1
|
Zhou W, Lv X, Zhang S, Gao Z, Li B, Wang X. A new approach towards highly sensitive detection of endogenous N-acetylaspartic acid, N-acetylglutamic acid, and N-acetylaspartylglutamic acid in brain tissues based on strong anion exchange monolith microextraction coupled with UHPLC-MS/MS. Mikrochim Acta 2024; 191:360. [PMID: 38819644 DOI: 10.1007/s00604-024-06431-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/12/2024] [Indexed: 06/01/2024]
Abstract
A novel in-tube solid-phase microextraction coupled with an ultra-high performance liquid chromatography-mass spectrometry method has been established for simultaneous quantification of three crucial brain biomarkers N-acetylaspartic acid (NAA), N-acetylglutamic acid (NAG), and N-acetylaspartylglutamic acid (NAAG). A polymer monolith with quaternary ammonium as the functional group was designed and exhibited efficient enrichment of target analytes through strong anion exchange interaction. Under the optimized conditions, the proposed method displayed wide linear ranges (0.1-80 nM for NAA and NAG, 0.2-160 nM for NAAG) with good precision (RSDs were lower than 15%) and low limits of detection (0.019-0.052 nM), which is by far the most sensitive approach for NAA, NAG, and NAAG determination. Furthermore, this approach has been applied to measure the target analytes in mouse brain samples, and endogenous NAA, NAG, and NAAG were successfully detected and quantified from only around 5 mg of cerebral cortex, cerebellum, and hippocampus. Compared with existing methods, the newly developed method in the current study provides highest sensitivity and lowest sample consumption for NAA, NAG, and NAAG measurements, which would potentially be utilized in determining and tracking these meaningful brain biomarkers in diseases or treatment processes, benefiting the investigations of pathophysiology and treatment of brain disorders.
Collapse
Affiliation(s)
- Wenxiu Zhou
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, Engineering Research Center of Cell & Therapeutic Antibody, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Xiaoyuan Lv
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, Engineering Research Center of Cell & Therapeutic Antibody, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Shengman Zhang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, Engineering Research Center of Cell & Therapeutic Antibody, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Zhenye Gao
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, Engineering Research Center of Cell & Therapeutic Antibody, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Bingjie Li
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, Engineering Research Center of Cell & Therapeutic Antibody, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Xin Wang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, Engineering Research Center of Cell & Therapeutic Antibody, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China.
| |
Collapse
|
2
|
Zango ZU, Khoo KS, Garba A, Lawal MA, Abidin AZ, Wadi IA, Eisa MH, Aldaghri O, Ibnaouf KH, Lim JW, Da Oh W. A review on carbon-based biowaste and organic polymer materials for sustainable treatment of sulfonamides from pharmaceutical wastewater. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:145. [PMID: 38568460 DOI: 10.1007/s10653-024-01936-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 02/22/2024] [Indexed: 04/05/2024]
Abstract
Frequent detection of sulfonamides (SAs) pharmaceuticals in wastewater has necessitated the discovery of suitable technology for their sustainable remediation. Adsorption has been widely investigated due to its effectiveness, simplicity, and availability of various adsorbent materials from natural and artificial sources. This review highlighted the potentials of carbon-based adsorbents derived from agricultural wastes such as lignocellulose, biochar, activated carbon, carbon nanotubes graphene materials as well as organic polymers such as chitosan, molecularly imprinted polymers, metal, and covalent frameworks for SAs removal from wastewater. The promising features of these materials including higher porosity, rich carbon-content, robustness, good stability as well as ease of modification have been emphasized. Thus, the materials have demonstrated excellent performance towards the SAs removal, attributed to their porous nature that provided sufficient active sites for the adsorption of SAs molecules. The modification of physico-chemical features of the materials have been discussed as efficient means for enhancing their adsorption and reusable performance. The article also proposed various interactive mechanisms for the SAs adsorption. Lastly, the prospects and challenges have been highlighted to expand the knowledge gap on the application of the materials for the sustainable removal of the SAs.
Collapse
Affiliation(s)
- Zakariyya Uba Zango
- Department of Chemistry, College of Natural and Applied Science, Al-Qalam University Katsina, Katsina City, 2137, Katsina, Nigeria.
- Institute of Semi-Arid Zone Studies, Al-Qalam University Katsina, Katsina CityKatsina, 2137, Nigeria.
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, 603103, India
| | - Abdurrahman Garba
- Department of Chemistry, College of Natural and Applied Science, Al-Qalam University Katsina, Katsina City, 2137, Katsina, Nigeria
| | | | - Asmaa' Zainal Abidin
- Department of Chemistry and Biology, Centre for Defense Foundation Studies, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, 57000, Kuala Lumpur, Malaysia
| | - Ismael A Wadi
- Basic Science Unit, Prince Sattam Bin Abdulaziz University, 16278, Alkharj, Alkharj, Saudi Arabia
| | - M H Eisa
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 13318, Riyadh, Riyadh, Saudi Arabia
| | - Osamah Aldaghri
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 13318, Riyadh, Riyadh, Saudi Arabia
| | - Khalid Hassan Ibnaouf
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 13318, Riyadh, Riyadh, Saudi Arabia.
