
Collapse
|
5
|
Roca S, Leclercq L, Cottet H. Size-based characterization of dendrigraft poly(L-lysine) by free solution capillary electrophoresis using polyelectrolyte multilayer coatings. J Chromatogr A 2024; 1718:464719. [PMID: 38340458 DOI: 10.1016/j.chroma.2024.464719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/28/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024]
Abstract
Dendrigraft poly(L-lysine) (DGL) constitutes a promising dendritic-like drug vehicle with high biocompatibility and straightforward access via ring-opening polymerization of N-carboxyanhydride in water. The characterization of the different generations of DGL is however challenging due to their heterogeneity in molar mass and branching ratio. In this work, free solution capillary electrophoresis was used to perform selective separation of the three first generations of DGL, and optimized conditions were developed to maximize inter-generation resolution. To reduce solute adsorption on the capillary wall, successive multiple ionic polymer layer coatings terminated with a polycation were deposited onto the inner wall surface. PEGylated polycation was also used as the last layer for the control of the electroosmotic flow (EOF), depending on the PEGylation degree and the methyl-polyethylene glycol (mPEG) chain length. 1 kDa mPEG chains and low grafting densities were found to be the best experimental conditions for a fine tuning of the EOF leading to high peak resolution. Molar mass polydispersity and polydispersity in effective electrophoretic mobility were successfully determined for the three first generations of DGL.
Collapse
Affiliation(s)
- Sébastien Roca
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Laurent Leclercq
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France.
| | - Hervé Cottet
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France.
| |
Collapse
|
6
|
Song X, Man J, Qiu Y, Wang J, Liu J, Li R, Zhang Y, Li J, Li J, Chen Y. Design, preparation, and characterization of lubricating polymer brushes for biomedical applications. Acta Biomater 2024; 175:76-105. [PMID: 38128641 DOI: 10.1016/j.actbio.2023.12.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/21/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
The lubrication modification of biomedical devices significantly enhances the functionality of implanted interventional medical devices, thereby providing additional benefits for patients. Polymer brush coating provides a convenient and efficient method for surface modification while ensuring the preservation of the substrate's original properties. The current research has focused on a "trial and error" method to finding polymer brushes with superior lubricity qualities, which is time-consuming and expensive, as obtaining effective and long-lasting lubricity properties for polymer brushes is difficult. This review summarizes recent research advances in the biomedical field in the design, material selection, preparation, and characterization of lubricating and antifouling polymer brushes, which follow the polymer brush development process. This review begins by examining various approaches to polymer brush design, including molecular dynamics simulation and machine learning, from the fundamentals of polymer brush lubrication. Recent advancements in polymer brush design are then synthesized and potential avenues for future research are explored. Emphasis is placed on the burgeoning field of zwitterionic polymer brushes, and highlighting the broad prospects of supramolecular polymer brushes based on host-guest interactions in the field of self-repairing polymer brush applications. The review culminates by providing a summary of methodologies for characterizing the structural and functional attributes of polymer brushes. It is believed that a development approach for polymer brushes based on "design-material selection-preparation-characterization" can be created, easing the challenge of creating polymer brushes with high-performance lubricating qualities and enabling the on-demand creation of coatings. STATEMENT OF SIGNIFICANCE: Biomedical devices have severe lubrication modification needs, and surface lubrication modification by polymer brush coating is currently the most promising means. However, the design and preparation of polymer brushes often involves "iterative testing" to find polymer brushes with excellent lubrication properties, which is both time-consuming and expensive. This review proposes a polymer brush development process based on the "design-material selection-preparation-characterization" strategy and summarizes recent research advances and trends in the design, material selection, preparation, and characterization of polymer brushes. This review will help polymer brush researchers by alleviating the challenges of creating polymer brushes with high-performance lubricity and promises to enable the on-demand construction of polymer brush lubrication coatings.
Collapse
Affiliation(s)
- Xinzhong Song
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Jia Man
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China.
| | - Yinghua Qiu
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Jiali Wang
- Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Jianing Liu
- Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Ruijian Li
- Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Yongqi Zhang
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Jianyong Li
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Jianfeng Li
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Yuguo Chen
- Qilu Hospital of Shandong University, Jinan 250012, PR China
| |
Collapse
|
7
|
Modifying last layer in polyelectrolyte multilayer coatings for capillary electrophoresis of proteins. J Chromatogr A 2023; 1692:463837. [PMID: 36804799 DOI: 10.1016/j.chroma.2023.463837] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023]
Abstract
Protein adsorption on the inner wall of the fused silica capillary wall is an important concern for capillary electrophoresis (CE) analysis since it is mainly responsible for separation efficiency reduction. Successive Multiple Ionic-polymer Layers (SMIL) are used as capillary coatings to limit protein adsorption, but even low residual adsorption strongly impacts the separation efficiency, especially at high separation voltages. In this work, the influence of the chemical nature and the PEGylation of the polyelectrolyte deposited in the last layer of the SMIL coating was investigated on the separation performances of a mixture of four model intact proteins (myoglobin (Myo), trypsin inhibitor (TI), ribonuclease a (RNAse A) and lysozyme (Lyz)). Poly(allylamine hydrochloride) (PAH), polyethyleneimine (PEI), ε-poly(L-lysine) (εPLL) and α-poly(L-lysine) (αPLL) were compared before and after chemical modification with polyethyleneglycol (PEG) of different chain lengths. The experimental results obtained by performing electrophoretic separations at different separation voltages allowed determining the residual retention factor of the proteins onto the capillary wall via the determination of the plate height at different solute velocities and demonstrated a strong impact of the polycationic last layer on the electroosmotic mobility, the separation efficiency and the overall resolution. Properties of SMIL coatings were also characterized by quartz microbalance and atomic force microscopy, demonstrating a glassy structure of the films.
Collapse
|
8
|
Yukioka S, Yusa SI, Prajapati V, Kuperkar K, Bahadur P. Self-assembly in newly synthesized dual-responsive double hydrophilic block copolymers (DHBCs) in aqueous solution. Colloid Polym Sci 2023. [DOI: 10.1007/s00396-023-05075-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
9
|
Aguiar AO, Yi H, Asatekin A. Fouling-resistant membranes with zwitterion-containing ultra-thin hydrogel selective layers. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
10
|
Nguyen HN, Ngo TLH, Iwasaki Y, Huang C. Biodegradable Phosphocholine Cross‐Linker With Ion‐Pair Design for Tough Zwitterionic Hydrogel. ADVANCED MATERIALS INTERFACES 2022; 9. [DOI: 10.1002/admi.202201002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Indexed: 01/06/2025]
Abstract
AbstractHydrogels have been widely used in various biomedical applications based on their ability to provide 3D frames with tissue‐like elasticity and high water content. However, the role of the cross‐linking agents in the hydrogels was undervalued in terms of biocompatibility, mechanical properties, degradability, and hydration of gels. In this study, an innovative zwitterionic dimethacrylate 2‐[2‐{2‐(Methacryloyloxy)ethyldimethylammonium}ethyl‐phosphate]ethyl disulfide (MPCSS) for the development of biodegradable and biocompatible hydrogels with entirely bio‐inspired PC structure is reported. The MPCSS cross‐linker includes the zwitterionic group providing nonfouling properties and a disulfide bond that can be degraded by reducing agents and enzymes. Moreover, MPCSS has an opposite arrangement of charged groups to that in the 2‐methacryloyloxyethyl phosphorylcholine (MPC) monomer. The hydrogels developed from MPCSS and MPC allow the stronger mechanical properties upon electrostatic interaction between the oppositely charged groups and the higher water content than the MPC gels with the conventional cross‐linker. The biocompatibility and fouling characteristics of MPC/MPCSS hydrogels are systematically investigated. Moreover, the degradation of MPCSS cross‐linked hydrogels is evaluated through their weight loss and rheological data. Ultimately, MPC/MPCSS hydrogel is demonstrated to in situ encapsulate NIH‐3T3 fibroblasts and provide an excellent 3D environment, facilitating cell remodeling and growth as a tissue scaffold.
Collapse
Affiliation(s)
- Hoang Nam Nguyen
- Department of Biomedical Sciences & Engineering National Central University Jhong‐Li Taoyuan 320 Taiwan
| | - Thi Lan Huong Ngo
- Department of Biomedical Sciences & Engineering National Central University Jhong‐Li Taoyuan 320 Taiwan
| | - Yasuhiko Iwasaki
- Department of Chemistry and Materials Engineering Faculty of Chemistry Materials and Bioengineering Kansai University 3‐3‐35 Yamate‐cho Suita‐shi Osaka 564–8680 Japan
| | - Chun‐Jen Huang
- Department of Chemical & Materials Engineering and NCU‐Covestro Research Center National Central University Jhong‐Li Taoyuan 320 Taiwan
- R&D Center for Membrane Technology Chung Yuan Christian University 200 Chung Pei Rd Chung‐Li City 32023 Taiwan
| |
Collapse
|
11
|
Regulation Mechanism for Friction Coefficient of Poly(vinylphosphoric acid) (PVPA) Superlubricity System Based on Ionic Properties. NANOMATERIALS 2022; 12:nano12132308. [PMID: 35808147 PMCID: PMC9268071 DOI: 10.3390/nano12132308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 02/05/2023]
Abstract
Adjustable lubrication aims to achieve active control of the relative motion of the friction interface, providing a new idea for intelligent operation. A new phenomenon of sudden changes of friction coefficient (COF) in the poly(vinylphosphoric acid) (PVPA) superlubricity system by mixing different lubricants, was found in this study. It was found that anions were the critical factor for the COF change. The change degrees of the COF were investigated by a universal micro tribometer (UMT). A quartz crystal microbalance (QCM)-D was used to analyze the adsorption quantity of anions on the PVPA surface. The hydratability of the PVPA interface was controlled by changing the anionic properties (the amount of charge and structure), thus regulating the COF. The adsorption difference of anions is an important reasoning of how anionic properties can regulate the hydratability. It was analyzed by molecular dynamics simulation. For anions carrying different numbers of charges or double bonds, the adsorption quantity of anions was mainly affected by the adsorption degree on the PVPA surface, while the adsorption quantity of anions with different molecular configuration was synergistically regulated by the adsorption degree and adsorption area of anions on the PVPA surface. This work can be used to develop smart surfaces for applications.
