1
|
Shi L, Qi M, Han L, Liang W, Kirillov AM, Dou W, Liu W, Yang L. Bifunctional Lanthanide MOFs with Phosphorus Ligands: Selective Luminescent Detection of Borides and CO 2 Conversion. Inorg Chem 2025; 64:5086-5097. [PMID: 40048361 DOI: 10.1021/acs.inorgchem.4c05296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
There is an increasing demand for the development of lanthanide metal-organic frameworks and derived multifunctional materials. The functional properties of such compounds are influenced by the arrangement of various Lewis basic sites or structural configurations of the ligands. In this study, a series of isostructural Ln-MOFs containing a phosphine-dicarboxylate ligand, [Ln(HL)(L)(DMF)]·DMF (where H2L = 5-(diphenylphosphanyl)isophthalic acid, Ln = Tb3+ (1), Eu3+ (2), Gd3+ (3), Ce3+ (4), and Nd3+ (5)), was synthesized under solvothermal conditions and characterized in detail. Among the obtained compounds, Tb-MOF 1 demonstrated excellent luminescent properties with a high quantum yield (90.45%) and considerable lifetime (1266 μs). Furthermore, 1 acts as a unique luminescent Ln sensor for 4-formylphenylboronic acid and 9-[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]carbazole, exhibiting low detection limits of 1.38 and 3.62 mM, respectively. Additionally, Nd-MOF 5 acts as an efficient catalyst for coupling carbon dioxide to epoxy compounds, resulting in high conversion rates (up to 96%). This study further extends the growing family of Ln-MOFs and provides insights for preparing multifunctional materials through the modification of organic ligands with specific functional groups.
Collapse
Affiliation(s)
- Lifeng Shi
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Mixiang Qi
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Engineering and Technology Research Center of Comprehensive Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, 810008 Xining, China
| | - Lehua Han
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Wenya Liang
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Alexander M Kirillov
- MINDlab: Molecular Design & Innovation Laboratory, Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Wei Dou
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Weisheng Liu
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Lizi Yang
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
2
|
Luo Y, Gu Z, Yin X. Molecular insights reveal how the glycolipids in cell membrane mitigates nanomaterial's invasion. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124678. [PMID: 39111528 DOI: 10.1016/j.envpol.2024.124678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/28/2024] [Accepted: 08/03/2024] [Indexed: 08/10/2024]
Abstract
Nanomaterial-cellular membrane interaction is crucial for the cytotoxicity of such materials in theoretical investigations. However, previous research often used cellular membrane models with one or few lipid types, which deviates significantly from realistic membrane compositions. Here, employing molecular dynamics (MD) simulations, we investigate the impact of a typical nanomaterial, boron nitride (BN), on a cellular membrane model based on the realistic small intestinal epithelial cell (SIEC) membrane. This membrane contains a complex composition, including abundant glycolipids. Our MD simulations reveal that BN nanosheet can partially insert into the SIEC membrane, maintaining a stable binding conformation without causing obvious structural changes. Dynamic analyses suggest that van der Waals (vdW) interactions drive the binding process between BN and the SIEC membrane. Further simulation of the interaction between BN nanosheet and deglycosylated SIEC membrane confirms that BN nanosheet cause significant structural damage to deglycosylated SIEC membranes, completely inserting into the membrane, extracting lipids, and burying some lipid hydrophilic heads within the membrane interior. Quantitative analyses of mean squared displacements (MSD) of membranes, membrane thicknesses, area per lipid, and order parameters indicate that BN nanosheet causes more substantial damage to deglycosylated SIEC membrane than to intact SIEC membrane. This comparison suggests the molecular mechanism involved in mitigating BN invasion by SIEC membrane that the polysaccharide heads of glycolipids in the SIEC membrane form a significant steric hindrance on membrane surface, not only hindering the insertion of BN, but also resisting the lipid extraction by BN. Free energy calculations further support this conclusion. Overall, our MD simulations not only shed new light into the reduced impact of BN nanosheet on the realistic SIEC membrane but also highlight the importance of glycolipids in protecting cell membranes from nanomaterial invasion, contributing to a deeper understanding of nanomaterial-realistic cell membrane interactions.
Collapse
Affiliation(s)
- Yuqi Luo
- Department of Gastrointestinal and Hepatobiliary Surgery, Shenzhen Longhua District Central Hospital, No. 187, Guanlan Road, Longhua District, Shenzhen, 518110, Guangdong Province, China.
| | - Zonglin Gu
- College of Physical Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China
| | - Xiuhua Yin
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, 215123, China
| |
Collapse
|
3
|
Liang J, Xiao K, Wang X, Hou T, Zeng C, Gao X, Wang B, Zhong C. Revisiting Solar Energy Flow in Nanomaterial-Microorganism Hybrid Systems. Chem Rev 2024; 124:9081-9112. [PMID: 38900019 DOI: 10.1021/acs.chemrev.3c00831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Nanomaterial-microorganism hybrid systems (NMHSs), integrating semiconductor nanomaterials with microorganisms, present a promising platform for broadband solar energy harvesting, high-efficiency carbon reduction, and sustainable chemical production. While studies underscore its potential in diverse solar-to-chemical energy conversions, prevailing NMHSs grapple with suboptimal energy conversion efficiency. Such limitations stem predominantly from an insufficient systematic exploration of the mechanisms dictating solar energy flow. This review provides a systematic overview of the notable advancements in this nascent field, with a particular focus on the discussion of three pivotal steps of energy flow: solar energy capture, cross-membrane energy transport, and energy conversion into chemicals. While key challenges faced in each stage are independently identified and discussed, viable solutions are correspondingly postulated. In view of the interplay of the three steps in affecting the overall efficiency of solar-to-chemical energy conversion, subsequent discussions thus take an integrative and systematic viewpoint to comprehend, analyze and improve the solar energy flow in the current NMHSs of different configurations, and highlighting the contemporary techniques that can be employed to investigate various aspects of energy flow within NMHSs. Finally, a concluding section summarizes opportunities for future research, providing a roadmap for the continued development and optimization of NMHSs.
Collapse
Affiliation(s)
- Jun Liang
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Kemeng Xiao
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xinyu Wang
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tianfeng Hou
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Cuiping Zeng
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiang Gao
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Bo Wang
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chao Zhong
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
4
|
Hameed S, Sharif S, Ovais M, Xiong H. Emerging trends and future challenges of advanced 2D nanomaterials for combating bacterial resistance. Bioact Mater 2024; 38:225-257. [PMID: 38745587 PMCID: PMC11090881 DOI: 10.1016/j.bioactmat.2024.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
The number of multi-drug-resistant bacteria has increased over the last few decades, which has caused a detrimental impact on public health worldwide. In resolving antibiotic resistance development among different bacterial communities, new antimicrobial agents and nanoparticle-based strategies need to be designed foreseeing the slow discovery of new functioning antibiotics. Advanced research studies have revealed the significant disinfection potential of two-dimensional nanomaterials (2D NMs) to be severed as effective antibacterial agents due to their unique physicochemical properties. This review covers the current research progress of 2D NMs-based antibacterial strategies based on an inclusive explanation of 2D NMs' impact as antibacterial agents, including a detailed introduction to each possible well-known antibacterial mechanism. The impact of the physicochemical properties of 2D NMs on their antibacterial activities has been deliberated while explaining the toxic effects of 2D NMs and discussing their biomedical significance, dysbiosis, and cellular nanotoxicity. Adding to the challenges, we also discussed the major issues regarding the current quality and availability of nanotoxicity data. However, smart advancements are required to fabricate biocompatible 2D antibacterial NMs and exploit their potential to combat bacterial resistance clinically.
