1
|
Kumar Y, Basu S, Chatterji D, Ghosh A, Jayaraman N, Maiti PK. Self-Assembly of Mycolic Acid in Water: Monolayer or Bilayer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:3140-3156. [PMID: 39882987 DOI: 10.1021/acs.langmuir.4c03743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
The enduring pathogenicity of Mycobacterium tuberculosis can be attributed to its lipid-rich cell wall, with mycolic acids (MAs) being a significant constituent. Different MAs' fluidity and structural adaptability within the bacterial cell envelope significantly influence their physicochemical properties, operational capabilities, and pathogenic potential. Therefore, an accurate conformational representation of various MAs in aqueous media can provide insights into their potential role within the intricate structure of the bacterial cell wall. We have carried out MD simulations of MAs in an aqueous solution and shed light on various structural properties such as thickness, order parameters, area-per-MAs, conformational changes, and principle component (PC) in the single-component and mixture MAs monolayer. The different conformational populations in the monolayer were estimated using the distance-based analysis between the function groups represented as W, U, and Z conformations that lead to the fold of the MAs chain in the monolayer. Additionally, we have also simulated the mixture of alpha-MA (α-MA or AMA), methoxy-MA (MMA), and keto-MA (KMA) with 50.90% AMA, 36.36% MMA, and 12.72% KMA composition. The thickness of the MAs monolayer was observed to range from 5 to 7 nm with an average 820 kg/m3 density for α-MA, MMA, and KMA quantitative agreement with experimental results. The mero chain (long chain), consisting of a functional group at the proximal and distal positions, tends to fold and exhibit a more disordered phase than the short chain. The keto-MA showed the greatest WUZ total conformations (35.32%) with decreasing trend of eZ > eU > aU > aZ folds in both single component and mixture. Our results are in quantitative agreement with the experimental observations. The sZ folds show the lowest conformational probability in monolayer assembly (0.75% in a single component and 1.1% in a mixture). However, eU and aU folds are most probable for AMA and MMA. One striking observation is the abundance of MA conformers beyond the known WUZ convention because of the wide range distribution of intramolecular distances and change in dihedral angles. From a thermodynamic perspective, all mycolic acid monolayers in this study within the microsecond-long simulation, MA molecules self-assembled, and the self-assembled monolayer was found to be stable. The conformation of MAs corresponding to lower free energy minima in the monolayer gives rise to tighter packing and a highly dense self-assembly. Such a highly packed assembly shows higher resistance for drug permeability. Therefore, we concluded that the monolayer formed by AMA will be more densely packed and may cause more resistance for the drug molecules.
Collapse
Affiliation(s)
- Yogendra Kumar
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science (IISc), Bangalore 560012, India
| | - Subhadip Basu
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science (IISc), Bangalore 560012, India
| | - Dipankar Chatterji
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Anirban Ghosh
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | | | - Prabal Kumar Maiti
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science (IISc), Bangalore 560012, India
| |
Collapse
|
2
|
Kulshrestha A, Punnathanam SN, Roy R, Ayappa KG. Cholesterol catalyzes unfolding in membrane-inserted motifs of the pore forming protein cytolysin A. Biophys J 2023; 122:4068-4081. [PMID: 37740492 PMCID: PMC10598289 DOI: 10.1016/j.bpj.2023.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/20/2023] [Accepted: 09/13/2023] [Indexed: 09/24/2023] Open
Abstract
Plasma membrane-induced protein folding and conformational transitions play a central role in cellular homeostasis. Several transmembrane proteins are folded in the complex lipid milieu to acquire a specific structure and function. Bacterial pore forming toxins (PFTs) are proteins expressed by a large class of pathogenic bacteria that exploit the plasma membrane environment to efficiently undergo secondary structure changes, oligomerize, and form transmembrane pores. Unregulated pore formation causes ion imbalance, leading to cell death and infection. Determining the free energy landscape of these membrane-driven-driven transitions remains a challenging problem. Although cholesterol recognition is required for lytic activity of several proteins in the PFT family of toxins, the regulatory role of cholesterol for the α-PFT, cytolysin A expressed by Escherichia coli remains unexplained. In a recent free energy computation, we showed that the β tongue, a critical membrane-inserted motif of the ClyA toxin, has an on-pathway partially unfolded intermediate that refolds into the helix-turn-helix motif of the pore state. To understand the molecular role played by cholesterol, we carry out string-method-based computations in membranes devoid of cholesterol, which reveals an increase of ∼30 times in the free energy barrier for the loss of β sheet secondary structure when compared with membranes containing cholesterol. Specifically, the tyrosine-cholesterol interaction was found to be critical to creating the unfolded intermediate. Cholesterol also increases the packing and hydrophobicity of the bilayer, resulting in enhanced interactions of the bound protein before complete membrane insertion. Our study illustrates that cholesterol is critical to catalyzing and stabilizing the membrane-inserted unfolded state of the β tongue motif of ClyA, opening up fresh insights into cholesterol-assisted unfolding of membrane proteins.