Collapse
|
12
|
Liu M, Zhang C, Chen J, Liu Z, Cheng Y, Wu X. Mechanisms of cation-induced superlubricity transition of poly(vinylphosphonic acid) coatings. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Lin CH, Luo SC. Zwitterionic Conducting Polymers: From Molecular Design, Surface Modification, and Interfacial Phenomenon to Biomedical Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:7383-7399. [PMID: 35675211 DOI: 10.1021/acs.langmuir.2c00448] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Conducting polymers (CPs) have gained attention as electrode materials in bioengineering mainly because of their mechanical softness compared to conventional inorganic materials. To achieve better performance and broaden bioelectronics applications, the surface modification of soft zwitterionic polymers with antifouling properties represents a facile approach to preventing unwanted nonspecific protein adsorption and improving biocompatibility. This feature article emphasizes the antifouling properties of zwitterionic CPs, accompanied by their molecular synthesis and surface modification methods and an analysis of the interfacial phenomenon. Herein, commonly used methods for zwitterionic functionalization on CPs are introduced, including the synthesis of zwitterionic moieties on CP molecules and postsurface modification, such as the grafting of zwitterionic polymer brushes. To analyze the chain conformation, the structure of bound water in the vicinity of zwitterionic CPs and biomolecule behavior, such as protein adsorption or cell adhesion, provide critical insights into the antifouling properties. Integrating these characterization techniques offers general guidelines and paves the way for designing new zwitterionic CPs for advanced biomedical applications. Recent advances in newly designed zwitterionic CP-based electrodes have demonstrated outstanding potential in modern biomedical applications.
Collapse
Affiliation(s)
- Chia-Hsuan Lin
- Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Shyh-Chyang Luo
- Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes (NHRI), Miaoli County 35053, Taiwan
| |
Collapse
|
14
|
Mussel primed grafted zwitterionic phosphorylcholine based superhydrophilic/underwater superoleophobic antifouling membranes for oil-water separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
15
|
Yue Q, Lei L, Gu Y, Chen R, Zhang M, Yu H, Li S, Yang L, Zhang Y, Zhao X, Wei Q, Ma S, Zhang L, Tang P, Zhou F. Bioinspired Polysaccharide-Derived Zwitterionic Brush-like Copolymer as an Injectable Biolubricant for Arthritis Treatment. Adv Healthc Mater 2022; 11:e2200090. [PMID: 35373531 DOI: 10.1002/adhm.202200090] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/21/2022] [Indexed: 01/03/2023]
Abstract
Developing highly efficient and biocompatible biolubricants for arthritis treatment is extraordinarily demanded. Herein, inspired by the efficient lubrication of synovial joints, a paradigm that combines natural polysaccharide (chitosan) with zwitterionic poly[2-(methacryloyloxy) ethyl phosphorylcholine] (PMPC), to design a series of brush-like Chitosan-g-PMPC copolymers with highly efficient biological lubrication and good biocompatibility is presented. The Chitosan-g-PMPC copolymers are prepared via facile one-step graft polymerization in aqueous medium without using any toxic catalysts and organic solvents. The as-prepared Chitosan-g-PMPC copolymers exhibit very low coefficient of friction (μ < 0.01) on Ti6 Al4 V alloy substrate in both pure water and biological fluids. The superior lubrication is attributed primarily to the hydrated feature of PMPC side chains, interface adsorption of copolymer as well as to the hydrodynamic effect. In vivo experiments confirm that Chitosan-g-PMPC can alleviate the swelling symptom of arthritis and protect the bone and cartilage from destruction. Due to their facile preparation, distinctive lubrication properties, and good biocompatibility, Chitosan-g-PMPC copolymers represent a new type of biomimetic lubricants derived from natural biopolymer for promising arthritis treatment and artificial joint lubrication.
Collapse
Affiliation(s)
- Qinyu Yue
- State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 China
| | - Lele Lei
- State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 China
| | - Ya Gu
- Department of Orthopedics Chinese PLA General Hospital National Clinical Research Center for Orthopedics Sports Medicine and Rehabilitation Beijing 100853 China
| | - Ruijin Chen
- Department of Orthopedics Chinese PLA General Hospital National Clinical Research Center for Orthopedics Sports Medicine and Rehabilitation Beijing 100853 China
| | - Mingming Zhang
- Department of Orthopedics Chinese PLA General Hospital National Clinical Research Center for Orthopedics Sports Medicine and Rehabilitation Beijing 100853 China
| | - Haikuan Yu
- Department of Orthopedics Chinese PLA General Hospital National Clinical Research Center for Orthopedics Sports Medicine and Rehabilitation Beijing 100853 China
| | - Shang Li
- Department of Orthopedics Chinese PLA General Hospital National Clinical Research Center for Orthopedics Sports Medicine and Rehabilitation Beijing 100853 China
| | - Luming Yang
- State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China
| | - Yixin Zhang
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 China
| | - Xiaoduo Zhao
- State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacture Yantai 264006 China
| | - Qiangbing Wei
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 China
| | - Shuanhong Ma
- State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacture Yantai 264006 China
| | - Licheng Zhang
- Department of Orthopedics Chinese PLA General Hospital National Clinical Research Center for Orthopedics Sports Medicine and Rehabilitation Beijing 100853 China
| | - Peifu Tang
- Department of Orthopedics Chinese PLA General Hospital National Clinical Research Center for Orthopedics Sports Medicine and Rehabilitation Beijing 100853 China
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China
| |
Collapse
|
16
|
Liu C, Cheng F, Liu B, Gao D, Cheng G, Li C, Wang H, He W. Versatile, Oxygen-Insensitive Surface-Initiated Anionic Polymerization to Prepare Functional Polymer Brushes in Aqueous Solutions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1001-1010. [PMID: 34949091 DOI: 10.1021/acs.langmuir.1c02416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Surface-initiated polymerization is an attractive approach to achieve desired interfacial compositions and properties on a wide range of substrates and surfaces. Due to mild reaction conditions, multiple surface-initiated polymerization methods, such as atom-transfer radical polymerization (ATRP), reversible addition-fragmentation chain-transfer polymerization, and so forth, have been developed and studied in academia and industry. However, the current methods require the combination of metal catalysts, special initiators, and oxygen removal. Herein, we developed a surface-initiated carbanion-mediated anionic polymerization (SI-CMAP), which can be conducted in aqueous solutions in the presence of oxygen without the need for metal catalysts. Zwitterionic 2-(N-3-sulfopropyl-N,N-dimethyl ammonium)ethyl methacrylate (SBMA) was selected as a model monomer to develop and demonstrate this strategy. The vinyl sulfone (VS) groups displayed on substrate surfaces reacted with N-methylimidazole (NMIM), which was used as the in situ initiator. The polymerization mechanism was extensively studied from many aspects at room temperature, including the changes in reaction conditions, factors affecting the polymerization extent, and substrate surfaces. We also demonstrated the compatibility of this method with a broad spectrum of monomers ranging from SBMA to other acrylates and acrylamides by using glycine betaine as a reaction additive. This method was also evaluated for the preparation of polymer-coated nanoparticles. For polymer-coated silica nanoparticles, their hydrodynamic diameter, copper contamination, and effects of salt and protein concentrations were compared with SI-ATRP in parallel. SI-CMAP in aqueous solutions in air and the absence of metal catalysts make this method sustainable and cost-effective. We believe that SI-CMAP can be readily adapted to the industrial surface coating and large-scale nanoparticle preparation under mild conditions.