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Wen Da Oh
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia
| |
Collapse
|
3
|
Madhogaria B, Banerjee S, Kundu A, Dhak P. Efficacy of new generation biosorbents for the sustainable treatment of antibiotic residues and antibiotic resistance genes from polluted waste effluent. INFECTIOUS MEDICINE 2024; 3:100092. [PMID: 38586544 PMCID: PMC10998275 DOI: 10.1016/j.imj.2024.100092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/01/2023] [Accepted: 12/12/2023] [Indexed: 04/09/2024]
Abstract
Antimicrobials are frequently used in both humans and animals for the treatment of bacterially-generated illnesses. Antibiotic usage has increased for more than 40% from last 15 years globally per day in both human populations and farm animals leading to the large-scale discharge of antibiotic residues into wastewater. Most antibiotics end up in sewer systems, either directly from industry or healthcare systems, or indirectly from humans and animals after being partially metabolized or broken down following consumption. To prevent additional antibiotic compound pollution, which eventually impacts on the spread of antibiotic resistance, it is crucial to remove antibiotic residues from wastewater. Antibiotic accumulation and antibiotic resistance genes cannot be effectively and efficiently eliminated by conventional sewage treatment plants. Because of their high energy requirements and operating costs, many of the available technologies are not feasible. However, the biosorption method, which uses low-cost biomass as the biosorbent, is an alternative technique to potentially address these problems. An extensive literature survey focusing on developments in the field was conducted using English language electronic databases, such as PubMed, Google Scholar, Pubag, Google books, and ResearchGate, to understand the relative value of the available antibiotic removal methods. The predominant techniques for eliminating antibiotic residues from wastewater were categorized and defined by example. The approaches were contrasted, and the benefits and drawbacks were highlighted. Additionally, we included a few antibiotics whose removal from aquatic environments has been the subject of extensive research. Lastly, a few representative publications were identified that provide specific information on the removal rates attained by each technique. This review provides evidence that biosorption of antibiotic residues from biological waste using natural biosorbent materials is an affordable and effective technique for eliminating antibiotic residues from wastewater.
Collapse
Affiliation(s)
- Barkha Madhogaria
- Department of Microbiology, Techno India University, West Bengal, EM-4 Sector-V, Salt Lake City, Kolkata 700091, West Bengal, India
| | - Sangeeta Banerjee
- Department of Microbiology, Techno India University, West Bengal, EM-4 Sector-V, Salt Lake City, Kolkata 700091, West Bengal, India
- Department of Chemistry, Techno India University, West Bengal, EM-4 Sector-V, Salt Lake City, Kolkata 700091, West Bengal, India
| | - Atreyee Kundu
- Department of Microbiology, Techno India University, West Bengal, EM-4 Sector-V, Salt Lake City, Kolkata 700091, West Bengal, India
| | - Prasanta Dhak
- Department of Chemistry, Techno India University, West Bengal, EM-4 Sector-V, Salt Lake City, Kolkata 700091, West Bengal, India
| |
Collapse
|
4
|
Ma J, Zhang X, Huang X, Gong J, Xie Z, Li P, Chen Y, Liao Q. Advanced porous organic materials for sample preparation in pharmaceutical analysis. J Sep Sci 2023; 46:e2300205. [PMID: 37525342 DOI: 10.1002/jssc.202300205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 08/02/2023]
Abstract
The development of novel sample preparation media plays a crucial role in pharmaceutical analysis. To facilitate the extraction and enrichment of pharmaceutical molecules in complex samples, various functionalized materials have been developed and prepared as adsorbents. Recently, some functionalized porous organic materials have become adsorbents for pharmaceutical analysis due to their unique properties of adsorption and recognition. These advanced porous organic materials, combined with consequent analytical techniques, have been successfully used for pharmaceutical analysis in complex samples such as environmental and biological samples. This review encapsulates the progress of advanced porous materials for pharmaceutical analysis including pesticides, antibiotics, chiral drugs, and other compounds in the past decade. In addition, we also address the limitations and future trends of these porous organic materials in pharmaceutical analysis.
Collapse
Affiliation(s)
- Juanqiong Ma
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xingyuan Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinyu Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jing Gong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhiyong Xie
- School of Pharmaceutical Sciences, Sun Yat-sen University, Shenzhen, China
| | - Pei Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanlong Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiongfeng Liao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
5
|
Solid-phase microextraction with MIL-53(Al)-polymer monolithic column coupled to pressurized capillary electrochromatography for determination of chlorogenic acid and ferulic acid in sugarcane samples. ANAL SCI 2023; 39:925-933. [PMID: 36811757 DOI: 10.1007/s44211-023-00297-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 02/03/2023] [Indexed: 02/24/2023]
Abstract
In this paper, a polymer monolithic column based on poly (Butyl methacrylate-co-ethylene glycol dimethacrylate) (poly (BMA-co-EDGMA)) doped with MIL-53(Al) metal-organic framework (MOF) was prepared using an in situ polymerization method. The characteristics of MIL-53(Al)-polymer monolithic column were studied through scanning electron microscopy (SEM), Fourier transform infrared spectrometry (FT-IR), energy-dispersive spectroscopy (EDS), X-ray powder diffractometry (XRD), and nitrogen adsorption experiment. Due to its large surface area, the prepared MIL-53(Al)-polymer monolithic column has good permeability and high extraction efficiency. Using MIL-53(Al)-polymer monolithic column for solid-phase microextraction (SPME), coupled to pressurized capillary electrochromatography (pCEC), a method for the determination of trace chlorogenic acid and ferulic acid in sugarcane was established. Under optimized conditions, chlorogenic acid and ferulic acid have a good linear relationship (r ≥ 0.9965) within the concentration range of 50.0-500 µg/mL, the detection limit is 0.017 µg/mL, and the relative standard deviation (RSD) is less than 3.2%. The spike recoveries of chlorogenic acid and ferulic acid were 96.5% and 96.7%, respectively. The results indicate that the method is sensitive, practical, and convenient. It has been successfully applied to the separation and detection of trace organic phenolic compounds in sugarcane samples.