Collapse
Affiliation(s)
- Saima Hameed
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, PR China
- School of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Sumaira Sharif
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Muhammad Ovais
- BGI Genomics, BGI Shenzhen, Shenzhen, 518083, Guangdong, PR China
| | - Hai Xiong
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, PR China
| |
Collapse
|
5
|
Aparna A, Abhirami SD, Sethulekshmi AS, Jayan JS, Saritha A, Jose RA, Joseph K. Effective role of tannic acid in the fabrication of hydrophobic, oleophilic, antibacterial, boron nitride/chlorobutyl rubber nanocomposite for reusable protective clothing and oil-water separation. Int J Biol Macromol 2024; 263:130341. [PMID: 38387637 DOI: 10.1016/j.ijbiomac.2024.130341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/07/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Boron Nitride (h-BN) possesses unique qualities like increased thermal conductivity, non-toxic nature, and environmental friendliness; hence, it is a good reinforcing agent for chlorobutyl rubber (CIIR). Tannic acid (TA) holds excellent bio-functional properties and is considered as an exceptional bio-exfoliating agent. Hence, in this study, we have utilized the bio-exfoliating ability of TA to exfoliate h-BN and evaluate its efficiency in reinforcing the CIIR matrix. Results demonstrate the exceptional role of tannic acid in imparting multifunctionality to chlorobutyl rubber. CIIR matrix introduced with h-BN:TA (h-BN:TA/CIIR) display excellent mechanical performance due to the reinforcing effect shown by excess TA in addition to the exfoliating effect. In addition, h-BN:TA/CIIR composite exhibited superior antimicrobial activity against S. aureus. The retention of thermal decontamination efficiency of the composites with increase in the number of cycles ensures their promising application in the field of reusable gloves and chemical protective clothing. The exfoliated filler created a tortuous path inside the matrix which prevents the permeation of solvent. Hence the work intends to synergize the hydrophobic nature of h-BN, exfoliating capacity of TA and the barrier abilities of CIIR for the adsorption of oil from oil-water mixture and portrays the future of the trio in water purification.
Collapse
Affiliation(s)
- Asok Aparna
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala, India
| | - S D Abhirami
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala, India
| | - A S Sethulekshmi
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala, India
| | - Jitha S Jayan
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala, India
| | - Appukuttan Saritha
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala, India.
| | - Rani Alphonsa Jose
- Postgraduate Department of Chemistry, St. Dominic's College Kanjirappally, Kerala, India.
| | - Kuruvilla Joseph
- Department of Chemistry, Indian Institute of Space Science and Technology, Valiyamala PO, Kerala, India.
| |
Collapse
|
6
|
Grams RJ, Santos WL, Scorei IR, Abad-García A, Rosenblum CA, Bita A, Cerecetto H, Viñas C, Soriano-Ursúa MA. The Rise of Boron-Containing Compounds: Advancements in Synthesis, Medicinal Chemistry, and Emerging Pharmacology. Chem Rev 2024; 124:2441-2511. [PMID: 38382032 DOI: 10.1021/acs.chemrev.3c00663] [Citation(s) in RCA: 79] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Boron-containing compounds (BCC) have emerged as important pharmacophores. To date, five BCC drugs (including boronic acids and boroles) have been approved by the FDA for the treatment of cancer, infections, and atopic dermatitis, while some natural BCC are included in dietary supplements. Boron's Lewis acidity facilitates a mechanism of action via formation of reversible covalent bonds within the active site of target proteins. Boron has also been employed in the development of fluorophores, such as BODIPY for imaging, and in carboranes that are potential neutron capture therapy agents as well as novel agents in diagnostics and therapy. The utility of natural and synthetic BCC has become multifaceted, and the breadth of their applications continues to expand. This review covers the many uses and targets of boron in medicinal chemistry.
Collapse
Affiliation(s)
- R Justin Grams
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | - Webster L Santos
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | | | - Antonio Abad-García
- Academia de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 Mexico City, Mexico
| | - Carol Ann Rosenblum
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | - Andrei Bita
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania
| | - Hugo Cerecetto
- Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Mataojo 2055, 11400 Montevideo, Uruguay
| | - Clara Viñas
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
| | - Marvin A Soriano-Ursúa
- Academia de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 Mexico City, Mexico
| |
Collapse
|
7
|
Zou W, Huo Y, Zhang X, Jin C, Li X, Cao Z. Toxicity of hexagonal boron nitride nanosheets to freshwater algae: Phospholipid membrane damage and carbon assimilation inhibition. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133204. [PMID: 38103293 DOI: 10.1016/j.jhazmat.2023.133204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/24/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
Hexagonal boron nitride (h-BN) nanomaterials have attracted numerous attentions for application in various fields, including environmental governance. Understanding the environmental implications of h-BN is a prerequisite for its safe and sustainable use; nevertheless, information on the negative effect of h-BN on aquatic organisms and the underlying toxicity mechanisms is scarce. The present study found that low exposure doses (0.1-1 μg/mL) of micron-sized h-BN lamella apparently suppressed (maximally 45.3%) the growth of Chlorella vulgaris (a freshwater alga) via membrane damages and metabolic reprogramming. Experimental and simulation results verified that h-BN can penetrate into and then extract phospholipids from the cell membrane of algae due to the strong hydrophobic interactions between h-BN nanosheets and lipids, resulting in membrane permeabilization and integrity reduction. Oxidative stress-triggered lipid peroxidation also contributes to membrane destruction of algae. Metabolomics assay demonstrated that h-BN down-regulated the CO2-fixation associated Calvin cycle and glycolysis/gluconeogenesis pathways in algae, thereby inhibiting energy synthesis and antioxidation process. Despite releasing soluble B inside cells, the B species exhibited negligible toxicity. These findings highlight the phenomena and mechanisms of h-BN toxicity in photosynthetic algae, which have great implications for guiding their safe use under the scenarios of global carbon neutrality.
