1
|
Wang C, Shou Z, Xu C, Huo K, Liu W, Liu H, Zan X, Wang Q, Li L. Enhancing the Implant Osteointegration via Supramolecular Co-Assembly Coating with Early Immunomodulation and Cell Colonization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410595. [PMID: 39806935 PMCID: PMC11884616 DOI: 10.1002/advs.202410595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/30/2024] [Indexed: 01/16/2025]
Abstract
Osteointegration, the effective coupling between an implant and bone tissue, is a highly intricate biological process. The initial stages of bone-related immunomodulation and cellular colonization play crucial roles, but have received limited attention. Herein, a novel supramolecular co-assembled coating of strontium (Sr)-doped metal polyphenol networks (MPN) modified with c(RGDfc) is developed and well-characterized, for eliciting an early immunomodulation and cellular colonization. The results showed that the (Sr-MPN)@RGD coating significantly regulated the polarization of macrophages to the M2 phenotype by controllable release of Sr, and promote the initial adhesion of bone marrow mesenchymal stem cells (BMSCs) by RGD presented on MPN. Notably, the (Sr-MPN)@RGD attenuated osteoclast differentiation and oxidative stress as well as enhanced osteoblast differentiation and angiogenesis due to macrophage polarization toward M2 phenotype, which in turn has a profound effect on neighboring cells through paracrine signaling. In vivo results showed that the (Sr-MPN)@RGD coating manifested superior osseointegration and bone maturation to the bare Ti-rod or Ti-rod coated with MPN and Sr-MPN. This work contributed to the design of multifunctional implant coatings that address the complex biological process of osteointegration from the perspective of orchestrating stem cell recruitment with immunomodulatory strategies.
Collapse
Affiliation(s)
- Chenglong Wang
- Department of Orthopaedics SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandong250021China
| | - Zeyu Shou
- Department of OrthopedicsZhuji People's Hospital of Zhejiang ProvinceZhuji Affiliated Hospital of Wenzhou Medical UniversityShaoxingZhejiang311800China
- Department of OrthopedicsThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
| | - Chengwei Xu
- Department of OrthopedicsThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
| | - Kaiyuan Huo
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhou Key Laboratory of Perioperative MedicineWenzhouZhejiang325001China
| | - Wenjie Liu
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhou Key Laboratory of Perioperative MedicineWenzhouZhejiang325001China
- School of Materials Science and EngineeringZhengzhou UniversityZhengzhou450001China
| | - Hao Liu
- School of Materials Science and EngineeringZhengzhou UniversityZhengzhou450001China
| | - Xingjie Zan
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhou Key Laboratory of Perioperative MedicineWenzhouZhejiang325001China
| | - Qing Wang
- Yongkang First People's Hospital of Wenzhou Medical UniversityJinhua321300China
| | - Lianxin Li
- Department of Orthopaedics SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandong250021China
| |
Collapse
|
2
|
Mazaheri O, Lin Z, Xu W, Mohankumar M, Wang T, Zavabeti A, McQuillan RV, Chen J, Richardson JJ, Mumford KA, Caruso F. Assembly of Silicate-Phenolic Network Coatings with Tunable Properties for Controlled Release of Small Molecules. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2413349. [PMID: 39535829 DOI: 10.1002/adma.202413349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/20/2024] [Indexed: 11/16/2024]
Abstract
Engineered coatings are pivotal for tailoring the surface properties and release profiles of materials for applications across diverse areas. However, developing robust coatings that can both encapsulate and controllably release cargo is challenging. Herein, a dynamic covalent coordination assembly strategy is used to engineer robust silicate-based coatings, termed silicate-phenolic networks (SPNs), using sodium metasilicate and phenolic ligands (tannic acid, gallic acid, pyrogallol). The coatings are pH-responsive (owing to the dynamic covalent bonding), and their hydrophobicity can be tuned upon their post-functionalization with hydrophobic gallates (propyl, octyl, lauryl gallates). The potential of the SPN coatings for the controlled release of small molecules, such as urea (a widely used fertilizer), is demonstrated-controlled release of urea in soil is achieved in response to different pHs (up to 7 days) and different hydrophobicity (up to 14 days). Furthermore, leveraging the presence of silicon (within the coating) and post-functionalization of the SPN coatings with metal ions (Fe3+, Cu2+, Zn2+) generates a multipurpose delivery system for the sustained release of micronutrient fertilizers, and silicon and metal ions, over 28 and 14 days, respectively. These SPN coatings have potential applications beyond agriculture, including nutrient delivery, separations, food packaging, and medical device fabrication.
Collapse
Affiliation(s)
- Omid Mazaheri
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
- ARC Research Hub for Smart Fertilisers, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Zhixing Lin
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
- ARC Research Hub for Smart Fertilisers, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Wanjun Xu
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Mirudula Mohankumar
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Tianzheng Wang
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Ali Zavabeti
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
- Department of Chemical Engineering, RMIT University, Melbourne, VIC, 3001, Australia
| | - Rebecca V McQuillan
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
- ARC Research Hub for Smart Fertilisers, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jingqu Chen
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Joseph J Richardson
- Department of Chemical Engineering, RMIT University, Melbourne, VIC, 3001, Australia
| | - Kathryn A Mumford
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
- ARC Research Hub for Smart Fertilisers, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
- ARC Research Hub for Smart Fertilisers, The University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
3
|
Aguilar Perez KM, Nikolaeva V, Maiti B, Sharma V, Qutub S, Hassine MB, Ayach M, Alasmary FA, Khashab NM. Tailoring Core-Shell Metal Coordination for Smart Seed Coatings in Sustainable Agriculture. ACS APPLIED MATERIALS & INTERFACES 2024; 16:65255-65269. [PMID: 39340809 DOI: 10.1021/acsami.4c11981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
The international agriculture and food security sector is grappling with challenges like low crop yields, soil health deficiencies, and inefficient agrochemical use. The application of smart nanotechnology in agriculture, particularly surface functionalization, holds promise but has limited implementation. Engineered nanomaterials used as seed treatments, known as nanopriming, offer a simple technology to improve crop yield and stress tolerance. In this study, a multicomponent platform called Phelm (Phenolic network with a lipid core and metal coordinated shell) is proposed for encapsulating a commercial plant growth regulator, indole-3 acetic acid (IAA). Phelm comprises a hydrophobic solid lipid core, loaded with IAA, and an outer metal coordinated phenolic shell of tannic acid (TA) and Fe3+. The platform aims to treat seeds with encapsulated IAA, which can be controllably released, as well as protect the germination process at high salt concentrations. Phelm showed a remarkable increase in growth parameters of wheat seeds up to 58.6%, despite being irrigated with high concentrations of saltwater (100 mM). These findings suggest that nanopriming of seeds can effectively increase their efficacy even under abiotic stress conditions, which can drastically improve crop yields. Moreover, we envisage that the Phelm core/shell assembly can encapsulate a wide range of agrochemicals and biostimulants to promote sustainable and smart agricultural practices.
Collapse
Affiliation(s)
- Katya M Aguilar Perez
- Smart Hybrid Materials Laboratory (SHMs), Chemistry Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Valeriia Nikolaeva
- Smart Hybrid Materials Laboratory (SHMs), Chemistry Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Bappa Maiti
- Smart Hybrid Materials Laboratory (SHMs), Chemistry Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Vivekanand Sharma
- Smart Hybrid Materials Laboratory (SHMs), Chemistry Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Somayah Qutub
- Smart Hybrid Materials Laboratory (SHMs), Chemistry Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | | | - Maya Ayach
- KAUST Core Laboratories, KAUST, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | | | - Niveen M Khashab
- Smart Hybrid Materials Laboratory (SHMs), Chemistry Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
4
|
Burke B, Fan G, Wasuwanich P, Moore EB, Furst AL. Self-Assembled Nanocoatings Protect Microbial Fertilizers for Climate-Resilient Agriculture. JACS AU 2023; 3:2973-2980. [PMID: 38034965 PMCID: PMC10685410 DOI: 10.1021/jacsau.3c00426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023]
Abstract
Chemical fertilizers have been crucial for sustaining the current global population by supplementing overused farmland to support consistent food production, but their use is unsustainable. Pseudomonas chlororaphis is a nitrogen-fixing bacterium that could be used as a fertilizer replacement, but this microbe is delicate. It is sensitive to stressors, such as freeze-drying and high temperatures. Here, we demonstrate protection of P. chlororaphis from freeze-drying, high temperatures (50 oC), and high humidity using self-assembling metal-phenolic network (MPN) coatings. The composition of the MPN is found to significantly impact its protective efficacy, and with optimized compositions, no viability loss is observed for MPN-coated microbes under conditions where uncoated cells do not survive. Further, we demonstrate that MPN-coated microbes improve germination of seeds by 150% as compared to those treated with fresh P. chlororaphis. Taken together, these results demonstrate the protective capabilities of MPNs against environmental stressors and represent a critical step towards enabling the production and storage of delicate microbes under nonideal conditions.
Collapse
Affiliation(s)
- Benjamin Burke
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts, 02139, United States
| | - Gang Fan
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts, 02139, United States
| | - Pris Wasuwanich
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts, 02139, United States
| | - Evan B. Moore
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts, 02139, United States
| | - Ariel L. Furst
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts, 02139, United States
- Center for
Environmental Health Sciences, Massachusetts
Institute of Technology, Cambridge, Massachusetts, 02139, United States
| |
Collapse
|
5
|
Liu XL, Wang HC, Yang T, Yue XZ, Yi SS. Functions of metal-phenolic networks and polyphenol derivatives in photo(electro)catalysis. Chem Commun (Camb) 2023; 59:13690-13702. [PMID: 37902025 DOI: 10.1039/d3cc04156e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Phenolic compounds are ubiquitous in nature because of their unique physical and chemical properties and wide applications, which have received extensive research attention. Phenolic compounds represented by tannic acid (TA) play an important role at the nanoscale. TA with a polyphenol hydroxyl structure can chemically react with organic or inorganic materials, among which metal-phenolic networks (MPNs) formed by coordination with metal ions and polyphenol derivatives formed by interactions with organic matter, exhibit specific properties and functions, and play key roles in photo(electro)catalysis. In this paper, we first introduce the fundamental properties of TA, then summarize the factors influencing the properties of MPNs and structural transformation of polyphenol-derived materials. Subsequently, the functions of MPNs and polyphenol derivatives in photo(electro)catalysis reactions are summarized, encompassing improving interfacial charge carrier separation, accelerating surface reaction kinetics, and enhancing light absorption. Finally, this article provides a comprehensive overview of the challenges and outlook associated with MPNs. Additionally, it presents novel insights into their stability, mechanistic analysis, synthesis, and applications in photo(electro)catalysis.
