1
|
Dong N, Ali-Khiavi P, Ghavamikia N, Pakmehr S, Sotoudegan F, Hjazi A, Gargari MK, Gargari HK, Behnamrad P, Rajabi M, Elhami A, Saffarfar H, Nourizadeh M. Nanomedicine in the treatment of Alzheimer's disease: bypassing the blood-brain barrier with cutting-edge nanotechnology. Neurol Sci 2025; 46:1489-1507. [PMID: 39638950 DOI: 10.1007/s10072-024-07871-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/29/2024] [Indexed: 12/07/2024]
Abstract
Alzheimer's disease (AD) remains a formidable challenge in the field of neurodegenerative disorders, necessitating innovative therapeutic strategies. Nanomedicine, leveraging nanomaterials, has emerged as a promising avenue for AD treatment, with a key emphasis on overcoming the blood-brain barrier (BBB) to enhance drug delivery efficiency. This review provides a comprehensive analysis of recent advancements in the application of nanomaterials for AD therapy, highlighting their unique properties and functions. The blood-brain barrier, a complex physiological barrier, poses a significant hurdle for traditional drug delivery to the brain. Nanomedicine addresses this challenge by utilizing various nanomaterials such as liposomes, polymeric nanoparticles, and metal nanoparticles. These nanocarriers enable improved drug bioavailability, sustained release, and targeted delivery to specific brain regions affected by AD pathology. The review discusses the diverse range of nanomaterials employed in AD treatment, exploring their capacity to encapsulate therapeutic agents, modulate drug release kinetics, and enhance drug stability. Additionally, the multifunctionality of nanomaterials allows for simultaneous imaging and therapy, facilitating early diagnosis and intervention. Key aspects covered include the interaction of nanomaterials with Aβ aggregates, the role of antioxidants in mitigating oxidative stress, and the potential of nanomedicine in alleviating neuroinflammation associated with AD. Furthermore, the safety, biocompatibility, and toxicity profiles of various nanomaterials are scrutinized to ensure their clinical applicability. In conclusion, this review underscores the pivotal role of nanomedicine and nanomaterials in revolutionizing AD treatment strategies. By specifically addressing BBB challenges, these innovative approaches offer new avenues for targeted drug delivery and improved therapeutic outcomes in the complex landscape of Alzheimer's disease.
Collapse
Affiliation(s)
- Nana Dong
- College of Basic Medical Sciences, China Three Gorges University, 443000, Yichang, Hubei Province, China
| | - Payam Ali-Khiavi
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Nima Ghavamikia
- Cardiovascular Research Institute, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Farzaneh Sotoudegan
- Quality Control of Medicines and Supplements Group, Pharmaceutical Quality Assurance Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | | | | | - Parisa Behnamrad
- Department of Pharmaceutics, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Anis Elhami
- Faculty of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossein Saffarfar
- Cardiovascular Research Institute, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Nourizadeh
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Ouyang H, Wang Z, Liu M. Preparation and cell imaging of a nido-carborane fluorescent complex based on multi-component polymerization. PLoS One 2024; 19:e0313661. [PMID: 39666694 PMCID: PMC11637401 DOI: 10.1371/journal.pone.0313661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 10/28/2024] [Indexed: 12/14/2024] Open
Abstract
The biocompatibility of carborane was a difficult problem that had drawn a lot of study interest. Using multi-ion inlay binding, water-soluble polymers were created by encapsulating nido-carborane in diazaspirodecaniums such as para-poly-nido-carboanylazaspirodecanium [5,4] (p-PNC54), para-poly-nido-carboanylazaspirodecanium [6,5] (p-PNC65), meta-poly-nido-carboanylazaspirodecanium [5,4] (m-PNC54), and meta-poly-nido-carboanylazaspirodecanium [6,5] (m-PNC65). First, the active control 5-fluorouracil demonstrated strong activity against HeLa and HCT-116 cells but minimal cytotoxicity at 19.22±2.85 μM and 21.47±5.99 μM, respectively. Second, the four carborane polymers that specifically penetrated the cells were imaged using HeLa cells. TEM was used to assess the dynamic self-assembling effect of these water-soluble polymers in order to gain a better understanding of their internal microphenomenon. All four derivatives' combined impacts on self-assembly in water were identified. Different degrees of selective entrance into targeted cells under different architectures were discovered by in vitro cell imaging.
Collapse
Affiliation(s)
- Hezhong Ouyang
- The People’s Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang, P.R. China
| | - Zhou Wang
- School of Vanadium and Titanium, Panzhihua University, Panzhihua, P.R. China
| | - Min Liu
- The People’s Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang, P.R. China
| |
Collapse
|
3
|
Panda P, Mohapatra R. Herbal nanoparticles: a targeted approach for neurodegenerative disorder treatment. J Drug Target 2024; 32:1233-1246. [PMID: 39133517 DOI: 10.1080/1061186x.2024.2391913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/13/2024]
Abstract
Nanotechnology has significantly impacted human life, particularly in overcoming the limitations associated with neurodegenerative diseases (NDs). Various nanostructures and vehicle systems, such as polymer nanoparticles, carbon nanotubes (CNTs), nanoliposomes, nano-micelles, lipid nanoparticles, lactoferrin, polybutylcyanoacrylate, and poly lactic-co-glycolic acid, have been shown to enhance drug efficacy, reduce side effects, and improve pharmacokinetics. NDs affect millions worldwide and are challenging to treat due to the blood-brain barrier (BBB), which hinders drug delivery to the central nervous system (CNS). Research suggests that natural ingredients can be formulated into nanoparticles, offering a promising approach for ND treatment. This review examines the advantages and disadvantages of herbal-based nanoformulations, highlighting their potential effectiveness when used alone or in combination with other medications. Herbal nanoparticles provide benefits over synthetic ones due to their biocompatibility, reduced toxicity, and potential for synergistic effects. The study's findings can be applied to develop more efficient drug delivery systems, improving the treatment of NDs by enhancing drug penetration across the BBB and targeting affected CNS areas more precisely.
Collapse
Affiliation(s)
- Pratikeswar Panda
- Department of Pharmaceutics, School of pharmaceutical science, Siksha 'O' Anusandhan University, Bhubaneswar, Odisha, India
| | - Rajaram Mohapatra
- Department of Pharmaceutics, School of pharmaceutical science, Siksha 'O' Anusandhan University, Bhubaneswar, Odisha, India
| |
Collapse
|
4
|
Elawad MA, Ayaz M, Mosa OF, Usman A, Hamdoon AAE, Almawash S, Salim LHM, Ahmed A, Elkhalifa MEM. Polyphenols and Their Biogenic Nano-Formulations Targeting BACE1 as Anti-Amyloid Therapies; Meeting the Challenges of Bioavailability, Safety, and Specificity for the Treatment of Alzheimer's Disease. Mol Nutr Food Res 2024; 68:e2400525. [PMID: 39628325 DOI: 10.1002/mnfr.202400525] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/06/2024] [Indexed: 12/28/2024]
Abstract
Alzheimer's disease (AD), a progressiveneurodegenerative condition is marked by extensive damage in the brain and dementia. Among the pathological hallmarks of AD is beta-amyloid (Aβ). Production of toxic Aβ oligomers production and accumulation in the brain is among the characteristic features of the disease. The abnormal accumulation Aβ is initiated by the catalytic degradation of Amyloid Precursor Proteins (APP) by Beta Amyloid Cleaving Enzyme 1 (BACE1) to generate insoluble amyloid plaques. The abnormal proteins are mitochondrial poison which disrupt the energy production and liberate excessive free radicals causing neuronal damage and mutations. Consequently, targeting Aβ-associated pathways has become a focus in the pursuit of developing effective AD treatments. An obstacle faced by many medications used to treat neurodegenerative diseases (NDs) is the restricted permeability across the blood-brain barrier (BBB). Unfortunately, no anti-amyloid drug is clinically approved till now. Recent advancements in nanotechnology have provided a possible solution for delivering medications to specific targets. By integrating natural products with nano-medicinal approaches, it is possible to develop novel and highly efficient therapeutic strategies for the treatment of AD.