Collapse
Affiliation(s)
- Avijeet Kulshrestha
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka, India
| | - Sudeep N Punnathanam
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka, India
| | - Rahul Roy
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka, India; Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, Karnataka, India
| | - K Ganapathy Ayappa
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka, India.
| |
Collapse
|
3
|
Kulshrestha A, Maurya S, Gupta T, Roy R, Punnathanam SN, Ayappa KG. Conformational Flexibility Is a Key Determinant for the Lytic Activity of the Pore-Forming Protein, Cytolysin A. J Phys Chem B 2023; 127:69-84. [PMID: 36542809 DOI: 10.1021/acs.jpcb.2c05785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Several bacterial infections are mediated by pore-forming toxins (PFTs), a subclass of proteins that oligomerize on mammalian cell membranes forming lytic nanopores. Cytolysin A (ClyA), an α-PFT, undergoes a dramatic conformational change restructuring its two membrane-binding motifs (the β-tongue and the N-terminus helix), during pore formation. A complete molecular picture for this key transition and the driving force behind the secondary structure change upon membrane binding remain elusive. Using all-atom molecular dynamics (MD) simulations of the ClyA monomer and string method based free energy computations with path collective variables, we illustrate that an unfolded β-tongue motif is an on-pathway intermediate during the transition to the helix-turn-helix motif of the protomer. An aggregate of 28 μs of all-atom thermal unfolding MD simulations of wild-type ClyA and its single point mutants reveal that the membrane-binding motifs of the ClyA protein display high structural flexibility in water. However, point mutations in these motifs lead to a distinct reduction in the flexibility, especially in the β-tongue, thereby stabilizing the pretransition secondary structure. Resistance to unfolding was further corroborated by MD simulations of the β-tongue mutant motif in the membrane. Combined with the thermal unfolding simulations, we posit that the β-tongue as well as N-terminal mutants that lower the tendency to unfold and disorder the β-tongue are detrimental to pore formation by ClyA and its lytic activity. Erythrocyte turbidity and vesicle leakage assays indeed reveal a loss of activity for the β-tongue mutant, and delayed kinetics for the N-terminus mutants. On the other hand, a point mutation in the extracellular domain that did not abrogate lytic activity displayed similar unfolding characteristics as the wild type. Thus, attenuation of conformational flexibility in membrane-binding motifs correlates with reduced lytic and leakage activity. Combined with secondary structure changes observed in the membrane bound states, our study shows that the tendency to unfold in the β-tongue region is a critical step in the conformational transition and bistability of the ClyA protein and mutants that disrupt this tendency reduced pore formation. Overall, our finding suggests that inherent flexibility in the protein could play a wider and hitherto unrecognized role in membrane-mediated conformational transitions of PFTs and other membrane protein transformations.
