1
|
Bertrand B, Rodríguez-Alejandro CI, Gutiérrez MC, Saab-Rincon G, Monturiol-Gross L, Munoz-Garay C. Evaluation of the antimicrobial efficiency of three novel chimeric peptides through biochemical and biophysical analyses. Arch Biochem Biophys 2025; 770:110449. [PMID: 40324739 DOI: 10.1016/j.abb.2025.110449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/23/2025] [Accepted: 05/02/2025] [Indexed: 05/07/2025]
Abstract
Three chimeric membrane-active antimicrobial peptides (AMPs) were designed from previously characterized parental molecules, namely pandinin-2, ascaphin-8, and maximin-3. The aim of constructing these chimeras was to obtain sequences with improved therapeutic indices or increased activity, while simultaneously investigating the functional roles of key segments of the parental peptides. Chimera-1 was the most active peptide against clinically relevant bacterial species, followed by chimera-2, and chimera-3, respectively, with no clear preference towards Gram-negative or Gram-positive strains. Escherichia coli and Pseudomonas aeruginosa were the most sensitive bacteria, while Klebsiella pneumoniae and Staphylococcus aureus were resistant to AMP activity. All peptides presented significantly lower activities towards human erythrocytes, with chimera-1 being the most selective. Additionally, only chimera-2 showed cytotoxicity towards Vero cells. Calcein leakage and dynamic light scattering assays using liposomal formulations indicated that the chimeras conserved the pore forming membrane perturbation mechanisms of the parental molecules. Peptide interaction also reduced membrane fluidity. Circular dichroism (CD) data showed disordered peptides in aqueous solution that transitioned into alpha helical structures lipid bilayer environments. In silico assessments correlated well with microbiological and in vitro experimental data. All peptides established greater contact with the bacterial biomimetic membrane compared to the erythrocyte system, as analyzed by distance from membrane surface, number of contacts, solvent accessible surface area, and number of hydrogen bonds. Additionally, the presence of the bilayer lipid patches favored peptide folding, consistent with CD experiments. Molecular dynamics simulations of peptide aggregation revealed that chimera-2 formed the largest oligomers, consistent with the predicted aggregation propensities and the predicted physico-chemical properties. Interaction with membrane surfaces resulted in smaller clusters while low or lack of interaction favored larger aggregates. Overall, the chimeric peptides displayed higher activity and selectivity compared to the parental ones. The contribution of the flanking regions of pandidin-2 and maximin-3 with respect to the core region of ascaphin-8 was not clear.
Collapse
Affiliation(s)
- Brandt Bertrand
- Instituto de Ciencias Físicas (ICF), Universidad Nacional Autónoma de México (UNAM), Avenida Universidad 2001, Chamilpa, 62210, Cuernavaca, Morelos Mexico
| | - C I Rodríguez-Alejandro
- Centro de Investigación en Biotecnología (CEIB), Universidad Autónoma Del Estado de Morelos (UAEM), Avenida Universidad 2001, Chamilpa, 62210 Cuernavaca, Morelos Mexico
| | - M C Gutiérrez
- Centro de Investigación en Biotecnología (CEIB), Universidad Autónoma Del Estado de Morelos (UAEM), Avenida Universidad 2001, Chamilpa, 62210 Cuernavaca, Morelos Mexico
| | - Gloria Saab-Rincon
- Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Avenida Universidad 2001, Chamilpa, 62210, Cuernavaca, Morelos Mexico
| | | | - Carlos Munoz-Garay
- Instituto de Ciencias Físicas (ICF), Universidad Nacional Autónoma de México (UNAM), Avenida Universidad 2001, Chamilpa, 62210, Cuernavaca, Morelos Mexico.
| |
Collapse
|
2
|
Liu X, Min Q, Li Y, Chen S. Enhanced Cellular Immunity for Hepatitis B Virus Vaccine: A Novel Polyinosinic-Polycytidylic Acid-Incorporated Adjuvant Leveraging Cytoplasmic Retinoic Acid-Inducible Gene-Like Receptor Activation and Increased Antigen Uptake. Biomater Res 2024; 28:0096. [PMID: 39469105 PMCID: PMC11513446 DOI: 10.34133/bmr.0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024] Open
Abstract
Conventional aluminum adjuvants exhibit limited cellular immunity. Polyinosinic-polycytidylic acid (poly I:C) activates cytoplasmic retinoic acid-inducible gene-like receptor (RLR), triggering strong T cell activation and cellular responses. However, when applied as an adjuvant, its limited endocytosis and restricted cytoplasmic delivery diminish its effectiveness and increase its toxicity. Hybrid polymer-lipid nanoparticle (PLNP) possesses numerous benefits such as good stability, reduced drug leakage, simple fabrication, easy property modulation, and excellent reproducibility compared to the lipid nanoparticle or the polymeric vector. Here, we developed a novel cationic polymer-lipid hybrid adjuvant capable of incorporating poly I:C to enhance cellular immunity. The hepatitis B surface antigen (HBsAg) was immobilized onto poly I:C-incorprated PLNP (PPLNP) via electrostatic interactions, forming the HBsAg/PPLNP vaccine formulation. The PPLNP adjuvant largely enhanced the cellular endocytosis and cytoplasmic transport of poly I:C, activating RLR followed by promoting type I interferon (IFN) secretion. Meanwhile, PPLNP obviously enhanced the antigen uptake, prolonged antigen retention at the site of administration, and facilitated enhanced transport of antigens to lymph nodes. The HBsAg/PPLNP nanovaccine led to amplified concentrations of antigen-specific immunoglobulin G (IgG), IFN-γ, granzyme B, and an enhanced IgG2a/IgG1 ratio, alongside the FasL+/CD8+ T cell activation, favoring a T helper 1 (TH1)-driven immune response. PPLNP, distinguished by its biocompatibility, ease of fabrication, and effectiveness in augmenting cellular immunity, holds significant promise as a new adjuvant.