Collapse
Affiliation(s)
- Chong Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116023, China
- Department of Polymer Science & Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Fang Cheng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116023, China
- Department of Pharmacy, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Bo Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116023, China
- Department of Pharmacy, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Dongdong Gao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116023, China
- Department of Polymer Science & Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Gang Cheng
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Chunmei Li
- Tsinglan School, Songshan Lake, Dongguan, Guangdong 523000, China
| | - Huanan Wang
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Wei He
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116023, China
- Department of Polymer Science & Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| |
Collapse
|
17
|
Ahmed ST, Madinya JJ, Leckband DE. Ionic strength dependent forces between end-grafted Poly(sulfobetaine) films and mica. J Colloid Interface Sci 2022; 606:298-306. [PMID: 34392027 DOI: 10.1016/j.jcis.2021.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/26/2021] [Accepted: 08/01/2021] [Indexed: 12/12/2022]
Abstract
The molecular surface properties of zwitterionic polymer coatings are central to their ultra-low fouling properties and effectiveness as steric stabilizers in concentrated salt solutions. Here, Surface Force Apparatus measurements quantified the molecular forces between end-grafted poly(sulfobetaine) methacrylate thin films and mica, as a function of the chain grafting density and ionic strength. These results demonstrate that, at the ionic strengths considered, end-grafted poly(sulfobetaine) films can be described by models for polymers in good solvent. Parameters determined from data fits to the Milner-Witten-Cates or Dolan and Edwards models for dense or dilute chains, respectively, varied with ionic strength, in ways that reflect poly(sulfobetaine) swelling and the increased excluded volume strength of chain segments. These force measurements provide new insight into how polymer coverage and salt cooperate to regulate repulsive poly(sulfobetaine) steric barriers. These findings have implications for the design of grafted poly(sulfobetaine) as colloidal stabilizers or nonfouling surface coatings.
Collapse
Affiliation(s)
- Syeda Tajin Ahmed
- Department of Chemical and Biomolecular Engineering, 600 South Mathews Avenue, Roger Adams Laboratory, Urbana, IL 61801, USA
| | - Jason J Madinya
- Department of Chemical and Biomolecular Engineering, 600 South Mathews Avenue, Roger Adams Laboratory, Urbana, IL 61801, USA
| | - Deborah E Leckband
- Department of Chemical and Biomolecular Engineering, 600 South Mathews Avenue, Roger Adams Laboratory, Urbana, IL 61801, USA; Department of Chemical and Biomolecular Engineering and Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Roger Adams Laboratory, Urbana, IL 61801, USA.
| |
Collapse
|
18
|
King BM, Fiegel J. Zwitterionic Polymer Coatings Enhance Gold Nanoparticle Stability and Uptake in Various Biological Environments. AAPS J 2022; 24:18. [PMID: 34984558 DOI: 10.1208/s12248-021-00652-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/30/2021] [Indexed: 11/30/2022] Open
Abstract
Zwitterionic polymers are a class of materials that have demonstrated utility as non-fouling surfaces for medical devices and drug delivery vehicles. Here, we develop a synthesis protocol to produce zwitterionic polymers as coatings for gold nanoparticles and evaluate nanoparticle stability and biological function after exposure to various biological fluids. Thiol-functionalized polymethacryloyloxyethyl phosphorylcholine polymers (pMPC) were synthesized in nontoxic solvents via photoinitiated free radical polymerization with a radical addition-fragmentation chain transfer (RAFT) agent and coated onto gold nanoparticles. pMPC-coated nanoparticles exhibited reduced particle aggregation, improved suspension stability, and decreased protein adsorption upon exposure to serum and lung lavage fluid (BALF). Cell uptake in A549 cells was greater for pMPC-coated particles than uncoated particles after exposure to serum and BALF, with no observed cell toxicity, but pMPC-coated particles experienced higher levels of cell uptake after serum exposure than BALF exposure, suggesting that differences in the composition of the fluids result in differing impacts on particle fate. These zwitterionic polymers may serve as useful nanoparticle coatings to enhance particle stability and uptake in various biological environments.
Collapse
Affiliation(s)
- Benjamin M King
- Department of Chemical and Biochemical Engineering, 4133 Seamans Center for the Engineering Arts and Sciences, The University of Iowa, Iowa City, Iowa, 52242, USA
| | - Jennifer Fiegel
- Department of Chemical and Biochemical Engineering, 4133 Seamans Center for the Engineering Arts and Sciences, The University of Iowa, Iowa City, Iowa, 52242, USA.
| |
Collapse
|
19
|
Molecular diffusion in ternary poly(vinyl alcohol) solutions. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-021-2121-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AbstractThe diffusion kinetics of a molecular probe—rhodamine B—in ternary aqueous solutions containing poly(vinyl alcohol), glycerol, and surfactants was investigated using fluorescence correlation spectroscopy and dynamic light scattering. We show that the diffusion characteristics of rhodamine B in such complex systems is determined by a synergistic effect of molecular crowding and intermolecular interactions between chemical species. The presence of glycerol has no noticeable impact on rhodamine B diffusion at low concentration, but significantly slows down the diffusion of rhodamine B above 3.9% (w/v) due to a dominating steric inhibition effect. Furthermore, introducing surfactants (cationic/nonionic/anionic) to the system results in a decreased diffusion coefficient of the molecular probe. In solutions containing nonionic surfactant, this can be explained by an increased crowding effect. For ternary poly(vinyl alcohol) solutions containing cationic or anionic surfactant, surfactant—polymer and surfactant—rhodamine B interactions alongside the crowding effect of the molecules slow down the overall diffusivity of rhodamine B. The results advance our insight of molecular migration in a broad range of industrial complex formulations that incorporate multiple compounds, and highlight the importance of selecting the appropriate additives and surfactants in formulated products.
Collapse
|
20
|
Beyer CD, Thavalingam S, Guseva T, Schardt L, Zimmermann R, Werner C, Dietze P, Bandow JE, Metzler-Nolte N, Rosenhahn A. Zwitterionic Peptides Reduce Accumulation of Marine and Freshwater Biofilm Formers. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49682-49691. [PMID: 34663068 DOI: 10.1021/acsami.1c13459] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Zwitterionic peptides are facile low-fouling compounds for environmental applications as they are biocompatible and fully biodegradable as their degradation products are just amino acids. Here, a set of histidine (H) and glutamic acid (E), as well as lysine (K) and glutamic acid (E) based peptide sequences with zwitterionic properties were synthesized. Both oligopeptides (KE)4K and (HE)4H were synthesized in d and l configurations to test their ability to resist the nonspecific adsorption of the proteins lysozyme and fibrinogen. The coatings were additionally tested against the attachment of the marine organisms Navicula perminuta and Cobetia marina as well as the freshwater bacterium Pseudomonas fluorescens on the developed coatings. While the peptides containing lysine performed better in protein resistance assays and against freshwater bacteria, the sequences containing histidine were generally more resistant against marine organisms. The contribution of amino acid-intrinsic properties such as side chain pKa values and hydrophobicity, as well as external parameters such as pH and salinity of fresh water and seawater on the resistance of the coatings is discussed. In this way, a detailed picture emerges as to which zwitterionic sequences show advantages in future generations of biocompatible, sustainable, and nontoxic fouling release coatings.
Collapse
Affiliation(s)
- Cindy D Beyer
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, 44801 Bochum, Germany
| | - Sugina Thavalingam
- Inorganic Chemistry I - Bioinorganic Chemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Tatiana Guseva
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, 44801 Bochum, Germany
| | - Lisa Schardt
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, 44801 Bochum, Germany
| | - Ralf Zimmermann
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, 01069 Dresden, Germany
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, 01069 Dresden, Germany
| | - Pascal Dietze
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Julia Elisabeth Bandow
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Nils Metzler-Nolte
- Inorganic Chemistry I - Bioinorganic Chemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Axel Rosenhahn
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, 44801 Bochum, Germany
| |
Collapse
|
21
|
Lin CH, Luo SC. Combination of AFM and Electrochemical QCM-D for Probing Zwitterionic Polymer Brushes in Water: Visualization of Ionic Strength and Surface Potential Effects. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12476-12486. [PMID: 34648298 DOI: 10.1021/acs.langmuir.1c02230] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The surface modification of soft zwitterionic polymer brushes with antifouling properties represents a facile approach to enhancing the performance of bioelectronics. Ionic strength and applied potentials play a crucial role in controlling polymer brushes' conformation and hydration states. In this study, we quantitatively investigated and compared poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) and poly(sulfobetaine methacrylate) (PSBMA) brushes at different salt concentrations and applied surface potentials. Initiator-containing poly(3,4-ethylenedioxythiophene) films (poly(EDOT-Br)) were prepared by electropolymerization. After the conducting polymer was deposited, polymer brushes grew from the electrode surface through surface-initiated atom-transfer radical polymerization (SI-ATRP). Polymer brushes were carefully characterized for their surface morphologies using an atomic force microscope (AFM). The force volume method measured using AFM enabled the analysis of the Young's modulus of the two polymer brushes. Hydration states and protein binding behaviors of polymer brushes were examined using quartz crystal microbalance with dissipation (QCM-D). We further integrated a potentiostat with the QCM-D to conduct an electrochemical QCM-D study. The energy dissipation and frequency changes corresponded to the ion adsorption on the film surface under different ionic strengths. The results of both hydration states and nonspecific protein binding behavior indicate that PMPC brushes have greater ionic strength independency, implying the conformation of the unchanged PMPC brushes. Moreover, we illustrated how the surface potential influences nonspecific and specific binding behavior on PMPC brushes on PEDOT films compared with electrified poly(EDOT-PC) electrodes. We concluded that PMPC brushes exhibit unique behaviors that are barely affected by ion concentration, and that the brushes' modification results in less influence by surface potential due to the finite Debye length influencing the electrode surface to outer environment in an NaCl aqueous solution.
