1
|
Małecka M, Ciach A, Terzyk AP, Kujawa J, Korczeniewski E, Boncel S. Only-sp 2 nanocarbon superhydrophobic materials - Synthesis and mechanisms of high-performance. Adv Colloid Interface Sci 2024; 334:103311. [PMID: 39442424 DOI: 10.1016/j.cis.2024.103311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 09/05/2024] [Accepted: 10/12/2024] [Indexed: 10/25/2024]
Abstract
Superhydrophobic systems have fascinated the human kind since the earliest observations of the repellence of water droplets by biological systems. Currently, superhydrophobic materials (SHMs), often inspired by nature and engineered as thin coatings, become an important class of complex systems with numerous industrial implementations. The most important applications of SHMs cover waterproof, self-cleaning, anti-/deicing, anti-fogging, and catalytic systems/units, e.g., in textiles, civil and military engineering, automotive and space industry, and water-from-oil separating systems. In a few above areas, SHMs proved also to be tailorable as smart, i.e., reversibly stimuli-responsive and/or recyclable solutions. In all of those emerging fields, carbon - as the 'sixth element' - represents one of the most prospective components, also in the 'only‑carbon'-based systems. The versatility of carbon (nano)materials, supported by their surface and morphology/topology tunability at from the nano- to macroscale, is vital in the manufacturing of high-performance SHMs. Here, we review only-sp2-hybridized nanocarbon SHMs, i.e., materials exhibiting water contact angle (WCA) >150°, from molecular design to synthesis and evaluation of their application-oriented properties, including WCA. The nanocarbons - pristine/as-made, (non-)covalently functionalized and in a form of carbon‑carbon composites - are analyzed according to their dimensionality: 0D fullerenes, 1D carbon nanotubes (CNTs), 2D graphene, and 3D carbon nanofibers (CNFs). Importantly, this review intends to provide premises toward novel sp2-nanocarbon SHMs, indicating nanowettability and Hansen Solubility Parameters the key ones.
Collapse
Affiliation(s)
- Magdalena Małecka
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, NanoCarbon Group, Bolesława Krzywoustego 4, 44-100 Gliwice, Poland
| | - Alina Ciach
- Institute of Physical Chemistry of the Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Artur P Terzyk
- Faculty of Chemistry, Physicochemistry of Carbon Materials Research Group, Nicolaus Copernicus University in Toruń, Gagarin Street 7, 87-100 Toruń, Poland
| | - Joanna Kujawa
- Faculty of Chemistry, Department of Physical Chemistry and Physical Chemistry of Polymers, Nicolaus Copernicus University, Gagarin Street 7, 87-100 Toruń, Poland
| | - Emil Korczeniewski
- Faculty of Chemistry, Physicochemistry of Carbon Materials Research Group, Nicolaus Copernicus University in Toruń, Gagarin Street 7, 87-100 Toruń, Poland
| | - Sławomir Boncel
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, NanoCarbon Group, Bolesława Krzywoustego 4, 44-100 Gliwice, Poland; Centre for Organic and Nanohybrid Electronics (CONE), Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland.
| |
Collapse
|
2
|
Liu J, Cao H. Sub-ambient water wettability of hydrophilic and hydrophobic SiO2 surfaces. J Chem Phys 2024; 161:184701. [PMID: 39513444 DOI: 10.1063/5.0236994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024] Open
Abstract
The wettability of SiO2 surfaces, crucial for understanding the phase transition processes of water, remains a topic of significant controversy in the literature due to uncertainties in experiments. Molecular dynamics (MD) simulations offer a promising avenue for elucidating these complexities, yet studies specifically addressing water contact angles on hydrophilic and hydrophobic SiO2 surfaces at sub-ambient temperatures are notably absent. In this study, we experimentally measured water contact angles of hydrophilic and hydrophobic SiO2 surfaces at ambient temperature and employed MD to investigate water contact angles on Q3, Q3/Q4, and Q4 SiO2 surfaces across temperatures ranging from 220 to 300 K. We investigated the effects of the distribution of hydroxyl groups, droplet size, and hydroxyl density and found that the hydroxyl density had the largest impact on contact angle. Moreover, hydrogen bond analysis uncovered enhanced water affinities of Q3 and Q3/Q4 SiO2 surfaces at lower temperatures, and the spreading rate of precursor films reduced with decreasing temperature. This comprehensive study sheds light on the intricate interaction between surface properties and water behavior, promoting our understanding of the wettability of SiO2 surfaces.