Collapse
|
6
|
Bimetallic Cluster Cu7Zn2 Functionalized Copolymer Monolithic Column for Pipette Tip Micro-Solid Phase Extraction of Eight Phthalate Esters in Edible Oil. FOOD ANAL METHOD 2023. [DOI: 10.1007/s12161-023-02450-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
7
|
Gao Y, Sheng K, Bao T, Wang S. Recent applications of organic molecule-based framework porous materials in solid-phase microextraction for pharmaceutical analysis. J Pharm Biomed Anal 2022; 221:115040. [PMID: 36126613 DOI: 10.1016/j.jpba.2022.115040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/10/2022] [Accepted: 09/08/2022] [Indexed: 11/15/2022]
Abstract
Sample preparation is an indispensable part of detection of complex samples in pharmaceutical analysis. Solid-phase microextraction (SPME) has obtained a lot of attention due to its advantages of time saving, less solvent and easily automation. A variety of functional materials are used as sorbents in SPME to carry out selective and high extraction. This review centers around the recent applications of organic molecule-based framework porous materials, such as metal organic frameworks (MOFs) and covalent organic frameworks (COFs), as SPME coating materials mainly focus on pharmaceutical analysis in food, environment, and biological samples. Four representative extraction devices are introduced, including on-fiber SPME, in-tube SPME, thin film SPME, stir bar SPME. The application prospect of other organic porous materials as sorbents for pharmaceutical analysis are also discussed, such as hyper crosslinked polymers (HCPs) and conjugated microporous polymers (CMPs). The progresses and discusses are provided to offer references for further research focusing on application and development of organic molecule-based framework porous materials in the field of SPME.
Collapse
Affiliation(s)
- Yan Gao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| | - Kangjia Sheng
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| | - Tao Bao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China.
| | - Sicen Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China.
| |
Collapse
|
8
|
Imanipoor J, Mohammadi M. Porous Aluminum-Based Metal-Organic Framework-Aminoclay Nanocomposite: Sustainable Synthesis and Ultrahigh Sorption of Cephalosporin Antibiotics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5900-5914. [PMID: 35470668 DOI: 10.1021/acs.langmuir.2c00557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A novel sorbent was synthesized based on MIL-53(Al) MOF grown over an aminoclay (AC) platform, called MIL-53(Al)@AC nanocomposite, via a green and facile hydrothermal method. The nanocomposite was characterized using FT-IR, PXRD, BET, TEM, FESEM, EDS, XPS, TGA, DLS, and zeta potential analyses. BET analysis represented the porous nature and great surface area of MIL-53(Al)@AC. The high crystalline structure for the synthesized nanocomposite was verified using the PXRD pattern. FESEM, EDS, TEM, and XPS analysis proved the successful decoration of MIL-53(Al) over the AC platform. Cephalosporin antibiotics cefixime (CFX) and cephalexin (CPX), which are often present in wastewaters, were utilized to examine the sorption capacity of the nanocomposite. The significant influential factors such as pH, temperature, sorbent amount, ionic strength, and impurity were discussed. At an initial pH of 7.0 ± 0.1, the highest sorption capacities of CFX and CPX on MIL-53(Al)@AC were 784.14 and 747.91 mg g-1 (T = 298 K, and sorbent amount = 0.1 g L-1), which were 1.43 and 1.47 times greater compared to that of MIL-53(Al), respectively. The evaluation of experimental results was implemented through the Langmuir and Freundlich isotherm equations. The isothermal data were described nobly by the Freundlich isotherm, which confirmed multilayer adsorption on heterogeneous surfaces (R2 > 0.970). A kinetic study indicated that the nanocomposite could adsorb the majority of cephalosporin antibiotics within 30 min. In addition, the experimental data were evaluated via pseudo-first-order, pseudo-second-order, and intraparticle diffusion models. The results indicated that the pseudo-second-order equation agreed more closely with the kinetic data (R2 > 0.990). Furthermore, the processes of adsorption were exothermic and spontaneous. The electrostatic attraction, hydrophobic interaction, π-π electron donor-acceptor effect, H-bond, and π-π stacking constituted the main sorption mechanisms. Finally, MIL-53(Al)@AC presented an excellent regeneration performance. Thus, the results revealed the potential application of the MIL-53(Al)@AC nanocomposite for water remediation.
Collapse
Affiliation(s)
- Javad Imanipoor
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Mohsen Mohammadi
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
9
|
A review on preparation methods and applications of metal–organic framework-based solid-phase microextraction coatings. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Napolitano-Tabares PI, Gutiérrez-Serpa A, Jiménez-Abizanda AI, Jiménez-Moreno F, Pasán J, Pino V. Hybrid Materials Formed with Green Metal-Organic Frameworks and Polystyrene as Sorbents in Dispersive Micro-Solid-Phase Extraction for Determining Personal Care Products in Micellar Cosmetics. Molecules 2022; 27:813. [PMID: 35164078 PMCID: PMC8838677 DOI: 10.3390/molecules27030813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 11/16/2022] Open
Abstract
Hybrid materials based on polystyrene (PS) and green metal-organic frameworks (MOFs) were synthesized, characterized, and evaluated as potential sorbents in dispersive micro-solid-phase extraction (µ-dSPE). Among the resulting materials, the hybrid PS/DUT-67(Zr) was selected as the adequate extraction material for the monitoring of six personal care products in micellar cosmetic samples, combining the µ-dSPE method with ultra-high performance liquid chromatography (UHPLC) coupled to ultraviolet/visible detection (UV/Vis). Univariate studies and a factorial design were performed in the optimization of the microextraction procedure. The compromise optimum extraction conditions included 20 mg of PS/DUT-67(Zr) for 10 mL of sample, 2 min of extraction time, and two desorption steps using 100 µL of acetonitrile and 5 min assisted by vortex in each one. The validated μ-dSPE-UHPLC-UV/Vis method presented limits of detection and quantification down to 3.00 and 10.0 μg·L-1, respectively. The inter-day precision values were lower than 23.5 and 21.2% for concentration levels of 75 μg·L-1 and 650 μg·L-1, respectively. The hydrophobicity of the resulting PS/DUT-67(Zr) material was crucial for the improvement of its extraction capacity in comparison with its unitary components, showing the advantages of combining MOFs with other materials, getting new sorbents with interesting properties.