Collapse
Affiliation(s)
- Chia-Hsuan Lin
- Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Shyh-Chyang Luo
- Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes (NHRI), Miaoli County, 35053 Taiwan
| |
Collapse
|
22
|
Feng S, Liu Y, Li J, Wen S. Superlubricity Achieved with Zwitterionic Brushes in Diverse Conditions Induced by Shear Actions. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00430] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shaofei Feng
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Yuhong Liu
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Jinjin Li
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Shizhu Wen
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
23
|
Choi W, Park S, Kwon JS, Jang EY, Kim JY, Heo J, Hwang Y, Kim BS, Moon JH, Jung S, Choi SH, Lee H, Ahn HW, Hong J. Reverse Actuation of Polyelectrolyte Effect for In Vivo Antifouling. ACS NANO 2021; 15:6811-6828. [PMID: 33769787 DOI: 10.1021/acsnano.0c10431] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Zwitterionic polymers have extraordinary properties, that is, significant hydration and the so-called antipolyelectrolyte effect, which make them suitable for biomedical applications. The hydration induces an antifouling effect, and this has been investigated significantly. The antipolyelectrolyte effect refers to the extraordinary ion-responsive behavior of particular polymers that swell and hydrate considerably in physiological solutions. This actuation begins to attract attention to achieve in vivo antifouling that is challenging for general polyelectrolytes. In this study, we established the sophisticated cornerstone of the antipolyelectrolyte effect in detail, including (i) the essential parameters, (ii) experimental verifications, and (iii) effect of improving antifouling performance. First, we find that both osmotic force and charge screening are essential factors. Second, we identify the antipolyelectrolyte effect by visualizing the swelling and hydration dynamics. Finally, we verify that the antifouling performance can be enhanced by exploiting the antipolyelectrolyte effect and report reduction of 85% and 80% in ex and in vivo biofilm formation, respectively.
Collapse
Affiliation(s)
- Woojin Choi
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Sohyeon Park
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jae-Sung Kwon
- Department and Research Institute of Dental Biomaterials and Bioengineering and BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
| | - Eun-Young Jang
- Department of Dentistry, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ji-Yeong Kim
- Department of Orthodontics, Institute of Craniofacial Deformity and BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
| | - Jiwoong Heo
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - YoungDeok Hwang
- Paul H. Chook Department of Information Systems and Statistics, Baruch College CUNY, New York, New York 10010, United States
| | - Byeong-Su Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Ji-Hoi Moon
- Department of Oral Microbiology, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sungwon Jung
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Sung-Hwan Choi
- Department of Orthodontics, Institute of Craniofacial Deformity and BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
| | - Hwankyu Lee
- Department of Chemical Engineering, Dankook University, Yongin-si, Gyeonggi-do 16890, Republic of Korea
| | - Hyo-Won Ahn
- Department of Orthodontics, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jinkee Hong
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
24
|
Wen X, Bai P, Li Y, Cao H, Li S, Wang B, Fang J, Meng Y, Ma L, Tian Y. Effects of Abrasive Particles on Liquid Superlubricity and Mechanisms for Their Removal. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:3628-3636. [PMID: 33733780 DOI: 10.1021/acs.langmuir.0c03607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Liquid superlubricity results in a near-frictionless lubrication state, which can greatly reduce friction and wear under aqueous conditions. However, during the running-in process, a large number of abrasive particles are generated, and because these may lead to a breakdown in superlubricity performance, they should be effectively removed. In this paper, the morphology, size, and composition of abrasive particles were verified using scanning electron microscopy with energy-dispersive X-ray spectroscopy, and their influence on liquid superlubricity was explored through friction tests. Subsequently, different solvents were used to remove the abrasive particles, and the optimal cleaning process was determined by macroscopic tribo-tests and microscopic analysis. Finally, droplet-spreading experiments and a force-curve analysis were carried out to understand the abrasive-particle removal mechanism by different solvents. We found that SiO2 was the main component in the abrasive particles, and micron-sized SiO2 particles resulted in random "wave peaks" in the coefficient of friction and, thus, the superlubricity. Absolute ethanol + ultrapure water was determined to be the optimal solvent for effectively removing abrasive particles from friction-pair surfaces and helped the lubricant in exhibiting an ultralow friction coefficient for long periods of time. We proposed a "wedge" and "wrap" model to explain the abrasive-particle removal mechanism of different solvents. The SiO2 removal mechanism outlined in this study can be applied under aqueous conditions to improve the stability and durability of liquid superlubricity in practical engineering applications.
Collapse
Affiliation(s)
- Xiangli Wen
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Pengpeng Bai
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Yuanzhe Li
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Hui Cao
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Shaowei Li
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Bin Wang
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Jingbo Fang
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Yonggang Meng
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Liran Ma
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Yu Tian
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
25
|
Yu Y, Brió Pérez M, Cao C, de Beer S. Switching (bio-) adhesion and friction in liquid by stimulus responsive polymer coatings. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110298] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
26
|
Song D, Cahn D, Duncan GA. Mucin Biopolymers and Their Barrier Function at Airway Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:12773-12783. [PMID: 33094612 DOI: 10.1021/acs.langmuir.0c02410] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In the lung, the airway epithelium produces secreted and tethered mucin biopolymers to form a mucus hydrogel layer and a surface-attached polymer brush layer. These layers work in concert to facilitate the cilia-mediated transport of mucus for the capture and clearance of inhaled materials to prevent lung damage. The mechanisms by which mucin biopolymers protect the lung from injury have been an intense area of study in airway biology for the past several decades. In this feature article, we will discuss how airway mucins achieve these protective barrier functions. We will present the key findings, rooted in polymer and surface science, that have aided in understanding mucin barrier function. In addition, we will describe how this work may influence the design of nanoparticles to overcome the mucus barrier to effective drug delivery.
Collapse
Affiliation(s)
- Daniel Song
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Devorah Cahn
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Gregg A Duncan
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
- Biophysics Program, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
27
|
Adibnia V, Olszewski M, De Crescenzo G, Matyjaszewski K, Banquy X. Superlubricity of Zwitterionic Bottlebrush Polymers in the Presence of Multivalent Ions. J Am Chem Soc 2020; 142:14843-14847. [PMID: 32790294 DOI: 10.1021/jacs.0c07215] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this study, we report lubrication properties of physisorbed zwitterionic bottlebrush polymers in the presence of multivalent ions using the surface force apparatus. Unlike polyelectrolyte brushes, the lubrication properties of which diminish drastically in the presence of multivalent ions at concentrations as low as 0.1 mM, zwitterionic bottlebrush polymers exhibit friction coefficients as low as ∼10-3 at such concentrations of multivalent ions up to intermediate normal loads. This lubrication ability persists until surface wear occurs at high normal loads. The surface wear is demonstrated to be triggered by the multivalent ions bridging the polymer chains and dehydrating the zwitterionic moieties. Finally, the analysis of the polymer film stability suggests that the partial desorption of polymers in the presence of the ions does not affect the lubrication performance. Therefore, even in the physisorbed state, zwitterionic brushes perform significantly better than covalently grafted polyelectrolyte brushes in the presence of multivalent ions.
Collapse
Affiliation(s)
- Vahid Adibnia
- Faculty of Pharmacy, Université de Montréal, 2900 Édouard-Montpetit, Montreal, Quebec H3C 3J7, Canada.,Department of Chemical Engineering, Ecole Polytechnique de Montreal, P.O. Box 6079, succ. Centre-Ville, Montreal, Quebec H3C 3A7, Canada
| | - Mateusz Olszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Gregory De Crescenzo
- Department of Chemical Engineering, Ecole Polytechnique de Montreal, P.O. Box 6079, succ. Centre-Ville, Montreal, Quebec H3C 3A7, Canada
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Xavier Banquy
- Faculty of Pharmacy, Université de Montréal, 2900 Édouard-Montpetit, Montreal, Quebec H3C 3J7, Canada
| |
Collapse
|
28
|
Li M, Zhuang B, Yu J. Functional Zwitterionic Polymers on Surface: Structures and Applications. Chem Asian J 2020; 15:2060-2075. [DOI: 10.1002/asia.202000547] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/29/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Minglun Li
- School of Materials Science and EngineeringNanyang Technological University Singapore 639798 Singapore
| | - Bilin Zhuang
- Division of ScienceYale-NUS College Singapore 138527 Singapore
| | - Jing Yu
- School of Materials Science and EngineeringNanyang Technological University Singapore 639798 Singapore
| |
Collapse
|
29
|
Osaheni AO, Ash-Shakoor A, Gitsov I, Mather PT, Blum MM. Synthesis and Characterization of Zwitterionic Polymer Brush Functionalized Hydrogels with Ionic Responsive Coefficient of Friction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3932-3940. [PMID: 32223270 DOI: 10.1021/acs.langmuir.9b03566] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Freeze-thaw poly(vinyl alcohol) hydrogels (PVA-H) offer great potential for several biomedical applications due to their biomimetic mechanical properties and biocompatibility. Despite these advantages, the use of PVA-H for load bearing applications has been limited due to poor performance in boundary lubrication compared to natural tissue such as articular cartilage. Recently, zwitterionic polymer brushes have been shown to act as effective boundary lubricants on rigid substrates; however, to the best of our knowledge, the synergistic effects of zwitterionic brushes coupled with the biomimetic fluid load support exhibited by hydrogels have not been reported. We report here on our investigation involving the synthesis and characterization of two unique types of polymer brush functionalized PVA hydrogels. The zwitterionic polymers that were compared contained either [2-(methacryloyloxy)ethyl]dimethyl-3-sulfopropylammonium hydroxide, PMEDSAH, or 2-methacryloyloxyethylphosphorylcholine, PMPC, repeating units. Both hydrogels coated with zwitterionic polymers were found to be cytocompatible. We report further on micrometer-scale surface properties via water contact angle goniometry, surface roughness measurements, and scanning electron microscopy. Finally, the impact of brush functionalization on the mechanics of the tribologically enhanced gels is reported with comparison to natural articular cartilage within the context of Hertzian contact theory.