Collapse
Affiliation(s)
- Jianghui Liu
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Haishan Cao
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
3
|
Marie Lößlein S, Merz R, Rodríguez-Martínez Y, Schäfer F, Grützmacher PG, Horwat D, Kopnarski M, Mücklich F. Influence of chemistry and topography on the wettability of copper. J Colloid Interface Sci 2024; 670:658-675. [PMID: 38772811 DOI: 10.1016/j.jcis.2024.04.212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/16/2024] [Accepted: 04/29/2024] [Indexed: 05/23/2024]
Abstract
To understand the complex interplay of topography and surface chemistry in wetting, fundamental studies investigating both parameters are needed. Due to the sensitivity of wetting to miniscule changes in one of the parameters it is imperative to precisely control the experimental approach. A profound understanding of their influence on wetting facilitates a tailored design of surfaces with unique functionality. We present a multi-step study: The influence of surface chemistry is analyzed by determining the adsorption of volatile carbonous species (A) and by sputter deposition of metallic copper and copper oxides on flat copper substrates (B). A precise surface topography is created by laser processing. Isotropic topography is created by ps laser processing (C), and hierarchical anisotropic line patterns are produced by direct laser interference patterning (DLIP) with different pulse durations (D). Our results reveal that the long-term wetting response of polished copper surfaces stabilizes with time despite ongoing accumulation of hydrocarbons and is dominated by this adsorption layer over the oxide state of the substrate (Cu, CuO, Cu2O). The surfaces' wetting response can be precisely tuned by tailoring the topography via laser processing. The sub-pattern morphology of primary line-like patterns showed great impact on the static contact angle, wetting anisotropy, and water adhesion. An increased roughness inside the pattern valleys combined with a minor roughness on pattern peaks favors air-inclusions, isotropic hydrophobicity, and low water adhesion. Increasing depth of the primary topography can also induce air-inclusions despite increasing peak roughness while time dependent wetting transitions were observed.
Collapse
Affiliation(s)
- Sarah Marie Lößlein
- Chair of Functional Materials, Department of Materials Science, Saarland University, 66123 Saarbrücken, Germany.
| | - Rolf Merz
- Institute for Surface and Thin Film Technologies (IFOS) at the University of Kaiserslautern-Landau (RPTU), Germany
| | - Yerila Rodríguez-Martínez
- University of Havana, Photovoltaic Research Laboratory, Institute of Materials Science and Technology - Physics Faculty, San Lázaro y L, 10 400 Havana, Cuba; Université de Lorraine, CNRS, IJL, F-54000 Nancy, France
| | - Florian Schäfer
- Materials Science and Methods, Department of Materials Science, Saarland University, 66123 Saarbrücken, Germany
| | - Philipp G Grützmacher
- Institute for Engineering Design and Product Development, Tribology Research Division, TU Wien, 1060 Vienna, Austria
| | - David Horwat
- Université de Lorraine, CNRS, IJL, F-54000 Nancy, France
| | - Michael Kopnarski
- Institute for Surface and Thin Film Technologies (IFOS) at the University of Kaiserslautern-Landau (RPTU), Germany
| | - Frank Mücklich
- Chair of Functional Materials, Department of Materials Science, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
4
|
Garcia R. Interfacial Liquid Water on Graphite, Graphene, and 2D Materials. ACS NANO 2023; 17:51-69. [PMID: 36507725 PMCID: PMC10664075 DOI: 10.1021/acsnano.2c10215] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
The optical, electronic, and mechanical properties of graphite, few-layer, and two-dimensional (2D) materials have prompted a considerable number of applications. Biosensing, energy storage, and water desalination illustrate applications that require a molecular-scale understanding of the interfacial water structure on 2D materials. This review introduces the most recent experimental and theoretical advances on the structure of interfacial liquid water on graphite-like and 2D materials surfaces. On pristine conditions, atomic-scale resolution experiments revealed the existence of 1-3 hydration layers. Those layers were separated by ∼0.3 nm. The experimental data were supported by molecular dynamics simulations. However, under standard working conditions, atomic-scale resolution experiments revealed the presence of 2-3 hydrocarbon layers. Those layers were separated by ∼0.5 nm. Linear alkanes were the dominant molecular specie within the hydrocarbon layers. Paradoxically, the interface of an aged 2D material surface immersed in water does not have water molecules on its vicinity. Free-energy considerations favored the replacement of water by alkanes.