Collapse
Affiliation(s)
- Xiao-Long Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Hai-Chao Wang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Tao Yang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Xin-Zheng Yue
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Sha-Sha Yi
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
6
|
Ghasemian M, Kazeminava F, Naseri A, Mohebzadeh S, Abbaszadeh M, Kafil HS, Ahmadian Z. Recent progress in tannic acid based approaches as a natural polyphenolic biomaterial for cancer therapy: A review. Biomed Pharmacother 2023; 166:115328. [PMID: 37591125 DOI: 10.1016/j.biopha.2023.115328] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/01/2023] [Accepted: 08/12/2023] [Indexed: 08/19/2023] Open
Abstract
Significant advancements have been noticed in cancer therapy for decades. Despite this, there are still many critical challenges ahead, including multidrug resistance, drug instability, and side effects. To overcome obstacles of these problems, various types of materials in biomedical research have been explored. Chief among them, the applications of natural compounds have grown rapidly due to their superb biological activities. Natural compounds, especially polyphenolic compounds, play a positive and great role in cancer therapy. Tannic acid (TA), one of the most famous polyphenols, has attracted widespread attention in the field of cancer treatment with unique structural, physicochemical, pharmaceutical, anticancer, antiviral, antioxidant and other strong biological features. This review concentrated on the basic structure along with the important role of TA in tuning oncological signal pathways firstly, and then focused on the use of TA in chemotherapy and preparation of delivery systems including nanoparticles and hydrogels for cancer therapy. Besides, the application of TA/Fe3+ complex coating in photothermal therapy, chemodynamic therapy, combined therapy and theranostics is discussed.
Collapse
Affiliation(s)
- Motaleb Ghasemian
- Department of Medicinal Chemistry, School of Pharmacy, Lorestan University of Medical Science, Khorramabad, Iran
| | - Fahimeh Kazeminava
- Department of Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ashkan Naseri
- Department of Applied Chemistry, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Soheila Mohebzadeh
- Department of Plant Production and Genetics, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Mahmoud Abbaszadeh
- Department of Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Department of Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Zainab Ahmadian
- Department of Pharmaceutics, School of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran.
| |
Collapse
|
7
|
Kinfu HH, Rahman MM. Separation Performance of Membranes Containing Ultrathin Surface Coating of Metal-Polyphenol Network. MEMBRANES 2023; 13:membranes13050481. [PMID: 37233542 DOI: 10.3390/membranes13050481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023]
Abstract
Metal-polyphenol networks (MPNs) are being used as versatile coatings for regulating membrane surface chemistry and for the formation of thin separation layers. The intrinsic nature of plant polyphenols and their coordination with transition metal ions provide a green synthesis procedure of thin films, which enhance membrane hydrophilicity and fouling resistance. MPNs have been used to fabricate tailorable coating layers for high-performance membranes desirable for a wide range of applications. Here, we present the recent progress of the use of MPNs in membrane materials and processes with a special focus on the important roles of tannic acid-metal ion (TA-Mn+) coordination for thin film formation. This review introduces the most recent advances in the fabrication techniques and the application areas of TA-Mn+ containing membranes. In addition, this paper outlines the latest research progress of the TA-metal ion containing membranes and summarizes the role of MPNs in membrane performance. The impact of fabrication parameters, as well as the stability of the synthesized films, is discussed. Finally, the remaining challenges that the field still faces and potential future opportunities are illustrated.
Collapse
Affiliation(s)
- Hluf Hailu Kinfu
- Helmholtz-Zentrum Hereon, Institute of Membrane Research, Max-Planck-Straße 1, 21502 Geesthacht, Germany
| | - Md Mushfequr Rahman
- Helmholtz-Zentrum Hereon, Institute of Membrane Research, Max-Planck-Straße 1, 21502 Geesthacht, Germany
| |
Collapse
|
8
|
He X, Zhu H, Shang J, Li M, Zhang Y, Zhou S, Gong G, He Y, Blocki A, Guo J. Intratumoral synthesis of transformable metal-phenolic nanoaggregates with enhanced tumor penetration and retention for photothermal immunotherapy. Am J Cancer Res 2022; 12:6258-6272. [PMID: 36168635 PMCID: PMC9475467 DOI: 10.7150/thno.74808] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/19/2022] [Indexed: 11/05/2022] Open
Abstract
Rationale: Effective photothermal therapy (PTT) remains a great challenge due to the difficulties of delivering photothermal agents with both deep penetration and prolonged retention at tumor lesion spatiotemporally. Methods: Here, we report an intratumoral self-assembled nanostructured aggregate named FerH, composed of a natural polyphenol and a commercial iron supplement. FerH assemblies possess size-increasing dynamic kinetics as a pseudo-stepwise polymerization from discrete nanocomplexes to microscale aggregates. Results: The nanocomplex can penetrate deeply into solid tumors, followed by prolonged retention (> 6 days) due to the in vivo growth into nanoaggregates in the tumor microenvironment. FerH performs a targeting ablation of tumors with a high photothermal conversion efficiency (60.2%). Importantly, an enhanced immunotherapeutic effect on the distant tumor can be triggered when co-administrated with checkpoint-blockade PD-L1 antibody. Conclusions: Such a therapeutic approach by intratumoral synthesis of metal-phenolic nanoaggregates can be instructive to address the challenges associated with malignant tumors.
Collapse
Affiliation(s)
- Xianglian He
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Hongfu Zhu
- Collage of Material Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jiaojiao Shang
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Meifeng Li
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China.,Department of Biomass Chemistry and Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yaoyao Zhang
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China.,Key Laboratory of Birth Defects and Related of Women and Children of Ministry of Education, Department of Pediatrics, The Reproductive Medical Center, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shicheng Zhou
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China.,Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Guidong Gong
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yunxiang He
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Anna Blocki
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong (CUHK), Shatin, Hong Kong SAR, China
| | - Junling Guo
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China.,State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China.,Bioproducts Institute, Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
9
|
Wasuwanich P, Fan G, Burke B, Furst AL. Metal-phenolic networks as tuneable spore coat mimetics. J Mater Chem B 2022; 10:7600-7606. [PMID: 35670267 DOI: 10.1039/d2tb00717g] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bacillus subtilis are important probiotic microbes currently formulated for delivery as spores, but their ability to germinate in the gut remains debatable. To optimize their application, cells should be delivered in their vegetative state, but the sensitivity of B. subtilis prevents this. Through the application of self-assembled metal-phenolic network (MPN) cellular coatings, B. subtilis are protected from lyophilization stresses. These MPNs are an important class of self-assembled materials comprised of polyphenols and metal ions, and the efficacy of MPN protection was found to be dependent on the MPN components used for assembly. Both the size of the polyphenol and stability of the metal-phenol coordination were important factors that influenced their cellular protection; the smallest polyphenol, gallic acid, and the most stable chelated ion, FeIII, were found to provide the highest level of protection. Further, delivery to the gut involves exposure to acidic conditions in the form of stomach acid and intestinal fluid. MPN coatings rapidly disassemble upon mild acid treatment but were found to protect B. subtilis from the negative impacts of the acid. Overall, optimized MPNs were found to protect vegetative B. subtilis cells from lyophilization stress and enable a more complete understanding of the role of each component in MPNs.
Collapse
Affiliation(s)
- Pris Wasuwanich
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Gang Fan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Benjamin Burke
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Ariel L Furst
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
10
|
Fan G, Cottet J, Rodriguez-Otero MR, Wasuwanich P, Furst AL. Metal-Phenolic Networks as Versatile Coating Materials for Biomedical Applications. ACS APPLIED BIO MATERIALS 2022; 5:4687-4695. [PMID: 35535998 DOI: 10.1021/acsabm.2c00136] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Polyphenols are naturally derived organic compounds that have long been used as food additives, antioxidants, and adhesives owing to their intrinsic physicochemical properties. Recently, there has been growing interest in the fabrication of coordination networks based on the self-assembly of polyphenols and metal ions, termed metal-phenolic networks (MPNs), for multiple biological applications including bioimaging, drug delivery, and cell encapsulation. The as-synthesized MPN complexes feature pH responsiveness, controllable size and rigidity, and tunable permeability based on the choice of polyphenol-metal ion pairs. The aim of this Review is to introduce the physicochemical properties of MPNs, highlight their recent biological applications in cancer theranostics and single-cell encapsulation, and discuss the future utility of MPNs for biomedical applications.
Collapse
Affiliation(s)
- Gang Fan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jonathan Cottet
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mariela R Rodriguez-Otero
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemical Engineering, University of Puerto Rico, Mayagüez 00681, Puerto Rico
| | - Pris Wasuwanich
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ariel L Furst
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
11
|
Geng H, Zhong QZ, Li J, Lin Z, Cui J, Caruso F, Hao J. Metal Ion-Directed Functional Metal-Phenolic Materials. Chem Rev 2022; 122:11432-11473. [PMID: 35537069 DOI: 10.1021/acs.chemrev.1c01042] [Citation(s) in RCA: 143] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Metal ions are ubiquitous in nature and play significant roles in assembling functional materials in fields spanning chemistry, biology, and materials science. Metal-phenolic materials are assembled from phenolic components in the presence of metal ions through the formation of metal-organic complexes. Alkali, alkali-earth, transition, and noble metal ions as well as metalloids interacting with phenolic building blocks have been widely exploited to generate diverse hybrid materials. Despite extensive studies on the synthesis of metal-phenolic materials, a comprehensive summary of how metal ions guide the assembly of phenolic compounds is lacking. A fundamental understanding of the roles of metal ions in metal-phenolic materials engineering will facilitate the assembly of materials with specific and functional properties. In this review, we focus on the diversity and function of metal ions in metal-phenolic material engineering and emerging applications. Specifically, we discuss the range of underlying interactions, including (i) cation-π, (ii) coordination, (iii) redox, and (iv) dynamic covalent interactions, and highlight the wide range of material properties resulting from these interactions. Applications (e.g., biological, catalytic, and environmental) and perspectives of metal-phenolic materials are also highlighted.