Collapse
Affiliation(s)
- Allen O Osaheni
- Syracuse Biomaterials Institute, Syracuse University, Syracuse, New York 13244, United States
- Department of Mechanical & Aerospace Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Ariel Ash-Shakoor
- Syracuse Biomaterials Institute, Syracuse University, Syracuse, New York 13244, United States
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Ivan Gitsov
- Syracuse Biomaterials Institute, Syracuse University, Syracuse, New York 13244, United States
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, Syracuse, New York 13244, United States
| | - Patrick T Mather
- Department of Chemical Engineering, Bucknell University, Lewisburg, Pennsylvania 17837, United States
| | - Michelle M Blum
- Syracuse Biomaterials Institute, Syracuse University, Syracuse, New York 13244, United States
- Department of Mechanical & Aerospace Engineering, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
30
|
Tian Y, Lei M, Yan L, An F. Diselenide-crosslinked zwitterionic nanogels with dual redox-labile properties for controlled drug release. Polym Chem 2020. [DOI: 10.1039/d0py00004c] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We developed a diselenide-crosslinked zwitterionic nanogel based on poly(2-methacryloyloxyethyl phosphorylcholine), which has sensitive dual redox-degradability and high colloidal stability.
Collapse
Affiliation(s)
- Yefei Tian
- School of Materials Science and Engineering
- Chang'an University
- Xi'an
- P. R. China
| | - Miao Lei
- School of Materials Science and Engineering
- Chang'an University
- Xi'an
- P. R. China
| | - Luke Yan
- School of Materials Science and Engineering
- Chang'an University
- Xi'an
- P. R. China
| | - Feifei An
- Institute of Medical Engineering
- Department of Biophysics
- School of Basic Medical Science
- Health Science Center
- Xi'an Jiaotong University
| |
Collapse
|
31
|
Yan W, Ramakrishna SN, Romio M, Benetti EM. Bioinert and Lubricious Surfaces by Macromolecular Design. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13521-13535. [PMID: 31532689 DOI: 10.1021/acs.langmuir.9b02316] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The modification of a variety of biomaterials and medical devices often encompasses the generation of biopassive and lubricious layers on their exposed surfaces. This is valid when the synthetic supports are required to integrate within physiological media without altering their interfacial composition and when the minimization of shear stress prevents or reduces damage to the surrounding environment. In many of these cases, hydrophilic polymer brushes assembled from surface-interacting polymer adsorbates or directly grown by surface-initiated polymerizations (SIP) are chosen. Although growing efforts by polymer chemists have been focusing on varying the composition of polymer brushes in order to attain increasingly bioinert and lubricious surfaces, the precise modulation of polymer architecture has simultaneously enabled us to substantially broaden the tuning potential for the above-mentioned properties. This feature article concentrates on reviewing this latter strategy, comparatively analyzing how polymer brush parameters such as molecular weight and grafting density, the application of block copolymers, the introduction of branching and cross-links, or the variation of polymer topology beyond the simple, linear chains determine highly technologically relevant properties, such as biopassivity and lubrication.
Collapse
Affiliation(s)
- Wenqing Yan
- Polymer Surfaces Group, Laboratory for Surface Science and Technology, Department of Materials , Swiss Federal Institute of Technology (ETH Zürich) , Vladimir-Prelog-Weg 1-5/10 , CH-8093 Zurich , Switzerland
| | - Shivaprakash N Ramakrishna
- Polymer Surfaces Group, Laboratory for Surface Science and Technology, Department of Materials , Swiss Federal Institute of Technology (ETH Zürich) , Vladimir-Prelog-Weg 1-5/10 , CH-8093 Zurich , Switzerland
| | - Matteo Romio
- Polymer Surfaces Group, Laboratory for Surface Science and Technology, Department of Materials , Swiss Federal Institute of Technology (ETH Zürich) , Vladimir-Prelog-Weg 1-5/10 , CH-8093 Zurich , Switzerland
- Biointerfaces, Swiss Federal Laboratories for Materials Science and Technology (Empa) , Lerchenfeldstrasse 5 , CH-9014 St. Gallen , Switzerland
| | - Edmondo M Benetti
- Polymer Surfaces Group, Laboratory for Surface Science and Technology, Department of Materials , Swiss Federal Institute of Technology (ETH Zürich) , Vladimir-Prelog-Weg 1-5/10 , CH-8093 Zurich , Switzerland
- Biointerfaces, Swiss Federal Laboratories for Materials Science and Technology (Empa) , Lerchenfeldstrasse 5 , CH-9014 St. Gallen , Switzerland
| |
Collapse
|
32
|
Hollingsworth NR, Wilkanowicz SI, Larson RG. Salt- and pH-induced swelling of a poly(acrylic acid) brush via quartz crystal microbalance w/dissipation (QCM-D). SOFT MATTER 2019; 15:7838-7851. [PMID: 31528970 DOI: 10.1039/c9sm01289c] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We infer the swelling/de-swelling behavior of weakly ionizable poly(acrylic acid) (PAA) brushes of 2-39 kDa molar mass in the presence of KCl concentrations from 0.1-1000 mM, pH = 3, 7, and 9, and grafting densities σ = 0.12-2.15 chains per nm2 using a Quartz Crystal Microbalance with Dissipation (QCM-D), confirming and extending the work of Wu et al. to multiple chain lengths. At pH 7 and 9 (above the pKa ∼ 5), the brush initially swells at low KCl ionic strength (<10 mM) in the "osmotic brush" regime, and de-swells at higher salt concentrations, in the "salted brush" regime, and is relatively unaffected at pH 3, below the pKa, as expected. At pH 7, at low and moderate grafting densities, our results in the high-salt "salted brush" regime (Cs > 10 mM salt) agree with the predicted scaling H ∼ Nσ+1/3Cs-1/3 of brush height H, while in the low-salt "osmotic brush" regime (Cs < 10 mM salt), we find H ∼ Nσ+1/3Cs+0.28-0.38, whose dependence on Cs agrees with scaling theory for this regime, but the dependence on σ strongly disagrees with it. The predicted linearity in the degree of polymerization N is confirmed. The new results partially confirm scaling theory and clarify where improved theories and additional data are needed.
Collapse
Affiliation(s)
- Nisha R Hollingsworth
- Department of Macromolecular Science & Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | | | |
Collapse
|
33
|
Abstract
Polymer brushes are outstanding lubricants that can strongly reduce wear and friction between surfaces in sliding motion. In recent decades, many researchers have put great effort in obtaining a clear understanding of the origin of the lubricating performance of these brushes. In particular, molecular dynamics simulations have been a key technique in this scientific journey. They have given us a microscopic interpretation of the tribo-mechanical response of brushes and have led to the prediction of their shear-thinning behavior, which has been shown to agree with experimental observations. However, most studies so far have focused on parallel plate geometries, while the brush-covered surfaces might be highly curved in many applications. Here, we present molecular dynamics simulations that are set up to study the friction for brushes grafted on the exterior of cylinders that are moving inside larger cylinders that bear brushes on their interior. Our simulations show that the density distributions for brushes on the interior or exterior of these cylinders are qualitatively different from the density profiles of brushes on flat surfaces. In agreement with theoretical predictions, we find that brushes on the exterior of cylinders display a more gradual decay, while brushes on the interior of cylinders becomes denser compared to flat substrates. When motion is imposed, the density profiles for cylinder-grafted brushes adapt qualitatively differently to the shear motion than observed for the parallel plate geometry: the zone where brushes overlap moves away from its equilibrium position. Surprisingly, and despite all these differences, we observe that the effective viscosity is independent of the radius of the brush-grafted cylinders. The reason for this is that the viscosity is determined by the overlap between the brushes, which turns out to be insensitive to the exact density profiles. Our results provide a microscopic interpretation of the friction mechanism for polymer brushes in cylindrical geometries and will aid the design of effective lubricants for these systems.