Collapse
Affiliation(s)
- Ricardo Garcia
- Instituto de Ciencia de Materiales
de Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049Madrid, Spain
| |
Collapse
|
5
|
Kuziel A, Dzido G, Jędrysiak RG, Kolanowska A, Jóźwiak B, Beunat J, Korczeniewski E, Zięba M, Terzyk AP, Yahya N, Thakur VK, Koziol KK, Boncel S. Biomimetically Inspired Highly Homogeneous Hydrophilization of Graphene with Poly(l-DOPA): Toward Electroconductive Coatings from Water-Processable Paints. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2022; 10:6596-6608. [PMID: 35634268 PMCID: PMC9131455 DOI: 10.1021/acssuschemeng.2c00226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Water-based processing of graphene-typically considered as physicochemically incompatible with water in the macroscale-emerges as the key challenge among the central postulates of green nanotechnology. These problematic concerns are derived from the complex nature of graphene in the family of sp2-carbon nanoallotropes. Indeed, nanomaterials hidden under the common "graphene" signboard are very rich in morphological and physicochemical variants. In this work, inspired by the adhesion chemistry of mussel biomaterials, we have synthesized novel, water-processable graphene-polylevodopa (PDOPA) hybrids. Graphene and PDOPA were covalently amalgamated via the "growth-from" polymerization of l-DOPA (l-3,4-dihydroxyphenylalanine) monomer in air, yielding homogeneously PDOPA-coated (23 wt %) (of thickness 10-20 nm) hydrophilic flakes. The hybrids formed >1 year stable and water-processable aqueous dispersions and further conveniently processable paints of viscosity 0.4 Pa·s at 20 s-1 and a low yield stress τ0 up to 0.12 Pa, hence exhibiting long shelf-life stability and lacking sagging after application. Demonstrating their applicability, we have found them as surfactant-like nanoparticles stabilizing the larger, pristine graphene agglomerates in water in the optimized graphene/graphene-PDOPA weight ratio of 9:1. These characteristics enabled the manufacture of conveniently paintable coatings of low surface resistivity of 1.9 kΩ sq-1 (0.21 Ω·m) which, in turn, emerge as potentially applicable in textronics, radar-absorbing materials, or electromagnetic interference shielding.
Collapse
Affiliation(s)
- Anna Kuziel
- Department
of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
- Enhanced
Composites and Structures Centre, School of Aerospace, Transport and
Manufacturing, Cranfield University, Cranfield, MK43 0AL Bedfordshire, U.K.
| | - Grzegorz Dzido
- Department
of Chemical Engineering and Process Design, Silesian University of Technology, Strzody 7, 44-100 Gliwice, Poland
| | - Rafał G. Jędrysiak
- Department
of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
| | - Anna Kolanowska
- Department
of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
| | - Bertrand Jóźwiak
- Department
of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
- Department
of Chemical Engineering and Process Design, Silesian University of Technology, Strzody 7, 44-100 Gliwice, Poland
| | - Juliette Beunat
- Enhanced
Composites and Structures Centre, School of Aerospace, Transport and
Manufacturing, Cranfield University, Cranfield, MK43 0AL Bedfordshire, U.K.
- Cambridge
Graphene Centre, Engineering Department, University of Cambridge, 9 JJ Thomson Avenue, CB3 0FA Cambridge, U.K.
| | - Emil Korczeniewski
- Faculty
of Chemistry, Physicochemistry of Carbon Materials Research Group, Nicolaus Copernicus University in Toruń, Gagarin Street 7, 87-100 Toruń, Poland
| | - Monika Zięba
- Faculty
of Chemistry, Physicochemistry of Carbon Materials Research Group, Nicolaus Copernicus University in Toruń, Gagarin Street 7, 87-100 Toruń, Poland
| | - Artur P. Terzyk
- Faculty
of Chemistry, Physicochemistry of Carbon Materials Research Group, Nicolaus Copernicus University in Toruń, Gagarin Street 7, 87-100 Toruń, Poland
| | - Noorhana Yahya
- Department
of Fundamental and Applied Sciences, Universiti
Teknologi Petronas, 32610 Seri Iskandar, Perak
Darul Ridzuan, Malaysia
- Spin
Eight Nanotechnologies Sdn. Bhd. 28, Persiaran Jelapang Maju 7, Kawasan Perindustrian
Ringan Jelapang Maju, 30020 Ipoh, Malaysia
| | - Vijay Kumar Thakur
- Enhanced
Composites and Structures Centre, School of Aerospace, Transport and
Manufacturing, Cranfield University, Cranfield, MK43 0AL Bedfordshire, U.K.
- Biorefining
and Advanced Materials Research Center, SRUC, EH9 3JG Edinburgh, U.K.