Collapse
Affiliation(s)
- Huimin Geng
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, and the State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong 250100, China
| | - Qi-Zhi Zhong
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, and the State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong 250100, China.,Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jianhua Li
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Zhixing Lin
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, and the State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong 250100, China
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, and the State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
12
|
Shen R, Bai Q, Li Y, Guo Y, Zhang P. Influence of ionic strength and surfactant concentration on the alkane contaminant desorption in solution: A molecular dynamics simulation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Rapid assembly of colorless antimicrobial and anti-odor coatings from polyphenols and silver. Sci Rep 2022; 12:2071. [PMID: 35136104 PMCID: PMC8826873 DOI: 10.1038/s41598-022-05553-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/13/2022] [Indexed: 11/08/2022] Open
Abstract
The development of antimicrobial fabrics and textiles that can sustainably inhibit a broad spectrum of microbes is crucial for protecting against pathogens in various environments. However, engineering antimicrobial textiles is challenging due to issues with discoloration and inhibited breathability, the use of harmful or harsh reagents and synthesis conditions, and complex and/or time-consuming processing. Herein, we develop a facile and rapid approach to deposit antimicrobial coatings using universally adherent plant polyphenols and antimicrobial silver ions. Importantly, the coatings are colorless, thin (< 10 nm), rapidly assembled (< 20 min), and can be deposited via immersion or spraying. We demonstrate that these metal-phenolic coatings on textiles can inhibit lipid-enveloped viruses over one thousand times more efficiently than coatings composed of other metal ions, while maintaining their efficacy even after 5 washes. Moreover, the coatings also inhibit Gram positive and negative bacteria, and fungi, and can prevent odors on clothes for at least 10 washes. Collectively, the ease of synthesis, use of simple and safe precursors, and amenability to at-home and industrial application suggests that the coatings will find practical application in various settings.
Collapse
|
14
|
Wang Z, Gao J, Zhu L, Meng J, He F. Tannic acid-based functional coating: surface engineering of membranes for oil-in-water emulsion separation. Chem Commun (Camb) 2022; 58:12629-12641. [DOI: 10.1039/d2cc05102h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent progress in the tannic acid-based functional coating for surface engineering of membranes toward oil-in-water emulsion separation is summarized.
Collapse
Affiliation(s)
- Zhenxing Wang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| | - Jie Gao
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| | - Lin Zhu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| | - Jinxuan Meng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| | - Fang He
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| |
Collapse
|
15
|
Kim N, Lee I, Choi Y, Ryu J. Molecular design of heterogeneous electrocatalysts using tannic acid-derived metal-phenolic networks. NANOSCALE 2021; 13:20374-20386. [PMID: 34731231 DOI: 10.1039/d1nr05901g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Electrochemistry could play a critical role in the transition to a more sustainable society by enabling the carbon-neutral production and use of various chemicals as well as efficient use of renewable energy resources. A prerequisite for the practical application of various electrochemical energy conversion and storage technologies is the development of efficient and robust electrocatalysts. Recently, molecularly designed heterogeneous catalysts have drawn great attention because they combine the advantages of both heterogeneous solid and homogeneous molecular catalysts. In particular, recently emerged metal-phenolic networks (MPNs) show promise as electrocatalysts for various electrochemical reactions owing to their unique features. They can be easily synthesized under mild conditions, making them eco-friendly, form uniform and conformal thin films on various kinds of substrates, accommodate various metal ions in a single-atom manner, and have excellent charge-transfer ability. In this minireview, we summarize the development of various MPN-based electrocatalysts for diverse electrochemical reactions, such as the hydrogen evolution reaction, the oxygen evolution reaction, the CO2 reduction reaction, and the N2 reduction reaction. We believe that this article provides insight into molecularly designable heterogeneous electrocatalysts based on MPNs and guidelines for broadening the applications of MPNs as electrocatalysts.
Collapse
Affiliation(s)
- Nayeong Kim
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
- Emergent Hydrogen Technology R&D Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Inhui Lee
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
- Emergent Hydrogen Technology R&D Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yuri Choi
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
- Emergent Hydrogen Technology R&D Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jungki Ryu
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
- Emergent Hydrogen Technology R&D Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
16
|
Liu F, Liu X, Chen F, Fu Q. Mussel-inspired chemistry: A promising strategy for natural polysaccharides in biomedical applications. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101472] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
17
|
Tardy BL, Mattos BD, Otoni CG, Beaumont M, Majoinen J, Kämäräinen T, Rojas OJ. Deconstruction and Reassembly of Renewable Polymers and Biocolloids into Next Generation Structured Materials. Chem Rev 2021; 121:14088-14188. [PMID: 34415732 PMCID: PMC8630709 DOI: 10.1021/acs.chemrev.0c01333] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Indexed: 12/12/2022]
Abstract
This review considers the most recent developments in supramolecular and supraparticle structures obtained from natural, renewable biopolymers as well as their disassembly and reassembly into engineered materials. We introduce the main interactions that control bottom-up synthesis and top-down design at different length scales, highlighting the promise of natural biopolymers and associated building blocks. The latter have become main actors in the recent surge of the scientific and patent literature related to the subject. Such developments make prominent use of multicomponent and hierarchical polymeric assemblies and structures that contain polysaccharides (cellulose, chitin, and others), polyphenols (lignins, tannins), and proteins (soy, whey, silk, and other proteins). We offer a comprehensive discussion about the interactions that exist in their native architectures (including multicomponent and composite forms), the chemical modification of polysaccharides and their deconstruction into high axial aspect nanofibers and nanorods. We reflect on the availability and suitability of the latter types of building blocks to enable superstructures and colloidal associations. As far as processing, we describe the most relevant transitions, from the solution to the gel state and the routes that can be used to arrive to consolidated materials with prescribed properties. We highlight the implementation of supramolecular and superstructures in different technological fields that exploit the synergies exhibited by renewable polymers and biocolloids integrated in structured materials.
Collapse
Affiliation(s)
- Blaise L. Tardy
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland
| | - Bruno D. Mattos
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland
| | - Caio G. Otoni
- Department
of Physical Chemistry, Institute of Chemistry, University of Campinas, P.O. Box 6154, Campinas, São Paulo 13083-970, Brazil
- Department
of Materials Engineering, Federal University
of São Carlos, Rod. Washington Luís, km 235, São
Carlos, São Paulo 13565-905, Brazil
| | - Marco Beaumont
- School
of Chemistry and Physics, Queensland University
of Technology, 2 George
Street, Brisbane, Queensland 4001, Australia
- Department
of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Vienna, A-3430 Tulln, Austria
| | - Johanna Majoinen
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland
| | - Tero Kämäräinen
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland
| | - Orlando J. Rojas
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland
- Bioproducts
Institute, Department of Chemical and Biological Engineering, Department
of Chemistry and Department of Wood Science, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
18
|
Zhang Z, Xie L, Ju Y, Dai Y. Recent Advances in Metal-Phenolic Networks for Cancer Theranostics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100314. [PMID: 34018690 DOI: 10.1002/smll.202100314] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/15/2021] [Indexed: 06/12/2023]
Abstract
Nanomedicine integrates different functional materials to realize the customization of carriers, aiming at increasing the cancer therapeutic efficacy and reducing the off-target toxicity. However, efforts on developing new drug carriers that combine precise diagnosis and accurate treatment have met challenges of uneasy synthesis, poor stability, difficult metabolism, and high cytotoxicity. Metal-phenolic networks (MPNs), making use of the coordination between phenolic ligands and metal ions, have emerged as promising candidates for nanomedicine, most notably through the service as multifunctional theranostic nanoplatforms. MPNs present unique properties, such as rapid preparation, negligible cytotoxicity, and pH responsiveness. Additionally, MPNs can be further modified and functionalized to meet specific application requirements. Here, the classification of polyphenols is first summarized, followed by the introduction of the properties and preparation strategies of MPNs. Then, their recent advances in biomedical sciences including bioimaging and anti-tumor therapies are highlighted. Finally, the main limitations, challenges, and outlooks regarding MPNs are raised and discussed.
Collapse
Affiliation(s)
- Zhan Zhang
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, SAR, 999078, China
| | - Lisi Xie
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, SAR, 999078, China
| | - Yi Ju
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Yunlu Dai
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, SAR, 999078, China
| |
Collapse
|
19
|
Kadaoluwa Pathirannahalage SP, Meftahi N, Elbourne A, Weiss ACG, McConville CF, Padua A, Winkler DA, Costa Gomes M, Greaves TL, Le TC, Besford QA, Christofferson AJ. Systematic Comparison of the Structural and Dynamic Properties of Commonly Used Water Models for Molecular Dynamics Simulations. J Chem Inf Model 2021; 61:4521-4536. [PMID: 34406000 DOI: 10.1021/acs.jcim.1c00794] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Water is a unique solvent that is ubiquitous in biology and present in a variety of solutions, mixtures, and materials settings. It therefore forms the basis for all molecular dynamics simulations of biological phenomena, as well as for many chemical, industrial, and materials investigations. Over the years, many water models have been developed, and it remains a challenge to find a single water model that accurately reproduces all experimental properties of water simultaneously. Here, we report a comprehensive comparison of structural and dynamic properties of 30 commonly used 3-point, 4-point, 5-point, and polarizable water models simulated using consistent settings and analysis methods. For the properties of density, coordination number, surface tension, dielectric constant, self-diffusion coefficient, and solvation free energy of methane, models published within the past two decades consistently show better agreement with experimental values compared to models published earlier, albeit with some notable exceptions. However, no single model reproduced all experimental values exactly, highlighting the need to carefully choose a water model for a particular study, depending on the phenomena of interest. Finally, machine learning algorithms quantified the relationship between the water model force field parameters and the resulting bulk properties, providing insight into the parameter-property relationship and illustrating the challenges of developing a water model that can accurately reproduce all properties of water simultaneously.
