1
|
Liu J, Li J, Huang Y, Li T, Xu C, Tao Z, Ji W, Huang X. Liquid-to-gel transitions of phase-separated coacervate microdroplets enabled by endogenous enzymatic catalysis. J Colloid Interface Sci 2025; 692:137486. [PMID: 40184654 DOI: 10.1016/j.jcis.2025.137486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/10/2025] [Accepted: 03/30/2025] [Indexed: 04/07/2025]
Abstract
Biomolecular condensates formed by liquid-liquid phase separation (LLPS) play a crucial role in organizing biochemical processes within living cells. The phase transition of these condensates from a functional liquid-like state to a pathological gel-like or solid-like state is believed to be linked to cellular dysfunction and various diseases. Here, we present a biomimetic model to demonstrate that endogenous enzyme-catalyzed crosslinking within condensate-mimicked coacervate microdroplets can promote a liquid-to-gel phase transition. We identify the transformation in physical characteristics of the densely packed microdroplets including reduced internal mobility, increased storage modulus, selective blocking of large nanoparticles, and enhanced salt resistance. The reversible dynamics of gel-like microdroplets mediated by ionic strength exhibited a limited release and recapture of sequestered positively charged guest molecules. Furthermore, we validate that the phase transition contributes to a restricted biochemical process through an enzymatic cascade. Overall, this work represents an adaptive in vitro platform for exploring the phase transitions associated with the physiological functions of biomolecular condensates and offers chemical insights and perspectives for investigating potential mechanisms involved in phase transitions.
Collapse
Affiliation(s)
- Jian Liu
- Center for Innovative Research in Synthetic Chemistry and Resource Utilization, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Junbo Li
- Center for Innovative Research in Synthetic Chemistry and Resource Utilization, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China.
| | - Yan Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Tong Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Cheng Xu
- Center for Innovative Research in Synthetic Chemistry and Resource Utilization, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Zhengyu Tao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Wei Ji
- Center for Innovative Research in Synthetic Chemistry and Resource Utilization, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China.
| |
Collapse
|
2
|
Duan X, Duan S, Han Z, Lv H, Yu H, Liu B. Aqueous Two-Phase Submicron Droplets Catalyze DNA Nanostructure Assembly for Confined Fluorescent Biosensing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2417287. [PMID: 40231848 DOI: 10.1002/advs.202417287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/15/2025] [Indexed: 04/16/2025]
Abstract
Membraneless organelles (MLOs) are fundamental to cellular organization, enabling biochemical processes by concentrating biomolecules and regulating reactions within confined environments. While micrometer-scale synthetic droplets are extensively studied as models of MLOs, submicron droplets remain largely unexplored despite their potential to uniquely regulate biomolecular processes. Here, submicron droplets are generated by a polyethylene glycol (PEG)/dextran aqueous two-phase system (ATPS) as a model to investigate their effect on DNA assembly in crowded environments. The findings reveal that submicron droplets exhibit distinct advantages over microdroplets by acting as submicron catalytic centers that concentrate DNA and accelerate assembly kinetics. This enhancement is driven by a cooperative mechanism wherein global crowding from PEG induces an excluded volume effect, while local crowding from dextran provides weak but nonspecific interactions with DNA. By exploiting both the confinement and phase properties of submicron droplets, a rapid and sensitive assay is developed for miRNA detection using confined fluorescent readouts. These findings highlight the unique ability of submicron droplets to amplify biomolecular assembly processes, provide new insights into the interplay between global and local crowding effects in cellular-like environments, and present a platform for biomarker detection and visualization.
Collapse
Affiliation(s)
- Xiaoman Duan
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Siyi Duan
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Zhaoyu Han
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Haoyue Lv
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Haozhen Yu
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Biwu Liu
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| |
Collapse
|
3
|
Edwards CR, Zhang H, Wang G, Helgeson ME. Spontaneous Formation of Core-Shell Microdroplets during Conventional Coacervate Phase Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:8510-8523. [PMID: 40132010 PMCID: PMC11984101 DOI: 10.1021/acs.langmuir.4c04201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 03/07/2025] [Accepted: 03/11/2025] [Indexed: 03/27/2025]
Abstract
We report the single-step formation and stability of protocell-like, core-shell coacervate droplets comprising a polyelectrolyte-rich shell and a solvent-rich vacuole core from the poly(allylamine hydrochloride) (PAH) and poly(acrylic acid) (PAA) system. These double emulsion (DE) coacervate droplets coexist with single emulsion (SE) droplets, suggesting a kinetic mechanism of formation. We use high-throughput microscopy and machine learning to classify droplet morphologies across various final compositions (polyelectrolyte ratios and salt concentrations) and processing routes (mixing rate and thermodynamic path). We find that DE droplets form preferentially over SE droplets at a wide range of compositions using a slow injection mixing rate. DE droplet formation is enhanced at lower salt (NaCl) levels and near 1:1 charge stoichiometry, showing a preference for polycation excess. DE droplets are stable to the micron scale and retain their core-shell structure even after coalescence. Nevertheless, they are metastable; direct observations of various coarsening phenomena suggest that they are primarily stabilized by the viscoelasticity and high viscosity of the polymer-rich shell. Overall, the scalable, simple mixing process used herein offers a novel mechanism to produce multiphase coacervate droplets that is orthogonal to existing routes, which require either dropwise synthesis or thermodynamic tuning.
Collapse
Affiliation(s)
- Chelsea
E. R. Edwards
- Materials
Research Laboratory, University of California, Santa Barbara, California 93106-9010, United
States
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106-9010, United
States
| | - Hongyi Zhang
- Materials
Research Laboratory, University of California, Santa Barbara, California 93106-9010, United
States
| | - Ginny Wang
- Materials
Research Laboratory, University of California, Santa Barbara, California 93106-9010, United
States
| | - Matthew E. Helgeson
- Materials
Research Laboratory, University of California, Santa Barbara, California 93106-9010, United
States
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106-9010, United
States
| |
Collapse
|
4
|
Dhanagar A, Shaheen A. Self-Assembled Luminescent Droplets from Graphene Quantum Dots Induced by a Gemini Surfactant for Selective Detection of Mercury(II). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:4136-4145. [PMID: 39909723 DOI: 10.1021/acs.langmuir.4c04670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Herein, we report the fabrication of a new class of luminescent coacervate droplets from graphene quantum dots (GQDs) and a gemini surfactant in aqueous medium and utilized them toward detection of mercuric ions (Hg2+). The self-assembly of negatively charged GQDs and positively charged gemini surfactant exists mainly because of their electrostatic interaction, leading to coacervation. Confocal laser scanning microscopy (CLSM) and field-emission scanning electron microscopy (FESEM) were utilized to analyze the luminescent and morphological structures of the self-assembled droplets. CLSM images display droplets that are naturally luminescent. The droplets exhibit luminescence quenching in the presence of Hg2+ ions. Our study demonstrates that Hg2+ ions interact through electrostatic interactions with the free carboxylate groups on the surface of GQDs in the hollow structure of the droplets. For Hg2+ ion sensing, the limit of detection (LOD) using the present system is found to be 30.5 nM, which is substantially lower than that of many of the previously reported similar systems. The sensor demonstrated high sensitivity for Hg2+ ions and exhibited a strong linear correlation within the concentration range of 100-500 nM. The current results indicate that the flexibility of surface ligands and organic nanoparticles in hybrid droplets plays a crucial role in the development of multifunctional materials for diverse applications.
Collapse
Affiliation(s)
- Arun Dhanagar
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Arifa Shaheen
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
5
|
Ivanov T, Doan-Nguyen TP, Belahouane MA, Dai Z, Cao S, Landfester K, Caire da Silva L. Coacervate Droplets as Biomimetic Models for Designing Cell-Like Microreactors. Macromol Rapid Commun 2024; 45:e2400626. [PMID: 39588807 DOI: 10.1002/marc.202400626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/09/2024] [Indexed: 11/27/2024]
Abstract
Coacervates are versatile compartments formed by liquid-liquid phase separation. Their dynamic behavior and molecularly crowded microenvironment make them ideal materials for creating cell-like systems such as synthetic cells and microreactors. Recently, combinations of synthetic and natural molecules have been exploited via simple or complex coacervation to create compartments that can be used to build hierarchical chemical systems with life-like properties. This review highlights recent advances in the design of coacervate compartments and their application as biomimetic compartments for the design of cell-like chemical reactors and cell mimicking systems. It first explores the variety of materials used for coacervation and the influence of their chemical structure on their controlled dynamic behavior. Then, the applications of coacervates as cell-like systems are reviewed, focusing on how they can be used as cell-like microreactors through their ability to sequester molecules and provide a distinct and regulatory microenvironment for chemical reactions in aqueous media.