- School
of Engineering, University of Petroleum
& Energy Studies (UPES), 248007 Dehradun, India
| | - Krzysztof K. Koziol
- Enhanced
Composites and Structures Centre, School of Aerospace, Transport and
Manufacturing, Cranfield University, Cranfield, MK43 0AL Bedfordshire, U.K.
| | - Sławomir Boncel
- Department
of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
| |
Collapse
|
6
|
Liu Z, Song Y, Rajappan A, Wang EN, Preston DJ. Temporal Evolution of Surface Contamination under Ultra-high Vacuum. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1252-1258. [PMID: 35000388 DOI: 10.1021/acs.langmuir.1c03062] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ultra-high vacuum (UHV) is essential to many surface characterization techniques and is often applied with the intention of reducing exposure to airborne contaminants. Surface contamination under UHV is not well-understood, however, and introduces uncertainty in surface elemental characterization or hinders surface-sensitive manufacturing approaches. In this work, we investigated the time-dependent surface composition of gold samples with different initial levels of contamination under UHV over a period of 24 h with both experiments and physical modeling. Our results show that surface hydrocarbon concentration under UHV can be explained by molecular adsorption-desorption competition theory. Gold surfaces that were initially pristine adsorbed hydrocarbons over time under UHV; conversely, surfaces that were initially heavily contaminated desorbed hydrocarbons over time. During both adsorption and desorption, the concentration of contaminants tended toward the same equilibrium value. This study provides a comprehensive evaluation of the temporal evolution of surface contamination under UHV and highlights routes to mitigate surface contamination effects.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Mechanical Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Youngsup Song
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Anoop Rajappan
- Department of Mechanical Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Evelyn N Wang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Daniel J Preston
- Department of Mechanical Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
7
|
Karatas O, Gengec NA, Gengec E, Khataee A, Kobya M. High-performance carbon black electrode for oxygen reduction reaction and oxidation of atrazine by electro-Fenton process. CHEMOSPHERE 2022; 287:132370. [PMID: 34592209 DOI: 10.1016/j.chemosphere.2021.132370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/17/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
The aim of this study is to produce an electrode that can be used in H2O2 production and Electro-Fenton (EF) process by an effective, cheap, and easy method. For this reason, a superhydrophobic electrode with a higher PTFE ratio and high thickness was produced with a simple press. The produced electrode was used in the production of H2O2 and mineralization of Atrazine. First, the effect of pH, cathode voltage, and operation time on H2O2 production was evaluated. The maximum H2O2 concentration (409 mg/L), the highest current efficiency (99.80%), and the lowest electrical energy consumption (3.16 kWh/kg) were obtained at 0.8 V, 7.0 of pH, and 120 min, and the stability of the electrode was evaluated up to 720 min. Then, the effects of the operational conditions (pH, cathode voltage, operating time, and catalyst concentration) in electro-Fenton were evaluated. The fastest degradation of Atrazine (>99%) was obtained at 2.0 V, 3.0 of pH, and 0.3 mM of Fe2+ in 15 min. In the final part of the study, the degradation intermediates were identified, and the characterization of the electrode was evaluated by SEM, XRD, FT-IR, tensiometer, potentiostat, and elemental analyzer.
Collapse
Affiliation(s)
- Okan Karatas
- Department of Environmental Engineering, Gebze Technical University, 41400, Gebze, Turkey; Department of Environmental Engineering, Bursa Technical University, 16310, Bursa, Turkey
| | - Nevin Atalay Gengec
- Department of Chemical Engineering, Bilecik Şeyh Edebali University, 11230, Bilecik, Turkey
| | - Erhan Gengec
- Department of Environmental Protection, University of Kocaeli, 41275, Izmit, Kocaeli, Turkey
| | - Alireza Khataee
- Department of Environmental Engineering, Gebze Technical University, 41400, Gebze, Turkey; Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran.
| | - Mehmet Kobya
- Department of Environmental Engineering, Gebze Technical University, 41400, Gebze, Turkey; Kyrgyz-Turkish Manas University, Department of Environmental Engineering, Bishkek, Kyrgyzstan
| |
Collapse
|
8
|
Korczeniewski E, Bryk P, Koter S, Kowalczyk P, Kujawski W, Kujawa J, Terzyk AP. Revisiting Wetting, Freezing, and Evaporation Mechanisms of Water on Copper. ACS APPLIED MATERIALS & INTERFACES 2021; 13:37893-37903. [PMID: 34319693 PMCID: PMC8397239 DOI: 10.1021/acsami.1c09733] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Wetting of metal surfaces plays an important role in fuel cells, corrosion science, and heat-transfer devices. It has been recently stipulated that Cu surface is hydrophobic. In order to address this issue we use high purity (1 1 1) Cu prepared without oxygen, and resistant to oxidation. Using the modern Fringe Projection Phase-Shifting method of surface roughness determination, together with a new cell allowing the vacuum and thermal desorption of samples, we define the relation between the copper surface roughness and water contact angle (WCA). Next by a simple extrapolation, we determine the WCA for the perfectly smooth copper surface (WCA = 34°). Additionally, the kinetics of airborne hydrocarbons adsorption on copper was measured. It is shown for the first time that the presence of surface hydrocarbons strongly affects not only WCA, but also water droplet evaporation and the temperature of water droplet freezing. The different behavior and features of the surfaces were observed once the atmosphere of the experiment was changed from argon to air. The evaporation results are well described by the theoretical framework proposed by Semenov, and the freezing process by the dynamic growth angle model.