Collapse
Affiliation(s)
- Sachini P Kadaoluwa Pathirannahalage
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.,Laboratoire de Chimie, Ecole Normale Supérieure de Lyon, CNRS, Lyon 69342, France
| | - Nastaran Meftahi
- ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Aaron Elbourne
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Alessia C G Weiss
- Leibniz-Institut für Polymerforschung e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Chris F McConville
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.,Institute for Frontier Materials, Deakin University, Geelong, Victoria 3220, Australia
| | - Agilio Padua
- Laboratoire de Chimie, Ecole Normale Supérieure de Lyon, CNRS, Lyon 69342, France
| | - David A Winkler
- School of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia.,Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,School of Pharmacy, University of Nottingham, Nottingham NG7 2QL, U.K
| | | | - Tamar L Greaves
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Tu C Le
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Quinn A Besford
- Leibniz-Institut für Polymerforschung e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Andrew J Christofferson
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.,ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
20
|
Pan S, Richardson JJ, Christofferson AJ, Besford QA, Zheng T, Wood BJ, Duan X, Jara Fornerod MJ, McConville CF, Yarovsky I, Guldin S, Jiang L, Caruso F. Fluorinated Metal-Organic Coatings with Selective Wettability. J Am Chem Soc 2021; 143:9972-9981. [PMID: 34170661 DOI: 10.1021/jacs.1c04396] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Surface chemistry is a major factor that determines the wettability of materials, and devising broadly applicable coating strategies that afford tunable and selective surface properties required for next-generation materials remains a challenge. Herein, we report fluorinated metal-organic coatings that display water-wetting and oil-repelling characteristics, a wetting phenomenon different from responsive wetting induced by external stimuli. We demonstrate this selective wettability with a library of metal-organic coatings using catechol-based coordination and silanization (both fluorinated and fluorine-free), enabling sensing through interfacial reconfigurations in both gaseous and liquid environments, and establish a correlation between the coating wettability and polarity of the liquids. This selective wetting performance is substrate-independent, spontaneous, durable, and reversible and occurs over a range of polar and nonpolar liquids (60 studied). These results provide insight into advanced liquid-solid interactions and a pathway toward tuning interfacial affinities and realizing robust, selective superwettability according to the surrounding conditions.
Collapse
Affiliation(s)
- Shuaijun Pan
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Joseph J Richardson
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | - Quinn A Besford
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Tian Zheng
- Materials Characterisation and Fabrication Platform, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Barry J Wood
- Centre for Microscopy & Microanalysis, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Xiaofei Duan
- School of Chemistry, TrACEES Platform, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | - Irene Yarovsky
- School of Engineering, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Stefan Guldin
- Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
21
|
Jeong Y, Kang SM. Universal Surface Coating with a Non-Phenolic Molecule, Sulfonated Pyrene. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7227-7236. [PMID: 34058825 DOI: 10.1021/acs.langmuir.1c00784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nature-inspired small molecules such as catecholamines and polyphenols have gained a great deal of attention because of the exceptional surface-coating property that is applicable to many diverse substrates. Many researchers have conducted studies to expand molecular pools with surface-coating properties, but previous reports have still been limited to phenolic molecules as surface-coating agents. In this study, we describe for the first time the material-independent coating properties of nonphenolic molecules, namely, sulfonated pyrenes with ZrIV ions. Owing to the binding capability with several oxygen-containing ligands, ZrIV can be used for the molecular assembly of sulfonated pyrenes. We also report on the mixing of multiple sulfonated pyrenes and ZrIV results in cross-linked complexes that can coat diverse solid substrates. The resulting coating can serve as a platform for grafting functional polysaccharides.
Collapse
Affiliation(s)
- Yeonwoo Jeong
- Department of Chemistry, Chungbuk National University, Chungbuk 28644, Republic of Korea
| | - Sung Min Kang
- Department of Chemistry, Chungbuk National University, Chungbuk 28644, Republic of Korea
| |
Collapse
|
22
|
One-step synthesis of nitrogen-grafted copper-gallic acid for enhanced methylene blue removal. Sci Rep 2021; 11:12021. [PMID: 34103604 PMCID: PMC8187462 DOI: 10.1038/s41598-021-91484-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 05/26/2021] [Indexed: 11/17/2022] Open
Abstract
Nitrogen-grafting through the addition of glycine (Gly) was performed on a metal- phenolic network (MPN) of copper (Cu2+) and gallic acid (GA) to increase its adsorption capacity. Herein, we reported a one-step synthesis method of MPN, which was developed according to the metal–ligand complexation principle. The nitrogen grafted CuGA (Ng-CuGA) MPN was obtained by reacting Cu2+, GA, and Gly in an aqueous solution at a molar ratio of 1:1:1 and a pH of 8. Several physicochemical measurements, such as Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), N2 sorption, X-ray diffraction (XRD), and thermal gravimetry analysis (TGA), were done on Ng-CuGA to elucidate its characteristics. The analysis revealed that the Ng-CuGA has non-uniform spherical shaped morphology with a pore volume of 0.56 cc/g, a pore size of 23.25 nm, and thermal stability up to 205 °C. The applicational potential of the Ng-CuGA was determined based on its adsorption capacity against methylene blue (MB). The Ng-CuGA was able to adsorb 190.81 mg MB per g adsorbent at a pH of 6 and temperature of 30 °C, which is 1.53 times higher than the non-grafted CuGA. Detailed assessment of Ng-CuGA adsorption properties revealed their pH- and temperature-dependent nature. The adsorption capacity and affinity were found to decrease at a higher temperature, demonstrating the exothermic adsorption behavior.
Collapse
|
23
|
Xie W, Guo Z, Zhao L, Wei Y. Metal-phenolic networks: facile assembled complexes for cancer theranostics. Theranostics 2021; 11:6407-6426. [PMID: 33995665 PMCID: PMC8120219 DOI: 10.7150/thno.58711] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/26/2021] [Indexed: 12/19/2022] Open
Abstract
In recent years, metal-phenolic networks (MPNs) have attracted increasing attention for the engineering of multi-functional platforms because of their easy fabrication processes, excellent physicochemical properties, outstanding biocompatibility, and promising theranostic applications. In this review, we summarize recent progress in the design, synthesis, shape-control, biocompatibility evaluation, and potential theranostic applications of MPNs, especially for cancer theranostics. First, we provide an overview of various MPN systems, relevant self-assembly procedures, and shape-controllable preparation. The in vitro and in vivo biocompatibility evaluation of MPNs is also discussed, including co-incubation viability, adhesion, bio-distribution, and inflammation. Finally, we highlight the significant achievements of various MPNs for cancer theranostics, such as tumor imaging, drug delivery, photothermal therapy, radiotherapy, and chemo- and photo-dynamic therapy. This review provides a comprehensive background on the design and controllable synthesis, in vitro and in vivo biocompatibility evaluation, applications of MPNs as cancer theranostic agents, and presents an overview of the most up-to-date achievements in this field.
Collapse
Affiliation(s)
- Wensheng Xie
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Zhenhu Guo
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Lingyun Zhao
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
24
|
Yun G, Kang DG, Rheem HB, Lee H, Han SY, Park J, Cho WK, Han SM, Choi IS. Reversed Anionic Hofmeister Effect in Metal-Phenolic-Based Film Formation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:15552-15557. [PMID: 33325235 DOI: 10.1021/acs.langmuir.0c02928] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Although metal-phenolic species have emerged as one of the versatile material-independent-coating materials, providing attractive tools for interface engineering, mechanistic understanding of their film formation and growth still remains largely unexplored. Especially, the anions have been overlooked despite their high concentration in the coating solution. Considering that the anions are critical in the reactivity of metal-organic complex and the formation and/or property of functional materials, we investigated the anionic effects on the characteristics of film formation, such as film thickness and properties, in the Fe3+-tannic acid coating. We found that the film characteristics were strongly dictated by the counteranions (e.g., SO42-, Cl-, and Br-) of the Fe3+ ion. Specifically, the film thickness and properties (i.e., mechanical modulus, permeability, and stability) followed the reversed anionic Hofmeister series (Br- > Cl- > SO42-). Mechanistic studies suggested that more chaotropic anions, such as Br-, might induce a more widely extended structure of the Fe3+-TA complexes in the coating solution, leading to thicker, harder, but more porous films. The reversed anionic Hofmeister effect was further confirmed by the additive effects of various sodium salts (NaF, NaCl, NaBr, and NaClO4).
Collapse
Affiliation(s)
- Gyeongwon Yun
- Center for Cell-Encapsulation Research, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Dong Gyu Kang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Hyeong Bin Rheem
- Center for Cell-Encapsulation Research, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Hojae Lee
- Center for Cell-Encapsulation Research, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Sang Yeong Han
- Center for Cell-Encapsulation Research, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Joohyouck Park
- Center for Cell-Encapsulation Research, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Woo Kyung Cho
- Department of Chemistry, Chungnam National University, Daejeon 34134, Korea
| | - Seung Min Han
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Insung S Choi
- Center for Cell-Encapsulation Research, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| |
Collapse
|
25
|
Lin G, Cortez-Jugo C, Ju Y, Besford QA, Ryan TM, Pan S, Richardson JJ, Caruso F. Microemulsion-Assisted Templating of Metal-Stabilized Poly(ethylene glycol) Nanoparticles. Biomacromolecules 2020; 22:612-619. [PMID: 33337863 DOI: 10.1021/acs.biomac.0c01463] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Poly(ethylene glycol) (PEG) is well known to endow nanoparticles (NPs) with low-fouling and stealth-like properties that can reduce immune system clearance in vivo, making PEG-based NPs (particularly sub-100 nm) of interest for diverse biomedical applications. However, the preparation of sub-100 nm PEG NPs with controllable size and morphology is challenging. Herein, we report a strategy based on the noncovalent coordination between PEG-polyphenolic ligands (PEG-gallol) and transition metal ions using a water-in-oil microemulsion phase to synthesize sub-100 nm PEG NPs with tunable size and morphology. The metal-phenolic coordination drives the self-assembly of the PEG-gallol/metal NPs: complexation between MnII and PEG-gallol within the microemulsions yields a series of metal-stabilized PEG NPs, including 30-50 nm solid and hollow NPs, depending on the MnII/gallol feed ratio. Variations in size and morphology are attributed to the changes in hydrophobicity of the PEG-gallol/MnII complexes at varying MnII/gallol ratios based on contact angle measurements. Small-angle X-ray scattering analysis, which is used to monitor the particle size and intermolecular interactions during NP evolution, reveals that ionic interactions are the dominant driving force in the formation of the PEG-gallol/MnII NPs. pH and cytotoxicity studies, and the low-fouling properties of the PEG-gallol/MnII NPs confirm their high biocompatibility and functionality, suggesting that PEG polyphenol-metal NPs are promising systems for biomedical applications.