Collapse
Affiliation(s)
- Tsvetomir Ivanov
- Department of Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Thao P Doan-Nguyen
- Department of Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | | | - Zhen Dai
- Department of Chemistry, McGill University, H3A 0B8, Montreal, Canada
| | - Shoupeng Cao
- Department of Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Katharina Landfester
- Department of Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Lucas Caire da Silva
- Department of Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Department of Chemistry, McGill University, H3A 0B8, Montreal, Canada
| |
Collapse
|
6
|
Zhao M, Cho SH, Wu X, Mao J, Vogt BD, Zacharia NS. Covalently crosslinked coacervates: immobilization and stabilization of proteins with enhanced enzymatic activity. SOFT MATTER 2024; 20:7623-7633. [PMID: 39291470 DOI: 10.1039/d4sm00765d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Coacervates represent models for membrane-free protocells and thus provide a simple route to synthetic cellular-like systems that provide selective encapsulation of solutes. Here, we demonstrate a simple and versatile post-coacervation crosslink method using the thiol-ene click reaction in aqueous media to prepare covalently crosslinked coacervates. The crosslinking of the coacervate enables stability at extreme pH where the uncrosslinked coacervate fully disassembles. The crosslinking also enhances the hydrophobicity within the coacervate environment to increase the encapsulation efficiency of bovine serum albumin (BSA), as compared to the uncrosslinked coacervate. Additionally, the crosslinked coacervate increases the stabilization of BSA at low pH. These crosslinked coacervates can act as carriers for enzymes. The enzymatic activity of alkaline phosphatase (ALP) is enhanced within the crosslinked coacervate compared to the ALP in aqueous solution. The post-coacervation crosslink approach allows the utilization of coacervates for encapsulation of biologicals under conditions where the coacervate would generally disassemble. We demonstrate that these crosslinked coacervates enable the protection of encapsulated protein against denaturation at extreme pH and enhance the enzymatic activity with encapsulation. This click approach to stabilization of coacervates should be broadly applicable to other systems for a variety of biologics and environmentally sensitive molecules.
Collapse
Affiliation(s)
- Mengmeng Zhao
- Department of Polymer Engineering, University of Akron, Akron OH 44325, USA
| | - Szu-Hao Cho
- Department of Polymer Engineering, University of Akron, Akron OH 44325, USA
| | - Xinchi Wu
- Department of Polymer Engineering, University of Akron, Akron OH 44325, USA
| | - Jingyi Mao
- Department of Polymer Engineering, University of Akron, Akron OH 44325, USA
| | - Bryan D Vogt
- Department of Polymer Engineering, University of Akron, Akron OH 44325, USA
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Nicole S Zacharia
- Department of Polymer Engineering, University of Akron, Akron OH 44325, USA
| |
Collapse
|
7
|
Chowdhury P, Saha B, Bauri K, Sumerlin BS, De P. Hydrogen Bonding-Driven Self-Coacervation of Nonionic Homopolymers for Stimuli-Triggered Therapeutic Release. J Am Chem Soc 2024; 146:21664-21676. [PMID: 39058398 DOI: 10.1021/jacs.4c05624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Inspired by the unique functionalities of biomolecular membraneless organelles (MLOs) formed via liquid-liquid phase separation (LLPS) of intrinsically disordered proteins (IDPs) and nucleic acids, a great deal of effort has been devoted to devising phase-separated artificial subcellular dynamic compartments. These endeavors aim to unravel the molecular mechanism underlying the formation and intracellular delivery of susceptible macromolecular therapeutics. We report herein pyroglutamic acid (PGA)-based well-defined homopolymers featuring stimuli-tunable reversible self-coacervation ability. The polymer exhibits an upper critical solution temperature (UCST) transition in aqueous solutions and has the propensity to undergo cooling-induced LLPS, producing micrometer-sized liquid droplets. This phase separation phenomenon could be modulated by various factors, including polymer concentration, chain length, solution pH, and types and concentrations of different additives. These micrometer droplets are thermally reversible and encapsulate a wide variety of cargoes, including small hydrophobic fluorescent molecules, hydrophilic anticancer drugs, and fluorophore-labeled macromolecular proteins (bovine serum albumin and lysozyme). The payloads were released by exploiting the thermo/pH-mediated disassembly behavior of the coacervates, preserving the bioactivity of the sensitive therapeutics. This environmentally responsive, simple yet versatile artificial MLO model system will provide insights into the biomolecular nonionic condensates and pave the way for the de novo design of dynamic biomolecule depots.
Collapse
Affiliation(s)
- Pampa Chowdhury
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Biswajit Saha
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Kamal Bauri
- Department of Chemistry, Raghunathpur College, Raghunathpur, Purulia, West Bengal 723133, India
| | - Brent S Sumerlin
- George and Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science and Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| |
Collapse
|
8
|
Holkar A, Gao S, Villaseñor K, Lake M, Srivastava S. Quantitative turbidimetric characterization of stabilized complex coacervate dispersions. SOFT MATTER 2024; 20:5060-5070. [PMID: 38743276 DOI: 10.1039/d3sm01761c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Stabilizing complex coacervate microdroplets is desirable due to their various applications, such as bioreactors, drug delivery vehicles, and encapsulants. Here, we present quantitative characterization of complex coacervate dispersion stability inferred by turbidimetry measurements. The stability of the dispersions is shown to be modulated by the concentrations of comb polyelectrolyte (cPE) stabilizers and salt. We demonstrate cPEs as effective stabilizers for complex coacervate dispersions independent of the chemistry or length of the constituent polyelectrolytes, salts, or preparation routes. By monitoring the temporal evolution of dispersion turbidity, we show that cPEs suppress microdroplet coalescence with minimal change in microdroplet sizes over 48 hours, even at salt concentrations up to 300 mM. The number density and average microdroplet size are shown to be controlled by varying the cPE and salt concentrations. Lastly, turbidity maps, akin to binodal phase maps, depict an expansion of the turbid two-phase region and an increase in the salt resistance of the coacervates upon the introduction of cPEs. The coacervate salt resistance is shown to increase by >3×, and this increase is maintained for up to 15 days, demonstrating that cPEs impart higher salt resistance over extended durations.
Collapse
Affiliation(s)
- Advait Holkar
- Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Shang Gao
- Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Kathleen Villaseñor
- Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Michael Lake
- NSF BioPACIFIC MIP, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Samanvaya Srivastava
- Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.
- NSF BioPACIFIC MIP, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Institute for Carbon Management, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
9
|
van Haren MHI, Visser BS, Spruijt E. Probing the surface charge of condensates using microelectrophoresis. Nat Commun 2024; 15:3564. [PMID: 38670952 PMCID: PMC11053090 DOI: 10.1038/s41467-024-47885-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Biomolecular condensates play an important role in cellular organization. Coacervates are commonly used models that mimic the physicochemical properties of biomolecular condensates. The surface of condensates plays a key role in governing molecular exchange between condensates, accumulation of species at the interface, and the stability of condensates against coalescence. However, most important surface properties, including the surface charge and zeta potential, remain poorly characterized and understood. The zeta potential of coacervates is often measured using laser doppler electrophoresis, which assumes a size-independent electrophoretic mobility. Here, we show that this assumption is incorrect for liquid-like condensates and present an alternative method to study the electrophoretic mobility of coacervates and in vitro condensate models by microelectrophoresis and single-particle tracking. Coacervates have a size-dependent electrophoretic mobility, originating from their fluid nature, from which a well-defined zeta potential is calculated. Interestingly, microelectrophoresis measurements reveal that polylysine chains are enriched at the surface of polylysine/polyaspartic acid complex coacervates, which causes the negatively charged protein ɑ-synuclein to adsorb and accumulate at the interface. Addition of ATP inverts the surface charge, displaces ɑ-synuclein from the surface and may help to suppress its interface-catalyzed aggregation. Together, these findings show how condensate surface charge can be measured and altered, making this microelectrophoresis platform combined with automated single-particle tracking a promising characterization technique for both biomolecular condensates and coacervate protocells.
Collapse
Affiliation(s)
- Merlijn H I van Haren
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6523, AJ, Nijmegen, The Netherlands
| | - Brent S Visser
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6523, AJ, Nijmegen, The Netherlands
| | - Evan Spruijt
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6523, AJ, Nijmegen, The Netherlands.
| |
Collapse
|
10
|
Roy PS. Complex Coacervate-Based Materials for Biomedicine: Recent Advancements and Future Prospects. Ind Eng Chem Res 2024; 63:5414-5487. [DOI: 10.1021/acs.iecr.3c03830] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Affiliation(s)
- Partha Sarathi Roy
- Division of Pharmaceutical Sciences, Health Sciences Building, University of Missouri─Kansas City, 2464 Charlotte St., Kansas City, Missouri 64108-2718, United States
- Department of Pharmaceutics/Medicinal Chemistry, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, 751 Brookside Rd., Stockton, California 95211, United States
| |
Collapse
|
11
|
Staňo R, van Lente J, Lindhoud S, Košovan P. Sequestration of Small Ions and Weak Acids and Bases by a Polyelectrolyte Complex Studied by Simulation and Experiment. Macromolecules 2024; 57:1383-1398. [PMID: 38370910 PMCID: PMC10867894 DOI: 10.1021/acs.macromol.3c01209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 02/20/2024]
Abstract
Mixing of oppositely charged polyelectrolytes can result in phase separation into a polymer-poor supernatant and a polymer-rich polyelectrolyte complex (PEC). We present a new coarse-grained model for the Grand-reaction method that enables us to determine the composition of the coexisting phases in a broad range of pH and salt concentrations. We validate the model by comparing it to recent simulations and experimental studies, as well as our own experiments on poly(acrylic acid)/poly(allylamine hydrochloride) complexes. The simulations using our model predict that monovalent ions partition approximately equally between both phases, whereas divalent ones accumulate in the PEC phase. On a semiquantitative level, these results agree with our own experiments, as well as with other experiments and simulations in the literature. In the sequel, we use the model to study the partitioning of a weak diprotic acid at various pH values of the supernatant. Our results show that the ionization of the acid is enhanced in the PEC phase, resulting in its preferential accumulation in this phase, which monotonically increases with the pH. Currently, this effect is still waiting to be confirmed experimentally. We explore how the model parameters (particle size, charge density, permittivity, and solvent quality) affect the measured partition coefficients, showing that fine-tuning of these parameters can make the agreement with the experiments almost quantitative. Nevertheless, our results show that charge regulation in multivalent solutes can potentially be exploited in engineering the partitioning of charged molecules in PEC-based systems at various pH values.