Collapse
Affiliation(s)
- Mohammed Ahmed Elawad
- Public health Department Health Sciences College at Lieth, Umm Al Qura University, Makkah, 21955, Kingdom of Saudi Arabia
| | - Muhammad Ayaz
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, 18800 Dir (L), Chakdara, KP, Pakistan
| | - Osama F Mosa
- Public health Department Health Sciences College at Lieth, Umm Al Qura University, Makkah, 21955, Kingdom of Saudi Arabia
| | - Assad Usman
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, 18800 Dir (L), Chakdara, KP, Pakistan
| | - Alashary Adam Eisa Hamdoon
- Public health Department Health Sciences College at Lieth, Umm Al Qura University, Makkah, 21955, Kingdom of Saudi Arabia
| | - Saud Almawash
- Department of Pharmaceutics, College of Pharmacy, Shaqra University, Shaqra, 11911, Kingdom of Saudi Arabia
| | - Liga Hasan Mohammed Salim
- Public health Department Health Sciences College at Lieth, Umm Al Qura University, Makkah, 21955, Kingdom of Saudi Arabia
| | - Alshebli Ahmed
- Public health Department Health Sciences College at Lieth, Umm Al Qura University, Makkah, 21955, Kingdom of Saudi Arabia
| | - Modawy Elnour Modawy Elkhalifa
- Public health Department Health Sciences College at Lieth, Umm Al Qura University, Makkah, 21955, Kingdom of Saudi Arabia
| |
Collapse
|
5
|
Bui HL, Su YH, Yang CJ, Huang CJ, Lai JY. Mucoadhesive, antioxidant, and lubricant catechol-functionalized poly(phosphobetaine) as biomaterial nanotherapeutics for treating ocular dryness. J Nanobiotechnology 2024; 22:160. [PMID: 38589911 PMCID: PMC11000383 DOI: 10.1186/s12951-024-02448-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 03/30/2024] [Indexed: 04/10/2024] Open
Abstract
Dry eye disease (DED) is associated with ocular hyperosmolarity and inflammation. The marketed topical eye drops for DED treatment often lack bioavailability and precorneal residence time. In this study, we investigated catechol-functionalized polyzwitterion p(MPC-co-DMA), composed of 2-methacryloyloxyethyl phosphorylcholine (MPC) and dopamine methacrylamide (DMA) monomers, as potential topical nanotherapeutics for DED. The copolymers were synthesized via random free-radical copolymerization, producing different proportions of catecholic functionalization. All as-prepared polymer compositions displayed good ocular biocompatibility. At a feeding ratio of 1:1, p(MPC1-co-DMA1) can facilitate a robust mucoadhesion via Michael addition and/or Schiff base reaction, thus prolonging ocular residence time after 4 days of topical instillation. The hydration lubrication of MPC and radical-scavenging DMA endow the nano-agent to ease tear-film hyperosmolarity and corneal inflammation. A single dose of p(MPC1-co-DMA1) (1 mg/mL) after 4 days post-instillation can protect the cornea against reactive oxygen species, inhibiting cell apoptosis and the over-expression of pro-inflammatory factors (IL-6 and TNF-α). In clinical assessment, DED-induced rabbit eyes receiving p(MPC1-co-DMA1) could increase lacrimal fluid secretion by 5-fold higher than cyclosporine A. The catechol-functionalized polyzwitterion with enhanced lubricity, mucoadhesion, and anti-oxidation/anti-inflammation properties has shown high promise as a bioactive eye drop formulation for treating DED.
Collapse
Affiliation(s)
- Hoang Linh Bui
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, 32023, Taiwan
| | - Yun-Han Su
- Department of Biomedical Engineering, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Chia-Jung Yang
- Department of Biomedical Engineering, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Chun-Jen Huang
- Department of Chemical and Materials Engineering, National Central University, Taoyuan, 32023, Taiwan.
- R&D Center for Membrane Technology, Chung Yuan Christian University, Taoyuan, 32023, Taiwan.
- NCU-Covestro Research Center, National Central University, Taoyuan, 32023, Taiwan.
| | - Jui-Yang Lai
- Department of Biomedical Engineering, Chang Gung University, Taoyuan, 33302, Taiwan.
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, 33305, Taoyuan, Taiwan.
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan.
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 33303, Taiwan.
- Center for Biomedical Engineering, Chang Gung University, Taoyuan, 33302, Taiwan.
| |
Collapse
|
6
|
Díaz-Cuenca A, Sezanova K, Gergulova R, Rabadjieva D, Ruseva K. New Nano-Crystalline Hydroxyapatite-Polycarboxy/Sulfo Betaine Hybrid Materials: Synthesis and Characterization. Molecules 2024; 29:930. [PMID: 38474442 DOI: 10.3390/molecules29050930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
Hybrid materials based on calcium phosphates and synthetic polymers can potentially be used for caries protection due to their similarity to hard tissues in terms of composition, structure and a number of properties. This study is focused on the biomimetic synthesis of hybrid materials consisting of hydroxiapatite and the zwitterionic polymers polysulfobetaine (PSB) and polycarboxybetaine (PCB) using controlled media conditions with a constant pH of 8.0-8.2 and Ca/P = 1.67. The results show that pH control is a dominant factor in the crystal phase formation, so nano-crystalline hydroxyapatite with a Ca/P ratio of 1.63-1.71 was observed as the mineral phase in all the materials prepared. The final polymer content measured for the synthesized hybrid materials was 48-52%. The polymer type affects the final microstructure, and the mineral particle size is thinner and smaller in the synthesis performed using PCB than using PSB. The final intermolecular interaction of the nano-crystallized hydroxyapatite was demonstrated to be stronger with PCB than with PSB as shown by our IR and Raman spectroscopy analyses. The higher remineralization potential of the PCB-containing synthesized material was demonstrated by in vitro testing using artificial saliva.