Collapse
Affiliation(s)
- Emil Korczeniewski
- Faculty
of Chemistry, Physicochemistry of Carbon Materials Research Group, Nicolaus Copernicus University in Toruń, Gagarina Street 7, 87-100 Toruń, Poland
| | - Paweł Bryk
- Faculty
of Chemistry, Chair of Theoretical Chemistry, Maria Curie - Skłodowska University, 20−031 Lublin, Poland
| | - Stanisław Koter
- Faculty
of Chemistry, Department of Physical Chemistry and Physical Chemistry
of Polymers, Nicolaus Copernicus University
in Toruń, Gagarina
Street 7, 87-100 Toruń, Poland
| | - Piotr Kowalczyk
- College
of Science, Health, Engineering and Education, Murdoch University, Perth, Western Australia 6150, Australia
| | - Wojciech Kujawski
- Faculty
of Chemistry, Department of Physical Chemistry and Physical Chemistry
of Polymers, Nicolaus Copernicus University
in Toruń, Gagarina
Street 7, 87-100 Toruń, Poland
| | - Joanna Kujawa
- Faculty
of Chemistry, Department of Physical Chemistry and Physical Chemistry
of Polymers, Nicolaus Copernicus University
in Toruń, Gagarina
Street 7, 87-100 Toruń, Poland
| | - Artur P. Terzyk
- Faculty
of Chemistry, Physicochemistry of Carbon Materials Research Group, Nicolaus Copernicus University in Toruń, Gagarina Street 7, 87-100 Toruń, Poland
| |
Collapse
|
9
|
Kim SH, Rho Y, Cho E, Myung JS, Lee SJ. Surface plasmonic resonance tunable nanocomposite thin films applicable to color filters, heat mirrors, semi-transparent electrodes, and electromagnetic-shields. NANOSCALE 2021; 13:12260-12270. [PMID: 34241610 DOI: 10.1039/d1nr02363b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This study proposes a plasmonic resonance-tunable nanocomposite thin film, which applies to a color filter, heat mirror, semi-transparent color electrode, and electromagnetic shield, given that the size and structure of nanoclusters can be controlled by a sputtering power density. The structural and functional properties of silver/plasma-polymer-fluorocarbon (Ag/PPFC) nanocomposite thin films, which were sputtered by ternary composite targets, were investigated with various compositions and sputtering power densities. The growth of Ag nanoclusters of the thin film was suppressed as the sputtering power density increased due to the rich functional group of -CFx- fluorine. As a result, a continuous color change from blue to yellow could be expressed on films given the precise control of the surface plasmonic resonance phenomenon. Grazing-incidence small-angle scattering (GISAXS) analysis indicated that the sputtering power density had a significant effect on the size, distribution, and orientation of the Ag nanoclusters in the thin film. For low sputtering power densities, Ag nanoclusters were forming aggregations along the out-of-plane direction, but as the sputtering power density increased, the nanoclusters showed random distribution instead of large aggregates. We also demonstrated applications of Ag/PPFC nanocomposite thin films to a color filter, heat mirror, semi-transparent electrode, and electromagnetic shield. In addition, the fabrication of a large-area film (400 × 700 mm2) showed that the approach applies highly to industries.
Collapse
Affiliation(s)
- Sung Hyun Kim
- Chemical Materials Solutions Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea.