Collapse
Affiliation(s)
- Patricia I. Napolitano-Tabares
- Laboratorio de Materiales para Análisis Químicos (MAT4LL), Departamento de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), La Laguna, 38206 Tenerife, Spain; (P.I.N.-T.); (A.G.-S.); (A.I.J.-A.); (F.J.-M.)
| | - Adrián Gutiérrez-Serpa
- Laboratorio de Materiales para Análisis Químicos (MAT4LL), Departamento de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), La Laguna, 38206 Tenerife, Spain; (P.I.N.-T.); (A.G.-S.); (A.I.J.-A.); (F.J.-M.)
- Unidad de Investigación de Bioanalítica y Medioambiente, Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), 38206 Tenerife, Spain
| | - Ana I. Jiménez-Abizanda
- Laboratorio de Materiales para Análisis Químicos (MAT4LL), Departamento de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), La Laguna, 38206 Tenerife, Spain; (P.I.N.-T.); (A.G.-S.); (A.I.J.-A.); (F.J.-M.)
| | - Francisco Jiménez-Moreno
- Laboratorio de Materiales para Análisis Químicos (MAT4LL), Departamento de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), La Laguna, 38206 Tenerife, Spain; (P.I.N.-T.); (A.G.-S.); (A.I.J.-A.); (F.J.-M.)
| | - Jorge Pasán
- Laboratorio de Materiales para Análisis Químicos (MAT4LL), Departamento de Química, Unidad Departamental de Química Inorgánica, Universidad de La Laguna (ULL), La Laguna, 38206 Tenerife, Spain
| | - Verónica Pino
- Laboratorio de Materiales para Análisis Químicos (MAT4LL), Departamento de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), La Laguna, 38206 Tenerife, Spain; (P.I.N.-T.); (A.G.-S.); (A.I.J.-A.); (F.J.-M.)
- Unidad de Investigación de Bioanalítica y Medioambiente, Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), 38206 Tenerife, Spain
| |
Collapse
|
11
|
Bazargan M, Ghaemi F, Amiri A, Mirzaei M. Metal–organic framework-based sorbents in analytical sample preparation. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214107] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
12
|
Phoon BL, Ong CC, Mohamed Saheed MS, Show PL, Chang JS, Ling TC, Lam SS, Juan JC. Conventional and emerging technologies for removal of antibiotics from wastewater. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:122961. [PMID: 32947727 DOI: 10.1016/j.jhazmat.2020.122961] [Citation(s) in RCA: 219] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/26/2020] [Accepted: 05/12/2020] [Indexed: 05/27/2023]
Abstract
Antibiotics and pharmaceuticals related products are used to enhance public health and quality of life. The wastewater that is produced from pharmaceutical industries still contains noticeable amount of antibiotics, and this has remained one of the major environmental problems facing public health. The conventional wastewater remediation approach employed by the pharmaceutical industries for the antibiotics wastewater removal is unable to remove the antibiotics completely. Besides, municipal and livestock wastewater also contain unmetabolized antibiotics released by human and animal, respectively. The antibiotic found in wastewater leads to antibiotic resistance challenges, also emergence of superbugs. Currently, numerous technological approaches have been developed to remove antibiotics from the wastewater. Therefore, it was imperative to critically review the weakness and strength of these current advanced technological approaches in use. Besides, the conventional methods for removal of antibiotics such as Klavaroti et al., Homem and Santos also discussed. Although, membrane treatment is discovered as the ultimate choice of approach, to completely remove the antibiotics, while the filtered antibiotics are still retained on the membrane. This study found, hybrid processes to be the best solution antibiotics removal from wastewater. Nevertheless, real-time monitoring system is also recommended to ascertain that, wastewater is cleared of antibiotics.