Collapse
Affiliation(s)
- Aránzazu Díaz-Cuenca
- Materials Science Institute of Seville (ICMS), Joint CSIC-University of Seville Center, 41092 Seville, Spain
| | - Kostadinka Sezanova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Rumiana Gergulova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Diana Rabadjieva
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Konstans Ruseva
- Laboratory on Structure and Properties of Polymers, Faculty of Chemistry and Pharmacy, University of Sofia, 1 James Bourchier Blvd., 1164 Sofia, Bulgaria
| |
Collapse
|
7
|
Chu J, Zhang W, Liu Y, Gong B, Ji W, Yin T, Gao C, Liangwen D, Hao M, Chen C, Zhuang J, Gao J, Yin Y. Biomaterials-based anti-inflammatory treatment strategies for Alzheimer's disease. Neural Regen Res 2024; 19:100-115. [PMID: 37488851 PMCID: PMC10479833 DOI: 10.4103/1673-5374.374137] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/28/2023] [Accepted: 03/28/2023] [Indexed: 07/26/2023] Open
Abstract
The current therapeutic drugs for Alzheimer's disease only improve symptoms, they do not delay disease progression. Therefore, there is an urgent need for new effective drugs. The underlying pathogenic factors of Alzheimer's disease are not clear, but neuroinflammation can link various hypotheses of Alzheimer's disease; hence, targeting neuroinflammation may be a new hope for Alzheimer's disease treatment. Inhibiting inflammation can restore neuronal function, promote neuroregeneration, reduce the pathological burden of Alzheimer's disease, and improve or even reverse symptoms of Alzheimer's disease. This review focuses on the relationship between inflammation and various pathological hypotheses of Alzheimer's disease; reports the mechanisms and characteristics of small-molecule drugs (e.g., nonsteroidal anti-inflammatory drugs, neurosteroids, and plant extracts); macromolecule drugs (e.g., peptides, proteins, and gene therapeutics); and nanocarriers (e.g., lipid-based nanoparticles, polymeric nanoparticles, nanoemulsions, and inorganic nanoparticles) in the treatment of Alzheimer's disease. The review also makes recommendations for the prospective development of anti-inflammatory strategies based on nanocarriers for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Jianjian Chu
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Weicong Zhang
- School of Pharmacy, University College London, London, UK
| | - Yan Liu
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine; Clinical Pharmacy Innovation Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Baofeng Gong
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Wenbo Ji
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Tong Yin
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Chao Gao
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Danqi Liangwen
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Mengqi Hao
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Cuimin Chen
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jianhua Zhuang
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - You Yin
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, China
| |
Collapse
|
8
|
Wang Y, Liu W, Dong X, Sun Y. Design of Self-Assembled Nanoparticles as a Potent Inhibitor and Fluorescent Probe for β-Amyloid Fibrillization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12576-12589. [PMID: 37624641 DOI: 10.1021/acs.langmuir.3c01169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Alzheimer's disease (AD) remains incurable due to its complex pathogenesis. The deposition of β-amyloid (Aβ) in the brain appears much earlier than any clinical symptoms and plays an essential role in the occurrence and development of AD neuropathology, which implies the importance of early theranostics. Herein, we designed a self-assembled bifunctional nanoparticle (LC8-pCG-fLC8) for Aβ fluorescent diagnosis and inhibition. The nanoparticle was synthesized by click chemistry from Aβ-targeting peptide Ac-LVFFARKC-NH2 (LC8) and an Aβ fluorescent probe f with the zwitterionic copolymer poly(carboxybetaine methacrylate-glycidyl methacrylate) (p(CBMA-GMA), pCG). Owing to the high reactivity of epoxy groups, the peptide concentration of LC8-pCG-fLC8 nanoparticles reached about 4 times higher than that of the existing inhibitor LVFFARK@poly(carboxybetaine) (LK7@pCB). LC8-pCG-fLC8 exhibited remarkable inhibitory capability (suppression efficiency of 83.0% at 20 μM), altered the aggregation pathway of Aβ, and increased the survival rate of amyloid-induced cultured cells from 76.5% to 98.0% at 20 μM. Notably, LC8-pCG-fLC8 possessed excellent binding affinity, good biostability, and high fluorescence responsivity to β-sheet-rich Aβ oligomers and fibrils, which could be used for the early diagnosis of Aβ aggregation. More importantly, in vivo tests using transgenic C. elegans CL2006 stain showed that LC8-pCG-fLC8 could specifically image Aβ plaques, prolong the lifespan (from 13 to 17 days), and attenuate the AD-like symptoms (reducing paralysis and Aβ deposition). Therefore, self-assembled nanoparticles hold great potential in AD theranostics.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Wei Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Xiaoyan Dong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| |
Collapse
|
9
|
Li Q, Wen J, Yan Z, Sun H, Song E, Song Y. Mechanistic Insights of TiO 2 Nanoparticles with Different Surface Charges on Aβ 42 Peptide Early Aggregation: An In Vitro and In Silico Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1997-2007. [PMID: 36706054 DOI: 10.1021/acs.langmuir.2c03065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Humans may intendedly or unintendedly be exposed to nanomaterials through food, water, and air. Upon exposure, nanomaterials can pierce the bloodstream and translocate to secondary organs, including the brain, which warrants increased concern for the potential health impacts of nanomaterials. Due to their large surface area and interaction energy, nanomaterials can adsorb surrounding proteins. The misfolding and self-aggregation of amyloid-β (Aβ) have been considered significant factors in the pathogenesis of Alzheimer's disease. We thus hypothesize that brain-targeted nanomaterials may modulate Aβ aggregation and cause related neurotoxicity. Here, we showed that TiO2 nanoparticles (NPs) and their aminated analogue (TiO2-NH2 NPs) adsorb the Aβ42 peptide and accelerate its early oligomerization. Molecular dynamics simulation indicated that the adsorption onto TiO2 NPs and TiO2-NH2 NPs surfaces can stabilize the β-sheet-rich conformations formed by the Aβ42 peptide. The binding sites between TiO2-NH2 NPs and the Aβ42 oligomer surface were mainly concentrated in the hydrophobic core region, and the β-sheet conformation spontaneously formed by Aβ42 oligomers can be better stabilized through a hydrogen bond, electrostatic attraction, and hydrophobic interaction. This study will further help in the understanding of nanomaterial-related neurotoxicities and the regulation of their applications.
Collapse
Affiliation(s)
- Qiong Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing 400715, China
| | - Jing Wen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing 400715, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Rd, Haidian District, Beijing 100085, China
| | - Ziyi Yan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing 400715, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Rd, Haidian District, Beijing 100085, China
| | - Hang Sun
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing 400715, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Rd, Haidian District, Beijing 100085, China
| | - Erqun Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing 400715, China
| | - Yang Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing 400715, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Rd, Haidian District, Beijing 100085, China
| |
Collapse
|
10
|
Kanojia N, Thapa K, Kaur G, Sharma A, Puri V, Verma N. Update on Therapeutic potential of emerging nanoformulations of phytocompounds in Alzheimer's and Parkinson's disease. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2022.104074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Hou T, Zhang N, Yan C, Ding M, Niu H, Guan P, Hu X. Curcumin-loaded protein imprinted mesoporous nanosphere for inhibiting amyloid aggregation. Int J Biol Macromol 2022; 221:334-345. [PMID: 36084870 DOI: 10.1016/j.ijbiomac.2022.08.185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/18/2022] [Accepted: 08/29/2022] [Indexed: 11/24/2022]
Abstract
Some natural variants of human lysozyme are associated with systemic non-neurological amyloidosis that leads to amyloid protein fibril deposition in different tissues. Inhibition of amyloid fibrillation by nanomaterials is considered to be an effective approach to treating amyloidosis. Here, we prepared a targeted, highly loaded curcumin lysozyme-imprinted nanosphere (CUR-MIMS) that could effectively inhibit the aggregation of lysozyme with lysozyme adsorption capacity of 193.57 mg g-1 and the imprinting factor (IF) of 3.72. CUR-MIMS could bind to lysozyme through hydrophobic interactions and effectively reduce the hydrophobicity of the total solvent-exposed surface in lysozyme fibrillation, thus reducing the self-assembly process triggered by hydrophobic interactions. Thioflavin T (ThT) analysis demonstrated that CUR-MIMS inhibited the aggregation of amyloid fibrils in a dose-dependent manner (inhibition efficiency of 56.07 %). Circular dichroism (CD) spectrum further illustrated that CUR-MIMS could significantly inhibit the transition of lysozyme from α-helix structure to β-sheet. More importantly, biological experiments proved the good biocompatibility of CUR-MIMS, which indicated the potential of our system as a future therapeutic platform for amyloidosis.