Collapse
Affiliation(s)
- Roman Staňo
- Faculty
of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
- Vienna
Doctoral School in Physics, University of
Vienna, Boltzmanngasse
5, 1090 Vienna, Austria
| | - Jéré
J. van Lente
- Department
of Molecules & Materials, University
of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - Saskia Lindhoud
- Department
of Molecules & Materials, University
of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - Peter Košovan
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic
| |
Collapse
|
12
|
Lin Z, Beneyton T, Baret JC, Martin N. Coacervate Droplets for Synthetic Cells. SMALL METHODS 2023; 7:e2300496. [PMID: 37462244 DOI: 10.1002/smtd.202300496] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/15/2023] [Indexed: 12/24/2023]
Abstract
The design and construction of synthetic cells - human-made microcompartments that mimic features of living cells - have experienced a real boom in the past decade. While many efforts have been geared toward assembling membrane-bounded compartments, coacervate droplets produced by liquid-liquid phase separation have emerged as an alternative membrane-free compartmentalization paradigm. Here, the dual role of coacervate droplets in synthetic cell research is discussed: encapsulated within membrane-enclosed compartments, coacervates act as surrogates of membraneless organelles ubiquitously found in living cells; alternatively, they can be viewed as crowded cytosol-like chassis for constructing integrated synthetic cells. After introducing key concepts of coacervation and illustrating the chemical diversity of coacervate systems, their physicochemical properties and resulting bioinspired functions are emphasized. Moving from suspensions of free floating coacervates, the two nascent roles of these droplets in synthetic cell research are highlighted: organelle-like modules and cytosol-like templates. Building the discussion on recent studies from the literature, the potential of coacervate droplets to assemble integrated synthetic cells capable of multiple life-inspired functions is showcased. Future challenges that are still to be tackled in the field are finally discussed.
Collapse
Affiliation(s)
- Zi Lin
- Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR5031, 115 avenue du Dr. Schweitzer, 33600, Pessac, France
| | - Thomas Beneyton
- Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR5031, 115 avenue du Dr. Schweitzer, 33600, Pessac, France
| | - Jean-Christophe Baret
- Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR5031, 115 avenue du Dr. Schweitzer, 33600, Pessac, France
| | - Nicolas Martin
- Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR5031, 115 avenue du Dr. Schweitzer, 33600, Pessac, France
| |
Collapse
|
13
|
Yang M, Zhang Y, Deng F, Wu X, Chen Y, Ma F, Shi L. Development of self-cooperative nanochaperones with enhanced activity to facilitate protein refolding. MATERIALS HORIZONS 2023; 10:5547-5554. [PMID: 37843027 DOI: 10.1039/d3mh00619k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Regulating protein folding including assisting de novo folding, preventing misfolding and aggregation, and facilitating refolding of proteins are of significant importance for retaining protein's biological activities. Here, we report a mixed shell polymeric micelle (MSPM)-based self-cooperative nanochaperone (self-CO-nChap) with enhanced activity to facilitate protein refolding. This self-CO-nChap was fabricated by introducing Hsp40-mimetic artificial carriers into the traditional nanochaperone to cooperate with the Hsp70-mimetic confined hydrophobic microdomains. The artificial carrier facilitates transfer and immobilization of client proteins into confined hydrophobic microdomains, by which significantly improving self-CO-nChap's capability to inhibit unfolding and aggregation of client proteins, and finally facilitating refolding. Compared to traditional nanochaperones, the self-CO-nChap significantly enhances the thermal stability of horseradish peroxidase (HRP) epicyclically under harsher conditions. Moreover, the self-CO-nChap efficiently protects misfolding-prone proteins, such as immunoglobulin G (IgG) antibody from thermal denaturation, which is hardly achieved using traditional nanochaperones. In addition, a kinetic partitioning mechanism was devised to explain how self-CO-nChap facilitates refolding by regulating the cooperative effect of kinetics between the nanochaperone and client proteins. This work provides a novel strategy for the design of protein folding regulatory materials, including nanochaperones.
Collapse
Affiliation(s)
- Menglin Yang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry and College of Chemistry, Nankai University, Tianjin, 300071, P.R. China.
| | - Yanli Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry and College of Chemistry, Nankai University, Tianjin, 300071, P.R. China.
| | - Fei Deng
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry and College of Chemistry, Nankai University, Tianjin, 300071, P.R. China.
| | - Xiaohui Wu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry and College of Chemistry, Nankai University, Tianjin, 300071, P.R. China.
| | - Yujie Chen
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry and College of Chemistry, Nankai University, Tianjin, 300071, P.R. China.
| | - Feihe Ma
- State Key Laboratory of Separation Membranes and Membrane Processes and School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, P.R. China.
| | - Linqi Shi
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry and College of Chemistry, Nankai University, Tianjin, 300071, P.R. China.
| |
Collapse
|
14
|
Fraccia TP, Martin N. Non-enzymatic oligonucleotide ligation in coacervate protocells sustains compartment-content coupling. Nat Commun 2023; 14:2606. [PMID: 37160869 PMCID: PMC10169843 DOI: 10.1038/s41467-023-38163-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/18/2023] [Indexed: 05/11/2023] Open
Abstract
Modern cells are complex chemical compartments tightly regulated by an underlying DNA-encoded program. Achieving a form of coupling between molecular content, chemical reactions, and chassis in synthetic compartments represents a key step to the assembly of evolvable protocells but remains challenging. Here, we design coacervate droplets that promote non-enzymatic oligonucleotide polymerization and that restructure as a result of the reaction dynamics. More specifically, we rationally exploit complexation between end-reactive oligonucleotides able to stack into long physical polymers and a cationic azobenzene photoswitch to produce three different phases-soft solids, liquid crystalline or isotropic coacervates droplets-each of them having a different impact on the reaction efficiency. Dynamical modulation of coacervate assembly and dissolution via trans-cis azobenzene photo-isomerization is used to demonstrate cycles of light-actuated oligonucleotide ligation. Remarkably, changes in the population of polynucleotides during polymerization induce phase transitions due to length-based DNA self-sorting to produce multiphase coacervates. Overall, by combining a tight reaction-structure coupling and environmental responsiveness, our reactive coacervates provide a general route to the non-enzymatic synthesis of polynucleotides and pave the way to the emergence of a primitive compartment-content coupling in membrane-free protocells.
Collapse
Affiliation(s)
- Tommaso P Fraccia
- Institut Pierre-Gilles de Gennes, Chimie Biologie et Innovation, UMR 8231, ESPCI Paris, PSL University, CNRS, 6 rue Jean Calvin, 75005, Paris, France.
- Department of Pharmacological and Biomolecular Sciences, University of Milano, 20133, Milano, Italy.
| | - Nicolas Martin
- Univ. Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031, 115 avenue du Dr. Schweitzer, 33600, Pessac, France.
| |
Collapse
|
15
|
Illmann MD, Schäfl L, Drees F, Hartmann L, Schmidt S. Glycan-Presenting Coacervates Derived from Charged Poly(active esters): Preparation, Phase Behavior, and Lectin Capture. Biomacromolecules 2023. [PMID: 37133885 DOI: 10.1021/acs.biomac.3c00046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
This study presents the preparation and phase behavior of glycan-functionalized polyelectrolytes for capturing carbohydrate-binding proteins and bacteria in liquid condensate droplets. The droplets are formed by complex coacervation of poly(active ester)-derived polyanions and polycations. This approach allows for a straightforward modular introduction of charged motifs and specifically interacting units; mannose and galactose oligomers are used here as first examples. The introduction of carbohydrates has a notable effect on the phase separation and the critical salt concentration, potentially by reducing the charge density. Two mannose binding species, concanavalin A (ConA) and Escherichia coli, are shown to not only specifically bind to mannose-functionalized coacervates but also to some degree to unfunctionalized, carbohydrate-free coacervates. This suggests non-carbohydrate-specific charge-charge interactions between the protein/bacteria and the droplets. However, when mannose interactions are inhibited or when non-binding galactose-functionalized polymers are used, interactions are significantly weakened. This confirms specific mannose-mediated binding functionalization and suggests that introducing carbohydrates reduces non-specific charge-charge interactions by a so far unidentified mechanism. Overall, the presented route toward glycan-presenting polyelectrolytes enables new functional liquid condensate droplets with specific biomolecular interactions.