Collapse
Affiliation(s)
- Wei Zou
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China.
| | - Yuhan Huo
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Xingli Zhang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China.
| | - Caixia Jin
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Xiaokang Li
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
8
|
Liao Z, Ma X, Kai JJ, Fan J. Molecular mechanisms of integrin αvβ8 activation regulated by graphene, boron nitride and black phosphorus nanosheets. Colloids Surf B Biointerfaces 2023; 222:113139. [PMID: 36640538 DOI: 10.1016/j.colsurfb.2023.113139] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/30/2022] [Accepted: 01/08/2023] [Indexed: 01/13/2023]
Abstract
Integrin αvβ8 is a heterodimeric transmembrane protein on macrophages. Nanosheets can activate the integrin and elicit immune responses, exhibiting adverse immunotoxicity. Understanding the mechanism of integrin activation regulated by nanosheets is crucial for safe and effective use of nanosheets in biomedical applications. Herein, we performed all-atom molecular dynamics simulations to clarify the interactions between integrin αvβ8 in the cell membrane and three types of nanosheets, graphene (GRA), hexagonal boron nitride (BN), and black phosphorus (BP). We observed that BP could adsorb the intracellular end of αv monomer and thus break the inner membrane clasp, an important hydrophobic cluster for maintaining the inactive state of integrin. The association between αv and β8 subunit is weakened, promoting the integrin activation. By contrast, GRA and BN exert little influence on the association state of the integrin. Interestingly, the puckered structure of BP affects the integrin activation, where BP with the armchair direction perpendicular to the membrane plane cannot unpack the integrin. Moreover, the perturbation effect of nanosheets on the membrane was also evaluated. BP shows a milder effect on membrane structures and lipid properties than GRA and BN. This work unravels the molecular basis on the activation of integrin mediated by three nanosheets, and suggests the toxicity and therapeutic effect of well-established nanomaterials in the immune system.
Collapse
Affiliation(s)
- Zhenyu Liao
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Xinyao Ma
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Ji-Jung Kai
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China; Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China; Centre for Advanced Nuclear Safety and Sustainable Development, City University of Hong Kong, Hong Kong, China
| | - Jun Fan
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China; Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China; Centre for Advanced Nuclear Safety and Sustainable Development, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
9
|
Huang W, Mei D, Zhong Y, Li J, Zhu S, Chen Y, Wang L, Guan S. The enhanced antibacterial effect of BNNS_Van@CS/MAO coating on Mg alloy for orthopedic applications. Colloids Surf B Biointerfaces 2023; 221:112971. [DOI: 10.1016/j.colsurfb.2022.112971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/30/2022] [Accepted: 10/22/2022] [Indexed: 11/16/2022]
|
10
|
Permyakova ES, Tregubenko MV, Antipina LY, Kovalskii AM, Matveev AT, Konopatsky AS, Manakhov AM, Slukin PV, Ignatov SG, Shtansky DV. Antibacterial, UV-Protective, Hydrophobic, Washable, and Heat-Resistant BN-Based Nanoparticle-Coated Textile Fabrics: Experimental and Theoretical Insight. ACS APPLIED BIO MATERIALS 2022; 5:5595-5607. [PMID: 36479940 DOI: 10.1021/acsabm.2c00651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The use of nanoparticles (NPs) to modify the surface of cotton fabric is a promising approach to endowing the material with a set of desirable characteristics that can significantly expand the functionality, wear comfort, and service life of textile products. Herein, two approaches to modifying the surface of hexagonal boron nitride (h-BN) NPs with a hollow core and a smooth surface by treatment with maleic anhydride (MA) and diethylene triamine (DETA) were studied. The DETA and MA absorption on the surface of h-BN and the interaction of surface-modified h-NPs with cellulose as the main component of cotton were modeled using density functional theory with the extended Perdew-Burke-Ernzerhof functional. Theoretical modeling showed that the use of DETA as a binder agent can increase the adhesion strength of BN NPs to textile fabric due to the simultaneous hydrogen bonds with cellulose and BN. Due to the difference in zeta potentials (-38.4 vs -25.8 eV), MA-modified h-BN NPs form a stable suspension, while DETA-modified BN NPs tend to agglomerate. Cotton fabric coated with surface-modified NPs exhibits an excellent wash resistance and high hydrophobicity with a water contact angle of 135° (BN-MA) and 146° (BN-DETA). Compared to the original textile material, treatment with MA- and DETA-modified h-BN NPs increases heat resistance by 10% (BN-MA fabric) and 15% (BN-DETA fabric). Cotton fabrics coated with DETA- and MA-modified BN NPs show enhanced antibacterial activity against Escherichia coli U20 and Staphylococcus aureus strains and completely prevent the formation of an E. coli biofilm. The obtained results are important for the further development of fabrics for sports and medical clothing as well as wound dressings.
Collapse
Affiliation(s)
| | - Marya V Tregubenko
- National University of Science and Technology "MISIS", Moscow119049, Russia
| | - Liubov Yu Antipina
- National University of Science and Technology "MISIS", Moscow119049, Russia
| | - Andrey M Kovalskii
- National University of Science and Technology "MISIS", Moscow119049, Russia
| | - Andrei T Matveev
- National University of Science and Technology "MISIS", Moscow119049, Russia
| | - Anton S Konopatsky
- National University of Science and Technology "MISIS", Moscow119049, Russia
| | - Anton M Manakhov
- National University of Science and Technology "MISIS", Moscow119049, Russia
| | - Pavel V Slukin
- State Research Center for Applied Microbiology and Biotechnology, Obolensk142279, Russia
| | - Sergei G Ignatov
- State Research Center for Applied Microbiology and Biotechnology, Obolensk142279, Russia
| | - Dmitry V Shtansky
- National University of Science and Technology "MISIS", Moscow119049, Russia
| |
Collapse
|
11
|
Wang J, Wang Y, Ren W, Zhang D, Ju P, Dou K. "Nano Killers" Activation by permonosulfate enables efficient anaerobic microorganisms disinfection. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129742. [PMID: 35969947 DOI: 10.1016/j.jhazmat.2022.129742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
The development of effective nanomaterials for killing anaerobic bacteria is essential for human health and economic development. Here, we propose a new bactericidal mechanism where theoretical calculations are in good agreement with experimental results. The "poison arrow-head" of MoS2 nanosheets enables the vigorous extraction of lipids from the cell membrane. Based on density functional calculations, oxidation active species (OAS) are generated due to the strong adsorption energy between S vacancies in MoS2 and chemical substrates (permonosulfate (PMS) and H2O). These OAS can be visualized as numerous moving "nano killers", constantly oxidizing the lipids around MoS2; thereby, re-releasing the surface of the sharp knife. The process of physical extraction collaborated with chemical oxidation not only precisely positions the cell membrane but also allows for continuous sterilization. This work digs into the mechanism of anaerobic bacterial sterilization, which sheds significant light on biological analysis, antibacterial, cancer therapy, and anti microbiologically influenced corrosion.