Collapse
Affiliation(s)
- Tongtong Hou
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Nan Zhang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Chaoren Yan
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Minling Ding
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Huizhe Niu
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Ping Guan
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China.
| | - Xiaoling Hu
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China.
| |
Collapse
|
12
|
Jaragh-Alhadad LA, Falahati M. Copper oxide nanoparticles promote amyloid-β-triggered neurotoxicity through formation of oligomeric species as a prelude to Alzheimer's diseases. Int J Biol Macromol 2022; 207:121-129. [PMID: 35259430 DOI: 10.1016/j.ijbiomac.2022.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/12/2022] [Accepted: 03/02/2022] [Indexed: 12/28/2022]
Abstract
Protein oligomerization is involved in the progression of Alzheimer's disease (AD). In general, a particle that can accelerate protein oligomerization should be considered a toxic material. Several studies reported the progress of nanoparticles (NPs) such as copper oxide (CuO) in biomedical platforms, however, they may have the ability to promote the protein oligomerization process. Here, we aimed to study the effect of CuO NPs on amyloid β1-42 (Aβ1-42) oligomerization and relevant neurotoxicity. CuO NPs were synthesized by precipitation technique and characterized by several methods such as ThT, Congo red, CD spectroscopic methods, and TEM imaging. The outcomes indicated that the fabricated CuO NPs with a size of around 50 nm led to a remarkable acceleration in Aβ1-42 oligomerization in a concentration-dependent manner through shortening the nucleation step and promoting the fibrillization rate. Moreover, cellular assays revealed that Aβ1-42 oligomers aged with CuO NPs were more toxic than Aβ1-42 oligomers untreated against SH-SY5Y cells in triggering cell mortality, membrane leakage, oxidative stress, and apoptosis. In conclusion, this study provides important information about the adverse effects of CuO NPs against proteins in the central nervous system to promote the formation of cytotoxic oligomers.
Collapse
Affiliation(s)
- Laila Abdulmohsen Jaragh-Alhadad
- Department of Chemistry, College of Science, Kuwait University, Safat 13060, Kuwait; Cardiovascular and Metabolic Sciences Department, Learner Research Institute, Cleveland Clinic, OH 44195, USA.
| | - Mojtaba Falahati
- Laboratory Experimental Oncology, Department of Pathology, Erasmus MC, 3015GD Rotterdam, the Netherlands; Department of Nanotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
13
|
Thermoresponsive in situ gel of curcumin loaded solid lipid nanoparticle: Design, optimization and in vitro characterization. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Movaheditabar P, Javaherian M, Nobakht V. Synthesis and catalytic application of a curcumin‐based bio‐MOF in one‐pot preparation of tetrahydroquinazolinone derivatives
via
Biginelli reaction. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Parviz Movaheditabar
- Department of Chemistry, Faculty of Science Shahid Chamran University of Ahvaz Ahvaz Iran
| | - Mohammad Javaherian
- Department of Chemistry, Faculty of Science Shahid Chamran University of Ahvaz Ahvaz Iran
| | - Valiollah Nobakht
- Department of Chemistry, Faculty of Science Shahid Chamran University of Ahvaz Ahvaz Iran
| |
Collapse
|
15
|
Zhou Z, Gu YQ, Wang HX. Artificial Chiral Interfaces against Amyloid-β Peptide Aggregation: Research Progress and Challenges. ACS Chem Neurosci 2021; 12:4236-4248. [PMID: 34724384 DOI: 10.1021/acschemneuro.1c00544] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by an imbalance between the production and clearance of amyloid-β (Aβ) species. AD not only influences the life quality of the patients but also heavily burdens the families and society. Therefore, it is an urgent mission to research and develop some new anti-amyloid aggregation drugs. In recent years, there were research and development of engineered nanostructures as Aβ amyloid inhibitors have attracted extensive attention and become a new frontier in nanomedicine. The effects of nanostructural surface properties (e.g., morphology, charge, hydrophobicity) on inhibition of Aβ aggregation are modulated by adsorbed Aβ peptides. Nevertheless, chirality has been seldom considered in recognition of Aβ species and modulation of Aβ aggregations. Moreover, a more relevant question for chiral inhibitors is little known about the molecular mechanism of how to interface chiral effects Aβ targeting recognition and effective mitigation of amyloidosis at the molecular level. Herein, we review recent experimental and theoretical results acquired in the specific areas of artificial chiral nanostructure inhibitors. This article will be essential to provide a microlevel insight into the effects of chiral nanointerfaces on amyloidosis processes as well as the development of chiral inhibitor drugs against Aβ fibrillation.
Collapse
Affiliation(s)
- Zhe Zhou
- Department of Neurology, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - You-Quan Gu
- Department of Neurology, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Hang-Xing Wang
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| |
Collapse
|
16
|
Dohare A, Sudhakar S, Brodbeck B, Mukherjee A, Brecht M, Kandelbauer A, Schäffer E, Mayer HA. Anisotropic and Amphiphilic Mesoporous Core-Shell Silica Microparticles Provide Chemically Selective Environments for Simultaneous Delivery of Curcumin and Quercetin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13460-13470. [PMID: 34730962 DOI: 10.1021/acs.langmuir.1c02210] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Porous silica materials are often used for drug delivery. However, systems for simultaneous delivery of multiple drugs are scarce. Here we show that anisotropic and amphiphilic dumbbell core-shell silica microparticles with chemically selective environments can entrap and release two drugs simultaneously. The dumbbells consist of a large dense lobe and a smaller hollow hemisphere. Electron microscopy images show that the shells of both parts have mesoporous channels. In a simple etching process, the properly adjusted stirring speed and the application of ammonium fluoride as etching agent determine the shape and the surface anisotropy of the particles. The surface of the dense lobe and the small hemisphere differ in their zeta potentials consistent with differences in dye and drug entrapment. Confocal Raman microscopy and spectroscopy show that the two polyphenols curcumin (Cur) and quercetin (QT) accumulate in different compartments of the particles. The overall drug entrapment efficiency of Cur plus QT is high for the amphiphilic particles but differs widely between Cur and QT compared to controls of core-shell silica microspheres and uniformly charged dumbbell microparticles. Furthermore, Cur and QT loaded microparticles show different cancer cell inhibitory activities. The highest activity is detected for the dual drug loaded amphiphilic microparticles in comparison to the controls. In the long term, amphiphilic particles may open up new strategies for drug delivery.