Collapse
|
34
|
Yan W, Ramakrishna SN, Spencer ND, Benetti EM. Brushes, Graft Copolymers, or Bottlebrushes? The Effect of Polymer Architecture on the Nanotribological Properties of Grafted-from Assemblies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:11255-11264. [PMID: 31394039 DOI: 10.1021/acs.langmuir.9b01265] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Surface-grafted polyzwitterions (PZW) have gained a foothold in the design of synthetic materials that closely mimic the lubricious properties of articular joints in mammals. Besides their chemical composition, the architecture of PZW brushes strongly determines their morphological, nanomechanical, and nanotribological characteristics. This emerges while comparing the properties of linear poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) brushes with those displayed by graft copolymer and bottlebrush brushes, either featuring a low or a high content of PMPC side chains. Surface-initiated atom transfer radical polymerization (SI-ATRP) enabled the synthesis of different branched-brush architectures from multifunctional macroinitiators via multiple grafting steps, and allowed us to modulate their structure by tuning the polymerization conditions. At relatively low grafting densities (σ), long PMPC side segments extend at the interface of bottlebrush and graft copolymer brushes, providing both morphology and lubrication properties comparable to those shown by loosely grafted, linear PMPC brushes. When σ > 0.1 chains nm-2 the effect of the branched-brush architecture on the nanotribological properties of the films became evident. Linear PMPC brushes showed the lowest friction among the studied brush structures, with a coefficient of friction (μ) that reached 1 × 10-4, as measured by atomic force microscopy (AFM). Bottlebrush brushes showed comparatively higher friction, although the high content of hydrophilic PMPC side chains along their backbone substantially improved lubrication compared to that displayed by the more sparsely substituted graft copolymer brushes.
Collapse
Affiliation(s)
- Wenqing Yan
- Laboratory for Surface Science and Technology, Department of Materials , ETH Zürich , Zürich , Switzerland
| | - Shivaprakash N Ramakrishna
- Laboratory for Surface Science and Technology, Department of Materials , ETH Zürich , Zürich , Switzerland
| | - Nicholas D Spencer
- Laboratory for Surface Science and Technology, Department of Materials , ETH Zürich , Zürich , Switzerland
| | - Edmondo M Benetti
- Laboratory for Surface Science and Technology, Department of Materials , ETH Zürich , Zürich , Switzerland
- Biointerfaces , Swiss Federal Laboratories for Materials Science and Technology (Empa) , St. Gallen , Switzerland
| |
Collapse
|
35
|
Petroff MG, Garcia EA, Herrera-Alonso M, Bevan MA. Ionic Strength-Dependent Interactions and Dimensions of Adsorbed Zwitterionic Copolymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:4976-4985. [PMID: 30889950 DOI: 10.1021/acs.langmuir.9b00218] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We report direct measurements of ionic strength-dependent interactions between different molecular weights of zwitterionic triblock copolymers adsorbed to hydrophobic colloids and surfaces. The zwitterionic copolymers investigated include phosphorylcholine [poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC)] and sulfopropylbetaine [poly(3-( N-2-methacryloyloxyethyl- N, N-dimethyl)ammonatopropanesulfonate) (PMAPS)] end blocks separated by poly(propylene oxide) center blocks. The range of repulsion between adsorbed PMAPS copolymer layers increases with increasing NaCl from 0.01 to 3 M, and layer thicknesses range from ∼50 to 100% of the PMAPS block contour length. In contrast, repulsion between PMPC layers does not change for 0.01-3 M NaCl, and layers remain near full extension at their contour length. NaCl-dependent interactions and inferred layer dimensions correlate with hydrodynamic layer thickness and polymer second virial coefficients. These results suggest that the interaction range and layer thickness of adsorbed zwitterionic copolymers arise from a balance of intramolecular dipolar attraction and repulsion possibly mediated by water solvation. The balance between these competing effects and resulting ionic strength dependence is determined by specific zwitterionic moieties.
Collapse
Affiliation(s)
- Matthew G Petroff
- Chemical & Biomolecular Engineering , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Elena A Garcia
- Chemical & Biomolecular Engineering , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Margarita Herrera-Alonso
- Chemical & Biological Engineering & School of Advanced Materials Discovery , Colorado State University , Fort Collins , Colorado 80523 , United States
| | - Michael A Bevan
- Chemical & Biomolecular Engineering , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| |
Collapse
|
36
|
Yu Y, Yao Y, van Lin S, de Beer S. Specific anion effects on the hydration and tribological properties of zwitterionic phosphorylcholine-based brushes. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.01.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
37
|
Gong L, Xiang L, Zhang J, Han L, Wang J, Wang X, Liu J, Yan B, Zeng H. Interaction Mechanisms of Zwitterions with Opposite Dipoles in Aqueous Solutions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:2842-2853. [PMID: 30691265 DOI: 10.1021/acs.langmuir.8b04091] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Zwitterionic groups have been widely used in antibiofouling surfaces to resist nonspecific adsorption of proteins and other biomolecules. The interactions among zwitterionic groups have attracted considerable attention in bioengineering, whereas the understanding of their nanomechanical mechanism still remains limited. In this work, the interaction mechanisms between two zwitterionic groups with opposite dipoles, i.e., phosphorylcholine (PC) and sulfobetaine (SB), have been investigated via direct force measurements using an atomic force microscope (AFM) and dynamic adsorption tests using the quartz crystal microbalance with dissipation monitoring technique (QCM-D) in aqueous solutions. The AFM force measurements show that the adhesive forces between contacted zwitterionic surfaces during separation in both symmetric and asymmetric configurations were close, mainly due to the enforced alignment of opposing dipole pairs via complementary orientations under confinement. The solution salinity and pH had almost negligible influence on the adhesion measured during surface separation. The QCM-D adsorption tests of PC-headed lipid on PC and SB surfaces showed some degree of adsorption of lipid molecules on the SB surface, whereas not on the PC surface. The different adsorption behaviors indicate that because the outermost negatively charged sulfonic group on the SB faced the aqueous solution, this configuration could facilitate it to form an attractive electrostatic interaction with the PC head of lipid molecules in the solution. This work shows that in addition to hydration and steric interactions, the zwitterionic dipole-induced interactions play an important role in the adhesion and antifouling behaviors of the zwitterionic molecules and surfaces. The improved fundamental understanding provides useful insights into the development of new functional materials and coatings with antifouling applications.
Collapse
Affiliation(s)
- Lu Gong
- Department of Chemical and Materials Engineering , University of Alberta , Edmonton , Alberta T6G 1H9 , Canada
| | - Li Xiang
- Department of Chemical and Materials Engineering , University of Alberta , Edmonton , Alberta T6G 1H9 , Canada
| | - Jiawen Zhang
- Department of Chemical and Materials Engineering , University of Alberta , Edmonton , Alberta T6G 1H9 , Canada
| | - Linbo Han
- Department of Chemical and Materials Engineering , University of Alberta , Edmonton , Alberta T6G 1H9 , Canada
- College of Health Science and Environmental Engineering , Shenzhen Technology University , Shenzhen 518118 , China
| | - Jingyi Wang
- Department of Chemical and Materials Engineering , University of Alberta , Edmonton , Alberta T6G 1H9 , Canada
| | - Xiaogang Wang
- College of Material Science & Engineering, Heavy Machinery Engineering Research Center of Education Ministry , Taiyuan University of Science and Technology , Taiyuan 030024 , China
| | - Jifang Liu
- Department of Chemical and Materials Engineering , University of Alberta , Edmonton , Alberta T6G 1H9 , Canada
- The Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou , Guangdong 510700 , China
| | - Bin Yan
- Department of Chemical and Materials Engineering , University of Alberta , Edmonton , Alberta T6G 1H9 , Canada
- College of Light Industry, Textile & Food Engineering , Sichuan University , Chengdu 610065 , China
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering , University of Alberta , Edmonton , Alberta T6G 1H9 , Canada
| |
Collapse
|
38
|
Kim D, Matsuoka H, Saruwatari Y. Synthesis and Stimuli Responsivity of Diblock Copolymers Composed of Sulfobetaine and Ionic Blocks: Influence of the Block Ratio. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1590-1597. [PMID: 30583697 DOI: 10.1021/acs.langmuir.8b03319] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ionic diblock copolymers having sulfobetaine, poly(sodium styrenesulfonate)- b- poly(sulfopropyl dimethylammonium propylacrylamide) (PSSNa- b-PSPP), and poly[3-(methacrylamido)propyl trimethylammonium chloride])- b-poly(sulfobetaine) (PMAPTAC- b-PSPP) were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. Polysulfobetaine has the temperature responsivity of the upper critical solution temperature (UCST) type. However, sulfobetaine/PSSNa and sulfobetaine/PMAPTAC with block ratios of 1:1.8 (36- b-66) and 1:1.3 (50- b-66), respectively, did not show any temperature responsivity. This is probably due to the interaction between sulfobetaine and ionic polymer (anionic or cationic) to form some complex. Therefore, we investigated the effect of the block ratio on the temperature response and interaction between sulfobetaine and ionic polymers. The UCST behavior of the block copolymer composed of a sulfobetaine chain and ionic chain was investigated by changing the block ratio by turbidimetry. PSSNa- b-PSPP and PMAPTAC- b-PSPP with block ratios of 1:42.5 (6:255) and 1:4 (16:61), respectively, showed temperature responsivity. The expression of temperature responsivity was found to be very sensitive to the chain length of the ionic chain block. The temperature responsivity was considered to disappear because of the interaction between the sulfobetaine chain and the ionic chain. The interaction was investigated by adding the ionic polymer to the sulfobetaine homopolymer. UCST behavior was confirmed by adding 0.1% PSSNa and 1% PMAPTAC, respectively. The results suggested that the sulfobetaine chain and the ionic chain interacted with each other and that PSSNa was more sensitive than PMAPTAC. In addition, it was confirmed by a 1H NMR measurement that the sulfobetaine chain and ionic chain in the homopolymer mixture system and a block copolymer interact with each other.