Collapse
Affiliation(s)
- Gan Lin
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and The Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Christina Cortez-Jugo
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and The Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yi Ju
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and The Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Quinn A Besford
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and The Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.,Leibniz Institute for Polymer Research, Hohe Straße 6, Dresden 01069, Germany
| | - Timothy M Ryan
- Australian Synchrotron, ANSTO, 800 Blackburn Rd., Clayton, Victoria 3168, Australia
| | - Shuaijun Pan
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and The Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Joseph J Richardson
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and The Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and The Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
26
|
Weber F, Sagstuen E, Zhong QZ, Zheng T, Tiainen H. Tannic Acid Radicals in the Presence of Alkali Metal Salts and Their Impact on the Formation of Silicate-Phenolic Networks. ACS APPLIED MATERIALS & INTERFACES 2020; 12:52457-52466. [PMID: 33180456 PMCID: PMC7735676 DOI: 10.1021/acsami.0c16946] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/09/2020] [Indexed: 06/11/2023]
Abstract
Polyphenolic molecules have become attractive building blocks for bioinspired materials due to their adhesive characteristics, capacity to complex ions, redox chemistry, and biocompatibility. For the formation of tannic acid (TA) surface modifications based on silicate-phenolic networks, a high ionic strength is required. In this study, we investigated the effects of NaCl, KCl, and LiCl on the formation of TA coatings and compared it to the coating formation of pyrogallol (PG) using a quartz-crystal microbalance. We found that the substitution of NaCl with KCl inhibited the TA coating formation through the high affinity of K+ to phenolic groups resulting in complexation of TA. Assessment of the radical formation of TA by electron paramagnetic resonance spectroscopy showed that LiCl resulted in hydrolysis of TA forming gallic acid radicals. Further, we found evidence for interactions of LiCl with the Siaq crosslinker. In contrast, the coating formation of PG was only little affected by the substitution of NaCl with LiCl or KCl. Our results demonstrate the interaction potential between alkali metal salts and phenolic compounds and highlight their importance in the continuous deposition of silicate-phenolic networks. These findings can be taken as guidance for future biomedical applications of silicate-phenolic networks involving monovalent ions.
Collapse
Affiliation(s)
- Florian Weber
- Department
of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo 0317, Norway
| | - Einar Sagstuen
- Department
of Physics, University of Oslo, Oslo 0317, Norway
| | - Qi-Zhi Zhong
- Centre
of Excellence in Convergent Bio-Nano Science and Technology, Department
of Chemical Engineering, The University
of Melbourne, Melbourne 3010, Australia
| | - Tian Zheng
- Materials
Characterisation and Fabrication Platform, Department of Chemical
Engineering, The University of Melbourne, Melbourne 3010, Australia
| | - Hanna Tiainen
- Department
of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo 0317, Norway
| |
Collapse
|
27
|
Xiang L, Zhang J, Wang W, Gong L, Zhang L, Yan B, Zeng H. Nanomechanics of π-cation-π interaction with implications for bio-inspired wet adhesion. Acta Biomater 2020; 117:294-301. [PMID: 33007483 DOI: 10.1016/j.actbio.2020.09.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 12/14/2022]
Abstract
Cation-π interactions play a vital role in modulating various biological processes, e.g., potassium-selective channel, protein folding and adhesion of marine organism. Previous studies mainly focus on binary cation-π interaction, whereas due to the complexity of biological systems and surrounding environments, a single cation is often in close proximity with more than one π-conjugated unit, which could exhibit essentially different binding behavior. Herein, the first experimental evidence of ternary π-cation-π interaction is reported through direct nanomechanical force measurement in a model π-conjugated poly(catechol) (PC) system coexisting with K+. Ternary π-cation-π interactions can bridge π-conjugated moieties, resulting in robust adhesion and promoting PC assembly and deposition. Particularly, these ternary complexes are discovered to transit to binary binding pairs by increasing K+ concentration, undermining adhesion and assembly due to lack of bridging. The π-cation-π binding strength follows the trend of NMe4+ > K+ > Na+ > Li+. Employing the π-cation-π interaction, a deposition strategy to fabricate π-conjugated moiety based adhesive coatings on different substrates is realized. Our findings provide useful insights in engineering wet adhesives and coatings with reversible adhesion properties, and more broadly, with implications on rationalizing biological assembly.
Collapse
Affiliation(s)
- Li Xiang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Jiawen Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Wenda Wang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Lu Gong
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Ling Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Bin Yan
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada; College of Light Industry, Textile & Food Engineering, Sichuan University, Chengdu 610065, China
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada.
| |
Collapse
|
28
|
Yan W, Shi M, Dong C, Liu L, Gao C. Applications of tannic acid in membrane technologies: A review. Adv Colloid Interface Sci 2020; 284:102267. [PMID: 32966965 DOI: 10.1016/j.cis.2020.102267] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/05/2020] [Accepted: 09/05/2020] [Indexed: 01/26/2023]
Abstract
Today, membrane technologies play a big role in chemical industry, especially in separation engineering. Tannic acid, one of the most famous polyphenols, has attracted widespread interest in membrane society. In the past several years, researches on the applications of tannic acid in membrane technologies have grown rapidly. However, there has been lack of a comprehensive review for now. Here, we summarize the recent developments in this field for the first time. We comb the history of tannic acid and introduce the properties of tannic acid firstly, and then we turn our focus onto the applications of membrane surface modification, interlayers and selective layers construction and mixed matrix membrane development. In those previous works, tannic acid has been demonstrated to be capable of making a great contribution to the membrane science and technology. Especially in membrane surface/interface engineering (such as the construction of superhydrophilic and antifouling surfaces and polymer/nanoparticle interfaces with high compatibility) and development of thin film composite membranes with high permselectivity (such as developing thin film composite membranes with ultrahigh flux and high rejection), tannic acid can play a positive and great role. Despite this, there are still many critical challenges lying ahead. We believe that more exciting progress will be made in addressing these challenges in the future.
Collapse
Affiliation(s)
- Wentao Yan
- Center for Membrane Separation and Water Science & Technology, Zhejiang University of Technology, Hangzhou 310014, PR China; College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Mengqi Shi
- School of Chemical Engineering, Northwest University, Xi'an 710069, PR China.
| | - Chenxi Dong
- Research Institute of Shannxi Yanchang Petroleum (Group) Co. Ltd., Xi'an 710075, PR China
| | - Lifen Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Congjie Gao
- Center for Membrane Separation and Water Science & Technology, Zhejiang University of Technology, Hangzhou 310014, PR China; College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| |
Collapse
|
29
|
Revealing the main factors and two-way interactions contributing to food discolouration caused by iron-catechol complexation. Sci Rep 2020; 10:8288. [PMID: 32427917 PMCID: PMC7237488 DOI: 10.1038/s41598-020-65171-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/24/2020] [Indexed: 11/29/2022] Open
Abstract
Fortification of food with iron is considered to be an effective approach to counter the global health problem caused by iron deficiency. However, reactivity of iron with the catechol moiety of food phenolics leads to discolouration and impairs bioavailability. In this study, we investigated the interplay between intrinsic and extrinsic factors on food discolouration caused by iron-catechol complexation. To this end, a three-level fractional factorial design was implemented. Absorbance spectra were analysed using statistical methods, including PCA, HCA, and ANOVA. Furthermore, a direct link between absorbance spectra and stoichiometry of the iron-catechol complexes was confirmed by ESI-Q-TOF-MS. All statistical methods confirm that the main effects affecting discolouration were type of iron salt, pH, and temperature. Additionally, several two-way interactions, such as type of iron salt × pH, pH × temperature, and type of iron salt × concentration significantly affected iron-catechol complexation. Our findings provide insight into iron-phenolic complexation-mediated discolouration, and facilitate the design of iron-fortified foods.
Collapse
|
30
|
Zhang W, Besford QA, Christofferson AJ, Charchar P, Richardson JJ, Elbourne A, Kempe K, Hagemeyer CE, Field MR, McConville CF, Yarovsky I, Caruso F. Cobalt-Directed Assembly of Antibodies onto Metal-Phenolic Networks for Enhanced Particle Targeting. NANO LETTERS 2020; 20:2660-2666. [PMID: 32155075 DOI: 10.1021/acs.nanolett.0c00295] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The orientation-specific immobilization of antibodies onto nanoparticles, to preserve antibody-antigen recognition, is a key challenge in developing targeted nanomedicines. Herein, we report the targeting ability of metal-phenolic network (MPN)-coated gold nanoparticles with surface-physisorbed antibodies against respective antigens. The MPN coatings were self-assembled from metal ions (FeIII, CoII, CuII, NiII, or ZnII) cross-linked with tannic acid. Upon physisorption of antibodies, all particle systems exhibited enhanced association with target antigens, with CoII systems demonstrating more than 2-fold greater association. These systems contained more metal atoms distributed in a way to specifically interact with antibodies, which were investigated by molecular dynamics simulations. A model antibody fragment crystallizable (Fc) region in solution with CoII-tannic acid complexes revealed that the solvent-exposed CoII can directly coordinate to the histidine-rich portion of the Fc region. This one-pot interaction suggests anchoring of the antibody Fc region to the MPN on nanoparticles, allowing for enhanced targeting.