Collapse
Affiliation(s)
- Akanksha Dohare
- Institute of Inorganic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Swathi Sudhakar
- ZMBP, Cellular Nanoscience, University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Björn Brodbeck
- Institute of Inorganic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
- Process Analysis and Technology (PA&T), Reutlingen Research Institute, Reutlingen University, Alteburgstrasse 150, 72762 Reutlingen, Germany
| | - Ashutosh Mukherjee
- Process Analysis and Technology (PA&T), Reutlingen Research Institute, Reutlingen University, Alteburgstrasse 150, 72762 Reutlingen, Germany
- IPTC and LISA+ Center, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Marc Brecht
- Process Analysis and Technology (PA&T), Reutlingen Research Institute, Reutlingen University, Alteburgstrasse 150, 72762 Reutlingen, Germany
- IPTC and LISA+ Center, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Andreas Kandelbauer
- Process Analysis and Technology (PA&T), Reutlingen Research Institute, Reutlingen University, Alteburgstrasse 150, 72762 Reutlingen, Germany
| | - Erik Schäffer
- ZMBP, Cellular Nanoscience, University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Hermann A Mayer
- Institute of Inorganic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| |
Collapse
|
17
|
Shao C, Lian G, Jin G. Nido-carborane encapsulated by BODIPY zwitterionic polymers: Synthesis, photophysical properties and cell imaging. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Singh AK, Rai SN, Maurya A, Mishra G, Awasthi R, Shakya A, Chellappan DK, Dua K, Vamanu E, Chaudhary SK, Singh MP. Therapeutic Potential of Phytoconstituents in Management of Alzheimer's Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:5578574. [PMID: 34211570 PMCID: PMC8208882 DOI: 10.1155/2021/5578574] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/28/2021] [Indexed: 01/03/2023]
Abstract
Since primitive times, herbs have been extensively used in conventional remedies for boosting cognitive impairment and age-associated memory loss. It is mentioned that medicinal plants have a variety of dynamic components, and they have become a prominent choice for synthetic medications for the care of cognitive and associated disorders. Herbal remedies have played a major role in the progression of medicine, and many advanced drugs have already been developed. Many studies have endorsed practicing herbal remedies with phytoconstituents, for healing Alzheimer's disease (AD). All the information in this article was collated from selected research papers from online scientific databases, such as PubMed, Web of Science, and Scopus. The aim of this article is to convey the potential of herbal remedies for the prospect management of Alzheimer's and related diseases. Herbal remedies may be useful in the discovery and advancement of drugs, thus extending new leads for neurodegenerative diseases such as AD. Nanocarriers play a significant role in delivering herbal medicaments to a specific target. Therefore, many drugs have been described for the management of age-linked complaints such as dementia, AD, and the like. Several phytochemicals are capable of managing AD, but their therapeutic claims are restricted due to their lower solubility and metabolism. These limitations of natural therapeutics can be overcome by using a targeted nanocarrier system. This article will provide the primitive remedies as well as the development of herbal remedies for AD management.
Collapse
Affiliation(s)
- Anurag Kumar Singh
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Sachchida Nand Rai
- Centre of Biotechnology, University of Allahabad, Prayagraj 211002, India
| | - Anand Maurya
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Gaurav Mishra
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Rajendra Awasthi
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida 201303, Uttar Pradesh, India
| | - Anshul Shakya
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Assam 786004, Dibrugarh, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney (UTS), Ultimo, New South Wales, Australia
| | - Emanuel Vamanu
- Faculty of Biotechnology, University of Agronomic Science and Veterinary Medicine, 59 Marasti Blvd, 1 District, 011464, Bucharest, Romania
| | - Sushil Kumar Chaudhary
- Faculty of Pharmacy, DIT University, Mussoorie-Diversion Road, Makkawala, Dehradun 248 009, Uttarakhand, India
| | - M P Singh
- Centre of Biotechnology, University of Allahabad, Prayagraj 211002, India
| |
Collapse
|
19
|
Wang W, Zhao G, Dong X, Sun Y. Unexpected Function of a Heptapeptide-Conjugated Zwitterionic Polymer that Coassembles into β-Amyloid Fibrils and Eliminates the Amyloid Cytotoxicity. ACS APPLIED MATERIALS & INTERFACES 2021; 13:18089-18099. [PMID: 33829756 DOI: 10.1021/acsami.1c01132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fibrillogenesis of amyloid β-protein (Aβ) is pathologically associated with Alzheimer's disease (AD), so modulating Aβ aggregation is crucial for AD prevention and treatment. Herein, a zwitterionic polymer with short dimethyl side chains (pID) is synthesized and conjugated with a heptapeptide inhibitor (Ac-LVFFARK-NH2, LK7) to construct zwitterionic polymer-inhibitor conjugates for enhanced inhibition of Aβ aggregation. However, it is unexpectedly found that the LK7@pID conjugates remarkably promote Aβ fibrillization to form more fibrils than the free Aβ system but effectively eliminate Aβ-induced cytotoxicity. Such an unusual behavior of the LK7@pID conjugates is unraveled by extensive mechanistic studies. First, the hydrophobic environment within the assembled micelles of LK7@pID promotes the hydrophobic interaction between Aβ molecules and LK7@pID, which triggers Aβ aggregation at the very beginning, making fibrillization occur at an earlier stage. Second, in the aggregation process, the LK7@pID micelles disassemble by the intensive interactions with Aβ, and LK7@pID participates in the fibrillization by being embedded in the Aβ fibrils, leading to the formation of hybrid and heterogeneous fibrillar aggregates with a different structure than normal Aβ fibrils. This unique Trojan horse-like feature of LK7@pID conjugates has not been observed for any other inhibitors reported previously and may shed light on the design of new modulators against β-amyloid cytotoxicity.
Collapse
Affiliation(s)
- Wenjuan Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Guangfu Zhao
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Xiaoyan Dong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| |
Collapse
|
20
|
Liu W, Dong X, Liu Y, Sun Y. Photoresponsive materials for intensified modulation of Alzheimer's amyloid-β protein aggregation: A review. Acta Biomater 2021; 123:93-109. [PMID: 33465508 DOI: 10.1016/j.actbio.2021.01.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/29/2020] [Accepted: 01/11/2021] [Indexed: 12/12/2022]
Abstract
The abnormal self-assembly of amyloid-β protein (Aβ) into toxic aggregates is a major pathological hallmark of Alzheimer's disease (AD). Modulation of Aβ fibrillization with pharmacological modalities has become an active field of research, which aims to mitigate Aβ-induced neurotoxicity and ameliorate impaired recognition. Among the various strategies for AD treatment, phototherapy, including photothermal therapy (PTT), photodynamic therapy (PDT), and photoresponsive release systems have attracted increased attention because of the spatiotemporal controllability. Under the irradiation of light, the heat or reactive oxygen species generated by photothermal or photodynamic processes significantly enhances the efficacy of the inhibitor or modulator, and the "caged" drug can be accurately released at the intended site, thus avoiding adverse effects. This review, from a viewpoint of materials, focuses on the recent advances in modulating Aβ aggregation by light that irradiates on the materials that function on modulating Aβ aggregation. Representative examples of PTT, PDT, and photoresponsive drug release systems are discussed in terms of inhibitory mechanism, the unique properties of materials, and the design of modulators. The major challenges of phototherapy against AD are addressed and the promising prospects are proposed. It is concluded that the noninvasive light-assisted approaches will become a promising strategy for intensifying the modulation of Aβ aggregation and thus facilitating AD treatment. STATEMENT OF SIGNIFICANCE: Alzheimer's disease (AD) with the hallmark of amyloid-β protein (Aβ) deposition is affecting more than 50 million people globally. It is urgent to explore intelligent materials to modulate Aβ aggregation. This review summarizes the intensified modulation of Aβ aggregation by a variety of photoresponsive materials including photothermal, photosensitizing and photoresponsive release materials, focusing on their characteristics and functionalities. We believe this review would arouse more interest in the research field of stimuli-responsive materials and promote their clinical applications in AD therapy.