Collapse
Affiliation(s)
- Dongwook Kim
- Department of Polymer Chemistry , Kyoto University , Kyoto 615-8510 , Japan
| | - Hideki Matsuoka
- Department of Polymer Chemistry , Kyoto University , Kyoto 615-8510 , Japan
| | - Yoshiyuki Saruwatari
- Osaka Organic Chemical Industries Ltd. , 7-20 Azuchi-Machi, 1-Chome , Chuo-ku , Osaka 541-0052 , Japan
| |
Collapse
|
39
|
Ma W, Chen T, Nanni S, Yang L, Ye Z, Rahaman MS. Zwitterion-Functionalized Graphene Oxide Incorporated Polyamide Membranes with Improved Antifouling Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1513-1525. [PMID: 30346770 DOI: 10.1021/acs.langmuir.8b02044] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In this study, zwitterionic polymer poly(sulfobetaine methacrylate) (PSBMA) functionalized graphene oxide (GO) nanocomposites (GO-PSBMA) were synthesized and incorporated into the active layer of a polyamide membrane to improve its water perm-selectivity and fouling-resistant properties. GO-PSBMA nanocomposite contained covalently tethered PSBMA brushes on GO sheets, which were grown by activators regenerated by the electron transfer-atom transfer radical polymerization technique via the "graft-from" strategy. The grafting of zwitterionic PSBMA partially neutralized the surface charge of GO and increased its dispersibility in organic solvent. The incorporation of the GO-PSBMA-1h nanocomposite in the active layer of the polyamide membrane significantly improved surface hydrophilicity of the membrane and reduced its charge density. A near twofold increase in water permeation flux, with the nonsignificant change in MgSO4 and NaCl rejection, was achieved after the incorporation of 0.3 wt % of GO-PSBMA-1h in the membrane casting solution. With an improved water affinity, the fabricated nanocomposite membrane exhibited a near 80% reduction in bacterial ( Escherichia coli) attachment in comparison to the control membrane, even after 48 h of culture. In a crossflow filtration test, the nanocomposite membrane exhibited less of a reduction in the flux associated with bovine serum albumin fouling and salt ion scaling. The results demonstrated that incorporating zwitterionic polymer-decorated GO in the polyamide skin layer is a promising method to fabricate thin film nanocomposite membranes with improved water flux and fouling resistance.
Collapse
|
40
|
Charaya H, Li X, Jen N, Chung HJ. Specific Ion Effects in Polyampholyte Hydrogels Dialyzed in Aqueous Electrolytic Solutions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1526-1533. [PMID: 30428669 DOI: 10.1021/acs.langmuir.8b02281] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Polyampholyte hydrogels (PAHs) constitute a class of physical gels with cross-linking originating from inter- and intrachain ionic cross-linking between countercharged functional groups. In our previous report, we have shown that PAH has the potential to be a gel electrolyte in electrochemical energy storage devices. In this work, we further our understanding of charge-balanced PAH as a host material for gel electrolytes by studying the effect of dialysis on the mechanical properties and ionic conductivities of PAHs, whereas these properties are compared with those of poly(vinyl alcohol) (PVA)-based gel electrolytes. Here, various electrolyte solutions were investigated as dialyzing agents. The ionic species in the electrolytes form ion pairs with countercharged functional groups in PAH, whereas such interactions govern the ionic conductivity and mechanical strength of PAH in various electrolytes. For anions, the trend in ionic interactions follows the Hofmeister series in an exact manner, whereas some anomaly is observed among cations. We anticipate that our study provides a design criterion for fabricating gel electrolytes. In a broader context, this work can shed light on understanding the behavior of PAHs in various operational environments, such as under physiological conditions and in antifouling coatings for biomedical and maritime applications, respectively.
Collapse
Affiliation(s)
- Hemant Charaya
- Department of Chemical and Materials Engineering , University of Alberta , Edmonton , Alberta T6G 1H9 , Canada
| | - Xinda Li
- Department of Chemical and Materials Engineering , University of Alberta , Edmonton , Alberta T6G 1H9 , Canada
| | - Nathan Jen
- Department of Chemical and Materials Engineering , University of Alberta , Edmonton , Alberta T6G 1H9 , Canada
| | - Hyun-Joong Chung
- Department of Chemical and Materials Engineering , University of Alberta , Edmonton , Alberta T6G 1H9 , Canada
| |
Collapse
|
41
|
Yu X, Liu J, Xin Y, Zhan M, Xiao J, Lu L, Peng S. Temperature and salt responsive zwitterionic polysulfamide-based nanogels with surface regeneration ability and controlled drug release. Polym Chem 2019. [DOI: 10.1039/c9py01548e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A novel zwitterionic polysulfamide-based nanogel was developed with UCST-type thermo-responsiveness and salt-responsiveness, which showed surface regeneration ability and controlled drug release.
Collapse
Affiliation(s)
- Xiangrong Yu
- Zhuhai Precision Medical Center
- Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University)
- Zhuhai
- P.R. China
| | - Jiansheng Liu
- Zhuhai Precision Medical Center
- Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University)
- Zhuhai
- P.R. China
| | - Yongjie Xin
- Zhuhai Precision Medical Center
- Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University)
- Zhuhai
- P.R. China
| | - Meixiao Zhan
- Zhuhai Precision Medical Center
- Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University)
- Zhuhai
- P.R. China
| | - Jing Xiao
- Zhuhai Precision Medical Center
- Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University)
- Zhuhai
- P.R. China
| | - Ligong Lu
- Zhuhai Precision Medical Center
- Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University)
- Zhuhai
- P.R. China
| | - Shaojun Peng
- Zhuhai Precision Medical Center
- Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University)
- Zhuhai
- P.R. China
| |
Collapse
|
42
|
Liamas E, Thomas ORT, Muñoz AI, Zhang ZJ. Effect of the electrochemical characteristics of titanium on the adsorption kinetics of albumin. RSC Adv 2019; 9:34265-34273. [PMID: 35529982 PMCID: PMC9073864 DOI: 10.1039/c9ra05988a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/19/2019] [Indexed: 11/24/2022] Open
Abstract
An electrochemical quartz crystal microbalance (EQCM) was used to examine the electrochemical behaviour of pure titanium in phosphate buffered saline (PBS) and PBS-containing bovine serum albumin (BSA) solutions, and the associated adsorption characteristics of BSA under cathodic and anodic applied potentials. It was found that the electrochemical behaviours of bulk titanium substrate and titanium-coated QCM sensors are slightly different in PBS buffer solution, which is attributed to the difference in their surface roughness. The oxide film formed on the surface of the QCM sensor during potentiostatic tests was found to affect its electrochemical behaviour, while cathodic cleaning is not sufficient to have it removed. Lastly, the excessive amount of electrons on the titanium surface upon application of a cathodic potential could result in the desorption of BSA due to electrostatic repulsion and protein dehydration. In contrast, application of anodic potential charges the titanium surface positively and can facilitate protein adsorption when the surface is not saturated with protein. An EQCM was used to examine the electrochemical behaviour of pure titanium in PBS and PBS-containing BSA solutions, and the associated adsorption characteristics of BSA under cathodic and anodic applied potentials.![]()
Collapse
Affiliation(s)
- Evangelos Liamas
- School of Chemical Engineering
- University of Birmingham
- Birmingham B15 2TT
- UK
| | - Owen R. T. Thomas
- School of Chemical Engineering
- University of Birmingham
- Birmingham B15 2TT
- UK
| | - Anna Igual Muñoz
- Department of Chemical and Nuclear Engineering
- Universidad Politécnica de Valencia
- Valencia
- Spain
- School of Engineering, Materials Science and Engineering
| | - Zhenyu J. Zhang
- School of Chemical Engineering
- University of Birmingham
- Birmingham B15 2TT
- UK
| |
Collapse
|
43
|
Xu X, Billing M, Ruths M, Klok HA, Yu J. Structure and Functionality of Polyelectrolyte Brushes: A Surface Force Perspective. Chem Asian J 2018; 13:3411-3436. [PMID: 30080310 DOI: 10.1002/asia.201800920] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Indexed: 11/11/2022]
Abstract
The unique functionality of polyelectrolyte brushes depends on several types of specific interactions, including solvent structure effects, hydrophobic forces, electrostatic interactions, and specific ion interactions. Subtle variations in the solution environment can lead to conformational and surface structural changes of the polyelectrolyte brushes, which are mainly discussed from a surface-interaction perspective in this Focus Review. A brief overview is given of recent theoretical and experimental progress in the structure of polyelectrolyte brushes in various environments. Two important techniques for surface-force measurements are described, the surface forces apparatus (SFA) and atomic force microscopy (AFM), and some recent results on polyelectrolyte brushes are shown. Lastly, this Focus Review highlights the use of these surface-grafted polyelectrolyte brushes in the creation of functional surfaces for various applications, including nonfouling surfaces, boundary lubricants, and stimuli-responsive surfaces.