Collapse
Affiliation(s)
- Jin Wang
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100039, China; Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yi Wang
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100039, China; Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Wenyu Ren
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Dun Zhang
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100039, China; Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Peng Ju
- Key Laboratory of Marine Eco-Environmental Science and Technology, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Kunpeng Dou
- College of Information Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
12
|
Hu ZT, Chen Y, Fei YF, Loo SL, Chen G, Hu M, Song Y, Zhao J, Zhang Y, Wang J. An overview of nanomaterial-based novel disinfection technologies for harmful microorganisms: Mechanism, synthesis, devices and application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155720. [PMID: 35525366 DOI: 10.1016/j.scitotenv.2022.155720] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/01/2022] [Accepted: 05/01/2022] [Indexed: 06/14/2023]
Abstract
Harmful microorganism (e.g., new coronavirus) based infection is the most important security concern in life sciences and healthcare. This article aims to provide a state-of-the-art review on the development of advanced technology based on nanomaterial disinfection/sterilization techniques (NDST) for the first time including the nanomaterial types, disinfection techniques, bactericidal devices, sterilization products, and application scenarios (i.e., water, air, medical healthcare), with particular brief account of bactericidal behaviors referring to varied systems. In this emerging research area spanning the years from 1998 to 2021, total of ~200 publications selected for the type of review paper and research articles were reviewed. Four typical functional materials (namely type of metal/metal oxides, S-based, C-based, and N-based) with their development progresses in disinfection/sterilization are summarized with a list of synthesis and design. Among them, the widely used silver nanoparticles (AgNPs) are considered as the most effective bacterial agents in the type of nanomaterials at present and has been reported for inactivation of viruses, fungi, protozoa. Some methodologies against (1) disinfection by-products (DBPs) in traditional sterilization, (2) noble metal nanoparticles (NPs) agglomeration and release, (3) toxic metal leaching, (4) solar spectral response broadening, and (5) photogenerated e-/h+ pairs recombination are reviewed and discussed in this field, namely (1) alternative techniques and nanomaterials, (2) supporter anchoring effect, (3) nonmetal functional nanomaterials, (4) element doping, and (5) heterojunction constructing. The feasible strategies in the perspective of NDST are proposed to involve (1) non-noble metal disinfectors, (2) multi-functional nanomaterials, (3) multi-component nanocomposite innovation, and (4) hybrid techniques for disinfection/sterilization system. It is promising to achieve 100% bactericidal efficiency for 108 CFU/mL within a short time of less than 30 min.
Collapse
Affiliation(s)
- Zhong-Ting Hu
- College of Environment, Zhejiang University of Technology (ZJUT), Hangzhou 310014, China
| | - Yue Chen
- College of Environment, Zhejiang University of Technology (ZJUT), Hangzhou 310014, China
| | - Yan-Fei Fei
- College of Environment, Zhejiang University of Technology (ZJUT), Hangzhou 310014, China
| | - Siew-Leng Loo
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Guancong Chen
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Mian Hu
- College of Environment, Zhejiang University of Technology (ZJUT), Hangzhou 310014, China
| | - Yujie Song
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jun Zhao
- Institute of Bioresource and Agriculture, Hong Kong Baptist University, Hong Kong Special Administrative Region.
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Jiade Wang
- College of Environment, Zhejiang University of Technology (ZJUT), Hangzhou 310014, China.
| |
Collapse
|
13
|
Shtansky DV, Matveev AT, Permyakova ES, Leybo DV, Konopatsky AS, Sorokin PB. Recent Progress in Fabrication and Application of BN Nanostructures and BN-Based Nanohybrids. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2810. [PMID: 36014675 PMCID: PMC9416166 DOI: 10.3390/nano12162810] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 05/27/2023]
Abstract
Due to its unique physical, chemical, and mechanical properties, such as a low specific density, large specific surface area, excellent thermal stability, oxidation resistance, low friction, good dispersion stability, enhanced adsorbing capacity, large interlayer shear force, and wide bandgap, hexagonal boron nitride (h-BN) nanostructures are of great interest in many fields. These include, but are not limited to, (i) heterogeneous catalysts, (ii) promising nanocarriers for targeted drug delivery to tumor cells and nanoparticles containing therapeutic agents to fight bacterial and fungal infections, (iii) reinforcing phases in metal, ceramics, and polymer matrix composites, (iv) additives to liquid lubricants, (v) substrates for surface enhanced Raman spectroscopy, (vi) agents for boron neutron capture therapy, (vii) water purifiers, (viii) gas and biological sensors, and (ix) quantum dots, single photon emitters, and heterostructures for electronic, plasmonic, optical, optoelectronic, semiconductor, and magnetic devices. All of these areas are developing rapidly. Thus, the goal of this review is to analyze the critical mass of knowledge and the current state-of-the-art in the field of BN-based nanomaterial fabrication and application based on their amazing properties.
Collapse
Affiliation(s)
- Dmitry V. Shtansky
- Labotoary of Inorganic Nanomaterials, National University of Science and Technology “MISiS”, Leninsky Prospect 4, 119049 Moscow, Russia
| | | | | | | | | | | |
Collapse
|
14
|
Daneshnia S, Shams A, Daraei D, Abdouss M, Daneshmayeh M. Novel thin film nanocomposite membrane modified with Boron Nitrides Nanosheets for water treatment. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
15
|
Gaihre B, Potes MA, Serdiuk V, Tilton M, Liu X, Lu L. Two-dimensional nanomaterials-added dynamism in 3D printing and bioprinting of biomedical platforms: Unique opportunities and challenges. Biomaterials 2022; 284:121507. [PMID: 35421800 PMCID: PMC9933950 DOI: 10.1016/j.biomaterials.2022.121507] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/17/2022] [Accepted: 04/01/2022] [Indexed: 12/13/2022]
Abstract
The nanomaterials research spectrum has seen the continuous emergence of two-dimensional (2D) materials over the years. These highly anisotropic and ultrathin materials have found special attention in developing biomedical platforms for therapeutic applications, biosensing, drug delivery, and regenerative medicine. Three-dimensional (3D) printing and bioprinting technologies have emerged as promising tools in medical applications. The convergence of 2D nanomaterials with 3D printing has extended the application dynamics of available biomaterials to 3D printable inks and bioinks. Furthermore, the unique properties of 2D nanomaterials have imparted multifunctionalities to 3D printed constructs applicable to several biomedical applications. 2D nanomaterials such as graphene and its derivatives have long been the interest of researchers working in this area. Beyond graphene, a range of emerging 2D nanomaterials, such as layered silicates, black phosphorus, transition metal dichalcogenides, transition metal oxides, hexagonal boron nitride, and MXenes, are being explored for the multitude of biomedical applications. Better understandings on both the local and systemic toxicity of these materials have also emerged over the years. This review focuses on state-of-art 3D fabrication and biofabrication of biomedical platforms facilitated by 2D nanomaterials, with the comprehensive summary of studies focusing on the toxicity of these materials. We highlight the dynamism added by 2D nanomaterials in the printing process and the functionality of printed constructs.
Collapse
Affiliation(s)
- Bipin Gaihre
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, United States; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, United States
| | - Maria Astudillo Potes
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, United States; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, United States
| | - Vitalii Serdiuk
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, United States; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, United States
| | - Maryam Tilton
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, United States; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, United States
| | - Xifeng Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, United States; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, United States
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, United States; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, United States.
| |
Collapse
|
16
|
Huang W, Mei D, Qin H, Li J, Wang L, Ma X, Zhu S, Guan S. Electrophoretic deposited boron nitride nanosheets-containing chitosan-based coating on Mg alloy for better corrosion resistance, biocompatibility and antibacterial properties. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Computational Indicator Approach for Assessment of Nanotoxicity of Two-Dimensional Nanomaterials. NANOMATERIALS 2022; 12:nano12040650. [PMID: 35214977 PMCID: PMC8879952 DOI: 10.3390/nano12040650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/30/2022] [Accepted: 02/11/2022] [Indexed: 12/17/2022]
Abstract
The increasing growth in the development of various novel nanomaterials and their biomedical applications has drawn increasing attention to their biological safety and potential health impact. The most commonly used methods for nanomaterial toxicity assessment are based on laboratory experiments. In recent years, with the aid of computer modeling and data science, several in silico methods for the cytotoxicity prediction of nanomaterials have been developed. An affordable, cost-effective numerical modeling approach thus can reduce the need for in vitro and in vivo testing and predict the properties of designed or developed nanomaterials. We propose here a new in silico method for rapid cytotoxicity assessment of two-dimensional nanomaterials of arbitrary chemical composition by using free energy analysis and molecular dynamics simulations, which can be expressed by a computational indicator of nanotoxicity (CIN2D). We applied this approach to five well-known two-dimensional nanomaterials promising for biomedical applications: graphene, graphene oxide, layered double hydroxide, aloohene, and hexagonal boron nitride nanosheets. The results corroborate the available laboratory biosafety data for these nanomaterials, supporting the applicability of the developed method for predictive nanotoxicity assessment of two-dimensional nanomaterials.