Collapse
Affiliation(s)
- Bao Lee Phoon
- Nanotechnology & Catalysis Research Centre (NANOCAT), Level 3 Block A, Institute for Advanced Studies, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Chong Cheen Ong
- Department of Fundamental & Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia; Centre of Innovative Nanostructures & Nanodevices (COINN), Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Mohamed Shuaib Mohamed Saheed
- Department of Fundamental & Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia; Centre of Innovative Nanostructures & Nanodevices (COINN), Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Pau-Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung 407, Taiwan; Center for Nanotechnology, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Tau Chuan Ling
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Su Shiung Lam
- Pyrolysis Technology Research Group, Institute of Tropical Aquaculture and Fisheries (AKUATROP) & Institute of Tropical Biodiversity and Sustainable Development (Bio-D Tropika), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Joon Ching Juan
- Nanotechnology & Catalysis Research Centre (NANOCAT), Level 3 Block A, Institute for Advanced Studies, University of Malaya, 50603 Kuala Lumpur, Malaysia; School of Science, Monash University, Sunway Campus, Jalan Lagoon Selatan, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
13
|
Sun DW, Huang L, Pu H, Ma J. Introducing reticular chemistry into agrochemistry. Chem Soc Rev 2020; 50:1070-1110. [PMID: 33236735 DOI: 10.1039/c9cs00829b] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
For survival and quality of life, human society has sought more productive, precise, and sustainable agriculture. Agrochemistry, which solves farming issues in a chemical manner, is the core engine that drives the evolution of modern agriculture. To date, agrochemistry has utilized chemical technologies in the form of pesticides, fertilizers, veterinary drugs and various functional materials to meet fundamental demands from human society, while increasing the socio-ecological consequences due to inefficient use. Thus, more useful, precise, and designable scaffolding materials are required to support sustainable agrochemistry. Reticular chemistry, which weaves molecular units into frameworks, has been applied in many fields based on two cutting-edge porous framework materials, namely metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs). With flexibility in composition, structure, and pore chemistry, MOFs and COFs have shown increasing functionalities associated with agrochemistry in the last decade, potentially introducing reticular chemistry as a highly accessible chemical toolbox into agrochemical technologies. In this critical review, we will demonstrate how reticular chemistry shapes the future of agrochemistry in the fields of farm sensing, agro-ecological preservation and reutilization, agrochemical formulations, smart indoor farming, agrobiotechnology, and beyond.
Collapse
Affiliation(s)
- Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| | | | | | | |
Collapse
|
14
|
Payra S, Likhitha Reddy K, Sharma RS, Singh S, Roy S. A trade-off between adsorption and photocatalysis over ZIF-derived composite. JOURNAL OF HAZARDOUS MATERIALS 2020; 393:122491. [PMID: 32197202 DOI: 10.1016/j.jhazmat.2020.122491] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/03/2020] [Accepted: 03/06/2020] [Indexed: 06/10/2023]
Abstract
The adsorption with highly porous adsorbents is an efficient technique to trap the uncontrolled release of antibiotics in the environment, however, mere adsorption does not mineralize the discharged antibiotics. On the contrary, the regular photocatalysts completely mineralize the antibiotics, however suffers from high efficiency due to comparatively low surface area and porosity. In this work, a balance has been made between efficient adsorption followed by complete degradation of the adsorbed antibiotic over ZIF-8 derived ZnO/N-doped carbon composite. The nitrogen-doped carbon produced at 1000 °C showed a very high adsorption capacity of SMX, due to higher surface area, porosity and better surface interaction between adsorbate and adsorbent. The ZnO formed at 600 °C produced sufficient OH· that were responsible to show a very high rate of complete photocatalytic mineralization of SMX over the material. The ZnO/N-doped carbon composite showed a very high rate of photodegradation with a corresponding rate constant of 4.36 × 10-2 min-1. The complete degradation mechanism was proposed and rates were compared with existing literature.
Collapse
Affiliation(s)
- Soumitra Payra
- Department of Chemistry, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad, 500078, India
| | - K Likhitha Reddy
- Department of Chemical Engineering, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad, 500078, India
| | - Rohit S Sharma
- Department of Chemical Engineering, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad, 500078, India
| | - Shreya Singh
- Department of Chemical Engineering, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad, 500078, India
| | - Sounak Roy
- Department of Chemistry, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad, 500078, India.
| |
Collapse
|
15
|
Martínez-Pérez-Cejuela H, Guiñez M, Simó-Alfonso EF, Amorós P, El Haskouri J, Herrero-Martínez JM. In situ growth of metal-organic framework HKUST-1 in an organic polymer as sorbent for nitrated and oxygenated polycyclic aromatic hydrocarbon in environmental water samples prior to quantitation by HPLC-UV. Mikrochim Acta 2020; 187:301. [DOI: 10.1007/s00604-020-04265-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/09/2020] [Indexed: 12/22/2022]
|
16
|
Xie X, Huang S, Zheng J, Ouyang G. Trends in sensitive detection and rapid removal of sulfonamides: A review. J Sep Sci 2020; 43:1634-1652. [PMID: 32043724 DOI: 10.1002/jssc.201901341] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 12/15/2022]
Abstract
Sulfonamides in environmental water, food, and feed are a major concern for both aquatic ecosystems and public health, because they may lead to the health risk of drug resistance. Thus, numerous sensitive detection and rapid removal methodologies have been established. This review summarizes the sample preparation techniques and instrumental methods used for sensitive detection of sulfonamides. Additionally, adsorption and photocatalysis for the rapid removal of sulfonamides are also discussed. This review provides a comprehensive perspective on future sulfonamide analyses that have good performance, and on the basic methods for the rapid removal of sulfonamides.
Collapse
Affiliation(s)
- Xintong Xie
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Shuyao Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Juan Zheng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, P. R. China
| |
Collapse
|
17
|
Mendiola-Alvarez SY, Turnes Palomino G, Guzmán-Mar J, Hernández-Ramírez A, Hinojosa-Reyes L, Palomino Cabello C. Magnetic porous carbons derived from cobalt(ii)-based metal–organic frameworks for the solid-phase extraction of sulfonamides. Dalton Trans 2020; 49:8959-8966. [DOI: 10.1039/d0dt01215g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A highly porous magnetic C/Co-SIM-1 carbon obtained via a simple carbonization process as a promising material for the simultaneous extraction of sulfonamides.