Collapse
Affiliation(s)
- Wei Liu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Xiaoyan Dong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Yang Liu
- Department of Biology & Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, College of Science, Shantou University, Shantou, Guangdong 515063, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| |
Collapse
|
21
|
Phenylboronic acid-conjugated chitosan nanoparticles for high loading and efficient delivery of curcumin. Carbohydr Polym 2021; 256:117497. [PMID: 33483024 DOI: 10.1016/j.carbpol.2020.117497] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/20/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022]
Abstract
In order to achieve high loading and efficient delivery of curcumin, phenylboronic acid-conjugated chitosan nanoparticles were prepared by a simple desolvation method. These nanoparticles exhibited a regular spherical shape with the average size about 200-230 nm and narrow size distribution, which were kinetically stable under physiological condition. Due to boronate ester formation between curcumin and phenylboronic acid groups in the nanoparticles, and the hydrogen bonding interactions between curcumin and nanocarriers, curcumin was successfully loaded into the nanoparticles with high drug loading content. These curcumin-loaded nanoparticles showed pH and reactive oxygen species (ROS)-triggered drug release behavior. In vitro cell experiments revealed that the blank nanoparticles were completely nontoxic to cultured cells, and the curcumin-loaded nanoparticles exhibited efficient antitumor efficiency against cancer cells. Moreover, the drug-loaded nanoparticles performed an enhanced growth inhibition in three-dimensional multicellular tumor spheroids. Thus, these nanocarriers would be a promising candidate for curcumin delivery in tumor treatment.
Collapse
|
22
|
Xu Y, Zhao M, Zhou D, Zheng T, Zhang H. The application of multifunctional nanomaterials in Alzheimer's disease: A potential theranostics strategy. Biomed Pharmacother 2021; 137:111360. [PMID: 33582451 DOI: 10.1016/j.biopha.2021.111360] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 01/13/2021] [Accepted: 02/02/2021] [Indexed: 12/15/2022] Open
Abstract
By virtue of their small size, nanomaterials can cross the blood-brain barrier and, when modified to target specific cells or regions, can achieve high bioavailability at the intended site of action. Modified nanomaterials are therefore promising agents for the diagnosis and treatment of neurodegenerative diseases such as Alzheimer's disease (AD). Here we review the roles and mechanisms of action of nanomaterials in AD. First, we discuss the general characteristics of nanomaterials and their application to nanomedicine. Then, we summarize recent studies on the diagnosis and treatment of AD using modified nanomaterials. These studies indicate that using nanomaterials is a potential strategy for AD treatment by slowing the progression of AD through enhanced therapeutic effects.
Collapse
Affiliation(s)
- Yilan Xu
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing 312000, Zhejiang, China
| | - Manna Zhao
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing 312000, Zhejiang, China
| | - Dongming Zhou
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Tingting Zheng
- Department of Neurology, The First Affiliated Hospital of ZheJiang Chinese Medical University, Zhejiang Provincial Hospital of TCM, Hangzhou 310058, Zhejiang, China
| | - Heng Zhang
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing 312000, Zhejiang, China.
| |
Collapse
|
23
|
Ghosh P, Bera A, De P. Current status, challenges and future directions in the treatment of neurodegenerative diseases by polymeric materials. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
24
|
Mourtas S, Mavroidi B, Marazioti A, Kannavou M, Sagnou M, Pelecanou M, Antimisiaris SG. Liposomes Decorated with 2-(4'-Aminophenyl)benzothiazole Effectively Inhibit Aβ 1-42 Fibril Formation and Exhibit in Vitro Brain-Targeting Potential. Biomacromolecules 2020; 21:4685-4698. [PMID: 33112137 DOI: 10.1021/acs.biomac.0c00811] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The potential of 2-benzothiazolyl-decorated liposomes as theragnostic systems for Alzheimer's disease was evaluated in vitro, using PEGylated liposomes that were decorated with two types of 2-benzothiazoles: (i) the unsubstituted 2-benzothiazole (BTH) and (ii) the 2-(4-aminophenyl)benzothiazole (AP-BTH). The lipid derivatives of both BTH-lipid and AP-BTH-lipid were synthesized, for insertion in liposome membranes. Liposomes (LIP) containing three different concentrations of benzothiazoles (5, 10, and 20%) were formulated, and their stability, integrity in the presence of serum proteins, and their ability to inhibit β-amyloid (1-42) (Αβ42) peptide aggregation (by circular dichroism (CD) and thioflavin T (ThT) assay), were evaluated. Additionally, the interaction of some LIP with an in vitro model of the blood-brain barrier (BBB) was studied. All liposome types ranged between 92 and 105 nm, with the exception of the 20% AP-BTH-LIP that were larger (180 nm). The 5 and 10% AP-BTH-LIP were stable when stored at 4 °C for 40 days and demonstrated high integrity in the presence of serum proteins for 7 days at 37 °C. Interestingly, CD experiments revealed that the AP-BTH-LIP substantially interacted with Αβ42 peptides and inhibited fibril formation, as verified by ThT assay, in contrast with the BTH-LIP, which had no effect. The 5 and 10% AP-BTH-LIP were the most effective in inhibiting Αβ42 fibril formation. Surprisingly, the AP-BTH-LIP, especially the 5% ones, demonstrated high interaction with brain endothelial cells and high capability to be transported across the BBB model. Taken together, the current results reveal that the 5% AP-BTH-LIP are of high interest as novel targeted theragnostic systems against AD, justifying further in vitro and in vivo exploitation.
Collapse
Affiliation(s)
- Spyridon Mourtas
- Laboratory of Pharmaceutical Technology, Dept. of Pharmacy, School of Health Sciences, University of Patras, Rio Patras 26510, Greece.,Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas (FORTH/ICES), Rio Patras 26504, Greece
| | - Barbara Mavroidi
- Institute of Biosciences & Applications, National Center for Scientific Research "Demokritos", Athens 15310, Greece
| | - Antonia Marazioti
- Laboratory of Pharmaceutical Technology, Dept. of Pharmacy, School of Health Sciences, University of Patras, Rio Patras 26510, Greece.,Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas (FORTH/ICES), Rio Patras 26504, Greece
| | - Maria Kannavou
- Laboratory of Pharmaceutical Technology, Dept. of Pharmacy, School of Health Sciences, University of Patras, Rio Patras 26510, Greece.,Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas (FORTH/ICES), Rio Patras 26504, Greece
| | - Marina Sagnou
- Institute of Biosciences & Applications, National Center for Scientific Research "Demokritos", Athens 15310, Greece
| | - Maria Pelecanou
- Institute of Biosciences & Applications, National Center for Scientific Research "Demokritos", Athens 15310, Greece
| | - Sophia G Antimisiaris
- Laboratory of Pharmaceutical Technology, Dept. of Pharmacy, School of Health Sciences, University of Patras, Rio Patras 26510, Greece.,Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas (FORTH/ICES), Rio Patras 26504, Greece
| |
Collapse
|
25
|
Gao W, Wang W, Dong X, Sun Y. Nitrogen-Doped Carbonized Polymer Dots: A Potent Scavenger and Detector Targeting Alzheimer's β-Amyloid Plaques. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002804. [PMID: 33006250 DOI: 10.1002/smll.202002804] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/05/2020] [Indexed: 05/16/2023]
Abstract
The fibrillization and deposition of β-amyloid protein (Aβ) are recognized to be the pathological hallmarks of Alzheimer's disease (AD), which signify the need for the effective detection and inhibition of Aβ accumulation. Development of multifunctional agents that can inhibit Aβ aggregation, rapidly disaggregate fibrils, and image aggregates is one of the effective strategies to treat and diagnose AD. Herein, the multifunctionality of nitrogen-doped carbonized polymer dots (CPDs) targeting Aβ aggregation is reported. CPDs inhibit the fibrillization of Aβ monomers and rapidly disintegrate Aβ fibrils by electrostatic interactions, hydrogen-bonding and hydrophobic interactions with Aβ in a time scale of seconds to minutes. Moreover, the interactions make CPDs label Aβ fibrils and emit enhanced red fluorescence by the binding, so CPDs can be used for in vivo imaging of the amyloids in transgenic Caenorhabditis elegans CL2006 as an AD model. Importantly, CPDs are demonstrated to scavenge the in vivo amyloid plaques and to promote the lifespan extension of CL2006 strain by alleviating the Aβ-triggered toxicity. Taken together, the multifunctional CPDs show an exciting prospect for further investigations in Aβ-targeted AD treatment and diagnosis, and this study provides new insight into the development of carbon materials in AD theranostics.