Collapse
Affiliation(s)
- Wenjie Zhang
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Quinn A Besford
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | - Patrick Charchar
- School of Engineering, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Joseph J Richardson
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Aaron Elbourne
- Nanobiotechnology Laboratory, School of Science, RMIT University, Melbourne Victoria 3001, Australia
| | - Kristian Kempe
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Christoph E Hagemeyer
- NanoBiotechnology Laboratory, Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria 3004, Australia
| | - Matthew R Field
- RMIT Microscopy & Microanalysis Facility, RMIT University, Melbourne, Victoria 3001, Australia
| | - Chris F McConville
- College of Science, Engineering and Health, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Irene Yarovsky
- School of Engineering, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
31
|
Sekhar KPC, Swain DK, Holey SA, Bojja S, Nayak RR. Unsaturation and Polar Head Effect on Gelation, Bioactive Release, and Cr/Cu Removal Ability of Glycolipids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3080-3088. [PMID: 32134673 DOI: 10.1021/acs.langmuir.0c00349] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Designing of multifunctional soft and smart materials from natural sources is a useful strategy for producing safer chemicals having potential applications in biomedical research and pharmaceutical industries. Herein, eight glycolipids with variation in unsaturation of hydrophobic tail and polar headgroup size were designed. The effect of unsaturation in the tail group and headgroup size on gelation ability, and mechanical and thermal stability of glycolipid hydro/organogels was studied to understand structure and property relationship. Glycolipids are functional amphiphilic molecules having potential applications in the field of drug delivery and metal removal. The encapsulation capacity and kinetic release behavior of hydrophobic/hydrophilic bioactives like curcumin/riboflavin from the hydrophobic/hydrophilic pockets of glycolipids hydro/organogels was examined. A significant observation was that the glucamine moiety of the glycolipid headgroup plays a vital role in removal of Cr and Cu from oil/water biphasic systems. Typical functions of the glycolipid hydrogels are metal chelation and enzyme-triggered release behavior, enabled them as promising material for Cr, Cu removal from edible oils and controlled release of water soluble/insoluble bioactives.
Collapse
Affiliation(s)
- Kanaparedu P C Sekhar
- Centre for Lipid Science and Technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Deepak Kumar Swain
- Centre for Lipid Science and Technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - Snehal Ashokrao Holey
- Centre for Lipid Science and Technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sreedhar Bojja
- Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - Rati Ranjan Nayak
- Centre for Lipid Science and Technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
32
|
Guo Z, Richardson JJ, Kong B, Liang K. Nanobiohybrids: Materials approaches for bioaugmentation. SCIENCE ADVANCES 2020; 6:eaaz0330. [PMID: 32206719 PMCID: PMC7080450 DOI: 10.1126/sciadv.aaz0330] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/20/2019] [Indexed: 05/10/2023]
Abstract
Nanobiohybrids, synthesized by integrating functional nanomaterials with living systems, have emerged as an exciting branch of research at the interface of materials engineering and biological science. Nanobiohybrids use synthetic nanomaterials to impart organisms with emergent properties outside their scope of evolution. Consequently, they endow new or augmented properties that are either innate or exogenous, such as enhanced tolerance against stress, programmed metabolism and proliferation, artificial photosynthesis, or conductivity. Advances in new materials design and processing technologies made it possible to tailor the physicochemical properties of the nanomaterials coupled with the biological systems. To date, many different types of nanomaterials have been integrated with various biological systems from simple biomolecules to complex multicellular organisms. Here, we provide a critical overview of recent developments of nanobiohybrids that enable new or augmented biological functions that show promise in high-tech applications across many disciplines, including energy harvesting, biocatalysis, biosensing, medicine, and robotics.
Collapse
Affiliation(s)
- Ziyi Guo
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Graduate School of Biomedical Engineering, and Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Joseph J. Richardson
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and the Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Biao Kong
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200438 P. R. China
- Corresponding author. (B.K.); (K.L.)
| | - Kang Liang
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Graduate School of Biomedical Engineering, and Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia
- Corresponding author. (B.K.); (K.L.)
| |
Collapse
|
33
|
Chen M, Yin K, Zhang G, Liu H, Ning B, Dai Y, Wang X, Li H, Hao J. Magnetic and Biocompatible Fullerenol/Fe(III) Microcapsules with Antioxidant Activities. ACS APPLIED BIO MATERIALS 2020; 3:358-368. [PMID: 35019452 DOI: 10.1021/acsabm.9b00857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fullerene C60 (refers to C60 hereafter) has a unique three-dimensional architecture and intriguing physicochemical properties. It has great potential applications in materials chemistry and life science. However, a big obstacle for the widespread application of C60 lies in the limited strategies to make supramolecular structures with diverse morphologies and functions. Herein, we report a strategy to prepare C60-based, magnetic microcapsules which can be used as external antioxidants to effectively attenuate oxidative stress. The microcapsules are composed of fullerenol, a highly water-soluble C60 multiadduct, and iron ions (Fe3+) released from a rusty nail. They can be easily obtained through coordination between the hydrophilic functional groups in fullerenol and Fe3+ with polystyrene microspheres as templates. The fullerenol/Fe3+ microcapsules have good colloidal stability both in water and serum. Their biocompatibility has been confirmed by in vitro tests on HEK293 and Hela cells. Electron spin resonance measurements indicate that the fullerenol/Fe3+ microcapsules can effectively scavenge hydroxyl radicals (OH·-) produced by H2O2, which greatly improves the living environment of the cells. The fullerenol/Fe3+ microcapsules exhibit ferromagnetic properties and can respond to the external magnetic field, enabling magnetic manipulation, and/or separation in practical applications.
Collapse
Affiliation(s)
- Mengjun Chen
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials, Shandong University, Ministry of Education, Jinan 250100, China.,School of Qilu Transportation, Shandong University, Jinan 250002, China
| | - Keyang Yin
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Geping Zhang
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials, Shandong University, Ministry of Education, Jinan 250100, China
| | - Huizhong Liu
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials, Shandong University, Ministry of Education, Jinan 250100, China
| | - Bo Ning
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials, Shandong University, Ministry of Education, Jinan 250100, China
| | - Youyong Dai
- School of Physics, Shandong University, Jinan 250100, China
| | - Xiaojing Wang
- Department of Cell Biology and Neurobiology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Hongguang Li
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials, Shandong University, Ministry of Education, Jinan 250100, China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials, Shandong University, Ministry of Education, Jinan 250100, China
| |
Collapse
|
34
|
Guo J, Mattos BD, Tardy BL, Moody VM, Xiao G, Ejima H, Cui J, Liang K, Richardson JJ. Porous Inorganic and Hybrid Systems for Drug Delivery: Future Promise in Combatting Drug Resistance and Translation to Botanical Applications. Curr Med Chem 2019; 26:6107-6131. [PMID: 29984645 DOI: 10.2174/0929867325666180706111909] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Porous micro- and nanoparticles have the capacity to encapsulate a large quantity of therapeutics, making them promising delivery vehicles for a variety of applications. This review aims to highlight the latest development of inorganic and hybrid (inorganic/ organic) particles for drug delivery with an additional emphasis on combatting drug resistant cancer. We go one step further and discuss delivery applications beyond medicinal delivery, as there is generally a translation from medicinal delivery to botanic delivery after a short lag time. METHODS We undertook a search of relevant peer-reviewed publications. The quality of the relevant papers was appraised using standard tools. The characteristics of the papers are described herein, and the relevant material and therapeutic properties are discussed. RESULTS We discuss 4 classes of porous particles in terms of drug delivery and theranostics. We specifically focus on silica, calcium carbonate, metal-phenolic network, and metalorganic framework particles. Other relevant biomedically relevant applications are discussed and we highlight outstanding therapeutic results in the relevant literature. CONCLUSION The findings of this review confirm the importance of studying and utilizing porous particles for therapeutic delivery. Moreover, we show that the properties of porous particles that make them promising for medicinal drug delivery also make them promising candidates for agro-industrial applications.
Collapse
Affiliation(s)
- Junling Guo
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, Shandong University, Jinan, Shandong 250100, China.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, 02115, United States
| | - Bruno D Mattos
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P. O. Box 16300, FI-00076, Finland
| | - Blaise L Tardy
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P. O. Box 16300, FI-00076, Finland
| | - Vanessa M Moody
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Pennsylvania 19104, United States
| | - Gao Xiao
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, 02115, United States.,Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Hirotaka Ejima
- Department of Materials Engineering, the University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, Shandong University, Jinan, Shandong 250100, China
| | - Kang Liang
- School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales, Australia.,Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia.,Australian Centre for NanoMedicine, The University of New South Wales, Sydney, New South Wales, Australia
| | - Joseph J Richardson
- Department of Materials Engineering, the University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan.,Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
35
|
Xiang L, Zhang J, Gong L, Han L, Zhang C, Yan B, Liu J, Zeng H. Probing the Interaction Forces of Phenol/Amine Deposition in Wet Adhesion: Impact of Phenol/Amine Mass Ratio and Surface Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:15639-15650. [PMID: 31424228 DOI: 10.1021/acs.langmuir.9b02022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mussel-inspired phenol/amine deposition in wet adhesion provides a cost-effective strategy to readily fabricate functional coatings for a wide range of applications. The adhesion of phenol/amine to different substrates and the cohesion between phenol/amine are believed to play critical roles during the deposition process. However, the understanding on the correlation between the deposition capability and interaction behavior involved in the coating formation still remains incomplete, which limits further developing phenol/amine-based functional materials and coatings. In this work, we correlated the interaction forces between two phenol/amine coatings and between phenol/amine coating and different substrate surfaces with the deposition capability of phenol/amine using surface forces apparatus and atomic force microscopy. The mass ratio of phenol and amine was found to significantly influence the deposition behavior through regulating the surface properties of phenol/amine aggregates' cohesion strength between phenol/amine coatings. Furthermore, the strong adhesion measured between phenol/amine coating and substrates with varying surface chemistry was demonstrated to be able to effectively initiate the surface-independent phenol/amine deposition as well as the continuous growth of phenol/amine coatings. This work provides useful insights into the fundamental understanding of the interactions and deposition mechanism during phenol/amine deposition process, with implications for developing advanced phenol/amine-based coating materials for a wider range of applications.