| | | | | | | | | |
Collapse
|
10
|
Díaz D, Nickel O, Moraga N, Catalán RE, Retamal MJ, Zelada H, Cisternas M, Meißner R, Huber P, Corrales TP, Volkmann UG. How water wets and self-hydrophilizes nanopatterns of physisorbed hydrocarbons. J Colloid Interface Sci 2021; 606:57-66. [PMID: 34388573 DOI: 10.1016/j.jcis.2021.07.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 11/26/2022]
Abstract
HYPOTHESIS Weakly bound, physisorbed hydrocarbons could in principle provide a similar water-repellency as obtained by chemisorption of strongly bound hydrophobic molecules at surfaces. EXPERIMENTS Here we present experiments and computer simulations on the wetting behaviour of water on molecularly thin, self-assembled alkane carpets of dotriacontane (n-C32H66 or C32) physisorbed on the hydrophilic native oxide layer of silicon surfaces during dip-coating from a binary alkane solution. By changing the dip-coating velocity we control the initial C32 surface coverage and achieve distinct film morphologies, encompassing homogeneous coatings with self-organised nanopatterns that range from dendritic nano-islands to stripes. FINDINGS These patterns exhibit a good water wettability even though the carpets are initially prepared with a high coverage of hydrophobic alkane molecules. Using in-liquid atomic force microscopy, along with molecular dynamics simulations, we trace this to a rearrangement of the alkane layers upon contact with water. This restructuring is correlated to the morphology of the C32 coatings, i.e. their fractal dimension. Water molecules displace to a large extent the first adsorbed alkane monolayer and thereby reduce the hydrophobic C32 surface coverage. Thus, our experiments evidence that water molecules can very effectively hydrophilize initially hydrophobic surfaces that consist of weakly bound hydrocarbon carpets.
Collapse
Affiliation(s)
- Diego Díaz
- Instituto de Física, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | - Ole Nickel
- Hamburg University of Technology, Institute of Polymers and Composites, 21073 Hamburg, Germany
| | - Nicolás Moraga
- Instituto de Física, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Rodrigo E Catalán
- Instituto de Física, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - María José Retamal
- Instituto de Física, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Hugo Zelada
- Instituto de Física, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Marcelo Cisternas
- Instituto de Física, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Robert Meißner
- Hamburg University of Technology, Institute of Polymers and Composites, 21073 Hamburg, Germany; Helmholtz-Zentrum Hereon, Institute of Surface Science, 21494 Geesthacht, Germany
| | - Patrick Huber
- Hamburg University of Technology, Institute for Materials and X-Ray Physics, 21073 Hamburg, Germany; Deutsches Elektronen-Synchrotron DESY, Centre for X-Ray and Nano Science CXNS, 22603 Hamburg, Germany; University of Hamburg, Centre for Hybrid Nanostructures CHyN, 22607 Hamburg, Germany.
| | - Tomas P Corrales
- Departamento de Física, Universidad Técnica Federico Santa María, Valparaiso 2390123, Chile.
| | - Ulrich G Volkmann
- Instituto de Física, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; Centro de Investigación en Nanotecnología y Materiales Avanzados (CIEN-UC), Pontificia Universidad Católica de Chile, Santiago 7820436, Chile.
| |
Collapse
|
11
|
Abstract
Surfaces with low ice adhesion represent a promising strategy to achieve passive anti-icing performance. However, as a successful and robust low ice adhesion surface must be tested under realistic conditions at low temperatures and for several types of ice, the initial screening of potential low ice adhesion surfaces requires large resources. A theoretical relation between ice adhesion and water wettability in the form of water contact angle exists, but there is disagreement on whether this relation holds for experiments. In this study, we utilised molecular dynamics simulations to examine the fundamental relations between ice adhesion and water contact angle on an ideal graphene surface. The results show a significant correlation according to the theoretic predictions, indicating that the theoretical relation holds for the ice and water when discarding surface material deformations and other experimental factors. The reproduction of the thermodynamic theory at the nanoscale is important due to the gap between experimental observations and theoretical models. The results in this study represent a step forward towards understanding the fundamental mechanisms of water–solid and ice–solid interactions, and the relationship between them.
Collapse
|
12
|
Bryk P, Korczeniewski E, Szymański GS, Kowalczyk P, Terpiłowski K, Terzyk AP. What Is the Value of Water Contact Angle on Silicon? MATERIALS 2020; 13:ma13071554. [PMID: 32230922 PMCID: PMC7177545 DOI: 10.3390/ma13071554] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/23/2020] [Accepted: 03/26/2020] [Indexed: 01/18/2023]
Abstract
Silicon is a widely applied material and the wetting of silicon surface is an important phenomenon. However, contradictions in the literature appear considering the value of the water contact angle (WCA). The purpose of this study is to present a holistic experimental and theoretical approach to the WCA determination. To do this, we checked the chemical composition of the silicon (1,0,0) surface by using the X-ray photoelectron spectroscopy (XPS) method, and next this surface was purified using different cleaning methods. As it was proved that airborne hydrocarbons change a solid wetting properties the WCA values were measured in hydrocarbons atmosphere. Next, molecular dynamics (MD) simulations were performed to determine the mechanism of wetting in this atmosphere and to propose the force field parameters for silica wetting simulation. It is concluded that the best method of surface cleaning is the solvent-reinforced de Gennes method, and the WCA value of silicon covered by SiO2 layer is equal to 20.7° (at room temperature). MD simulation results show that the mechanism of pure silicon wetting is similar to that reported for graphene, and the mechanism of silicon covered by SiO2 layer wetting is similar to this observed recently for a MOF.