Collapse
Affiliation(s)
- Weiqun Gao
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Wenjuan Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Xiaoyan Dong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, China
| |
Collapse
|
26
|
Ghosh P, De P. Modulation of Amyloid Protein Fibrillation by Synthetic Polymers: Recent Advances in the Context of Neurodegenerative Diseases. ACS APPLIED BIO MATERIALS 2020; 3:6598-6625. [DOI: 10.1021/acsabm.0c01021] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Pooja Ghosh
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246 Nadia, West Bengal, India
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246 Nadia, West Bengal, India
| |
Collapse
|
27
|
Erfani A, Seaberg J, Aichele CP, Ramsey JD. Interactions between Biomolecules and Zwitterionic Moieties: A Review. Biomacromolecules 2020; 21:2557-2573. [PMID: 32479065 DOI: 10.1021/acs.biomac.0c00497] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Amir Erfani
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Joshua Seaberg
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Clint Philip Aichele
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Joshua D. Ramsey
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| |
Collapse
|
28
|
Drug-based magnetic imprinted nanoparticles: Enhanced lysozyme amyloid fibrils cleansing and anti-amyloid fibrils toxicity. Int J Biol Macromol 2020; 153:723-735. [DOI: 10.1016/j.ijbiomac.2020.03.061] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/08/2020] [Accepted: 03/09/2020] [Indexed: 01/05/2023]
|
29
|
Moradi SZ, Momtaz S, Bayrami Z, Farzaei MH, Abdollahi M. Nanoformulations of Herbal Extracts in Treatment of Neurodegenerative Disorders. Front Bioeng Biotechnol 2020; 8:238. [PMID: 32318551 PMCID: PMC7154137 DOI: 10.3389/fbioe.2020.00238] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 03/09/2020] [Indexed: 12/14/2022] Open
Abstract
Nanotechnology is one of the methods that influenced human life in different ways and is a substantial approach that assists to overcome the multiple limitations of various diseases, particularly neurodegenerative disorders (NDs). Diverse nanostructures such as polymer nanoparticles, lipid nanoparticles, nanoliposomes, nano-micelles, and carbon nanotubes (CNTs); as well as different vehicle systems including poly lactic-co-glycolic acid, lactoferrin, and polybutylcyanoacrylate could significantly increase the effectiveness, reduce the side effects, enhance the stability, and improve the pharmacokinetics of many drugs. NDs belong to a group of annoying and debilitating diseases that involve millions of people worldwide. Previous studies revealed that several nanoformulations from a number of natural products such as curcumin (Cur), quercetin (QC), resveratrol (RSV), piperine (PIP), Ginkgo biloba, and Nigella sativa significantly improved the condition of patients diagnosed with NDs. Drug delivery to the central nervous system (CNS) has several limitations, in which the blood brain barrier (BBB) is the main drawback for treatment of NDs. This review discusses the effects of herbal-based nanoformulations, their advantages and disadvantages, to manage NDs. In summary, we conclude that herbal-based nano systems have promising proficiency in treatment of NDs, either alone or in combination with other drugs.
Collapse
Affiliation(s)
- Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Bayrami
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Zhao G, Sun Y, Dong X. Zwitterionic Polymer Micelles with Dual Conjugation of Doxorubicin and Curcumin: Synergistically Enhanced Efficacy against Multidrug-Resistant Tumor Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2383-2395. [PMID: 32036662 DOI: 10.1021/acs.langmuir.9b03722] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This paper reports a novel redox-sensitive micellar system for the co-delivery of doxorubicin (Dox) and a chemosensitizer (curcumin, Cur) to overcome the multidrug resistance (MDR) in cancer cells. Dox and Cur were co-conjugated onto a zwitterionic polymer, poly(carboxybetaine) (pCB), to form Cur-pCB-Dox that self-assembled into stable micelles (164.2 ± 4.8 nm). Single-drug conjugates (pCB-Dox and pCB-Cur) were prepared for comparisons. Compared to the high half-maximal inhibitory concentration (IC50) of Dox (437.2 μg/mL), the IC50 value of pCB-Dox (14.1 μg/mL) was only 1/33 that of Dox. Confocal laser scanning microscopy and flow cytometry revealed the greatly enhanced cell uptake of the conjugate due to the enhanced permeability and retention effect of tumor cells on the micellar conjugate. Co-delivery of pCB-Dox with pCB-Cur further reduced the IC50 value by 37% (8.9 μg/mL). More importantly, Cur-pCB-Dox exhibited the strongest cytotoxicity against MCF-7/Adr cells (IC50, 5.87 μg/mL) because the co-delivered Dox and Cur on one carrier specifically transported into the same cells, which inhibited the efflux of Dox by Cur, led to a higher intracellular Dox concentration and made the drugs exert synergistic effects at the targeting regions. The results proved the zwitterionic micelles as promising drug co-delivery vehicles for fighting against MDR.