Collapse
Affiliation(s)
- Li Xiang
- Department of Chemical and Materials Engineering , University of Alberta , Edmonton T6G 1H9 , Alberta , Canada
| | - Jiawen Zhang
- Department of Chemical and Materials Engineering , University of Alberta , Edmonton T6G 1H9 , Alberta , Canada
| | - Lu Gong
- Department of Chemical and Materials Engineering , University of Alberta , Edmonton T6G 1H9 , Alberta , Canada
| | - Linbo Han
- Department of Chemical and Materials Engineering , University of Alberta , Edmonton T6G 1H9 , Alberta , Canada
- College of Health Science and Environmental Engineering , Shenzhen Technology University , Shenzhen 518118 , China
| | - Chao Zhang
- Department of Chemical and Materials Engineering , University of Alberta , Edmonton T6G 1H9 , Alberta , Canada
| | - Bin Yan
- Department of Chemical and Materials Engineering , University of Alberta , Edmonton T6G 1H9 , Alberta , Canada
- College of Biomass Science and Technology , Sichuan University , Chengdu 610065 , China
| | - Jifang Liu
- The Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou 510700 , Guangdong , China
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering , University of Alberta , Edmonton T6G 1H9 , Alberta , Canada
| |
Collapse
|
36
|
Shen YJ, Fang LF, Yan Y, Yuan JJ, Gan ZQ, Wei XZ, Zhu BK. Metal-organic composite membrane with sub-2 nm pores fabricated via interfacial coordination. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.05.070] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
37
|
Weber F, Liao W, Barrantes A, Edén M, Tiainen H. Silicate-Phenolic Networks: Coordination-Mediated Deposition of Bioinspired Tannic Acid Coatings. Chemistry 2019; 25:9870-9874. [PMID: 31132189 PMCID: PMC6772174 DOI: 10.1002/chem.201902358] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Indexed: 01/29/2023]
Abstract
Surface modification with polyphenolic molecules has been pursued in biomedical materials owing to their antioxidant, anti-inflammatory, and antimicrobial characteristics. Recently, the use of silicic acid (Siaq ) as a mediator for efficient surface deposition of tannic acid (TA) was reported, but the postulated Si-TA polymeric networks were not characterized. Herein, we present unambiguous evidence for silicate-TA networks that involve Si-O-C motifs by using solid-state NMR spectroscopy, further supported by XPS and ToF-SIMS. By using QCM-D we demonstrate the advantages of Siaq , compared to using transition-metal ions, to improve the coating efficiency under mildly acidic conditions. The presented homogenous coating buildup and validated applicability in inorganic buffers broadens the use of TA for surface modifications in technological and biomedical applications.
Collapse
Affiliation(s)
- Florian Weber
- Department of BiomaterialsInstitute of Clinical DentistryUniversity of Oslo, P.O. Box 1109 Blindern0317OsloNorway
| | - Wei‐Chih Liao
- Department of Materials and Environmental ChemistryStockholm University10691StockholmSweden
| | - Alejandro Barrantes
- Department of BiomaterialsInstitute of Clinical DentistryUniversity of Oslo, P.O. Box 1109 Blindern0317OsloNorway
| | - Mattias Edén
- Department of Materials and Environmental ChemistryStockholm University10691StockholmSweden
| | - Hanna Tiainen
- Department of BiomaterialsInstitute of Clinical DentistryUniversity of Oslo, P.O. Box 1109 Blindern0317OsloNorway
| |
Collapse
|
38
|
Guo J, Suma T, Richardson JJ, Ejima H. Modular Assembly of Biomaterials Using Polyphenols as Building Blocks. ACS Biomater Sci Eng 2019; 5:5578-5596. [DOI: 10.1021/acsbiomaterials.8b01507] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Junling Guo
- Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu 610065, China
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| | - Tomoya Suma
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Nakacho, Koganei-shi, Tokyo 184-8588, Japan
| | - Joseph J. Richardson
- Department of Materials Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hirotaka Ejima
- Department of Materials Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
39
|
Yun G, Richardson JJ, Biviano M, Caruso F. Tuning the Mechanical Behavior of Metal-Phenolic Networks through Building Block Composition. ACS APPLIED MATERIALS & INTERFACES 2019; 11:6404-6410. [PMID: 30719910 DOI: 10.1021/acsami.8b19988] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Metal-phenolic networks (MPNs) are an emerging class of functional metal-organic materials with a high degree of modularity in terms of the choice of metal ion, phenolic ligand, and assembly method. Although various applications, including drug delivery, imaging, and catalysis, have been studied with MPNs, in the form of films and capsules, the influence of metals and organic building blocks on their mechanical properties is poorly understood. Herein, we demonstrate that the mechanical properties of MPNs can be tuned through choice of the metal ion and/or phenolic ligand. Specifically, the pH of the metal ion solution and/or size of phenolic ligand influence the Young's modulus ( EY) of MPNs (higher pHs and smaller ligands lead to higher EY). This study systematically investigates the roles of both metal ions and ligands on the mechanical properties of metal-organic materials and provides new insight into engineering the mechanical properties of coordination films.
Collapse
|
40
|
Shao C, Meng L, Wang M, Cui C, Wang B, Han CR, Xu F, Yang J. Mimicking Dynamic Adhesiveness and Strain-Stiffening Behavior of Biological Tissues in Tough and Self-Healable Cellulose Nanocomposite Hydrogels. ACS APPLIED MATERIALS & INTERFACES 2019; 11:5885-5895. [PMID: 30652853 DOI: 10.1021/acsami.8b21588] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Although self-healing gels with structural resemblance to biological tissues attract great attention in biomedical fields, it remains a dilemma for combination between fast self-healing properties and high mechanical toughness. On the basis of the design of dynamic reversible cross-links, we incorporate rigid tannic acid-coated cellulose nanocrystal (TA@CNC) motifs into the poly(vinyl alcohol) (PVA)-borax dynamic networks for the fabrication of a high toughness and rapidly self-healing nanocomposite (NC) hydrogel, together with dynamically adhesive and strain-stiffening properties that are particularly indispensable for practical applications in soft tissue substitutes. The results demonstrate that the obtained NC gels present a highly interconnected network, where flexible PVA chains wrap onto the rigid TA@CNC motifs and form the dynamic TA@CNC-PVA clusters associated by hydrogen bonds, affording the critical mechanical toughness. The synergetic interactions between borate-diol bonds and hydrogen bonds impart a typical self-healing behavior into the NC gels, allowing the dynamic cross-linked networks to undergo fast rearrangement in the time scale of seconds. Moreover, the obtained NC hydrogels not only mimic the main feature of biological tissues with the unique strain-stiffening behavior but also display unique dynamic adhesiveness to nonporous and porous substrates. It is expected that this versatile approach opens up a new prospect for the rational design of multifunctional cellulosic hydrogels with remarkable performance to expand their applications.
Collapse
Affiliation(s)
- Changyou Shao
- Beijing Key Laboratory of Lignocellulosic Chemistry , Beijing Forestry University , No 35, Tsinghua East Road , Haidian District, Beijing 100083 , China
| | - Lei Meng
- Beijing Key Laboratory of Lignocellulosic Chemistry , Beijing Forestry University , No 35, Tsinghua East Road , Haidian District, Beijing 100083 , China
| | - Meng Wang
- Beijing Key Laboratory of Lignocellulosic Chemistry , Beijing Forestry University , No 35, Tsinghua East Road , Haidian District, Beijing 100083 , China
| | - Chen Cui
- Beijing Key Laboratory of Lignocellulosic Chemistry , Beijing Forestry University , No 35, Tsinghua East Road , Haidian District, Beijing 100083 , China
| | - Bo Wang
- Beijing Key Laboratory of Lignocellulosic Chemistry , Beijing Forestry University , No 35, Tsinghua East Road , Haidian District, Beijing 100083 , China
| | - Chun-Rui Han
- Beijing Key Laboratory of Lignocellulosic Chemistry , Beijing Forestry University , No 35, Tsinghua East Road , Haidian District, Beijing 100083 , China
| | - Feng Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry , Beijing Forestry University , No 35, Tsinghua East Road , Haidian District, Beijing 100083 , China
| | - Jun Yang
- Beijing Key Laboratory of Lignocellulosic Chemistry , Beijing Forestry University , No 35, Tsinghua East Road , Haidian District, Beijing 100083 , China
| |
Collapse
|
41
|
Zhang W, Christofferson AJ, Besford QA, Richardson JJ, Guo J, Ju Y, Kempe K, Yarovsky I, Caruso F. Metal-dependent inhibition of amyloid fibril formation: synergistic effects of cobalt-tannic acid networks. NANOSCALE 2019; 11:1921-1928. [PMID: 30644497 DOI: 10.1039/c8nr09221d] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Metal-phenolic networks (MPNs) have received widespread interest owing to their modular incorporation of functional metal ions and phenolic ligands. However, the interaction between MPNs and biomolecules is still relatively unexplored. Herein, we studied the effects of MPN-coated gold nanoparticles on amyloid fibril formation (which is associated with Alzheimer's disease) as a function of the metal ion in the MPN systems. All coated particles examined inhibited amyloid formation, with cobalt(ii) MPN-coated particles exhibiting the highest inhibition activity (90%). Molecular dynamics simulations and quantum mechanics calculations suggested that the geometry of the exposed cobalt coordination site in the cobalt-tannic acid networks facilitates its interactions with histidine and methionine residues in the amyloid beta peptides. Furthermore, the unique structure of cobalt MPNs may enable a wider variety of biomedical applications.