Collapse
Affiliation(s)
- Avijeet Kulshrestha
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Satyaghosh Maurya
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Twinkle Gupta
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Rahul Roy
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India.,Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Sudeep N Punnathanam
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - K Ganapathy Ayappa
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
4
|
Rajapaksha SP, Nawagamuwage SU. Anticorrelated position fluctuation of lipids in forming membrane water pores: molecular dynamics simulations study with dengue virus capsid protein. J Biomol Struct Dyn 2022; 40:11395-11404. [PMID: 34343444 DOI: 10.1080/07391102.2021.1958698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The traffic of molecules into or out of cells is regulated by many membrane-associated mechanisms. Membrane pores are considered as one of the major passage mechanisms, although molecular-level understanding of pore formation is still vague. The opening of a membrane pore depends on many factors, including the influence of some proteins. The ability of the cell-penetrating peptides and supercharged proteins to form membrane pores has been reported. We studied pore formation through dipalmitoylphosphatidylcholine (DPPC) lipid bilayers by supercharged dengue virus capsid (C) protein. Atomistic molecular dynamics simulations confirmed the formation of membrane pores by a combined effect of the C protein and the membrane electric field. Analyses of simulated trajectories showed highly correlated vertical position fluctuations between the Cα atom of the membrane-anchored arginine residues and the phosphorus atoms of the surrounding DPPC lipids. Certain regions of the bilayer were negatively correlated while the others were positively correlated with respect to the fluctuations of the Cα atom of the anchored arginine residues. When positively correlated lipids in one leaflet vertically aligned with the negatively correlated lipids in the other leaflet, a local anticorrelated region was generated by weakening the bilayer. The membrane pore was always formed close to this anticorrelated region. Once formed, the C protein followed the hydrated pathway provided by the water-filled pores to cross the membrane.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Suneth P Rajapaksha
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Sithara U Nawagamuwage
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| |
Collapse
|
5
|
Yang Z, Hua L, Yang M, Li W, Ren Z, Zheng X, Chen H, Long Q, Bai H, Huang W, Ma Y. Polymerized porin as a novel delivery platform for coronavirus vaccine. J Nanobiotechnology 2022; 20:260. [PMID: 35672856 PMCID: PMC9171476 DOI: 10.1186/s12951-022-01469-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 05/20/2022] [Indexed: 11/10/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), seriously threatens human life and health. The correct folding and polymerization of the receptor-binding domain (RBD) protein of coronavirus in Escherichia coli may reduce the cost of SARS-CoV-2 vaccines. In this study, we constructed this nanopore by using the principle of ClyA porin polymerization triggered by the cell membrane. We used surfactants to "pick" the ClyA-RBD nanopore from the bacterial outer membrane. More importantly, the polymerized RBD displayed on the ClyA-RBD polymerized porin (RBD-PP) already displays some correct spatial conformational epitopes that can induce neutralizing antibodies. The nanostructures of RBD-PP can target lymph nodes and promote antigen uptake and processing by dendritic cells, thereby effectively eliciting the production of anti-SARS-CoV-2 neutralizing antibodies, systemic cellular immune responses, and memory T cells. We applied this PP-based vaccine platform to fabricate an RBD-based subunit vaccine against SARS-CoV-2, which will provide a foundation for the development of inexpensive coronavirus vaccines. The development of a novel vaccine delivery system is an important part of innovative drug research. This novel PP-based vaccine platform is likely to have additional applications, including other viral vaccines, bacterial vaccines, tumor vaccines, drug delivery, and disease diagnosis.
Collapse
Affiliation(s)
- Zhongqian Yang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650031, China
| | - Liangqun Hua
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650031, China
- Yunnan University, Kunming, 650091, China
| | - Mengli Yang
- National Kunming High-Level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650031, China
| | - Weiran Li
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650031, China
| | - Zhaoling Ren
- The Second Affiliated Hospital of Kunming Medical University, Kunming, 650033, China
| | - Xiao Zheng
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650031, China
- Yunnan University, Kunming, 650091, China
| | - Haoqian Chen
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650031, China
- Yunnan Minzu University, Kunming, 650504, China
| | - Qiong Long
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650031, China
| | - Hongmei Bai
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650031, China
| | - Weiwei Huang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650031, China.
| | - Yanbing Ma
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650031, China.