Collapse
Affiliation(s)
- Michele Denise Illmann
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Lea Schäfl
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Felicitas Drees
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
- Institute of Macromolecular Chemistry, Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Str. 31, 79104 Freiburg, Germany
| | - Laura Hartmann
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
- Institute of Macromolecular Chemistry, Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Str. 31, 79104 Freiburg, Germany
| | - Stephan Schmidt
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
- Institute of Macromolecular Chemistry, Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Str. 31, 79104 Freiburg, Germany
| |
Collapse
|
16
|
Povarova OI, Antifeeva IA, Fonin AV, Turoverov KK, Kuznetsova IM. The Role of Liquid-Liquid Phase Separation in Actin Polymerization. Int J Mol Sci 2023; 24:3281. [PMID: 36834689 PMCID: PMC9961026 DOI: 10.3390/ijms24043281] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
To date, it has been shown that the phenomenon of liquid-liquid phase separation (LLPS) underlies many seemingly completely different cellular processes. This provided a new idea of the spatiotemporal organization of the cell. The new paradigm makes it possible to provide answers to many long-standing, but still unresolved questions facing the researcher. In particular, spatiotemporal regulation of the assembly/disassembly of the cytoskeleton, including the formation of actin filaments, becomes clearer. To date, it has been shown that coacervates of actin-binding proteins that arise during the phase separation of the liquid-liquid type can integrate G-actin and thereby increase its concentration to initiate polymerization. It has also been shown that the activity intensification of actin-binding proteins that control actin polymerization, such as N-WASP and Arp2/3, can be caused by their integration into liquid droplet coacervates formed by signaling proteins on the inner side of the cell membrane.
Collapse
Affiliation(s)
| | | | | | | | - Irina M. Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., 194064 St. Petersburg, Russia
| |
Collapse
|
17
|
Baruch Leshem A, Sloan-Dennison S, Massarano T, Ben-David S, Graham D, Faulds K, Gottlieb HE, Chill JH, Lampel A. Biomolecular condensates formed by designer minimalistic peptides. Nat Commun 2023; 14:421. [PMID: 36702825 PMCID: PMC9879991 DOI: 10.1038/s41467-023-36060-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 01/13/2023] [Indexed: 01/27/2023] Open
Abstract
Inspired by the role of intracellular liquid-liquid phase separation (LLPS) in formation of membraneless organelles, there is great interest in developing dynamic compartments formed by LLPS of intrinsically disordered proteins (IDPs) or short peptides. However, the molecular mechanisms underlying the formation of biomolecular condensates have not been fully elucidated, rendering on-demand design of synthetic condensates with tailored physico-chemical functionalities a significant challenge. To address this need, here we design a library of LLPS-promoting peptide building blocks composed of various assembly domains. We show that the LLPS propensity, dynamics, and encapsulation efficiency of compartments can be tuned by changes to the peptide composition. Specifically, with the aid of Raman and NMR spectroscopy, we show that interactions between arginine and aromatic amino acids underlie droplet formation, and that both intra- and intermolecular interactions dictate droplet dynamics. The resulting sequence-structure-function correlation could support the future development of compartments for a variety of applications.
Collapse
Affiliation(s)
- Avigail Baruch Leshem
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Sian Sloan-Dennison
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK
| | - Tlalit Massarano
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Shavit Ben-David
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Duncan Graham
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK
| | - Karen Faulds
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK
| | - Hugo E Gottlieb
- Department of Chemistry, Faculty of Exact Sciences, Bar Ilan University, Ramat Gan, 52900, Israel
| | - Jordan H Chill
- Department of Chemistry, Faculty of Exact Sciences, Bar Ilan University, Ramat Gan, 52900, Israel.
| | - Ayala Lampel
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel. .,Center for Nanoscience and Nanotechnology Tel Aviv University, Tel Aviv, 69978, Israel. .,Sagol Center for Regenerative Biotechnology Tel Aviv University, Tel Aviv, 69978, Israel. .,Center for the Physics and Chemistry of Living Systems Tel Aviv University, Tel Aviv 69978, Israel, Tel Aviv, 69978, Israel.
| |
Collapse
|
18
|
Lipiński WP, Visser BS, Robu I, Fakhree MAA, Lindhoud S, Claessens MMAE, Spruijt E. Biomolecular condensates can both accelerate and suppress aggregation of α-synuclein. SCIENCE ADVANCES 2022; 8:eabq6495. [PMID: 36459561 PMCID: PMC10942789 DOI: 10.1126/sciadv.abq6495] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 10/18/2022] [Indexed: 06/17/2023]
Abstract
Biomolecular condensates present in cells can fundamentally affect the aggregation of amyloidogenic proteins and play a role in the regulation of this process. While liquid-liquid phase separation of amyloidogenic proteins by themselves can act as an alternative nucleation pathway, interaction of partly disordered aggregation-prone proteins with preexisting condensates that act as localization centers could be a far more general mechanism of altering their aggregation behavior. Here, we show that so-called host biomolecular condensates can both accelerate and slow down amyloid formation. We study the amyloidogenic protein α-synuclein and two truncated α-synuclein variants in the presence of three types of condensates composed of nonaggregating peptides, RNA, or ATP. Our results demonstrate that condensates can markedly speed up amyloid formation when proteins localize to their interface. However, condensates can also significantly suppress aggregation by sequestering and stabilizing amyloidogenic proteins, thereby providing living cells with a possible protection mechanism against amyloid formation.
Collapse
Affiliation(s)
- Wojciech P. Lipiński
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, Netherlands
| | - Brent S. Visser
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, Netherlands
| | - Irina Robu
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, Netherlands
| | - Mohammad A. A. Fakhree
- Nanobiophysics, Faculty of Science and Technology, University of Twente, PO Box 217, 7500 AE Enschede, Netherlands
| | - Saskia Lindhoud
- Department of Molecules and Materials, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands
| | - Mireille M. A. E. Claessens
- Nanobiophysics, Faculty of Science and Technology, University of Twente, PO Box 217, 7500 AE Enschede, Netherlands
| | - Evan Spruijt
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, Netherlands
| |
Collapse
|
19
|
Tanaka Y, Niu CH, Sasaki T, Nomura S, Maruyama A, Shimada N. Smart Protein Refolding System Based on UCST-Type Ureido Polymers. Biomacromolecules 2022; 23:3860-3865. [DOI: 10.1021/acs.biomac.2c00694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yamato Tanaka
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Chun Hao Niu
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Taira Sasaki
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Shouhei Nomura
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Atsushi Maruyama
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Naohiko Shimada
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| |
Collapse
|
20
|
Coudon N, Navailles L, Nallet F, Ly I, Bentaleb A, Chapel JP, Béven L, Douliez JP, Martin N. Stabilization of all-aqueous droplets by interfacial self-assembly of fatty acids bilayers. J Colloid Interface Sci 2022; 617:257-266. [DOI: 10.1016/j.jcis.2022.02.138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/14/2022] [Accepted: 02/28/2022] [Indexed: 11/15/2022]
|
21
|
Ramsay K, Levy J, Gobbo P, Elvira KS. Programmed assembly of bespoke prototissues on a microfluidic platform. LAB ON A CHIP 2021; 21:4574-4585. [PMID: 34723291 DOI: 10.1039/d1lc00602a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The precise assembly of protocell building blocks into prototissues that are stable in water, capable of sensing the external environment and which display collective behaviours remains a considerable challenge in prototissue engineering. We have designed a microfluidic platform that enables us to build bespoke prototissues from predetermined compositions of two types of protein-polymer protocells. We can accurately control their size, composition and create unique Janus configurations in a way that is not possible with traditional methods. Because we can control the number and type of the protocells that compose the prototissue, we can hence modulate the collective behaviours of this biomaterial. We show control over both the amplitude of thermally induced contractions in the biomaterial and its collective endogenous biochemical reactivity. Our results show that microfluidic technologies enable a new route to the precise and high-throughput fabrication of tissue-like materials with programmable collective properties that can be tuned through careful assembly of protocell building blocks of different types. We anticipate that our bespoke prototissues will be a starting point for the development of more sophisticated artificial tissues for use in medicine, soft robotics, and environmentally beneficial bioreactor technologies.
Collapse
Affiliation(s)
- Kaitlyn Ramsay
- Department of Chemistry, University of Victoria, Victoria, Canada.
- The Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, Canada
| | - Jae Levy
- Department of Chemistry, University of Victoria, Victoria, Canada.
| | | | - Katherine S Elvira
- Department of Chemistry, University of Victoria, Victoria, Canada.