Collapse
Affiliation(s)
- Paweł Bryk
- Department of Chemistry, Chair of Theoretical Chemistry, Maria Curie-Skłodowska University, 20-031 Lublin, Poland;
| | - Emil Korczeniewski
- Faculty of Chemistry, Physicochemistry of Carbon Materials Research Group, Nicolaus Copernicus University in Toruń, Gagarin Street 7, 87-100 Toruń, Poland; (E.K.); (G.S.S.)
| | - Grzegorz S. Szymański
- Faculty of Chemistry, Physicochemistry of Carbon Materials Research Group, Nicolaus Copernicus University in Toruń, Gagarin Street 7, 87-100 Toruń, Poland; (E.K.); (G.S.S.)
| | - Piotr Kowalczyk
- College of Science, Health, Engineering and Education, Murdoch University, Murdoch WA 6150, Australia;
| | - Konrad Terpiłowski
- Department of Chemistry, Chair of Physical Chemistry of Interfacial Phenomena, Maria Curie-Skłodowska University, 20-031 Lublin, Poland;
| | - Artur P. Terzyk
- Faculty of Chemistry, Physicochemistry of Carbon Materials Research Group, Nicolaus Copernicus University in Toruń, Gagarin Street 7, 87-100 Toruń, Poland; (E.K.); (G.S.S.)
- Correspondence: ; Tel.: +48-56-61-14-371
| |
Collapse
|
13
|
Korczeniewski E, Zięba M, Zięba W, Kolanowska A, Bolibok P, Kowalczyk P, Wiertel-Pochopień A, Zawała J, Boncel S, Terzyk AP. Electrophoretic Deposition of Layer-by-Layer Unsheathed Carbon Nanotubes-A Step Towards Steerable Surface Roughness and Wettability. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E595. [PMID: 32012828 PMCID: PMC7040799 DOI: 10.3390/ma13030595] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/09/2020] [Accepted: 01/23/2020] [Indexed: 02/04/2023]
Abstract
It is well known that carbon nanotube (CNT) oxidation (usually with concentrated HNO3) is a major step before the electrophoretic deposition (EPD). However, the recent discovery of the "onion effect" proves that multiwalled carbon nanotubes are not only oxidized, but a simultaneous unsheathing process occurs. We present the first report concerning the influence of unsheathing on the properties of the thus-formed CNT surface layer. In our study we examine how the process of gradual oxidation/unsheathing of a series of multiwalled carbon nanotubes (MWCNTs) influences the morphology of the surface formed via EPD. Taking a series of well-characterized and gradually oxidized/unsheathing Nanocyl MWCNTs and performing EPD on a carbon fiber surface, we analyzed the morphology and wettability of the CNT surfaces. Our results show that the water contact angle could be gradually changed in a wide range (125-163°) and the major property determining its value was the diameter of aggregates formed before the deposition process in the solvent. Based on the obtained results we determined the parameters having a crucial influence on the morphology of created layers. Our results shed new light on the deposition mechanism and enable the preparation of surfaces with steerable roughness and wettability.
Collapse
Affiliation(s)
- Emil Korczeniewski
- Faculty of Chemistry, Physicochemistry of Carbon Materials Research Group, Nicolaus Copernicus University in Toruń, Gagarin Street 7, 87-100 Toruń, Poland; (E.K.); (M.Z.); (W.Z.); (P.B.)
| | - Monika Zięba
- Faculty of Chemistry, Physicochemistry of Carbon Materials Research Group, Nicolaus Copernicus University in Toruń, Gagarin Street 7, 87-100 Toruń, Poland; (E.K.); (M.Z.); (W.Z.); (P.B.)
| | - Wojciech Zięba
- Faculty of Chemistry, Physicochemistry of Carbon Materials Research Group, Nicolaus Copernicus University in Toruń, Gagarin Street 7, 87-100 Toruń, Poland; (E.K.); (M.Z.); (W.Z.); (P.B.)
| | - Anna Kolanowska
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland; (A.K.); (S.B.)
| | - Paulina Bolibok
- Faculty of Chemistry, Physicochemistry of Carbon Materials Research Group, Nicolaus Copernicus University in Toruń, Gagarin Street 7, 87-100 Toruń, Poland; (E.K.); (M.Z.); (W.Z.); (P.B.)