Collapse
|
18
|
Chattaraj KG, Paul S. Appraising the potency of small molecule inhibitors and their graphene surface-mediated organizational attributes on uric acid-melamine clusters. Phys Chem Chem Phys 2022; 24:1029-1047. [PMID: 34927187 DOI: 10.1039/d1cp03695e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Uric acid (UA) and melamine (MM) crystallization in humans is associated with adverse medical conditions, including the germination of kidney stones, because of their low solubility. The growth of kidney stones, usually formed on renal papillary facades, is accomplished on the matrix-coated surface by the aggregation of preformed crystals or secondary crystal nucleation. Therefore, the effects of inhibitors such as theobromine (TB) and allopurinol (AP) on MM-UA aggregation are investigated by employing classical molecular dynamics simulations on a graphene surface. This impersonates the exact essence of the precipitation of kidney stones. The interaction between MM-UA is very intense and, thus, large clusters are formed on the surface. The presence of TB and AP will, however, substantially inhibit their aggregation. TB and AP significantly impede UA aggregation in particular. Therefore, lower order UA clusters are formed. These smaller UA clusters then pull a lower number of MM towards themselves, resulting in a smaller order UA-MM cluster. MM and UA aggregation on a 2D graphene surface is found to be spontaneous. There is no difference in these molecules' adsorption with a change in the force field parameters (i.e., GAFF and OPLS-AA) for graphene. Moreover, the greater the surface area of graphene, the more molecules are absorbed. The solute-surface van der Waals interaction energy plays a driving force in the adsorption of solute molecules on the surface. In addition, interactions like hydrogen bonding and π-stacking over the graphene surface involve binding all like molecules. These aggregated solute molecules strongly attract more like molecules until all solute molecules are adsorbed on the graphene surface, as estimated by enhanced sampling. The molecular origin of graphene exfoliation by MM is also described here. The present work helps to design novel kidney stone inhibitors.
Collapse
Affiliation(s)
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati Assam, India, 781039.
| |
Collapse
|
19
|
Shaw ZL, Kuriakose S, Cheeseman S, Dickey MD, Genzer J, Christofferson AJ, Crawford RJ, McConville CF, Chapman J, Truong VK, Elbourne A, Walia S. Antipathogenic properties and applications of low-dimensional materials. Nat Commun 2021; 12:3897. [PMID: 34162835 PMCID: PMC8222221 DOI: 10.1038/s41467-021-23278-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 04/14/2021] [Indexed: 01/31/2023] Open
Abstract
A major health concern of the 21st century is the rise of multi-drug resistant pathogenic microbial species. Recent technological advancements have led to considerable opportunities for low-dimensional materials (LDMs) as potential next-generation antimicrobials. LDMs have demonstrated antimicrobial behaviour towards a variety of pathogenic bacterial and fungal cells, due to their unique physicochemical properties. This review provides a critical assessment of current LDMs that have exhibited antimicrobial behaviour and their mechanism of action. Future design considerations and constraints in deploying LDMs for antimicrobial applications are discussed. It is envisioned that this review will guide future design parameters for LDM-based antimicrobial applications.
Collapse
Affiliation(s)
- Z L Shaw
- School of Engineering, RMIT University, Melbourne, Australia
| | - Sruthi Kuriakose
- School of Engineering, RMIT University, Melbourne, Australia
- Functional Materials and Microsystems Research Group, MicroNano Research Facility, RMIT University, Melbourne, Australia
| | | | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Jan Genzer
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | | | | | - Chris F McConville
- Institute for Frontier Materials, Deakin University, Geelong, Victoria, 3220, Australia
| | - James Chapman
- School of Science, RMIT University, Melbourne, VIC, Australia
| | - Vi Khanh Truong
- School of Science, RMIT University, Melbourne, VIC, Australia
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Aaron Elbourne
- School of Science, RMIT University, Melbourne, VIC, Australia.
| | - Sumeet Walia
- School of Engineering, RMIT University, Melbourne, Australia.
- Functional Materials and Microsystems Research Group, MicroNano Research Facility, RMIT University, Melbourne, Australia.
| |
Collapse
|
20
|
Chen Y, Ji Q, Zhang G, Liu H, Qu J. Synergetic Lipid Extraction with Oxidative Damage Amplifies Cell-Membrane-Destructive Stresses and Enables Rapid Sterilization. Angew Chem Int Ed Engl 2021; 60:7744-7751. [PMID: 33381904 DOI: 10.1002/anie.202013593] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/08/2020] [Indexed: 11/06/2022]
Abstract
Here, we introduce an innovative "poison arrowhead" approach for disinfection based on a nanosheet bacterial inactivation system that acts synergistically to achieve sterilization rates of >99.99 % (Escherichia coli) over an ultrashort time period (≈0.5 min). The two-dimensional MoS2 "arrowhead" configuration has a sharp edge structure that enables the vigorous extraction of lipids from cell membranes and subsequent membrane disruptions. In the presence of permonosulfate, a strong oxidant, sulfur vacancies containing MoS2 activate the stable molecules, which in turn produce reactive oxygen species (ROS) from edge sites to basal areas. This process not only scavenges some portion of the phospholipids to allow for MoS2 surface refreshment but also directly attacks proteins thereby inflicting further damage to injured cells and amplifying the cell-membrane-destructive stresses toward pathogenic microorganisms. With small amounts of the new material, we successfully disinfected natural water (≈99.93 % inactivation in terms of total bacteria) within 30 s.
Collapse
Affiliation(s)
- Yu Chen
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.,Key Laboratory of Drinking Water Science and Technology Research Centre for Eco- Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qinghua Ji
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Gong Zhang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jiuhui Qu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.,Key Laboratory of Drinking Water Science and Technology Research Centre for Eco- Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
21
|
Chen Y, Zhang W, Huang C, Feng M, Yang Y, Gou Y. Destructive Extraction and Enhanced Diffusion of Phospholipids on Lipid Membranes by Phosphorene Oxide Nanosheets. J Phys Chem B 2021; 125:2636-2643. [PMID: 33491449 DOI: 10.1021/acs.jpcb.0c07476] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phosphorene is a novel two-dimensional nanomaterial with a puckered surface morphology, which has broad potential application prospects in the fields of biology and medicine. Phosphorene nanosheets are easily oxidized and form phosphorene oxide (PO) in an aerobic environment, whose biological effect remains unknown. In this paper, using large-scale molecular dynamics simulations, we show that the PO nanosheets can penetrate into and destructively extract large amounts of phospholipids from the lipid membrane. The PO nanosheets with a higher oxidation concentration have less extraction of phospholipids, while its oxidation mode has no effect on the extraction of phospholipids. Moreover, inserting PO nanosheets into the lipid membrane can enhance the diffusion of phospholipids on the membrane. These findings can shed light on understanding/designing the membrane-nanomaterial interactions.