- The Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, Canada
| |
Collapse
|
22
|
Chen H, Wang L, Wang S, Li J, Li Z, Lin Y, Wang X, Huang X. Construction of Hybrid Bi‐microcompartments with Exocytosis‐Inspired Behavior toward Fast Temperature‐Modulated Transportation of Living Organisms. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Haixu Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Lei Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Shengliang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Junbo Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Zhenhui Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Youping Lin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Xiaoliang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| |
Collapse
|
23
|
Martin N, Douliez J. Fatty Acid Vesicles and Coacervates as Model Prebiotic Protocells. CHEMSYSTEMSCHEM 2021. [DOI: 10.1002/syst.202100024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Nicolas Martin
- Univ. Bordeaux CNRS Centre de Recherche Paul Pascal UMR 5031 115 Avenue du Dr. Albert Schweitzer 33600 Pessac France
| | - Jean‐Paul Douliez
- Univ. Bordeaux INRAE Biologie du Fruit et Pathologie UMR 1332 71 Avenue Edouard Bourlaux 33140 Villenave d'Ornon France
| |
Collapse
|
24
|
Masukawa MK, Okuda Y, Takinoue M. Aqueous Triple-Phase System in Microwell Array for Generating Uniform-Sized DNA Hydrogel Particles. Front Genet 2021; 12:705022. [PMID: 34367260 PMCID: PMC8343185 DOI: 10.3389/fgene.2021.705022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/03/2021] [Indexed: 11/19/2022] Open
Abstract
DNA hydrogels are notable for their biocompatibility and ability to incorporate DNA information and computing properties into self-assembled micrometric structures. These hydrogels are assembled by the thermal gelation of DNA motifs, a process which requires a high salt concentration and yields polydisperse hydrogel particles, thereby limiting their application and physicochemical characterization. In this study, we demonstrate that single, uniform DNA hydrogel particles can form inside aqueous/aqueous two-phase systems (ATPSs) assembled in a microwell array. In this process, uniform dextran droplets are formed in a microwell array inside a microfluidic device. The dextran droplets, which contain DNA motifs, are isolated from each other by an immiscible PEG solution containing magnesium ions and spermine, which enables the DNA hydrogel to undergo gelation. Upon thermal annealing of the device, we observed the formation of an aqueous triple-phase system in which uniform DNA hydrogel particles (the innermost aqueous phase) resided at the interface of the aqueous two-phase system of dextran and PEG. We expect ATPS microdroplet arrays to be used to manufacture other hydrogel microparticles and DNA/dextran/PEG aqueous triple-phase systems to serve as a highly parallel model for artificial cells and membraneless organelles.
Collapse
Affiliation(s)
| | | | - Masahiro Takinoue
- Department of Computer Science, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
25
|
Chen H, Wang L, Wang S, Li J, Li Z, Lin Y, Wang X, Huang X. Construction of Hybrid Bi-microcompartments with Exocytosis-Inspired Behavior toward Fast Temperature-Modulated Transportation of Living Organisms. Angew Chem Int Ed Engl 2021; 60:20795-20802. [PMID: 33908155 DOI: 10.1002/anie.202102846] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/09/2021] [Indexed: 11/10/2022]
Abstract
Inspired by the unique characteristics of living cells, the creation of life-inspired functional ensembles is a rapidly expanding research topic, enabling transformative applications in various disciplines. Herein, we report a facile method for the fabrication of phospholipid and block copolymer hybrid bi-microcompartments via spontaneous asymmetric assembly at the water/tributyrin interface, whereby the temperature-mediated dewetting of the inner microcompartments allowed for exocytosis to occur in the constructed system. The exocytosis location and commencement time could be controlled by the buoyancy of the inner microcompartment and temperature, respectively. Furthermore, the constructed bi-microcompartments showed excellent biocompatibility and a universal loading capacity toward cargoes of widely ranging sizes; thus, the proliferation and temperature-programmed transportation of living organisms was achieved. Our results highlight opportunities for the development of complex mesoscale dynamic ensembles with life-inspired behaviors and provide a novel platform for on-demand transport of various living organisms.
Collapse
Affiliation(s)
- Haixu Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Lei Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Shengliang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Junbo Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Zhenhui Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Youping Lin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xiaoliang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
26
|
Mi X, Blocher McTigue WC, Joshi PU, Bunker MK, Heldt CL, Perry SL. Thermostabilization of viruses via complex coacervation. Biomater Sci 2021; 8:7082-7092. [PMID: 33078793 DOI: 10.1039/d0bm01433h] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Widespread vaccine coverage for viral diseases could save the lives of millions of people each year. For viral vaccines to be effective, they must be transported and stored in a narrow temperature range of 2-8 °C. If temperatures are not maintained, the vaccine may lose its potency and would no longer be effective in fighting disease; this is called the cold storage problem. Finding a way to thermally stabilize a virus and end the need to transport and store vaccines at refrigeration temperatures will increase access to life-saving vaccines. We explore the use of polymer-rich complex coacervates to stabilize viruses. We have developed a method of encapsulating virus particles in liquid complex coacervates that relies on the electrostatic interaction of viruses with polypeptides. In particular, we tested the incorporation of two model viruses; a non-enveloped porcine parvovirus (PPV) and an enveloped bovine viral diarrhea virus (BVDV) into coacervates formed from poly(lysine) and poly(glutamate). We identified optimal conditions (i.e., the relative amount of the two polypeptides) for virus encapsulation, and trends in this composition matched differences in the isoelectric point of the two viruses. Furthermore, we were able to achieve a ∼103-104-fold concentration of virus into the coacervate phase, such that the level of virus remaining in the bulk solution approached our limit of detection. Lastly, we demonstrated a significant enhancement of the stability of non-enveloped PPV during an accelerated aging study at 60 °C over the course of a week. Our results suggest the potential for using coacervation to aid in the purification and formulation of both enveloped and non-enveloped viruses, and that coacervate-based formulations could help limit the need for cold storage throughout the transportation and storage of vaccines based on non-enveloped viruses.
Collapse
Affiliation(s)
- Xue Mi
- Department of Chemical Engineering, Michigan Technological University, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Kubota R, Tanaka W, Hamachi I. Microscopic Imaging Techniques for Molecular Assemblies: Electron, Atomic Force, and Confocal Microscopies. Chem Rev 2021; 121:14281-14347. [DOI: 10.1021/acs.chemrev.0c01334] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ryou Kubota
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Wataru Tanaka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- JST-ERATO, Hamachi Innovative Molecular Technology for Neuroscience, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8530, Japan
| |
Collapse
|
28
|
Huang Y, Wang X, Li J, Lin Y, Chen H, Liu X, Huang X. Reversible Light‐Responsive Coacervate Microdroplets with Rapid Regulation of Enzymatic Reaction Rate. CHEMSYSTEMSCHEM 2021. [DOI: 10.1002/syst.202100006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yan Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Xiaoliang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Junbo Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Youping Lin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Haixu Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Xiaoman Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| |
Collapse
|
29
|
Yewdall NA, André AA, Lu T, Spruijt E. Coacervates as models of membraneless organelles. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2020.101416] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
30
|
Wang X, Zhang P, Tian L. Spatiotemporal organization of coacervate microdroplets. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101420] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
31
|
Wen P, Wang X, Moreno S, Boye S, Voigt D, Voit B, Huang X, Appelhans D. Construction of Eukaryotic Cell Biomimetics: Hierarchical Polymersomes-in-Proteinosome Multicompartment with Enzymatic Reactions Modulated Protein Transportation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005749. [PMID: 33373089 DOI: 10.1002/smll.202005749] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/13/2020] [Indexed: 06/12/2023]
Abstract
The eukaryotic cell is a smart compartment containing an outer permeable membrane, a cytoskeleton, and functional organelles, presenting part structures for life. The integration of membrane-containing artificial organelles (=polymersomes) into a large microcompartment is a key step towards the establishment of exquisite cellular biomimetics with different membrane properties. Herein, an efficient way to construct a hierarchical multicompartment composed of a hydrogel-filled proteinosome hybrid structure with an outer homogeneous membrane, a smart cytoskeleton-like scaffold, and polymersomes is designed. Specially, this hybrid structure creates a micro-environment for pH-responsive polymersomes to execute a desired substance transport upon response to biological stimuli. Within the dynamic pH-stable skeleton of the protein hydrogels, polymersomes with loaded PEGylated insulin biomacromolecules demonstrate a pH-responsive reversible swelling-deswelling and a desirable, on-demand cargo release which is induced by the enzymatic oxidation of glucose to gluconic acid. This stimulus responsive behavior is realized by tunable on/off states through protonation of the polymersomes membrane under the enzymatic reaction of glucose oxidase, integrated in the skeleton of protein hydrogels. The integration of polymersomes-based hybrid structure into the proteinosome compartment and the stimuli-response on enzyme reactions fulfills the requirements of eukaryotic cell biomimetics in complex architectures and allows mimicking cellular transportation processes.
Collapse
Affiliation(s)
- Ping Wen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology (HIT), Harbin, 150001, P. R. China
| | - Xueyi Wang
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069, Dresden, Germany
- Chair of Organic Chemistry of Polymers, Technische Universität Dresden, D-01062, Dresden, Germany
| | - Silvia Moreno
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069, Dresden, Germany
| | - Susanne Boye
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069, Dresden, Germany
| | - Dagmar Voigt
- Institute for Botany, Faculty of Biology, Technische Universität Dresden, D-01062, Dresden, Germany
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069, Dresden, Germany
- Chair of Organic Chemistry of Polymers, Technische Universität Dresden, D-01062, Dresden, Germany
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology (HIT), Harbin, 150001, P. R. China
| | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069, Dresden, Germany
| |
Collapse
|
32
|
Kameta N, Ding W. Stacking of nanorings to generate nanotubes for acceleration of protein refolding. NANOSCALE 2021; 13:1629-1638. [PMID: 33331384 DOI: 10.1039/d0nr07660k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Self-assembly and photoisomerization of azobenzene-based amphiphilic molecules produced nanorings with an inner diameter of 25 nm and lengths of <40 nm. The nanorings, which consisted of a single bilayer membrane of the amphiphiles, retained their morphology in the presence of a stacking inhibitor; whereas in the absence of the inhibitor, the nanorings stacked into short nanotubes (<500 nm). When subjected to mild heat treatment, these nanotubes joined end-to-end to form nanotubes with lengths of several tens of micrometers. The nanorings and the short and long nanotubes were able to encapsulate proteins and thereby suppress aggregation induced by thermal denaturation. In addition, the nanotubes accelerated refolding of denatured proteins by encapsulating them and then releasing them into the bulk solution; refolding occurred simultaneously with release. In contrast, the nanorings did not accelerate protein refolding. Refolding efficiency increased with increasing nanotube length, indicating that the re-aggregation of the proteins was strictly inhibited by lowering the concentration of the proteins in the bulk solution as the result of the slow release from the longer nanotubes. The migration of the proteins through the long, narrow nanochannels during the release process will also contribute to refolding.