| |
Collapse
|
6
|
Ilangumaran Ponmalar I, Sarangi NK, Basu JK, Ayappa KG. Pore Forming Protein Induced Biomembrane Reorganization and Dynamics: A Focused Review. Front Mol Biosci 2021; 8:737561. [PMID: 34568431 PMCID: PMC8459938 DOI: 10.3389/fmolb.2021.737561] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 07/30/2021] [Indexed: 11/13/2022] Open
Abstract
Pore forming proteins are a broad class of pathogenic proteins secreted by organisms as virulence factors due to their ability to form pores on the target cell membrane. Bacterial pore forming toxins (PFTs) belong to a subclass of pore forming proteins widely implicated in bacterial infections. Although the action of PFTs on target cells have been widely investigated, the underlying membrane response of lipids during membrane binding and pore formation has received less attention. With the advent of superresolution microscopy as well as the ability to carry out molecular dynamics (MD) simulations of the large protein membrane assemblies, novel microscopic insights on the pore forming mechanism have emerged over the last decade. In this review, we focus primarily on results collated in our laboratory which probe dynamic lipid reorganization induced in the plasma membrane during various stages of pore formation by two archetypal bacterial PFTs, cytolysin A (ClyA), an α-toxin and listeriolysin O (LLO), a β-toxin. The extent of lipid perturbation is dependent on both the secondary structure of the membrane inserted motifs of pore complex as well as the topological variations of the pore complex. Using confocal and superresolution stimulated emission depletion (STED) fluorescence correlation spectroscopy (FCS) and MD simulations, lipid diffusion, cholesterol reorganization and deviations from Brownian diffusion are correlated with the oligomeric state of the membrane bound protein as well as the underlying membrane composition. Deviations from free diffusion are typically observed at length scales below ∼130 nm to reveal the presence of local dynamical heterogeneities that emerge at the nanoscale-driven in part by preferential protein binding to cholesterol and domains present in the lipid membrane. Interrogating the lipid dynamics at the nanoscale allows us further differentiate between binding and pore formation of β- and α-PFTs to specific domains in the membrane. The molecular insights gained from the intricate coupling that occurs between proteins and membrane lipids and receptors during pore formation are expected to improve our understanding of the virulent action of PFTs.
Collapse
Affiliation(s)
| | - Nirod K. Sarangi
- School of Chemical Science, Dublin City University, Dublin, Ireland
| | - Jaydeep K. Basu
- Department of Physics, Indian Institute of Science, Bangalore, India
| | - K. Ganapathy Ayappa
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
7
|
Kulma M, Anderluh G. Beyond pore formation: reorganization of the plasma membrane induced by pore-forming proteins. Cell Mol Life Sci 2021; 78:6229-6249. [PMID: 34387717 PMCID: PMC11073440 DOI: 10.1007/s00018-021-03914-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/09/2021] [Accepted: 08/03/2021] [Indexed: 12/23/2022]
Abstract
Pore-forming proteins (PFPs) are a heterogeneous group of proteins that are expressed and secreted by a wide range of organisms. PFPs are produced as soluble monomers that bind to a receptor molecule in the host cell membrane. They then assemble into oligomers that are incorporated into the lipid membrane to form transmembrane pores. Such pore formation alters the permeability of the plasma membrane and is one of the most common mechanisms used by PFPs to destroy target cells. Interestingly, PFPs can also indirectly manipulate diverse cellular functions. In recent years, increasing evidence indicates that the interaction of PFPs with lipid membranes is not only limited to pore-induced membrane permeabilization but is also strongly associated with extensive plasma membrane reorganization. This includes lateral rearrangement and deformation of the lipid membrane, which can lead to the disruption of target cell function and finally death. Conversely, these modifications also constitute an essential component of the membrane repair system that protects cells from the lethal consequences of pore formation. Here, we provide an overview of the current knowledge on the changes in lipid membrane organization caused by PFPs from different organisms.
Collapse
Affiliation(s)
- Magdalena Kulma
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1001, Ljubljana, Slovenia.
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1001, Ljubljana, Slovenia
| |
Collapse
|
8
|
Ilangumaran Ponmalar I, Ayappa KG, Basu JK. Bacterial protein listeriolysin O induces nonmonotonic dynamics because of lipid ejection and crowding. Biophys J 2021; 120:3040-3049. [PMID: 34214525 DOI: 10.1016/j.bpj.2021.06.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 01/15/2023] Open
Abstract
Membrane-bound protein complexes involving pore forming toxins (PFTs) released by virulent bacteria are known to form transmembrane pores leading to host cell lysis. Developing alternative strategies against PFT mediated bacterial virulence factors requires an understanding of the cellular membrane response. However, membrane disruption and related lipid reorganization events during attack by PFTs remain largely unexplored. We report counterintuitive and nonmonotonic variations in lipid diffusion, measured using confocal fluorescence correlation spectroscopy, due to interplay of lipid ejection and crowding by membrane-bound oligomers of a prototypical cholesterol-dependent cytolysin, listeriolysin O (LLO). The observed dynamical crossover is correlated with concentration dependent transitions of LLO oligomeric state populations from rings to arc-like pore complexes, predicted using a proposed two-state free area-based diffusion model. At low PFT concentrations, a hitherto unexplored regime of increased lipid diffusivity is attributed to lipid ejection events because of a preponderance of ring-like pore states. At higher protein concentrations in which membrane-inserted arc-like pores dominate, lipid ejection is less efficient and the ensuing crowding results in a lowering of lipid diffusion. These variations in lipid dynamics are corroborated by macroscopic rheological response measurements of PFT bound vesicles. Our study correlates PFT oligomeric state transitions, membrane remodeling, and mechanical property variations, providing unique insights into the pore forming mechanisms of cholesterol-dependent cytolysins.