| | - Piotr Kowalczyk
- College of Science, Health, Engineering and Education, Murdoch University, Perth, WA 6150, Australia;
| | - Agata Wiertel-Pochopień
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, ul. Niezapominajek 8, 30-239 Kraków, Poland; (A.W.-P.); (J.Z.)
| | - Jan Zawała
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, ul. Niezapominajek 8, 30-239 Kraków, Poland; (A.W.-P.); (J.Z.)
| | - Sławomir Boncel
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland; (A.K.); (S.B.)
| | - Artur P. Terzyk
- Faculty of Chemistry, Physicochemistry of Carbon Materials Research Group, Nicolaus Copernicus University in Toruń, Gagarin Street 7, 87-100 Toruń, Poland; (E.K.); (M.Z.); (W.Z.); (P.B.)
| |
Collapse
|
14
|
Kolanowska A, Kuziel AW, Jędrysiak RG, Krzywiecki M, Korczeniewski E, Wiśniewski M, Terzyk AP, Boncel S. Ullmann Reactions of Carbon Nanotubes-Advantageous and Unexplored Functionalization toward Tunable Surface Chemistry. NANOMATERIALS 2019; 9:nano9111619. [PMID: 31731640 PMCID: PMC6915440 DOI: 10.3390/nano9111619] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/04/2019] [Accepted: 11/12/2019] [Indexed: 12/30/2022]
Abstract
We demonstrate Ullmann-type reactions as novel and advantageous functionalization of carbon nanotubes (CNTs) toward tunable surface chemistry. The functionalization routes comprise O-, N-, and C-arylation of chlorinated CNTs. We confirm the versatility and efficiency of the reaction allowing functionalization degrees up to 3.5 mmol g−1 by applying both various nanotube substrates, i.e., single-wall (SWCNTs) and multi-wall CNTs (MWCNTs) of various chirality, geometry, and morphology as well as diverse Ullmann-type reagents: phenol, aniline, and iodobenzene. The reactivity of nanotubes was correlatable with the nanotube diameter and morphology revealing SWCNTs as the most reactive representatives. We have determined the optimized conditions of this two-step synthetic protocol as: (1) chlorination using iodine trichloride (ICl3), and (2) Ullmann-type reaction in the presence of: copper(I) iodide (CuI), 1,10-phenanthroline as chelating agent and caesium carbonate (Cs2CO3) as base. We have analyzed functionalized CNTs using a variety of techniques, i.e., scanning and transmission electron microscopy, energy dispersive spectroscopy, thermogravimetry, comprehensive Raman spectroscopy, and X-ray photoelectron spectroscopy. The analyses confirmed the purely covalent nature of those modifications at all stages. Eventually, we have proved the elaborated protocol as exceptionally tunable since it enabled us: (a) to synthesize superhydrophilic films from—the intrinsically hydrophobic—vertically aligned MWCNT arrays and (b) to produce printable highly electroconductive pastes of enhanced characteristics—as compared for non-modified and otherwise modified MWCNTs—for textronics.
Collapse
Affiliation(s)
- Anna Kolanowska
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland; (A.K.); (A.W.K.); (R.G.J.)
| | - Anna Wioleta Kuziel
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland; (A.K.); (A.W.K.); (R.G.J.)
| | - Rafał Grzegorz Jędrysiak
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland; (A.K.); (A.W.K.); (R.G.J.)
| | - Maciej Krzywiecki
- Institute of Physics—CSE, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland;
| | - Emil Korczeniewski
- Faculty of Chemistry, Physicochemistry of Carbon Materials Research Group, Nicolaus Copernicus University in Toruń, Gagarin Street 7, 87-100 Toruń, Poland; (E.K.); (M.W.); (A.P.T.)
| | - Marek Wiśniewski
- Faculty of Chemistry, Physicochemistry of Carbon Materials Research Group, Nicolaus Copernicus University in Toruń, Gagarin Street 7, 87-100 Toruń, Poland; (E.K.); (M.W.); (A.P.T.)
| | - Artur Piotr Terzyk
- Faculty of Chemistry, Physicochemistry of Carbon Materials Research Group, Nicolaus Copernicus University in Toruń, Gagarin Street 7, 87-100 Toruń, Poland; (E.K.); (M.W.); (A.P.T.)
| | - Sławomir Boncel
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland; (A.K.); (A.W.K.); (R.G.J.)
- Correspondence: ; Tel.: +48-322-371-272; Fax: +48-322-372-094
| |
Collapse
|