Collapse
Affiliation(s)
- N Kameta
- Nanomaterials Research Institute, Department of Materials and Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | | |
Collapse
|
33
|
Karoui H, Seck MJ, Martin N. Self-programmed enzyme phase separation and multiphase coacervate droplet organization. Chem Sci 2021; 12:2794-2802. [PMID: 34164043 PMCID: PMC8179374 DOI: 10.1039/d0sc06418a] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/22/2021] [Indexed: 12/20/2022] Open
Abstract
Membraneless organelles are phase-separated droplets that are dynamically assembled and dissolved in response to biochemical reactions in cells. Complex coacervate droplets produced by associative liquid-liquid phase separation offer a promising approach to mimic such dynamic compartmentalization. Here, we present a model for membraneless organelles based on enzyme/polyelectrolyte complex coacervates able to induce their own condensation and dissolution. We show that glucose oxidase forms coacervate droplets with a cationic polysaccharide on a narrow pH range, so that enzyme-driven monotonic pH changes regulate the emergence, growth, decay and dissolution of the droplets depending on the substrate concentration. Significantly, we demonstrate that time-programmed coacervate assembly and dissolution can be achieved in a single-enzyme system. We further exploit this self-driven enzyme phase separation to produce multiphase droplets via dynamic polyion self-sorting in the presence of a secondary coacervate phase. Taken together, our results open perspectives for the realization of programmable synthetic membraneless organelles based on self-regulated enzyme/polyelectrolyte complex coacervation.
Collapse
Affiliation(s)
- Hedi Karoui
- Univ. Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR5031 115 Avenue du Dr Schweitzer 33600 Pessac France
| | - Marianne J Seck
- Univ. Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR5031 115 Avenue du Dr Schweitzer 33600 Pessac France
| | - Nicolas Martin
- Univ. Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR5031 115 Avenue du Dr Schweitzer 33600 Pessac France
| |
Collapse
|
34
|
Abstract
Coacervate micro-droplets produced by liquid-liquid phase separation are increasingly used to emulate the dynamical organization of membraneless organelles found in living cells. Designing synthetic coacervates able to be formed and disassembled with improved spatiotemporal control is still challenging. In this chapter, we describe the design of photoswitchable coacervate droplets produced by phase separation of short double stranded DNA in the presence of an azobenzene cation. The droplets can be reversibly dissolved with light, which provides a new approach for the spatiotemporal regulation of coacervation. Significantly, the dynamics of light-actuated droplet formation and dissolution correlates with the capture and release of guest solutes. The reported system can find applications for the dynamic photocontrol of biomolecule compartmentalization, paving the way to the light-activated regulation of signaling pathways in artificial membraneless organelles.
Collapse
|
35
|
Blocher McTigue WC, Perry SL. Protein Encapsulation Using Complex Coacervates: What Nature Has to Teach Us. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907671. [PMID: 32363758 DOI: 10.1002/smll.201907671] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 06/11/2023]
Abstract
Protein encapsulation is a growing area of interest, particularly in the fields of food science and medicine. The sequestration of protein cargoes is achieved using a variety of methods, each with benefits and drawbacks. One of the most significant challenges associated with protein encapsulation is achieving high loading while maintaining protein viability. This difficulty is exacerbated because many encapsulant systems require the use of organic solvents. By contrast, nature has optimized strategies to compartmentalize and protect proteins inside the cell-a purely aqueous environment. Although the mechanisms whereby aspects of the cytosol is able to stabilize proteins are unknown, the crowded nature of many newly discovered, liquid phase separated "membraneless organelles" that achieve protein compartmentalization suggests that the material environment surrounding the protein may be critical in determining stability. Here, encapsulation strategies based on liquid-liquid phase separation, and complex coacervation in particular, which has many of the key features of the cytoplasm as a material, are reviewed. The literature on protein encapsulation via coacervation is also reviewed and the parameters relevant to creating protein-containing coacervate formulations are discussed. Additionally, potential opportunities associated with the creation of tailored materials to better facilitate protein encapsulation and stabilization are highlighted.
Collapse
Affiliation(s)
| | - Sarah L Perry
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| |
Collapse
|
36
|
Wang X, Liu X, Huang X. Bioinspired Protein-Based Assembling: Toward Advanced Life-Like Behaviors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001436. [PMID: 32374501 DOI: 10.1002/adma.202001436] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
The ability of living organisms to perform structure, energy, and information-related processes for molecular self-assembly through compartmentalization and chemical transformation can possibly be mimicked via artificial cell models. Recent progress in the development of various types of functional microcompartmentalized ensembles that can imitate rudimentary aspects of living cells has refocused attention on the important question of how inanimate systems can transition into living matter. Hence, herein, the most recent advances in the construction of protein-bounded microcompartments (proteinosomes), which have been exploited as a versatile synthetic chassis for integrating a wide range of functional components and biochemical machineries, are critically summarized. The techniques developed for fabricating various types of proteinosomes are discussed, focusing on the significance of how chemical information, substance transportation, enzymatic-reaction-based metabolism, and self-organization can be integrated and recursively exploited in constructed ensembles. Therefore, proteinosomes capable of exhibiting gene-directed protein synthesis, modulated membrane permeability, spatially confined membrane-gated catalytic reaction, internalized cytoskeletal-like matrix assembly, on-demand compartmentalization, and predatory-like chemical communication in artificial cell communities are specially highlighted. These developments are expected to bridge the gap between materials science and life science, and offer a theoretical foundation for developing life-inspired assembled materials toward various applications.
Collapse
Affiliation(s)
- Xiaoliang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xiaoman Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
37
|
Nishimura T, Akiyoshi K. Artificial Molecular Chaperone Systems for Proteins, Nucleic Acids, and Synthetic Molecules. Bioconjug Chem 2020; 31:1259-1267. [DOI: 10.1021/acs.bioconjchem.0c00133] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tomoki Nishimura
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
38
|
Love C, Steinkühler J, Gonzales DT, Yandrapalli N, Robinson T, Dimova R, Tang TD. Reversible pH-Responsive Coacervate Formation in Lipid Vesicles Activates Dormant Enzymatic Reactions. Angew Chem Int Ed Engl 2020; 59:5950-5957. [PMID: 31943629 PMCID: PMC7187140 DOI: 10.1002/anie.201914893] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Indexed: 11/15/2022]
Abstract
In situ, reversible coacervate formation within lipid vesicles represents a key step in the development of responsive synthetic cellular models. Herein, we exploit the pH responsiveness of a polycation above and below its pKa , to drive liquid-liquid phase separation, to form single coacervate droplets within lipid vesicles. The process is completely reversible as coacervate droplets can be disassembled by increasing the pH above the pKa . We further show that pH-triggered coacervation in the presence of low concentrations of enzymes activates dormant enzyme reactions by increasing the local concentration within the coacervate droplets and changing the local environment around the enzyme. In conclusion, this work establishes a tunable, pH responsive, enzymatically active multi-compartment synthetic cell. The system is readily transferred into microfluidics, making it a robust model for addressing general questions in biology, such as the role of phase separation and its effect on enzymatic reactions using a bottom-up synthetic biology approach.
Collapse
Affiliation(s)
- Celina Love
- Max Planck Institute of Molecular Cell Biology and GeneticsPfotenhauerstraße 10801307DresdenGermany
- Cluster of Excellence Physics of LifeTU Dresden01602DresdenGermany
| | - Jan Steinkühler
- Max Planck Institute of Colloids and Interfaces14424PotsdamGermany
| | - David T. Gonzales
- Max Planck Institute of Molecular Cell Biology and GeneticsPfotenhauerstraße 10801307DresdenGermany
- Cluster of Excellence Physics of LifeTU Dresden01602DresdenGermany
- Center for Systems Biology DresdenPfotenhauerstraße 10801307DresdenGermany
| | | | - Tom Robinson
- Max Planck Institute of Colloids and Interfaces14424PotsdamGermany
| | - Rumiana Dimova
- Max Planck Institute of Colloids and Interfaces14424PotsdamGermany
| | - T.‐Y. Dora Tang
- Max Planck Institute of Molecular Cell Biology and GeneticsPfotenhauerstraße 10801307DresdenGermany
- Cluster of Excellence Physics of LifeTU Dresden01602DresdenGermany
| |
Collapse
|
39
|
Yoshizawa T, Nozawa RS, Jia TZ, Saio T, Mori E. Biological phase separation: cell biology meets biophysics. Biophys Rev 2020; 12:519-539. [PMID: 32189162 PMCID: PMC7242575 DOI: 10.1007/s12551-020-00680-x] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/02/2020] [Indexed: 12/12/2022] Open
Abstract
Progress in development of biophysical analytic approaches has recently crossed paths with macromolecule condensates in cells. These cell condensates, typically termed liquid-like droplets, are formed by liquid-liquid phase separation (LLPS). More and more cell biologists now recognize that many of the membrane-less organelles observed in cells are formed by LLPS caused by interactions between proteins and nucleic acids. However, the detailed biophysical processes within the cell that lead to these assemblies remain largely unexplored. In this review, we evaluate recent discoveries related to biological phase separation including stress granule formation, chromatin regulation, and processes in the origin and evolution of life. We also discuss the potential issues and technical advancements required to properly study biological phase separation.