Collapse
Affiliation(s)
- Xin Xu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore.,Department of Chemistry, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Mark Billing
- Institut des Matériaux et Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Bâtiment MXD, Station 12, CH-1015, Lausanne, Switzerland
| | - Marina Ruths
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Harm-Anton Klok
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore.,Institut des Matériaux et Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Bâtiment MXD, Station 12, CH-1015, Lausanne, Switzerland
| | - Jing Yu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
44
|
Effects of mono- and di-valent metal cations on the morphology of lipid vesicles. Chem Phys Lipids 2018; 217:19-28. [PMID: 30253127 DOI: 10.1016/j.chemphyslip.2018.09.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/09/2018] [Accepted: 09/18/2018] [Indexed: 12/22/2022]
Abstract
Lipid vesicles are an attractive model membrane experimental platform that is widely used in a biological context. The stability of vesicles can affect their performance and depends on various experimental conditions. How bio-related ions affect vesicle morphology is poorly understood in some cases. Herein, we investigated changes in vesicle morphology influenced by cation in the static and flowing environments. The effects of different mono- and di-valent metal cations on the morphology of lipid vesicles were systematically studied using the various techniques. The results showed that divalent cations caused significant aggregation or fusion of lipid vesicles, but monovalent cations had little effect on the vesicle morphology. Cation binding increased the net surface potential of vesicles, leading to changes in the zeta potential. The same qualitative kinetics were observed for cations that had the same valence at the same ionic strength. However, different types of cations gave different quantitative effects. The order of the ability to destroy the vesicle morphology was Cu2+ > Mg2+ > Ca2+ > Na+ > K+. These results are of practical value in the use of lipid vesicles as a bionic model, and help to shed light on the role of ions at membrane surfaces and interfaces.
Collapse
|
45
|
Morgese G, Benetti EM, Zenobi-Wong M. Molecularly Engineered Biolubricants for Articular Cartilage. Adv Healthc Mater 2018; 7:e1701463. [PMID: 29717824 DOI: 10.1002/adhm.201701463] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 03/07/2018] [Indexed: 12/15/2022]
Abstract
Lubrication within articular joints plays a crucial role in daily life, providing an extremely low coefficient of friction and preventing wear at the surface of the articular cartilage. Natural biomacromolecules responsible for lubrication are part of the synovial fluid and their degradation is associated with the onset of degenerative diseases, such as osteoarthritis (OA). The current absence of effective treatments for OA has captured the attention of chemists and material scientists over the last two decades, triggering the development of partially or fully synthetic biolubricants aimed to reduce friction within the joints and restore cartilage functions. Although there is still a long way to go before synthetic replacements of natural biolubricants can be applied clinically, this review highlights those formulations that meet the fundamental requirements for being efficient lubricants for articular cartilage.
Collapse
Affiliation(s)
- Giulia Morgese
- Polymer Surfaces Group; Laboratory for Surface Science and Technology; Department of Materials; ETH Zürich; Zürich 8093 Switzerland
- Tissue Engineering and Biofabrication Group; Department of Health Science and Technology; ETH Zürich; Zürich 8093 Switzerland
| | - Edmondo M. Benetti
- Polymer Surfaces Group; Laboratory for Surface Science and Technology; Department of Materials; ETH Zürich; Zürich 8093 Switzerland
| | - Marcy Zenobi-Wong
- Tissue Engineering and Biofabrication Group; Department of Health Science and Technology; ETH Zürich; Zürich 8093 Switzerland
| |
Collapse
|
46
|
Jain D, Amarpuri G, Fitch J, Blackledge TA, Dhinojwala A. Role of Hygroscopic Low Molecular Mass Compounds in Humidity Responsive Adhesion of Spider’s Capture Silk. Biomacromolecules 2018; 19:3048-3057. [DOI: 10.1021/acs.biomac.8b00602] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dharamdeep Jain
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Gaurav Amarpuri
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Jordan Fitch
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Todd. A. Blackledge
- Department of Biology, Integrated Bioscience Program, The University of Akron, Akron, Ohio 44325-3908, United States
| | - Ali Dhinojwala
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325-3909, United States
| |
Collapse
|
47
|
Higaki Y, Inutsuka Y, Ono H, Yamada NL, Ikemoto Y, Takahara A. Counteranion-Specific Hydration States of Cationic Polyelectrolyte Brushes. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b00210] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yuji Higaki
- Japan Science
and Technology Agency (JST), ERATO, Takahara Soft Interfaces Project, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | | | | | - Norifumi L. Yamada
- Neutron Science Laboratory, High Energy Accelerator Research Organization, Ibaraki 319-1106, Japan
| | - Yuka Ikemoto
- Japan Synchrotron Radiation
Research Institute/SPring-8, 1-1-1 Kouto, Sayo-cho,
Sayo-gun, Hyogo 679-5198, Japan
| | - Atsushi Takahara
- Japan Science
and Technology Agency (JST), ERATO, Takahara Soft Interfaces Project, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
48
|
Xiao S, Ren B, Huang L, Shen M, Zhang Y, Zhong M, Yang J, Zheng J. Salt-responsive zwitterionic polymer brushes with anti-polyelectrolyte property. Curr Opin Chem Eng 2018. [DOI: 10.1016/j.coche.2017.12.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
49
|
Zhang Q, Gou S, Zhao L, Fei Y, Zhou L, Li S, Wu Y, Guo Q. Solution behavior of water-soluble poly(acrylamide-co
-sulfobetaine) with intensive antisalt performance as an enhanced oil-recovery chemical. J Appl Polym Sci 2018. [DOI: 10.1002/app.46235] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Qin Zhang
- College of Chemistry and Chemical Engineering; Southwest Petroleum University; Chengdu 610500 People's Republic of China
| | - Shaohua Gou
- College of Chemistry and Chemical Engineering; Southwest Petroleum University; Chengdu 610500 People's Republic of China
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation; Southwest Petroleum University; Chengdu 610500 People's Republic of China
| | - Lei Zhao
- College of Chemistry and Chemical Engineering; Southwest Petroleum University; Chengdu 610500 People's Republic of China
| | - Yumei Fei
- College of Chemistry and Chemical Engineering; Southwest Petroleum University; Chengdu 610500 People's Republic of China
| | - Lihua Zhou
- College of Chemistry and Chemical Engineering; Southwest Petroleum University; Chengdu 610500 People's Republic of China
| | - Shiwei Li
- College of Chemistry and Chemical Engineering; Southwest Petroleum University; Chengdu 610500 People's Republic of China
| | - Yuanpeng Wu
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation; Southwest Petroleum University; Chengdu 610500 People's Republic of China
| | - Qipeng Guo
- Polymers Research Group, Institute for Frontier Materials; Deakin University, Locked Bag 2000; Geelong Victoria 3220 Australia
| |
Collapse
|
50
|
Wu JG, Wei SC, Chen Y, Chen JH, Luo SC. Critical Study of the Recognition between C-Reactive Protein and Surface-Immobilized Phosphorylcholine by Quartz Crystal Microbalance with Dissipation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:943-951. [PMID: 29120646 DOI: 10.1021/acs.langmuir.7b02724] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
C-reactive protein (CRP), a biomarker for cardiovascular disease, has been reported to have a strong affinity to zwitterionic phosphorylcholine (PC) groups in the presence of calcium ions. In addition, PC-immobilized surfaces have been used as a nonfouling coating to prevent nonspecific protein binding. By appropriately using the features of PC-immobilized surfaces, including specific recognition to CRP and nonfouling surface, it is reasonable to create an antibody-free biosensor for the specific capture of CRP. In this study, PC-functionalized 3,4-ethylenedioxythiophene (EDOT) monomers were used to prepare PC-immobilized surfaces. The density of PC groups on the surface can be fine-tuned by changing the composition of the monomer solutions for the electropolymerization. The density of PC group was confirmed by X-ray photoelectron spectroscopy (XPS). The specific interaction of CRP with PC groups was monitored by using a quartz crystal microbalance with dissipation (QCM-D). The amount of protein binding could be estimated by the reduction in frequency readout. Through the QCM-D measurement, we revealed the nonfouling property and the specific CRP capture from our PC-immobilized surfaces. Notably, the dissipation energy also dropped during the binding process between CRP and PC, indicating the release of water molecules from the PC groups during CRP adsorption. We anticipate that surface-bound water molecules are mainly released from areas near the immobilized PC groups. Based on Hofmeister series, we further examined the influence of ions by introducing four different anions including both kosmotrope (order maker) and chaotrope (disorder maker) into the buffer for the CRP binding test. The results showed that the concentration and the type of anions play an important role in CRP binding. The present fundamental study reveals deep insights into the recognition between CRP and surface-immobilized PC groups, which can facilitate the development of CRP sensing platforms.
Collapse
Affiliation(s)
- Jhih-Guang Wu
- Department of Materials Science and Engineering, National Taiwan University , No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Shu-Chen Wei
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine , No. 1 Jen Ai Road, Section 1, Taipei 10051, Taiwan
| | - Yue Chen
- Department of Materials Science and Engineering, National Taiwan University , No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Jie-Hao Chen
- Department of Materials Science and Engineering, National Taiwan University , No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Shyh-Chyang Luo
- Department of Materials Science and Engineering, National Taiwan University , No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| |
Collapse
|