Collapse
Affiliation(s)
| | - K Ganapathy Ayappa
- Center for BioSystems Science and Engineering Bengaluru, India; Department of Chemical Engineering Bengaluru, India.
| | - Jaydeep K Basu
- Department of Physics, Indian Institute of Science, Bengaluru, India.
| |
Collapse
|
9
|
Yamini G, Kanchi S, Kalu N, Momben Abolfath S, Leppla SH, Ayappa KG, Maiti PK, Nestorovich EM. Hydrophobic Gating and 1/ f Noise of the Anthrax Toxin Channel. J Phys Chem B 2021; 125:5466-5478. [PMID: 34015215 DOI: 10.1021/acs.jpcb.0c10490] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
"Pink" or 1/f noise is a natural phenomenon omnipresent in physics, economics, astrophysics, biology, and even music and languages. In electrophysiology, the stochastic activity of a number of biological ion channels and artificial nanopores could be characterized by current noise with a 1/f power spectral density. In the anthrax toxin channel (PA63), it appears as fast voltage-independent current interruptions between conducting and nonconducting states. This behavior hampers potential development of PA63 as an ion-channel biosensor. On the bright side, the PA63 flickering represents a mesmerizing phenomenon to investigate. Notably, similar 1/f fluctuations are observed in the channel-forming components of clostridial binary C2 and iota toxins, which share functional and structural similarities with the anthrax toxin channel. Similar to PA63, they are evolved to translocate the enzymatic components of the toxins into the cytosol. Here, using high-resolution single-channel lipid bilayer experiments and all-atom molecular dynamic simulations, we suggest that the 1/f noise in PA63 occurs as a result of "hydrophobic gating" at the ϕ-clamp region, the phenomenon earlier observed in several water-filled channels "fastened" inside by the hydrophobic belts. The ϕ-clamp is a narrow "hydrophobic ring" in the PA63 lumen formed by seven or eight phenylalanine residues at position 427, conserved in the C2 and iota toxin channels, which catalyzes protein translocation. Notably, the 1/f noise remains undetected in the F427A PA63 mutant. This finding can elucidate the functional purpose of 1/f noise and its possible role in the transport of the enzymatic components of binary toxins.
Collapse
Affiliation(s)
- Goli Yamini
- Department of Biology, The Catholic University of America, 620 Michigan Avenue, Washington D.C., 20064, United States
| | - Subbarao Kanchi
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru 560012, India.,Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bengaluru 560012, India
| | - Nnanya Kalu
- Department of Biology, The Catholic University of America, 620 Michigan Avenue, Washington D.C., 20064, United States
| | - Sanaz Momben Abolfath
- Department of Biology, The Catholic University of America, 620 Michigan Avenue, Washington D.C., 20064, United States
| | - Stephen H Leppla
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - K Ganapathy Ayappa
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Prabal K Maiti
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bengaluru 560012, India
| | - Ekaterina M Nestorovich
- Department of Biology, The Catholic University of America, 620 Michigan Avenue, Washington D.C., 20064, United States
| |
Collapse
|
10
|
Desikan R, Behera A, Maiti PK, Ayappa KG. Using multiscale molecular dynamics simulations to obtain insights into pore forming toxin mechanisms. Methods Enzymol 2021; 649:461-502. [PMID: 33712196 DOI: 10.1016/bs.mie.2021.01.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pore forming toxins (PFTs) are virulent proteins released by several species, including many strains of bacteria, to attack and kill host cells. In this article, we focus on the utility of molecular dynamics (MD) simulations and the molecular insights gleaned from these techniques on the pore forming pathways of PFTs. In addition to all-atom simulations which are widely used, coarse-grained MARTINI models and structure-based models have also been used to study PFTs. Here, the emphasis is on methods and techniques involved while setting up, monitoring, and evaluating properties from MD simulations of PFTs in a membrane environment. We draw from several case studies to illustrate how MD simulations have provided molecular insights into protein-protein and protein-lipid interactions, lipid dynamics, conformational transitions and structures of both the oligomeric intermediates and assembled pore structures.