Collapse
Affiliation(s)
- Takuya Yoshizawa
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Ryu-Suke Nozawa
- Division of Experimental Pathology, Cancer Institute of the Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
| | - Tony Z Jia
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
- Blue Marble Space Institute of Science, Seattle, WA, USA
| | - Tomohide Saio
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Eiichiro Mori
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Nara, Japan.
| |
Collapse
|
40
|
Love C, Steinkühler J, Gonzales DT, Yandrapalli N, Robinson T, Dimova R, Tang TD. Reversible pH‐Responsive Coacervate Formation in Lipid Vesicles Activates Dormant Enzymatic Reactions. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914893] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Celina Love
- Max Planck Institute of Molecular Cell Biology and Genetics Pfotenhauerstraße 108 01307 Dresden Germany
- Cluster of Excellence Physics of LifeTU Dresden 01602 Dresden Germany
| | - Jan Steinkühler
- Max Planck Institute of Colloids and Interfaces 14424 Potsdam Germany
| | - David T. Gonzales
- Max Planck Institute of Molecular Cell Biology and Genetics Pfotenhauerstraße 108 01307 Dresden Germany
- Cluster of Excellence Physics of LifeTU Dresden 01602 Dresden Germany
- Center for Systems Biology Dresden Pfotenhauerstraße 108 01307 Dresden Germany
| | | | - Tom Robinson
- Max Planck Institute of Colloids and Interfaces 14424 Potsdam Germany
| | - Rumiana Dimova
- Max Planck Institute of Colloids and Interfaces 14424 Potsdam Germany
| | - T.‐Y. Dora Tang
- Max Planck Institute of Molecular Cell Biology and Genetics Pfotenhauerstraße 108 01307 Dresden Germany
- Cluster of Excellence Physics of LifeTU Dresden 01602 Dresden Germany
| |
Collapse
|
41
|
Abstract
Liquid-liquid phase separation plays an important role in cellular organization. Many subcellular condensed bodies are hierarchically organized into multiple coexisting domains or layers. However, our molecular understanding of the assembly and internal organization of these multicomponent droplets is still incomplete, and rules for the coexistence of condensed phases are lacking. Here, we show that the formation of hierarchically organized multiphase droplets with up to three coexisting layers is a generic phenomenon in mixtures of complex coacervates, which serve as models of charge-driven liquid-liquid phase separated systems. We present simple theoretical guidelines to explain both the hierarchical arrangement and the demixing transition in multiphase droplets using the interfacial tensions and critical salt concentration as inputs. Multiple coacervates can coexist if they differ sufficiently in macromolecular density, and we show that the associated differences in critical salt concentration can be used to predict multiphase droplet formation. We also show that the coexisting coacervates present distinct chemical environments that can concentrate guest molecules to different extents. Our findings suggest that condensate immiscibility may be a very general feature in biological systems, which could be exploited to design self-organized synthetic compartments to control biomolecular processes.
Collapse
Affiliation(s)
- Tiemei Lu
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Evan Spruijt
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| |
Collapse
|
42
|
Shimizu T, Ding W, Kameta N. Soft-Matter Nanotubes: A Platform for Diverse Functions and Applications. Chem Rev 2020; 120:2347-2407. [PMID: 32013405 DOI: 10.1021/acs.chemrev.9b00509] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Self-assembled organic nanotubes made of single or multiple molecular components can be classified into soft-matter nanotubes (SMNTs) by contrast with hard-matter nanotubes, such as carbon and other inorganic nanotubes. To date, diverse self-assembly processes and elaborate template procedures using rationally designed organic molecules have produced suitable tubular architectures with definite dimensions, structural complexity, and hierarchy for expected functions and applications. Herein, we comprehensively discuss every functions and possible applications of a wide range of SMNTs as bulk materials or single components. This Review highlights valuable contributions mainly in the past decade. Fifteen different families of SMNTs are discussed from the viewpoints of chemical, physical, biological, and medical applications, as well as action fields (e.g., interior, wall, exterior, whole structure, and ensemble of nanotubes). Chemical applications of the SMNTs are associated with encapsulating materials and sensors. SMNTs also behave, while sometimes undergoing morphological transformation, as a catalyst, template, liquid crystal, hydro-/organogel, superhydrophobic surface, and micron size engine. Physical functions pertain to ferro-/piezoelectricity and energy migration/storage, leading to the applications to electrodes or supercapacitors, and mechanical reinforcement. Biological functions involve artificial chaperone, transmembrane transport, nanochannels, and channel reactors. Finally, medical functions range over drug delivery, nonviral gene transfer vector, and virus trap.
Collapse
Affiliation(s)
- Toshimi Shimizu
- Nanomaterials Research Institute, Department of Materials and Chemistry , National Institute of Advanced Industrial Science and Technology , Tsukuba Central 5, 1-1-1 Higashi , Tsukuba , Ibaraki 305-8565 , Japan
| | - Wuxiao Ding
- Nanomaterials Research Institute, Department of Materials and Chemistry , National Institute of Advanced Industrial Science and Technology , Tsukuba Central 5, 1-1-1 Higashi , Tsukuba , Ibaraki 305-8565 , Japan
| | - Naohiro Kameta
- Nanomaterials Research Institute, Department of Materials and Chemistry , National Institute of Advanced Industrial Science and Technology , Tsukuba Central 5, 1-1-1 Higashi , Tsukuba , Ibaraki 305-8565 , Japan
| |
Collapse
|
43
|
Moreau NG, Martin N, Gobbo P, Tang TYD, Mann S. Spontaneous membrane-less multi-compartmentalization via aqueous two-phase separation in complex coacervate micro-droplets. Chem Commun (Camb) 2020; 56:12717-12720. [DOI: 10.1039/d0cc05399f] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Multiphase coacervate droplets produced by internalised aqueous two-phase separation are used for the spatially dependent chemical transfer of sugar molecules.
Collapse
Affiliation(s)
- Nicolette G. Moreau
- Centre for Protolife Research and Centre for Organized Matter Chemistry
- School of Chemistry
- University of Bristol
- Bristol BS8 1TS
- UK
| | - Nicolas Martin
- Univ. Bordeaux
- CNRS
- Centre de Recherche Paul Pascal
- UMR5031
- 33600 Pessac
| | - Pierangelo Gobbo
- Centre for Protolife Research and Centre for Organized Matter Chemistry
- School of Chemistry
- University of Bristol
- Bristol BS8 1TS
- UK
| | - T.-Y. Dora Tang
- Max Planck Institute of Molecular Cell and Genetics
- 01307 Dresden
- Germany
| | - Stephen Mann
- Centre for Protolife Research and Centre for Organized Matter Chemistry
- School of Chemistry
- University of Bristol
- Bristol BS8 1TS
- UK
| |
Collapse
|
44
|
Ma FH, Li C, Liu Y, Shi L. Mimicking Molecular Chaperones to Regulate Protein Folding. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1805945. [PMID: 31045287 DOI: 10.1002/adma.201805945] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 01/28/2019] [Indexed: 06/09/2023]
Abstract
Folding and unfolding are essential ways for a protein to regulate its biological activity. The misfolding of proteins usually reduces or completely compromises their biological functions, which eventually causes a wide range of diseases including neurodegeneration diseases, type II diabetes, and cancers. Therefore, materials that can regulate protein folding and maintain proteostasis are of significant biological and medical importance. In living organisms, molecular chaperones are a family of proteins that maintain proteostasis by interacting with, stabilizing, and repairing various non-native proteins. In the past few decades, efforts have been made to create artificial systems to mimic the structure and biological functions of nature chaperonins. Herein, recent progress in the design and construction of materials that mimic different kinds of natural molecular chaperones is summarized. The fabrication methods, construction rules, and working mechanisms of these artificial chaperone systems are described. The application of these materials in enhancing the thermal stability of proteins, assisting de novo folding of proteins, and preventing formation of toxic protein aggregates is also highlighted and explored. Finally, the challenges and potential in the field of chaperone-mimetic materials are discussed.
Collapse
Affiliation(s)
- Fei-He Ma
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Chang Li
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yang Liu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Linqi Shi
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
45
|
Abstract
Compartmentalisation is recognised to be a primary step for the assembly of non-living matter towards the construction of life-like microensembles. To date, a host of hollow microcompartments with various functionalities have been widely developed. Within this respect, given that dynamic behaviour is one of the fundamental features to distinguish living ensembles from those that are non-living, the design and construction of microcompartments with various dynamic behaviours are attracting considerable interest from a wide range of research communities. Significantly, the created dynamic microcompartments could also be widely used as chassis for further bottom-up design towards building protocell models by integrating and booting up necessary biological information. Herein, strategies to install the various motility behaviours into microcompartments, including haptotaxis, chemotaxis and gravitaxis, are summarized in the anticipation of inspiring more designs towards creating various advanced active microcompartments, and contributing new techniques to the ultimate goal of constructing a basic living unit entirely from non-living components.