Collapse
Affiliation(s)
| | - Gemma Turnes Palomino
- Department of Chemistry
- University of the Balearic Islands
- E-07122 Palma de Mallorca
- Spain
| | - Jorge Guzmán-Mar
- Facultad de Ciencias Químicas
- Universidad Autónoma de Nuevo León
- Nuevo León
- Mexico
| | | | | | | |
Collapse
|
18
|
Kökçam-Demir Ü, Goldman A, Esrafili L, Gharib M, Morsali A, Weingart O, Janiak C. Coordinatively unsaturated metal sites (open metal sites) in metal–organic frameworks: design and applications. Chem Soc Rev 2020; 49:2751-2798. [DOI: 10.1039/c9cs00609e] [Citation(s) in RCA: 257] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The defined synthesis of OMS in MOFs is the basis for targeted functionalization through grafting, the coordination of weakly binding species and increased (supramolecular) interactions with guest molecules.
Collapse
Affiliation(s)
- Ülkü Kökçam-Demir
- Institut für Anorganische Chemie und Strukturchemie
- Heinrich-Heine-Universität Düsseldorf
- D-40204 Düsseldorf
- Germany
| | - Anna Goldman
- Institut für Anorganische Chemie und Strukturchemie
- Heinrich-Heine-Universität Düsseldorf
- D-40204 Düsseldorf
- Germany
| | - Leili Esrafili
- Department of Chemistry
- Faculty of Sciences
- Tarbiat Modares University
- Tehran
- Islamic Republic of Iran
| | - Maniya Gharib
- Department of Chemistry
- Faculty of Sciences
- Tarbiat Modares University
- Tehran
- Islamic Republic of Iran
| | - Ali Morsali
- Department of Chemistry
- Faculty of Sciences
- Tarbiat Modares University
- Tehran
- Islamic Republic of Iran
| | - Oliver Weingart
- Institut für Theoretische Chemie und Computerchemie
- Heinrich-Heine-Universität Düsseldorf
- D-40204 Düsseldorf
- Germany
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie
- Heinrich-Heine-Universität Düsseldorf
- D-40204 Düsseldorf
- Germany
| |
Collapse
|
19
|
Hybrid monoliths with metal-organic frameworks in spin columns for extraction of non-steroidal drugs prior to their quantitation by reversed-phase HPLC. Mikrochim Acta 2019; 186:759. [DOI: 10.1007/s00604-019-3923-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/12/2019] [Indexed: 12/31/2022]
|
20
|
Abstract
Metal–organic frameworks (MOFs) have attracted recently considerable attention in analytical sample preparation, particularly when used as novel sorbent materials in solid-phase microextraction (SPME). MOFs are highly ordered porous crystalline structures, full of cavities. They are formed by inorganic centers (metal ion atoms or metal clusters) and organic linkers connected by covalent coordination bonds. Depending on the ratio of such precursors and the synthetic conditions, the characteristics of the resulting MOF vary significantly, thus drifting into a countless number of interesting materials with unique properties. Among astonishing features of MOFs, their high chemical and thermal stability, easy tuneability, simple synthesis, and impressive surface area (which is the highest known), are the most attractive characteristics that makes them outstanding materials in SPME. This review offers an overview on the current state of the use of MOFs in different SPME configurations, in all cases covering extraction devices coated with (or incorporating) MOFs, with particular emphases in their preparation.
Collapse
|
21
|
Solvent-free high-throughput analysis of herbicides in environmental water. Anal Chim Acta 2019; 1071:8-16. [DOI: 10.1016/j.aca.2019.04.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/20/2019] [Accepted: 04/10/2019] [Indexed: 12/13/2022]
|
22
|
Pang X, Liu H, Yu H, Zhang M, Bai L, Yan H. A metal organic framework polymer monolithic column as a novel adsorbent for on-line solid phase extraction and determination of ursolic acid in Chinese herbal medicine. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1125:121715. [PMID: 31323557 DOI: 10.1016/j.jchromb.2019.121715] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/27/2019] [Accepted: 07/08/2019] [Indexed: 10/26/2022]
Abstract
A metal organic framework (MOF)-polymer monolithic column was prepared by redox initiation using modified MOF and N-methylolacrylamide (NMA) as co-monomers. The obtained monolithic column was characterized by scanning electron microscopy (SEM) and nitrogen adsorption-desorption isotherm measurement. It was used as a solid phase extraction (SPE) absorbent for the online enrichment of ursolic acid (UA) by high performance liquid chromatography. The adsorption amount of UA on the monolith was compared with that of silica gel-C18 adsorbent and the monolith without MOF material. The MOF-polymer monolithic column showed high selectivity and good permeability. Under the optimum conditions for extraction and determination, the calibration equation was y = 79.854× + 0.1939; the linear range was 0.001-0.9 mg/mL; the linear regression coefficient was 0.9993; the limit of detection (LOD) and the limit of quantification (LOQ) were 0.17 μg/mL and 0.57 μg/mL, respectively; the inter-day and intra-day accuracies were <6.44%; the recovery was in the range of 86.52-105.26%. The MOF-polymer monolithic column was successfully used as SPE column for enrichment and determination of UA in Chinese herbal medicine.