Collapse
Affiliation(s)
- Rajat Desikan
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India
| | - Amit Behera
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India
| | - Prabal K Maiti
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bengaluru, India
| | - K Ganapathy Ayappa
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India; Centre for Biosystems Science and Engineering, Indian Institute of Science, Bengaluru, India.
| |
Collapse
|
11
|
Sathyanarayana P, Visweswariah SS, Ayappa KG. Mechanistic Insights into Pore Formation by an α-Pore Forming Toxin: Protein and Lipid Bilayer Interactions of Cytolysin A. Acc Chem Res 2021; 54:120-131. [PMID: 33291882 DOI: 10.1021/acs.accounts.0c00551] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pore forming toxins (PFTs) are the largest class of bacterial toxins playing a central role in bacterial pathogenesis. They are proteins specifically designed to form nanochannels in the membranes of target cells, ultimately resulting in cell death and establishing infection. PFTs are broadly classified as α- and β-PFTs, depending on secondary structures that form the transmembrane channel. A unique feature about this class of proteins is the drastic conformational changes and complex oligomerization pathways that occur upon exposure to the plasma membrane. A molecular understanding of pore formation has implications in designing novel intervention strategies to combat rising antimicrobial resistance, targeted-cancer therapy, as well as designing nanopores for specialized technologies. Central to unraveling the pore formation pathway is the availability of high resolution crystal structures. In this regard, β-toxins are better understood, when compared with α-toxins whose pore forming mechanisms are complicated by an incomplete knowledge of the driving forces for amphiphatic membrane-inserted helices to organize into functional pores. With the publication of the first crystal structure for an α-toxin, cytolysin A (ClyA), in 2009 we embarked on an extensive multiscale study to unravel its pore forming mechanism. This Account represents the collective mechanistic knowledge gained in our laboratories using a variety of experimental and theoretical techniques which include large scale molecular dynamics (MD) simulations, kinetic modeling studies, single-molecule fluorescence imaging, and super-resolution spectroscopy. We reported MD simulations of the ClyA protomer, oligomeric intermediates, and full pore complex in a lipid bilayer and mapped the conformational transitions that accompany membrane binding. Using single-molecule fluorescence imaging, the conformational transition was experimentally verified by analysis of various diffusion states of membrane bound ClyA. Importantly, we have uncovered a hitherto unknown putative cholesterol binding motif in the membrane-inserted helix of ClyA. Distinct binding pockets for cholesterol formed by adjacent membrane-inserted helices are revealed in MD simulations. Cholesterol appears to play a dual role by stabilizing both the membrane-inserted protomer as well as oligomeric intermediates. Molecular dynamics simulations and kinetic modeling studies suggest that the membrane-inserted arcs oligomerize reversibly to form the predominant transmembrane oligomeric intermediates during pore formation. We posit that this mechanistic understanding of the complex action of α-PFTs has implications in unraveling pore assembly across the wider family of bacterial toxins. With emerging antimicrobial resistance, alternate therapies may rely on disrupting pore functionality or oligomerization of these pathogenic determinants utilized by bacteria, and our study includes assessing the potential for dendrimers as pore blockers.
Collapse
Affiliation(s)
- Pradeep Sathyanarayana
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India 560012
| | - Sandhya S. Visweswariah
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India 560012
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India 560012
| | - K. Ganapathy Ayappa
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India 560012
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, India 560012
| |
Collapse
|
12
|
Pore-forming proteins: From defense factors to endogenous executors of cell death. Chem Phys Lipids 2020; 234:105026. [PMID: 33309552 DOI: 10.1016/j.chemphyslip.2020.105026] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023]
Abstract
Pore-forming proteins (PFPs) and small antimicrobial peptides (AMPs) represent a large family of molecules with the common ability to punch holes in cell membranes to alter their permeability. They play a fundamental role as infectious bacteria's defensive tools against host's immune system and as executors of endogenous machineries of regulated cell death in eukaryotic cells. Despite being highly divergent in primary sequence and 3D structure, specific folds of pore-forming domains have been conserved. In fact, pore formation is considered an ancient mechanism that takes place through a general multistep process involving: membrane partitioning and insertion, oligomerization and pore formation. However, different PFPs and AMPs assemble and form pores following different mechanisms that could end up either in the formation of protein-lined or protein-lipid pores. In this review, we analyze the current findings in the mechanism of action of different PFPs and AMPs that support a wide role of membrane pore formation in nature. We also provide the newest insights into the development of state-of-art techniques that have facilitated the characterization of membrane pores. To understand the physiological role of these peptides/proteins or develop clinical applications, it is essential to uncover the molecular mechanism of how they perforate membranes.