Collapse
Affiliation(s)
- Youping Lin
- MIIT Key Laboratory of Critical Materials Technology, for New Energy Conversion and Storage, School of Chemistry & Chemical Engineering, Harbin Institute of Technology (HIT), Harbin, 150001, P.R. China
| | - Lei Wang
- MIIT Key Laboratory of Critical Materials Technology, for New Energy Conversion and Storage, School of Chemistry & Chemical Engineering, Harbin Institute of Technology (HIT), Harbin, 150001, P.R. China
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology, for New Energy Conversion and Storage, School of Chemistry & Chemical Engineering, Harbin Institute of Technology (HIT), Harbin, 150001, P.R. China
| |
Collapse
|
46
|
van Lente J, Claessens MMA, Lindhoud S. Charge-Based Separation of Proteins Using Polyelectrolyte Complexes as Models for Membraneless Organelles. Biomacromolecules 2019; 20:3696-3703. [PMID: 31418555 PMCID: PMC6794638 DOI: 10.1021/acs.biomac.9b00701] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/14/2019] [Indexed: 01/08/2023]
Abstract
Membraneless organelles are liquid compartments within cells with different solvent properties than the surrounding environment. This difference in solvent properties is thought to result in function-related selective partitioning of proteins. Proteins have also been shown to accumulate in polyelectrolyte complexes, but whether the uptake in these complexes is selective has not been ascertained yet. Here, we show the selective partitioning of two structurally similar but oppositely charged proteins into polyelectrolyte complexes. We demonstrate that these proteins can be separated from a mixture by altering the polyelectrolyte complex composition and released from the complex by lowering the pH. Combined, we demonstrate that polyelectrolyte complexes can separate proteins from a mixture based on protein charge. Besides providing deeper insight into the selective partitioning in membraneless organelles, potential applications for selective biomolecule partitioning in polyelectrolyte complexes include drug delivery or extraction processes.
Collapse
Affiliation(s)
- Jéré
J. van Lente
- Department
of Nanobiophysics, and Membrane Science & Technology Cluster, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - Mireille M. A.
E. Claessens
- Department
of Nanobiophysics, and Membrane Science & Technology Cluster, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - Saskia Lindhoud
- Department
of Nanobiophysics, and Membrane Science & Technology Cluster, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| |
Collapse
|
47
|
Vaishnav JK, Mukherjee TK. Highly Photostable and Two-Photon Active Quantum Dot-Polymer Multicolor Hybrid Coacervate Droplets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:11764-11773. [PMID: 31411883 DOI: 10.1021/acs.langmuir.9b01783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fabrication and precise control of the physicochemical properties of multifunctional organic-inorganic hybrid nanocomposites find great importance in various research fields. Herein, we report the fabrication of a new class of luminescent hybrid coacervate droplets from CdTe quantum dots (QDs) and a poly(diallyldimethylammonium chloride) (PDADMAC) aqueous mixture. The colloidal stability of these droplets has been explored over wide ranges of composition, pH, and ionic strength. Although these hybrid droplets are quite stable in a low-ionic-strength medium (<100 mM NaCl) and neutral/basic pH (pH >6.5), they are unstable in a higher-ionic-strength medium (>100 mM NaCl) and acidic pH (pH <5.5). Our findings indicate specific electrostatic interactions between negatively charged QDs and positively charged PDADMAC behind the observed coacervation. They exhibit the preferential sequestration of organic dyes and serum albumins. The intrinsic luminescent properties of these hybrid droplets have been explored using confocal laser scanning microscopy (CLSM) and epifluorescence microscopy. CLSM reveals the formation of intrinsically luminescent hybrid droplets. In addition, mixed two-color luminescent droplets have been fabricated by simultaneously mixing green- and red-emitting QDs with PDADMAC aqueous solution. Epifluorescence imaging reveals highly photostable and nonbleaching photoluminescence (PL) from individual droplets as a consequence of efficient surface passivation by polymeric chains of PDADMAC. Moreover, using two-photon (2P) confocal imaging we have shown that these hybrid droplets are ideal candidates for 2P confocal imaging applications. The present study can be easily extended to fabricate a wide range of hybrid droplets with various inorganic counterparts having unique optoelectronic properties, which will further expand their applicability in nanocatalysis, bioimaging, and biosensing.
Collapse
Affiliation(s)
- Jamuna K Vaishnav
- Discipline of Chemistry , Indian Institute of Technology Indore , Simrol, Khandwa Road , Indore - 453552 , M.P. India
| | - Tushar Kanti Mukherjee
- Discipline of Chemistry , Indian Institute of Technology Indore , Simrol, Khandwa Road , Indore - 453552 , M.P. India
| |
Collapse
|
48
|
Martin N, Tian L, Spencer D, Coutable-Pennarun A, Anderson JLR, Mann S. Photoswitchable Phase Separation and Oligonucleotide Trafficking in DNA Coacervate Microdroplets. Angew Chem Int Ed Engl 2019; 58:14594-14598. [PMID: 31408263 DOI: 10.1002/anie.201909228] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Indexed: 01/01/2023]
Abstract
Coacervate microdroplets produced by liquid-liquid phase separation have been used as synthetic protocells that mimic the dynamical organization of membrane-free organelles in living systems. Achieving spatiotemporal control over droplet condensation and disassembly remains challenging. Herein, we describe the formation and photoswitchable behavior of light-responsive coacervate droplets prepared from mixtures of double-stranded DNA and an azobenzene cation. The droplets disassemble and reassemble under UV and blue light, respectively, due to azobenzene trans/cis photoisomerisation. Sequestration and release of captured oligonucleotides follow the dynamics of phase separation such that light-activated transfer, mixing, hybridization, and trafficking of the oligonucleotides can be controlled in binary populations of the droplets. Our results open perspectives for the spatiotemporal control of DNA coacervates and provide a step towards the dynamic regulation of synthetic protocells.
Collapse
Affiliation(s)
- Nicolas Martin
- Univ. Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR5031, 115 Avenue du Dr. Albert Schweitzer, 33600, Pessac, France.,Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Liangfei Tian
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK.,BrisSynBio Synthetic Biology Research Centre, Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Dan Spencer
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Angélique Coutable-Pennarun
- BrisSynBio Synthetic Biology Research Centre, Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol, BS8 1TQ, UK.,School of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - J L Ross Anderson
- BrisSynBio Synthetic Biology Research Centre, Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol, BS8 1TQ, UK.,School of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Stephen Mann
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK.,BrisSynBio Synthetic Biology Research Centre, Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol, BS8 1TQ, UK
| |
Collapse
|
49
|
Martin N, Tian L, Spencer D, Coutable‐Pennarun A, Anderson JLR, Mann S. Photoswitchable Phase Separation and Oligonucleotide Trafficking in DNA Coacervate Microdroplets. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909228] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Nicolas Martin
- Univ. Bordeaux CNRS Centre de Recherche Paul Pascal, UMR5031 115 Avenue du Dr. Albert Schweitzer 33600 Pessac France
- Centre for Protolife Research and Centre for Organized Matter Chemistry School of Chemistry University of Bristol Bristol BS8 1TS UK
| | - Liangfei Tian
- Centre for Protolife Research and Centre for Organized Matter Chemistry School of Chemistry University of Bristol Bristol BS8 1TS UK
- BrisSynBio Synthetic Biology Research Centre, Life Sciences Building University of Bristol Tyndall Avenue Bristol BS8 1TQ UK
| | - Dan Spencer
- Centre for Protolife Research and Centre for Organized Matter Chemistry School of Chemistry University of Bristol Bristol BS8 1TS UK
| | - Angélique Coutable‐Pennarun
- BrisSynBio Synthetic Biology Research Centre, Life Sciences Building University of Bristol Tyndall Avenue Bristol BS8 1TQ UK
- School of Biochemistry University of Bristol University Walk Bristol BS8 1TD UK
| | - J. L. Ross Anderson
- BrisSynBio Synthetic Biology Research Centre, Life Sciences Building University of Bristol Tyndall Avenue Bristol BS8 1TQ UK
- School of Biochemistry University of Bristol University Walk Bristol BS8 1TD UK
| | - Stephen Mann
- Centre for Protolife Research and Centre for Organized Matter Chemistry School of Chemistry University of Bristol Bristol BS8 1TS UK
- BrisSynBio Synthetic Biology Research Centre, Life Sciences Building University of Bristol Tyndall Avenue Bristol BS8 1TQ UK
| |
Collapse
|
50
|
Martin N. Dynamic Synthetic Cells Based on Liquid-Liquid Phase Separation. Chembiochem 2019; 20:2553-2568. [PMID: 31039282 DOI: 10.1002/cbic.201900183] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Indexed: 12/16/2022]
Abstract
Living cells have long been a source of inspiration for chemists. Their capacity of performing complex tasks relies on the spatiotemporal coordination of matter and energy fluxes. Recent years have witnessed growing interest in the bottom-up construction of cell-like models capable of reproducing aspects of such dynamic organisation. Liquid-liquid phase-separation (LLPS) processes in water are increasingly recognised as representing a viable compartmentalisation strategy through which to produce dynamic synthetic cells. Herein, we highlight examples of the dynamic properties of LLPS used to assemble synthetic cells, including their biocatalytic activity, reversible condensation and dissolution, growth and division, and recent directions towards the design of higher-order structures and behaviour.
Collapse
Affiliation(s)
- Nicolas Martin
- Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031, 115 Avenue du Dr. Albert Schweitzer, 33600, Pessac, France
| |
Collapse
|