Collapse
Affiliation(s)
- Guangfu Zhao
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yan Sun
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xiaoyan Dong
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
31
|
Liu W, Hu X, Zhou L, Tu Y, Shi S, Yao T. Orientation-Inspired Perspective on Molecular Inhibitor of Tau Aggregation by Curcumin Conjugated with Ruthenium(II) Complex Scaffold. J Phys Chem B 2020; 124:2343-2353. [DOI: 10.1021/acs.jpcb.9b11705] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Wenjie Liu
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, 200092 Shanghai, P.R. China
| | - Xiaochun Hu
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, 200092 Shanghai, P.R. China
| | - Lulu Zhou
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, 200092 Shanghai, P.R. China
| | - Ying Tu
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, 200092 Shanghai, P.R. China
| | - Shuo Shi
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, 200092 Shanghai, P.R. China
| | - Tianming Yao
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, 200092 Shanghai, P.R. China
| |
Collapse
|
32
|
Akhmadullina AG, Akhmadullin RM, Gazizov AS, Gubaidullin AT, Lisin AV. New Reaction of Dimethylformamide with Acrylic Acid. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2020. [DOI: 10.1134/s107042801912008x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Jokar S, Khazaei S, Behnammanesh H, Shamloo A, Erfani M, Beiki D, Bavi O. Recent advances in the design and applications of amyloid-β peptide aggregation inhibitors for Alzheimer's disease therapy. Biophys Rev 2019; 11:10.1007/s12551-019-00606-2. [PMID: 31713720 DOI: 10.1007/s12551-019-00606-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 10/31/2019] [Indexed: 01/05/2023] Open
Abstract
Alzheimer's disease (AD) is an irreversible neurological disorder that progresses gradually and can cause severe cognitive and behavioral impairments. This disease is currently considered a social and economic incurable issue due to its complicated and multifactorial characteristics. Despite decades of extensive research, we still lack definitive AD diagnostic and effective therapeutic tools. Consequently, one of the most challenging subjects in modern medicine is the need for the development of new strategies for the treatment of AD. A large body of evidence indicates that amyloid-β (Aβ) peptide fibrillation plays a key role in the onset and progression of AD. Recent studies have reported that amyloid hypothesis-based treatments can be developed as a new approach to overcome the limitations and challenges associated with conventional AD therapeutics. In this review, we will provide a comprehensive view of the challenges in AD therapy and pathophysiology. We also discuss currently known compounds that can inhibit amyloid-β (Aβ) aggregation and their potential role in advancing current AD treatments. We have specifically focused on Aβ aggregation inhibitors including metal chelators, nanostructures, organic molecules, peptides (or peptide mimics), and antibodies. To date, these molecules have been the subject of numerous in vitro and in vivo assays as well as molecular dynamics simulations to explore their mechanism of action and the fundamental structural groups involved in Aβ aggregation. Ultimately, the aim of these studies (and current review) is to achieve a rational design for effective therapeutic agents for AD treatment and diagnostics.
Collapse
Affiliation(s)
- Safura Jokar
- Department of Nuclear Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. BOX: 14155-6559, Tehran, Iran
| | - Saeedeh Khazaei
- Department of Pharmaceutical Biomaterials , Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. BOX: 14155-6559, Tehran, Iran
| | - Hossein Behnammanesh
- Department of Nuclear Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. BOX: 14155-6559, Tehran, Iran
| | - Amir Shamloo
- Department of Mechanical Engineering, Sharif University of Technology, P.O. Box: 11365-11155, Tehran, Iran
| | - Mostafa Erfani
- Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI), P.O. Box: 14155-1339, Tehran, Iran
| | - Davood Beiki
- Research Center for Nuclear Medicine, Tehran University of Medical Sciences, P.O. BOX: 14155-6559, Tehran, Iran
| | - Omid Bavi
- Department of Mechanical and Aerospace Engineering, Shiraz University of Technology, P.O. Box: 71555-313, Shiraz, Iran.
| |
Collapse
|
34
|
Karabasz A, Lachowicz D, Karewicz A, Mezyk-Kopec R, Stalińska K, Werner E, Cierniak A, Dyduch G, Bereta J, Bzowska M. Analysis of toxicity and anticancer activity of micelles of sodium alginate-curcumin. Int J Nanomedicine 2019; 14:7249-7262. [PMID: 31564877 PMCID: PMC6735652 DOI: 10.2147/ijn.s213942] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/29/2019] [Indexed: 12/16/2022] Open
Abstract
Background Curcumin is a natural polyphenol with anti-inflammatory, chemopreventive and anticancer activity. However, its high hydrophobicity and poor bioavailability limit its medical application. The development of nanocarriers for curcumin delivery is an attractive approach to overcome its low bioavailability and fast metabolism in the liver. We synthesized a blood compatible alginate-curcumin conjugate, AA-Cur, which formed colloidally stable micelles of approximately 200 nm and, as previously shown, exerted strong cytotoxicity against mouse cancer cell lines. Here we analyze in vivo toxicity and antitumor activity of AA-Cur in two different mouse tumor models. Method Potential toxicity of intravenously injected AA-Cur was evaluated by: i) analyses of blood parameters (morphology and biochemistry), ii) histology, iii) DNA integrity (comet assay), and iv) cytokine profiling (flow cytometry). Antitumor activity of AA-Cur was evaluated by measuring the growth of subcutaneously inoculated colon MC38-CEA- or orthotopically injected breast 4T1 tumor cells in control mice vs mice treated with AA-Cur. Results Injections of four doses of AA-Cur did not reveal any toxicity of the conjugate, thus indicating the safety of its use. AA-Cur elicited moderate anti-tumor activity toward colon MC38-CEA or breast 4T1 carcinomas. Conclusion The tested conjugate of alginate and curcumin, AA-Cur, is non-toxic and safe, but exhibits limited anticancer activity.
Collapse
Affiliation(s)
- Alicja Karabasz
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Dorota Lachowicz
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Kraków, Poland
| | - Anna Karewicz
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | - Renata Mezyk-Kopec
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Krystyna Stalińska
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Ewa Werner
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.,Department of Animal Reproduction and Anatomy, Faculty of Animal Science, University of Agriculture, Krakow, Poland
| | - Agnieszka Cierniak
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Grzegorz Dyduch
- Department of Pathomorphology, Jagiellonian University Medical College, Kraków, Poland
| | - Joanna Bereta
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Monika Bzowska
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
35
|
Liu J, Conboy JC. Structure of a gel phase lipid bilayer prepared by the Langmuir-Blodgett/Langmuir-Schaefer method characterized by sum-frequency vibrational spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2005; 21:9091-7. [PMID: 16171337 DOI: 10.1021/la051500e] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The structure of a planar supported lipid bilayer (PSLB) prepared by the Langmuir-Blodgett (LB)/Langmuir-Schaefer (LS) method was investigated by sum-frequency vibrational spectroscopy (SFVS). By using asymmetric lipid bilayers composed of selectively deuterated 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) lipids, the orientation of the fatty acid chains and phosphocholine headgroups has been determined independently for both leaflets of the bilayer. The alkyl chains of the lipids were found to be orientated approximately 13 degrees +/- 4 degrees from the surface normal for both leaflets. The lipid chains in both leaflets also contain some gauche content, which is consistent with previous NMR and FTIR studies of similar lipid systems. More importantly, the relative number of gauche defects does not seem to be influenced by the deposition method, LB versus LS. The headgroup orientation for the lipid film in contact with the silica support was determined to be 69 degrees +/- 3 degrees , whereas that in contact with the aqueous phase was 66 degrees +/- 4 degrees from the surface normal. The SFVS results indicate that the structure of the DSPC lipid film in contact with the solid support and the film adjacent to the aqueous phase are nearly identical in structure. These results suggesting the LB/LS deposition method do indeed produce symmetric lipid bilayers. These studies further add to the growing information on the efficacy of PSLBs as suitable models for biological membrane studies.
Collapse
Affiliation(s)
- Jin Liu
- Department of Chemistry, University of Utah, 315 S. 1400 E. RM 2020, Salt Lake City, UT 84112, USA
| | | |
Collapse
|
36
|
Rigler P, Ulrich WP, Vogel H. Controlled immobilization of membrane proteins to surfaces for fourier transform infrared investigations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2004; 20:7901-7903. [PMID: 15350050 DOI: 10.1021/la049002d] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We show that it is possible to immobilize membrane proteins uniformly and reversibly as self-assembled (sub)monolayers on nitrilotriacetic acid-covered sensor surfaces via hexahistidine sequences present either in the protein or in lipid membranes. Fourier transform infrared spectra of such self-assembled (sub)monolayers deliver important structural information of the membrane proteins and are suited to screen the function of cellular receptors.
Collapse
|