Collapse
|
13
|
Molecular Dynamics Study of Lipid and Cholesterol Reorganization Due to Membrane Binding and Pore Formation by Listeriolysin O. J Membr Biol 2020; 253:535-550. [DOI: 10.1007/s00232-020-00148-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 10/10/2020] [Indexed: 12/20/2022]
|
14
|
Varadarajan V, Desikan R, Ayappa KG. Assessing the extent of the structural and dynamic modulation of membrane lipids due to pore forming toxins: insights from molecular dynamics simulations. SOFT MATTER 2020; 16:4840-4857. [PMID: 32421131 DOI: 10.1039/d0sm00086h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Infections caused by many virulent bacterial strains are triggered by the release of pore forming toxins (PFTs), which form oligomeric transmembrane pore complexes on the target plasma membrane. The spatial extent of the perturbation to the surrounding lipids during pore formation is relatively unexplored. Using all-atom molecular dynamics simulations, we investigate the changes in the structure and dynamics of lipids in a 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) lipid bilayer in the presence of contrasting PFTs. Cytolysin A (ClyA), an α toxin with its inserted wedge shaped bundle of inserted α helices, induces significant asymmetry across the membrane leaflets in comparison with α hemolysin (AHL), a β toxin. Despite the differences in hydrophobic mismatch and uniquely different topologies of the two oligomers, perturbations to lipid order as reflected in the tilt angle and order parameters and membrane thinning are short ranged, lying within ∼2.5 nm from the periphery of either pore complex, and commensurate with distances typically associated with van der Waals forces. In contrast, the spatial extent of perturbations to the lipid dynamics extends outward to at least 4 nm for both proteins, and the continuous survival probabilities reveal the presence of a tightly bound shell of lipids in this region. Displacement probability distributions show long tails and the distinctly non-Gaussian features reflect the induced dynamic heterogeneity. A detailed profiling of the protein-lipid contacts with tyrosine, tryptophan, lysine and arginine residues shows increased non-polar contacts in the cytoplasmic leaflet for both PFTs, with a higher number of atomic contacts in the case of AHL in the extracellular leaflet due to the mushroom-like topology of the pore complex. The short ranged nature of the perturbations observed in this simple one component membrane suggests inherent plasticity of membrane lipids enabling the recovery of the structure and membrane fluidity even in the presence of these large oligomeric transmembrane protein assemblies. This observation has implications in membrane repair processes such as budding or vesicle fusion events used to mitigate PFT virulence, where the underlying lipid dynamics and fluidity in the vicinity of the pore complex are expected to play an important role.
Collapse
Affiliation(s)
- Vadhana Varadarajan
- Department of Chemical Engineering, Indian Institute of Science, Bangalore-560012, India.
| | | | | |
Collapse
|
15
|
Reply to Desikan et al.: Micelle formation among various mechanisms of toxin pore formation. Proc Natl Acad Sci U S A 2020; 117:5109-5110. [PMID: 32098852 PMCID: PMC7071846 DOI: 10.1073/pnas.1922488117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
16
|
|
17
|
Desikan R, Maiti PK, Ayappa KG. Predicting interfacial hot-spot residues that stabilize protein-protein interfaces in oligomeric membrane-toxin pores through hydrogen bonds and salt bridges. J Biomol Struct Dyn 2020; 39:20-34. [DOI: 10.1080/07391102.2020.1711806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Rajat Desikan
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, India
| | - Prabal K. Maiti
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore, India
| | - K. Ganapathy Ayappa
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, India
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
| |
Collapse
|
18
|
Abstract
Pneumolysin (PLY), a major virulence factor of Streptococcus pneumoniae, perforates cholesterol-rich lipid membranes. PLY protomers oligomerize as rings on the membrane and then undergo a structural transition that triggers the formation of membrane pores. Structures of PLY rings in prepore and pore conformations define the beginning and end of this transition, but the detailed mechanism of pore formation remains unclear. With atomistic and coarse-grained molecular dynamics simulations, we resolve key steps during PLY pore formation. Our simulations confirm critical PLY membrane-binding sites identified previously by mutagenesis. The transmembrane β-hairpins of the PLY pore conformation are stable only for oligomers, forming a curtain-like membrane-spanning β-sheet. Its hydrophilic inner face draws water into the protein-lipid interface, forcing lipids to recede. For PLY rings, this zone of lipid clearance expands into a cylindrical membrane pore. The lipid plug caught inside the PLY ring can escape by lipid efflux via the lower leaflet. If this path is too slow or blocked, the pore opens by membrane buckling, driven by the line tension acting on the detached rim of the lipid plug. Interestingly, PLY rings are just wide enough for the plug to buckle spontaneously in mammalian membranes. In a survey of electron cryo-microscopy (cryo-EM) and atomic force microscopy images, we identify key intermediates along both the efflux and buckling pathways to pore formation, as seen in the simulations.