Collapse
Affiliation(s)
- Wenjie Zhang
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Rahim MA, Kristufek SL, Pan S, Richardson JJ, Caruso F. Phenolische Bausteine für die Assemblierung von Funktionsmaterialien. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807804] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Md. Arifur Rahim
- ARC Centre of Excellence in Convergent Bio-Nano Science, and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australien
| | - Samantha L. Kristufek
- ARC Centre of Excellence in Convergent Bio-Nano Science, and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australien
| | - Shuaijun Pan
- ARC Centre of Excellence in Convergent Bio-Nano Science, and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australien
| | - Joseph J. Richardson
- ARC Centre of Excellence in Convergent Bio-Nano Science, and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australien
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science, and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australien
| |
Collapse
|
43
|
Rahim MA, Kristufek SL, Pan S, Richardson JJ, Caruso F. Phenolic Building Blocks for the Assembly of Functional Materials. Angew Chem Int Ed Engl 2018; 58:1904-1927. [DOI: 10.1002/anie.201807804] [Citation(s) in RCA: 213] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Md. Arifur Rahim
- ARC Centre of Excellence in Convergent Bio-Nano Science, and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Samantha L. Kristufek
- ARC Centre of Excellence in Convergent Bio-Nano Science, and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Shuaijun Pan
- ARC Centre of Excellence in Convergent Bio-Nano Science, and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Joseph J. Richardson
- ARC Centre of Excellence in Convergent Bio-Nano Science, and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science, and Technology, and the Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| |
Collapse
|
44
|
Lee H, Kim WI, Youn W, Park T, Lee S, Kim TS, Mano JF, Choi IS. Iron Gall Ink Revisited: In Situ Oxidation of Fe(II)-Tannin Complex for Fluidic-Interface Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1805091. [PMID: 30302842 DOI: 10.1002/adma.201805091] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 09/15/2018] [Indexed: 06/08/2023]
Abstract
The ancient wisdom found in iron gall ink guides this work to a simple but advanced solution to the molecular engineering of fluidic interfaces. The Fe(II)-tannin coordination complex, a precursor of the iron gall ink, transforms into interface-active Fe(III)-tannin species, by oxygen molecules, which form a self-assembled layer at the fluidic interface spontaneously but still controllably. Kinetic studies show that the oxidation rate is directed by the counteranion of Fe(II) precursor salts, and FeCl2 is found to be more effective than FeSO4 -an ingredient of iron gall ink-in the interfacial-film fabrication. The optimized protocol leads to the formation of micrometer-thick, free-standing films at the air-water interface by continuously generating Fe(III)-tannic acid complexes in situ. The durable films formed are transferable, self-healable, pliable, and postfunctionalizable, and are hardened further by transfer to the basic buffer. This O2 -instructed film formation can be applied to other fluidic interfaces that have high O2 level, demonstrated by emulsion stabilization and concurrent capsule formation at the oil-water interface with no aid of surfactants. The system, inspired by the iron gall ink, provides new vistas on interface engineering and related materials science.
Collapse
Affiliation(s)
- Hojae Lee
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, Korea
| | - Won Il Kim
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, Korea
| | - Wongu Youn
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, Korea
| | - Taegyun Park
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, Korea
| | - Sangmin Lee
- Department of Mechanical Engineering, KAIST, Daejeon, 34141, Korea
| | - Taek-Soo Kim
- Department of Mechanical Engineering, KAIST, Daejeon, 34141, Korea
| | - João F Mano
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Insung S Choi
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, Korea
| |
Collapse
|
45
|
Xu LQ, Neoh KG, Kang ET. Natural polyphenols as versatile platforms for material engineering and surface functionalization. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2018.08.005] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
46
|
Li K, Dai Y, Chen W, Yu K, Xiao G, Richardson JJ, Huang W, Guo J, Liao X, Shi B. Self-Assembled Metal-Phenolic Nanoparticles for Enhanced Synergistic Combination Therapy against Colon Cancer. ACTA ACUST UNITED AC 2018; 3:e1800241. [PMID: 32627378 DOI: 10.1002/adbi.201800241] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/31/2018] [Indexed: 02/05/2023]
Abstract
Engineering functional nanomaterials to have both high therapeutic efficacy and minimal side-effects has become a promising strategy for next-generation cancer treatments. Herein, an adenosine triphosphate (ATP) depletion and reactive oxygen species-enhanced combination chemotherapy platform is introduced whereby therapeutic samarium (Sm3+ ) ions and (-)-epicatechin (EC) are integrated via a metal-phenolic network (SmIII -EC). The independent pathway between Sm3+ and EC can achieve a synergistic therapeutic effect through the mitochondrial dysfunction process. SmIII -EC nanoparticles cause a significant reduction of viability of C26 murine colon carcinoma cells while with lower systemic toxic effects on normal cell lines. SmIII -EC nanoparticles are used to directly compare with a clinic anticancer drug 5-fluorouracil. SmIII -EC nanoparticles not only decrease the tumor volume but also do not affect the body weight of mice and normal organs, showing significant advantages over clinic counterpart. These facts suggest that SmIII -EC nanoparticles represent a clinically promising candidate for colon cancer treatment with a targeted therapeutic effect and minimum side toxicity.
Collapse
Affiliation(s)
- Ke Li
- Department of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Yunlu Dai
- Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
| | - Wen Chen
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Kang Yu
- Department of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Gao Xiao
- Department of Environmental Science and Engineering, College of Environment and Resources, Fuzhou University, Fuzhou, 350108, China.,Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, 02115, USA
| | - Joseph J Richardson
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Wen Huang
- Laboratory of Ethnopharmacology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Junling Guo
- Department of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China.,Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, 02115, USA
| | - Xuepin Liao
- Department of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Bi Shi
- Department of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
47
|
Park T, Kim WI, Kim BJ, Lee H, Choi IS, Park JH, Cho WK. Salt-Induced, Continuous Deposition of Supramolecular Iron(III)-Tannic Acid Complex. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:12318-12323. [PMID: 30226386 DOI: 10.1021/acs.langmuir.8b02686] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
One-step assembly of iron(III)-tannic acid (Fe3+-TA) complex forms nanothin (∼10 nm) films on various substrates within minutes. In this deposition scheme, however, the film does not grow continuously over time even though Fe3+-TA complex is still abundant in the coating solution. In this paper, we report that the salt addition dramatically changes the one-off coating characteristic to continuous one, and each salt has its optimum concentration ( CMFT) that produces maximum film thickness. For detailed investigation of the salt effects, we employed various salts, including LiCl, NaCl, KCl, CaCl2, SrCl2, BaCl2, NaBr, and NaNO3, and found that only cations played an important role in the continuous deposition of the Fe3+-TA complex, with smaller CMFT values for the cations of higher valency and larger size. On the basis of the results, we suggested that the positively charged cations screened the negative surface charges of Fe3+-TA complex particles, leading to coagulation and continuous deposition, further supported by the ζ-potential measurement and time-resolved dynamic light-scattering analysis.
Collapse
Affiliation(s)
- Taegyun Park
- Center for Cell-Encapsulation Research, Department of Chemistry , KAIST , Daejeon 34141 , Korea
| | - Won Il Kim
- Center for Cell-Encapsulation Research, Department of Chemistry , KAIST , Daejeon 34141 , Korea
| | - Beom Jin Kim
- Center for Cell-Encapsulation Research, Department of Chemistry , KAIST , Daejeon 34141 , Korea
| | - Hojae Lee
- Center for Cell-Encapsulation Research, Department of Chemistry , KAIST , Daejeon 34141 , Korea
| | - Insung S Choi
- Center for Cell-Encapsulation Research, Department of Chemistry , KAIST , Daejeon 34141 , Korea
| | - Ji Hun Park
- Department of Science Education , Ewha Womans University , Seoul 03760 , Korea
| | - Woo Kyung Cho
- Department of Chemistry , Chungnam National University , Daejeon 34134 , Korea
| |
Collapse
|
48
|
Zhong QZ, Pan S, Rahim MA, Yun G, Li J, Ju Y, Lin Z, Han Y, Ma Y, Richardson JJ, Caruso F. Spray Assembly of Metal-Phenolic Networks: Formation, Growth, and Applications. ACS APPLIED MATERIALS & INTERFACES 2018; 10:33721-33729. [PMID: 30239183 DOI: 10.1021/acsami.8b13589] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Hybrid conformal coatings, such as metal-phenolic networks (MPNs) that are constructed from the coordination-driven assembly of natural phenolic ligands, are of interest in areas including biomedicine, separations, and energy. To date, most MPN coatings have been prepared by immersing substrates in solutions containing the phenolic ligands and metal ions, which is a suitable method for coating small or flexible objects. In contrast, more industrially relevant methods for coating and patterning large substrates, such as spray assembly, have been explored to a lesser extent toward the fabrication of MPNs, particularly regarding the effect of process variables on MPN growth. Herein, a spray assembly method was used to fabricate MPN coatings with various phenolic building blocks and metal ions and their formation and patterning were explored for different applications. Different process parameters including solvent, pH, and metal-ligand pair allowed for control over the film properties such as thickness and roughness. On the basis of these investigations, a potential route for the formation of spray-assembled MPN films was proposed. Conditions favoring the formation of bis complexes could produce thicker coatings than those favoring the formation of mono or tris complexes. Finally, the spray-assembled MPNs were used to generate superhydrophilic membranes for oil-water separation and colorless films for UV shielding. The present study provides insights into the chemistry of MPN assembly and holds promise for advancing the fabrication of multifunctional hybrid materials.
Collapse
Affiliation(s)
- Qi-Zhi Zhong
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering , The University of Melbourne , Parkville , Victoria 3010 , Australia
| | - Shuaijun Pan
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering , The University of Melbourne , Parkville , Victoria 3010 , Australia
| | - Md Arifur Rahim
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering , The University of Melbourne , Parkville , Victoria 3010 , Australia
| | - Gyeongwon Yun
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering , The University of Melbourne , Parkville , Victoria 3010 , Australia
| | - Jianhua Li
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering , The University of Melbourne , Parkville , Victoria 3010 , Australia
| | - Yi Ju
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering , The University of Melbourne , Parkville , Victoria 3010 , Australia
| | - Zhixing Lin
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering , The University of Melbourne , Parkville , Victoria 3010 , Australia
| | - Yiyuan Han
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering , The University of Melbourne , Parkville , Victoria 3010 , Australia
| | - Yutian Ma
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering , The University of Melbourne , Parkville , Victoria 3010 , Australia
| | - Joseph J Richardson
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering , The University of Melbourne , Parkville , Victoria 3010 , Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering , The University of Melbourne , Parkville , Victoria 3010 , Australia
| |
Collapse
|
49
|
Besford QA, Christofferson AJ, Liu M, Yarovsky I. Long-range dipolar order and dispersion forces in polar liquids. J Chem Phys 2017; 147:194503. [DOI: 10.1063/1.5005581] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
| | | | - Maoyuan Liu
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia
| | - Irene Yarovsky
- School of Engineering, RMIT University, Victoria 3001, Australia
| |
Collapse
|