Collapse
Affiliation(s)
- Yezhe Chen
- School of Materials and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Wei Zhang
- School of Materials and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Chuanfu Huang
- School of Materials and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Mei Feng
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Yunqiu Yang
- School of Materials and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Yuanyuan Gou
- School of Materials and Physics, China University of Mining and Technology, Xuzhou 221116, China
| |
Collapse
|
22
|
Chen Y, Ji Q, Zhang G, Liu H, Qu J. Synergetic Lipid Extraction with Oxidative Damage Amplifies Cell‐Membrane‐Destructive Stresses and Enables Rapid Sterilization. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013593] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yu Chen
- Center for Water and Ecology State Key Joint Laboratory of Environment Simulation and Pollution Control School of Environment Tsinghua University Beijing 100084 China
- Key Laboratory of Drinking Water Science and Technology Research Centre for Eco- Environmental Sciences Chinese Academy of Sciences Beijing 100085 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Qinghua Ji
- Center for Water and Ecology State Key Joint Laboratory of Environment Simulation and Pollution Control School of Environment Tsinghua University Beijing 100084 China
| | - Gong Zhang
- Center for Water and Ecology State Key Joint Laboratory of Environment Simulation and Pollution Control School of Environment Tsinghua University Beijing 100084 China
| | - Huijuan Liu
- Center for Water and Ecology State Key Joint Laboratory of Environment Simulation and Pollution Control School of Environment Tsinghua University Beijing 100084 China
| | - Jiuhui Qu
- Center for Water and Ecology State Key Joint Laboratory of Environment Simulation and Pollution Control School of Environment Tsinghua University Beijing 100084 China
- Key Laboratory of Drinking Water Science and Technology Research Centre for Eco- Environmental Sciences Chinese Academy of Sciences Beijing 100085 China
| |
Collapse
|
23
|
Ma X, Zhu X, Huang C, Li Z, Fan J. Molecular mechanisms underlying the role of the puckered surface in the biocompatibility of black phosphorus. NANOSCALE 2021; 13:3790-3799. [PMID: 33565554 DOI: 10.1039/d0nr08480h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
As a newly emerging two-dimensional material, black phosphorus (BP) has received broad attention in the field of biomedical applications. Prior to its clinical application, its cytotoxicity to cells should be carefully evaluated; however, this field is still in its infancy. Motivated by this, we performed molecular dynamics (MD) simulations to systematically investigate the potential mechanisms of the cytotoxicity of BP to the lipid membrane, including lipid extraction, penetration into the membrane, and the impacts of BP on the physical properties of the membrane. Surprisingly, we observed that BP could not extract lipid molecules from the membrane. The thermodynamic analyses suggested that the puckered surface structure could weaken the interactions between BP and lipid molecules, thus inhibiting the lipid extraction. Additionally, through simulating the spontaneous interaction modes between BP and the lipid membrane, we found that the "passivated" edges of BP prohibited it from penetrating into the membrane. As a result, BP could only spontaneously lie parallel on the surface of the membrane, in which manner BP exerted little influence on the properties of the lipid membrane. To comprehensively appraise the cytotoxicity, we even artificially inserted BP into the membrane and compared the effects of BP and graphene on the properties of the membrane. Simulation results showed that the influences of the inserted BP on the lipid properties were much milder than those of graphene. Overall, the present work suggests that BP possesses distinctive biocompatibility benefiting from its puckered surface structure. This work provides a better understanding of the interactions between BP and the membrane, which may offer some useful suggestions for exploring strategies to improve the biocompatibility of nanomaterials.
Collapse
Affiliation(s)
- Xinyao Ma
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China.
| | - Xiaohong Zhu
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China.
| | - Changxiong Huang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China.
| | - Zhen Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Jun Fan
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China. and Center for Advanced Nuclear Safety and Sustainable Development, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
24
|
Santos J, Moschetta M, Rodrigues J, Alpuim P, Capasso A. Interactions Between 2D Materials and Living Matter: A Review on Graphene and Hexagonal Boron Nitride Coatings. Front Bioeng Biotechnol 2021; 9:612669. [PMID: 33585432 PMCID: PMC7873463 DOI: 10.3389/fbioe.2021.612669] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/04/2021] [Indexed: 12/24/2022] Open
Abstract
Two-dimensional material (2DM) coatings exhibit complex and controversial interactions with biological matter, having shown in different contexts to induce bacterial cell death and contribute to mammalian cell growth and proliferation in vitro and tissue differentiation in vivo. Although several reports indicate that the morphologic and electronic properties of the coating, as well as its surface features (e.g., crystallinity, wettability, and chemistry), play a key role in the biological interaction, these kinds of interactions have not been fully understood yet. In this review, we report and classify the cellular interaction mechanisms observed in graphene and hexagonal boron nitride (hBN) coatings. Graphene and hBN were chosen as study materials to gauge the effect of two atomic-thick coatings with analogous lattice structure yet dissimilar electrical properties upon contact with living matter, allowing to discern among the observed effects and link them to specific material properties. In our analysis, we also considered the influence of crystallinity and surface roughness, detailing the mechanisms of interaction that make specific coatings of these 2DMs either hostile toward bacterial cells or innocuous for mammalian cells. In doing this, we discriminate among the material and surface properties, which are often strictly connected to the 2DM production technique, coating deposition and post-processing method. Building on this knowledge, the selection of 2DM coatings based on their specific characteristics will allow to engineer desired functionalities and devices. Antibacterial coatings to prevent biofouling, biocompatible platforms suitable for biomedical applications (e.g., wound healing, tissue repairing and regeneration, and novel biosensing devices) could be realized in the next future. Overall, a clear understanding on how the 2DM coating's properties may modulate a specific bacterial or cellular response is crucial for any future innovation in the field.