Collapse
Affiliation(s)
- Xiaoya Pang
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Baoding 071002, China
| | - Haiyan Liu
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Baoding 071002, China.
| | - Huan Yu
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Baoding 071002, China
| | - Miaomiao Zhang
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Baoding 071002, China
| | - Ligai Bai
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Baoding 071002, China.
| | - Hongyuan Yan
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Baoding 071002, China
| |
Collapse
|
23
|
Simultaneous HPLC-MS determination of 8-hydroxy-2'-deoxyguanosine, 3-hydroxyphenanthrene and 1-hydroxypyrene after online in-tube solid phase microextraction using a graphene oxide/poly(3,4-ethylenedioxythiophene)/polypyrrole composite. Mikrochim Acta 2019; 186:300. [PMID: 31025201 DOI: 10.1007/s00604-019-3429-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/10/2019] [Indexed: 12/30/2022]
Abstract
The exploration of monohydroxy polycyclic aromatic hydrocarbons and 8-hydroxy-2'-deoxyguanosine (8-OHdG) produced by oxidative stress and DNA damage is a powerful and non-invasive tool to study the health risk of exposure to polycyclic aromatic hydrocarbons (PAHs). A nanocomposite prepared from graphene oxide, poly(3,4-ethylenedioxythiophene) and polypyrrole was electrodeposited on the internal surface of a stainless-steel tube for online in-tube solid phase microextraction (IT-SPME) of 8-OHdG, 3-hydroxyphenanthrene and 1-hydroxypyrene from urine. The coating possesses excellent chemical and mechanical stability, high extraction efficiency, good resistance to matrix interference, and a long lifespan. An online IT-SPME-high performance liquid chromatography-mass spectrometry method was developed for the determination of these three metabolite biomarkers in human urine. Figures of merit include (a) enrichment factors of 30-48; (b) low limits of detection (4-41 pg·mL-1 at S/N = 3); (c) wide linear ranges (0.05-50 ng·mL-1); (d) good recoveries from spiked samples (71.6-109.5%); and (e) acceptable repeatability (2.3-14.6%). The method offers the advantages of low cost, simplicity, sensitivity, rapidity and automation. Graphical abstract Schematic illustration of online in-tube solid phase microextraction using graphene oxide/poly(3,4-ethylenedioxythiophene)/polypyrrole composites as adsorbent in a stainless-steel (SS) tube for the enrichment and simultaneous determination of 8-hydroxy-2'-deoxyguanosine, 3-hydroxyphenanthrene and 1-hydroxypyrene prior to HPLC-MS analysis.
Collapse
|
24
|
Goal-directed design of metal–organic frameworks for liquid-phase adsorption and separation. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2017.10.028] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
25
|
Liu D, Zou D, Zhu H, Zhang J. Mesoporous Metal-Organic Frameworks: Synthetic Strategies and Emerging Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1801454. [PMID: 30073756 DOI: 10.1002/smll.201801454] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/25/2018] [Indexed: 05/06/2023]
Abstract
Metal-organic frameworks (MOFs) have attracted much attention over the past two decades due to their highly promising applications not only in the fields of gas storage, separation, catalysis, drug delivery, and sensors, but also in relatively new fields such as electric, magnetic, and optical materials resulting from their extremely high surface areas, open channels and large pore cavities compared with traditional porous materials like carbon and inorganic zeolites. Particularly, MOFs involving pores within the mesoscopic scale possess unique textural properties, leading to a series of research in the design and applications of mesoporous MOFs. Unlike previous Reviews, apart from focusing on recent advances in the synthetic routes, unique characteristics and applications of mesoporous MOFs, this Review also mentions the derivatives, composites, and hierarchical MOF-based systems that contain mesoporosity, and technical boundaries and challenges brought by the drawbacks of mesoporosity. Moreover, this Review subsequently reveals promising perspectives of how recently discovered approaches to different morphologies of MOFs (not necessarily entirely mesoporous) and their corresponding performances can be extended to minimize the shortcomings of mesoporosity, thus providing a wider and brighter scope of future research into mesoporous MOFs, but not just limited to the finite progress in the target substances alone.
Collapse
Affiliation(s)
- Dingxin Liu
- MOE Key Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Dianting Zou
- MOE Key Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Haolin Zhu
- MOE Key Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jianyong Zhang
- MOE Key Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
26
|
Lirio S, Shih Y, Hsiao S, Chen J, Chen H, Liu W, Lin C, Huang H. Monitoring the Effect of Different Metal Centers in Metal–Organic Frameworks and Their Adsorption of Aromatic Molecules using Experimental and Simulation Studies. Chemistry 2018; 24:14044-14047. [DOI: 10.1002/chem.201802343] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/02/2018] [Indexed: 01/25/2023]
Affiliation(s)
- Stephen Lirio
- Department of ChemistryChung Yuan Christian University 200 Chung Pei Rd. Chung-Li District Taoyuan City Taiwan R.O.C
| | - Yung‐Han Shih
- Department of ChemistryChung Yuan Christian University 200 Chung Pei Rd. Chung-Li District Taoyuan City Taiwan R.O.C
| | - Shu‐Ying Hsiao
- Department of ChemistryChung Yuan Christian University 200 Chung Pei Rd. Chung-Li District Taoyuan City Taiwan R.O.C
| | - Jian‐Hong Chen
- Department of ChemistryChung Yuan Christian University 200 Chung Pei Rd. Chung-Li District Taoyuan City Taiwan R.O.C
| | - Hsin‐Tsung Chen
- Department of ChemistryChung Yuan Christian University 200 Chung Pei Rd. Chung-Li District Taoyuan City Taiwan R.O.C
| | - Wan‐Ling Liu
- Department of ChemistryChung Yuan Christian University 200 Chung Pei Rd. Chung-Li District Taoyuan City Taiwan R.O.C
- College of ScienceChung Yuan Christian University 200 Chung Pei Rd. Chung-Li District Taoyuan City Taiwan R.O.C
| | - Chia‐Her Lin
- Department of ChemistryChung Yuan Christian University 200 Chung Pei Rd. Chung-Li District Taoyuan City Taiwan R.O.C