Collapse
|
19
|
Correlated protein conformational states and membrane dynamics during attack by pore-forming toxins. Proc Natl Acad Sci U S A 2019; 116:12839-12844. [PMID: 31189600 DOI: 10.1073/pnas.1821897116] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Pore-forming toxins (PFTs) are a class of proteins implicated in a wide range of virulent bacterial infections and diseases. These toxins bind to target membranes and subsequently oligomerize to form functional pores that eventually lead to cell lysis. While the protein undergoes large conformational changes on the bilayer, the connection between intermediate oligomeric states and lipid reorganization during pore formation is largely unexplored. Cholesterol-dependent cytolysins (CDCs) are a subclass of PFTs widely implicated in food poisoning and other related infections. Using a prototypical CDC, listeriolysin O (LLO), we provide a microscopic connection between pore formation, lipid dynamics, and leakage kinetics by using a combination of Förster resonance energy transfer (FRET) and fluorescence correlation spectroscopy (FCS) measurements on single giant unilamellar vesicles (GUVs). Upon exposure to LLO, two distinct populations of GUVs with widely different leakage kinetics emerge. We attribute these differences to the existence of oligomeric intermediates, sampling various membrane-bound conformational states of the protein, and their intimate coupling to lipid rearrangement and dynamics. Molecular dynamics simulations capture the influence of various membrane-bound conformational states on the lipid and cholesterol dynamics, providing molecular interpretations to the FRET and FCS experiments. Our study establishes a microscopic connection between membrane binding and conformational changes and their influence on lipid reorganization during PFT-mediated cell lysis. Additionally, our study provides insights into membrane-mediated protein interactions widely implicated in cell signaling, fusion, folding, and other biomolecular processes.
Collapse
|
20
|
Chinappi M, Cecconi F. Protein sequencing via nanopore based devices: a nanofluidics perspective. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:204002. [PMID: 29595524 DOI: 10.1088/1361-648x/aababe] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Proteins perform a huge number of central functions in living organisms, thus all the new techniques allowing their precise, fast and accurate characterization at single-molecule level certainly represent a burst in proteomics with important biomedical impact. In this review, we describe the recent progresses in the developing of nanopore based devices for protein sequencing. We start with a critical analysis of the main technical requirements for nanopore protein sequencing, summarizing some ideas and methodologies that have recently appeared in the literature. In the last sections, we focus on the physical modelling of the transport phenomena occurring in nanopore based devices. The multiscale nature of the problem is discussed and, in this respect, some of the main possible computational approaches are illustrated.
Collapse
Affiliation(s)
- Mauro Chinappi
- Dipartimento di Ingegneria Industriale, Università di Roma Tor Vergata, via del Politecnico 1, 00133 Roma, Italy
| | | |
Collapse
|
21
|
Agrawal A, Apoorva K, Ayappa KG. Transmembrane oligomeric intermediates of pore forming toxin Cytolysin A determine leakage kinetics. RSC Adv 2017. [DOI: 10.1039/c7ra07304f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Leakage kinetics of Cytolysin A, an α pore forming toxin, occurs through stochastic insertion of oligomeric intermediates or ‘arcs’.
Collapse
Affiliation(s)
- Ayush Agrawal
- Department of Chemical Engineering
- Indian Institute of Science
- Bangalore-560012
- India
| | - K. Apoorva
- Department of Chemical Engineering
- Indian Institute of Technology
- Hyderabad-502205
- India
| | - K. G. Ayappa
- Department of Chemical Engineering
- Indian Institute of Science
- Bangalore-560012
- India
- Centre for Biosystems Science and Engineering
| |
Collapse
|