Collapse
Affiliation(s)
- João Santos
- International Iberian Nanotechnology Laboratory, Braga, Portugal
| | - Matteo Moschetta
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
| | - João Rodrigues
- International Iberian Nanotechnology Laboratory, Braga, Portugal
| | - Pedro Alpuim
- International Iberian Nanotechnology Laboratory, Braga, Portugal
- Centro de Física das Universidades do Minho e do Porto, Braga, Portugal
| | - Andrea Capasso
- International Iberian Nanotechnology Laboratory, Braga, Portugal
| |
Collapse
|
25
|
Domi B, Bhorkar K, Rumbo C, Sygellou L, Yannopoulos SN, Barros R, Quesada R, Tamayo-Ramos JA. Assessment of Physico-Chemical and Toxicological Properties of Commercial 2D Boron Nitride Nanopowder and Nanoplatelets. Int J Mol Sci 2021; 22:E567. [PMID: 33430016 PMCID: PMC7827597 DOI: 10.3390/ijms22020567] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/03/2021] [Accepted: 01/05/2021] [Indexed: 02/07/2023] Open
Abstract
Boron nitride (BN) nanomaterials have been increasingly explored for potential applications in chemistry and biology fields (e.g., biomedical, pharmaceutical, and energy industries) due to their unique physico-chemical properties. However, their safe utilization requires a profound knowledge on their potential toxicological and environmental impact. To date, BN nanoparticles have been considered to have a high biocompatibility degree, but in some cases, contradictory results on their potential toxicity have been reported. Therefore, in the present study, we assessed two commercial 2D BN samples, namely BN-nanopowder (BN-PW) and BN-nanoplatelet (BN-PL), with the objective to identify whether distinct physico-chemical features may have an influence on the biological responses of exposed cellular models. Morphological, structural, and composition analyses showed that the most remarkable difference between both commercial samples was the diameter of their disk-like shape, which was of 200-300 nm for BN-PL and 100-150 nm for BN-PW. Their potential toxicity was investigated using adenocarcinomic human alveolar basal epithelial cells (A549 cells) and the unicellular fungus Saccharomycescerevisiae, as human and environmental eukaryotic models respectively, employing in vitro assays. In both cases, cellular viability assays and reactive oxygen species (ROS) determinations where performed. The impact of the selected nanomaterials in the viability of both unicellular models was very low, with only a slight reduction of S. cerevisiae colony forming units being observed after a long exposure period (24 h) to high concentrations (800 mg/L) of both nanomaterials. Similarly, BN-PW and BN-PL showed a low capacity to induce the formation of reactive oxygen species in the studied conditions. Even at the highest concentration and exposure times, no major cytotoxicity indicators were observed in human cells and yeast. The results obtained in the present study provide novel insights into the safety of 2D BN nanomaterials, indicating no significant differences in the toxicological potential of similar commercial products with a distinct lateral size, which showed to be safe products in the concentrations and exposure conditions tested.
Collapse
Affiliation(s)
- Brixhilda Domi
- International Research Centre in Critical Raw Materials (ICCRAM), Universidad de Burgos, Plaza Misael Banuelos s/n, 09001 Burgos, Spain; (B.D.); (C.R.); (R.B.)
| | - Kapil Bhorkar
- Foundation for Research and Technology Hellas-Institute of Chemical Engineering Sciences (FORTH/ICE-HT), P.O. Box 1414, GR-26504 Rio-Patras, Greece; (K.B.); (L.S.); (S.N.Y.)
- CNRS, ISCR-UMR 6226, University of Rennes, F-35000 Rennes, France
| | - Carlos Rumbo
- International Research Centre in Critical Raw Materials (ICCRAM), Universidad de Burgos, Plaza Misael Banuelos s/n, 09001 Burgos, Spain; (B.D.); (C.R.); (R.B.)
| | - Labrini Sygellou
- Foundation for Research and Technology Hellas-Institute of Chemical Engineering Sciences (FORTH/ICE-HT), P.O. Box 1414, GR-26504 Rio-Patras, Greece; (K.B.); (L.S.); (S.N.Y.)
| | - Spyros N. Yannopoulos
- Foundation for Research and Technology Hellas-Institute of Chemical Engineering Sciences (FORTH/ICE-HT), P.O. Box 1414, GR-26504 Rio-Patras, Greece; (K.B.); (L.S.); (S.N.Y.)
| | - Rocio Barros
- International Research Centre in Critical Raw Materials (ICCRAM), Universidad de Burgos, Plaza Misael Banuelos s/n, 09001 Burgos, Spain; (B.D.); (C.R.); (R.B.)
| | - Roberto Quesada
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, 09001 Burgos, Spain;
| | - Juan Antonio Tamayo-Ramos
- International Research Centre in Critical Raw Materials (ICCRAM), Universidad de Burgos, Plaza Misael Banuelos s/n, 09001 Burgos, Spain; (B.D.); (C.R.); (R.B.)
| |
Collapse
|
26
|
Arjmandi-Tash H, Lima LMC, A Belyaeva L, Mukhina T, Fragneto G, Kros A, Charitat T, Schneider GF. Encapsulation of Graphene in the Hydrophobic Core of a Lipid Bilayer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:14478-14482. [PMID: 33232163 PMCID: PMC7726894 DOI: 10.1021/acs.langmuir.0c01691] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Theoretical simulations have predicted that a lipid bilayer forms a stable superstructure when a sheet of graphene is inserted in its hydrophobic core. We experimentally produced for the first time a lipid-graphene-lipid assembly by combining the Langmuir-Blodgett and the Langmuir-Schaefer methods. Graphene is sandwiched and remains flat within the hydrophobic core of the lipid bilayer. Using infrared spectroscopy, ellipsometry, and neutron reflectometry, we characterized the superstructure at every fabrication step. The hybrid superstructure is mechanically stable and graphene does not disturb the natural lipid bilayer structure.
Collapse
Affiliation(s)
- Hadi Arjmandi-Tash
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Lia M C Lima
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Liubov A Belyaeva
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Tetiana Mukhina
- Institut Laue-Langevin, 71 Avenue des Martyrs, BP 156, 38042 Grenoble, France
- Institut Charles Sadron (ICS), UPR22 CNRS, Université de Strasbourg, 23 Rue du Lœss, 67034 Strasbourg, France
| | - Giovanna Fragneto
- Institut Laue-Langevin, 71 Avenue des Martyrs, BP 156, 38042 Grenoble, France
| | - Alexander Kros
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Thierry Charitat
- Institut Charles Sadron (ICS), UPR22 CNRS, Université de Strasbourg, 23 Rue du Lœss, 67034 Strasbourg, France
| | - Grégory F Schneider
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
27
|
Evariste L, Flahaut E, Baratange C, Barret M, Mouchet F, Pinelli E, Galibert AM, Soula B, Gauthier L. Ecotoxicological assessment of commercial boron nitride nanotubes toward Xenopus laevis tadpoles and host-associated gut microbiota. Nanotoxicology 2020; 15:35-51. [PMID: 33171057 DOI: 10.1080/17435390.2020.1839137] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Despite the growing interest for boron nitride nanotubes (BNNT) due to their unique properties, data on the evaluation of the environmental risk potential of this emerging engineered nanomaterial are currently lacking. Therefore, the ecotoxicity of a commercial form of BNNT (containing tubes, hexagonal-boron nitride, and boron) was assessed in vivo toward larvae of the amphibian Xenopus laevis. Following the exposure, multiple endpoints were measured in the tadpoles as well as in bacterial communities associated to the host gut. Exposure to BNNT led to boron accumulation in host tissues and was not associated to genotoxic effects. However, the growth of the tadpoles increased due to BNNT exposure. This parameter was associated to remodeling of gut microbiome, benefiting to taxa from the phylum Bacteroidetes. Changes in relative abundance of this phylum were positively correlated to larval growth. The obtained results support the finding that BNNT are biocompatible as indicated by the absence of toxic effect from the tested nanomaterials. In addition, byproducts, especially free boron present in the tested product, were overall beneficial for the metabolism of the tadpoles.