- R&D Center for Membrane TechnologyChung Yuan Christian University 200 Chung Pei Road Chung-Li District Taoyuan City 320 Taiwan R.O.C
| | - Hsi‐Ya Huang
- Department of ChemistryChung Yuan Christian University 200 Chung Pei Rd. Chung-Li District Taoyuan City Taiwan R.O.C
| |
Collapse
|
27
|
|
28
|
Gao G, Li S, Li S, Wang Y, Zhao P, Zhang X, Hou X. A combination of computational−experimental study on metal-organic frameworks MIL-53(Al) as sorbent for simultaneous determination of estrogens and glucocorticoids in water and urine samples by dispersive micro-solid-phase extraction coupled to UPLC-MS/MS. Talanta 2018; 180:358-367. [DOI: 10.1016/j.talanta.2017.12.071] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 12/15/2017] [Accepted: 12/21/2017] [Indexed: 12/26/2022]
|
29
|
Pu M, Guan Z, Ma Y, Wan J, Wang Y, Brusseau ML, Chi H. Synthesis of iron-based metal-organic framework MIL-53 as an efficient catalyst to activate persulfate for the degradation of Orange G in aqueous solution. APPLIED CATALYSIS. A, GENERAL 2018; 549:82-92. [PMID: 29353965 PMCID: PMC5772938 DOI: 10.1016/j.apcata.2017.09.021] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A series of MIL-53(Fe) materials were synthesized using a solvothermal method under different temperature and time conditions and were used as catalysts to activate persulfate and degrade Orange G (OG). Influences of the above conditions on the crystal structure and catalytic behavior were investigated. Degradation of OG under different conditions was evaluated, and the possible activation mechanism was speculated. The results indicate that high synthesis temperature (larger than 170 °C) leads to poor crystallinity and low catalytic activity, while MIL-53(Fe) cannot fully develop at low temperature (100 or 120 °C). The extension of synthesis time from 5 h to 3 d can increase the crystallinity of the samples, but weakened the catalytic activity, which was caused by the reduction of BET surface area and the amount of Fe (II)-coordinative unsaturated sites. Among all the samples, MIL-53(Fe)-A possesses the best crystal structure and catalytic activity. In optimal conditions, OG can be totally decolorized after degradation for 90 min, and a removal rate of 74% for COD was attained after 120 min. The initial solution pH had great influence on OG degradation, with the greatest removal in acidic pH environment. ESR spectra showed that sulfate radical (SO4- ·), hydroxyl radical (OH·), persulfate radical (S2O8- ·), and superoxide radical (O2·) exist in this system under acidic conditions. Furthermore, with the increase of pH, the relative amount of O2· increases while that of OH· and SO4- · decreases, resulting in a reduced oxidizing capacity of the system.
Collapse
Affiliation(s)
- Mengjie Pu
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
- Department of Soil, Water and Environmental Science, School of Earth and Environmental Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Zeyu Guan
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yongwen Ma
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jinquan Wan
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yan Wang
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Mark L. Brusseau
- Department of Soil, Water and Environmental Science, School of Earth and Environmental Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Haiyuan Chi
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
30
|
Maya F, Palomino Cabello C, Ghani M, Turnes Palomino G, Cerdà V. Emerging materials for sample preparation. J Sep Sci 2017; 41:262-287. [DOI: 10.1002/jssc.201700836] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 09/18/2017] [Accepted: 09/18/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Fernando Maya
- Department of Chemistry; University of the Balearic Islands; Palma de Mallorca Spain
| | | | - Milad Ghani
- Department of Chemistry; University of the Balearic Islands; Palma de Mallorca Spain
- Department of Chemistry; Isfahan University of Technology; Isfahan Iran
| | - Gemma Turnes Palomino
- Department of Chemistry; University of the Balearic Islands; Palma de Mallorca Spain
| | - Víctor Cerdà
- Department of Chemistry; University of the Balearic Islands; Palma de Mallorca Spain
| |
Collapse
|
31
|
Chang Z, Dai J, Xie A, He J, Zhang R, Tian S, Yan Y, Li C, Xu W, Shao R. From Lignin to Three-Dimensional Interconnected Hierarchically Porous Carbon with High Surface Area for Fast and Superhigh-Efficiency Adsorption of Sulfamethazine. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b02312] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Zhongshuai Chang
- School
of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng 224051, P.R. China
- School
of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiangdong Dai
- Institute
of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering Jiangsu University, Zhenjiang 212013, China
| | - Atian Xie
- Institute
of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering Jiangsu University, Zhenjiang 212013, China
| | - Jinsong He
- Institute
of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering Jiangsu University, Zhenjiang 212013, China
| | - Ruilong Zhang
- School
of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Sujun Tian
- Institute
of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering Jiangsu University, Zhenjiang 212013, China
| | - Yongsheng Yan
- Institute
of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering Jiangsu University, Zhenjiang 212013, China
| | - Chunxiang Li
- Institute
of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering Jiangsu University, Zhenjiang 212013, China
| | - Wei Xu
- School
of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng 224051, P.R. China
| | - Rong Shao
- School
of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng 224051, P.R. China
| |
Collapse
|
32
|
Tian Y, Feng J, Bu Y, Wang X, Luo C, Sun M. In-situ hydrothermal synthesis of titanium dioxide nanorods on titanium wire for solid-phase microextraction of polycyclic aromatic hydrocarbons. Anal Bioanal Chem 2017; 409:4071-4078. [DOI: 10.1007/s00216-017-0353-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/25/2017] [Accepted: 03/30/2017] [Indexed: 01/03/2023]
|