Collapse
Affiliation(s)
- Lauris Evariste
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Emmanuel Flahaut
- CIRIMAT, Université de Toulouse, CNRS, INPT, UPS, UMR CNRS-UPS-INP N°5085, Université Toulouse 3 Paul Sabatier, Bât. CIRIMAT, Toulouse, France
| | - Clément Baratange
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Maialen Barret
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Florence Mouchet
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Eric Pinelli
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Anne Marie Galibert
- CIRIMAT, Université de Toulouse, CNRS, INPT, UPS, UMR CNRS-UPS-INP N°5085, Université Toulouse 3 Paul Sabatier, Bât. CIRIMAT, Toulouse, France
| | - Brigitte Soula
- CIRIMAT, Université de Toulouse, CNRS, INPT, UPS, UMR CNRS-UPS-INP N°5085, Université Toulouse 3 Paul Sabatier, Bât. CIRIMAT, Toulouse, France
| | - Laury Gauthier
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| |
Collapse
|
28
|
Ma L, Andoh V, Adjei MO, Liu H, Shen Z, Li L, Song J, Zhao W, Wu G. In vivo toxicity evaluation of boron nitride nanosheets in Bombyx mori silkworm model. CHEMOSPHERE 2020; 247:125877. [PMID: 31935578 DOI: 10.1016/j.chemosphere.2020.125877] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 12/28/2019] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
Boron nitride nanosheets (BN NSs), a novel material with a structure similar to graphene, have attracted much attention due to their extraordinary properties. A deep in vivo study of the toxicity of BN NSs is indispensable, which can help to understand their potential risk and provide useful information for their safe application. However, so far as we know, the systematic in vivo toxicity evaluation of BN NSs hasn't been reported. In this study, silkworm (Bombyx mori) was used as a model to investigate the toxicity of BN NSs, by continuously feeding silkworm larvae with BN NSs at various mass concentrations (1%, 2%, 3%, 4%). The toxicity was evaluated from the levels of animal entirety (mortality, silkworm growth, cocoons and silk properties), tissues (pathological examination) and genes (transcriptomic profiling). The results show that the exposure to BN NSs causes no obvious adverse effects on the growth, silk properties or tissues of silkworm, but the expressions of genes in midgut concerned with some specific functions and pathways are significantly changed, indicating that BN NSs may have potential danger to lead to dysfunction. This study has performed in vivo toxicity evaluation of BN NSs and provided useful safety information for the application of BN NSs.
Collapse
Affiliation(s)
- Lin Ma
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, PR China; The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212018, PR China; Laboratory of Risk Assessment for Sericultural Products and Edible Insects, Ministry of Agriculture, Zhenjiang, Jiangsu, 212018, PR China
| | - Vivian Andoh
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, PR China
| | - Mark Owusu Adjei
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, PR China
| | - Haiyan Liu
- Department of Tea and Food Technology, Jiangsu Polytechnic College of Agriculture and Forestry, Jurong, Jiangsu, 212400, PR China
| | - Zhongyuan Shen
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, PR China; The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212018, PR China
| | - Long Li
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, PR China; The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212018, PR China; Laboratory of Risk Assessment for Sericultural Products and Edible Insects, Ministry of Agriculture, Zhenjiang, Jiangsu, 212018, PR China
| | - Jiangchao Song
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, PR China; The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212018, PR China; Laboratory of Risk Assessment for Sericultural Products and Edible Insects, Ministry of Agriculture, Zhenjiang, Jiangsu, 212018, PR China
| | - Weiguo Zhao
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, PR China; The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212018, PR China.
| | - Guohua Wu
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, PR China; The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212018, PR China; Laboratory of Risk Assessment for Sericultural Products and Edible Insects, Ministry of Agriculture, Zhenjiang, Jiangsu, 212018, PR China.
| |
Collapse
|
29
|
Liu Y, Yang Y, Qu Y, Li YQ, Zhao M, Li W. Mild lipid extraction and anisotropic cell membrane penetration of α-phase phosphorene carbide nanoribbons by molecular dynamics simulation studies. Phys Chem Chem Phys 2020; 22:23268-23275. [DOI: 10.1039/d0cp04145a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
α-PC penetrates the interior of membrane efficiently only along its zigzag direction rather than its armchair direction.
Collapse
Affiliation(s)
- Yang Liu
- School of Physics, State Key Laboratory of Crystal Materials
- Shandong University
- Jinan
- China
| | - Yanmei Yang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes, Ministry of Education
- Shandong Normal University
| | - Yuanyuan Qu
- School of Physics, State Key Laboratory of Crystal Materials
- Shandong University
- Jinan
- China
| | - Yong-Qiang Li
- School of Physics, State Key Laboratory of Crystal Materials
- Shandong University
- Jinan
- China
| | - Mingwen Zhao
- School of Physics, State Key Laboratory of Crystal Materials
- Shandong University
- Jinan
- China
| | - Weifeng Li
- School of Physics, State Key Laboratory of Crystal Materials
- Shandong University
- Jinan
- China
| |
Collapse
|
30
|
Hexagonal and Cubic Boron Nitride in Bulk and Nanosized Forms and Their Capacitive Behavior. ChemElectroChem 2019. [DOI: 10.1002/celc.201901328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
31
|
Gu Z, Chen SH, Ding Z, Song W, Wei W, Liu S, Ma G, Zhou R. The molecular mechanism of robust macrophage immune responses induced by PEGylated molybdenum disulfide. NANOSCALE 2019; 11:22293-22304. [PMID: 31746904 DOI: 10.1039/c9nr04358f] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Molybdenum disulfide (MoS2), a representative hexagonal transition metal dichalcogenide (TMD), has been extensively exploited in biomedical applications due to its unique physicochemical properties and biocompatibility. However, the lack of adequate data regarding how MoS2 activates immunological responses of macrophages remains a key concern for its risk assessment. Here, we employ a combined theoretical and experimental approach to investigate the interactions of MoS2 and PEGylated MoS2 (MoS2-PEG) with macrophages. We first perform molecular dynamics simulations to examine the atomic-detailed interactions of MoS2 and MoS2-PEG nanoflakes with a realistic model of the macrophage membrane. We show that a small MoS2 nanoflake (edge length of 2.86 nm) is capable of penetrating the macrophage membrane independent of its concentration. We also demonstrate that when initiated with a corner point-on configuration, the surface-bound PEG chains of MoS2-PEG hinder its membrane insertion process, leading to a prolonged passage through the membrane. Moreover, when placed in a face-on arrangement initially, the MoS2-PEG exhibits a lower binding free energy than pristine MoS2 after its adsorption on the membrane surface. The PEG chains can even insert and get buried in the outer leaflet of the membrane, providing additional contact for membrane adsorption. Our flow cytometric experiments then show that the responses of macrophages to either MoS2-PEG or MoS2 are significantly higher than that of the control (no nanomaterial stimulus), with MoS2-PEG eliciting stronger cytokine secretion than the pristine MoS2. The characteristics of slower/prolonged membrane penetration and stronger membrane adsorption of MoS2-PEG compared to pristine MoS2 explain why it triggers more sustained stimulation and higher cytokine secretion in macrophages as observed in our experiments. Our findings reveal the underlying molecular mechanism of how MoS2-PEG influences the immune responses and suggest its potential applications in nanomedicine involving immune stimulation.
Collapse
Affiliation(s)
- Zonglin Gu
- Institute of Quantitative Biology, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | | | | | | | | | | | | | | |
Collapse
|