Collapse
Affiliation(s)
- Xuhan Liu
- Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, Institute for Inheritance-Based Innovation of Chinese Medicine, Marshall Laboratory of Biomedical Engineering, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Qiuxia Min
- Department of Pharmacy, First People’s Hospital of Yunnan Province,
Kunming University of Science and Technology, Kunming, 650034 Yunnan, China
| | - Yihui Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Siyuan Chen
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211816 China
| |
Collapse
|
3
|
Fuente IFDL, Sawant SS, Kho KW, Sarangi NK, Canete RC, Pal S, Liang LH, Keyes TE, Rouge JL. Determining the Role of Surfactant on the Cytosolic Delivery of DNA Cross-Linked Micelles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43400-43415. [PMID: 39132807 DOI: 10.1021/acsami.4c09894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Nucleic Acid Nanocapsules (NANs) are nucleic acid nanostructures that radially display oligonucleotides on the surface of cross-linked surfactant micelles. Their chemical makeup affords the stimuli-responsive release of therapeutically active DNA-surfactant conjugates into the cells. While NANs have so far demonstrated the effective cytosolic delivery of their nucleic acid cargo, as seen indirectly by their gene regulation capabilities, there remain gaps in the molecular understanding of how this process happens. Herein, we examine the enzymatic degradation of NANs and confirm the identity of the DNA-surfactant conjugates formed by using mass spectrometry (MS). With surface enhanced (resonance) Raman spectroscopy (SE(R)RS), we also provide evidence that the energy-independent translocation of such DNA-surfactant conjugates is contingent upon their release from the NAN structure, which, when intact, otherwise buries the hydrophobic surfactant tail in its interior. Such information suggests a critical role of the surfactant in the lipid disruption capability of the DNA surfactant conjugates generated from degradation of the NANs. Using NANs made with different tail lengths (C12 and C10), we show that this mechanism likely holds true despite significant differences in the physical properties (i.e., critical micelle concentration (CMC), surfactants per micelle, Nagg) of the resultant particles (C12 and C10 NANs). While the total cellular uptake efficiencies of C12 and C10 NANs are similar, there were differences observed in their cellular distribution and localized trafficking, even after ensuring that the total concentration of DNA was the same for both particles. Ultimately, C10 NANs appeared less diffuse within cells and colocalized less with lysosomes over time, achieving more significant knockdown of the target gene investigated, suggesting more effective endosomal escape. These differences indicate that the surfactant assembly and disassembly properties, including the number of surfactants per particle and the CMC can have important implications for the cellular delivery efficacy of DNA micelles and surfactant conjugates.
Collapse
Affiliation(s)
- Ina F de la Fuente
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Shraddha S Sawant
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Kiang W Kho
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Glasvenin, Dublin D09 W6Y4, Ireland
| | - Nirod K Sarangi
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Glasvenin, Dublin D09 W6Y4, Ireland
| | - Rachelle C Canete
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Suman Pal
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Lisa H Liang
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Tia E Keyes
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Glasvenin, Dublin D09 W6Y4, Ireland
| | - Jessica L Rouge
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
4
|
Homma K, Miura Y, Kobayashi M, Chintrakulchai W, Toyoda M, Ogi K, Michinishi J, Ohtake T, Honda Y, Nomoto T, Takemoto H, Nishiyama N. Fine tuning of the net charge alternation of polyzwitterion surfaced lipid nanoparticles to enhance cellular uptake and membrane fusion potential. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2024; 25:2338785. [PMID: 38646148 PMCID: PMC11028023 DOI: 10.1080/14686996.2024.2338785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/25/2024] [Indexed: 04/23/2024]
Abstract
Lipid nanoparticles (LNPs) coated with functional and biocompatible polymers have been widely used as carriers to deliver oligonucleotide and messenger RNA therapeutics to treat diseases. Poly(ethylene glycol) (PEG) is a representative material used for the surface coating, but the PEG surface-coated LNPs often have reduced cellular uptake efficiency and pharmacological activity. Here, we demonstrate the effect of pH-responsive ethylenediamine-based polycarboxybetaines with different molecular weights as an alternative structural component to PEG for the coating of LNPs. We found that appropriate tuning of the molecular weight around polycarboxybetaine-modified LNP, which incorporated small interfering RNA, could enhance the cellular uptake and membrane fusion potential in cancerous pH condition, thereby facilitating the gene silencing effect. This study demonstrates the importance of the design and molecular length of polymers on the LNP surface to provide effective drug delivery to cancer cells.
Collapse
Affiliation(s)
- Keitaro Homma
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Kanagawa, Japan
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Kanagawa, Japan
| | - Yutaka Miura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Kanagawa, Japan
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Kanagawa, Japan
| | - Motoaki Kobayashi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Kanagawa, Japan
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Kanagawa, Japan
| | - Wanphiwat Chintrakulchai
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Kanagawa, Japan
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Kanagawa, Japan
| | - Masahiro Toyoda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Kanagawa, Japan
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Kanagawa, Japan
| | - Koichi Ogi
- I&S Department, Corporate R&D division, NOF CORPORATION, Kanagawa, Japan
| | - Junya Michinishi
- I&S Department, Corporate R&D division, NOF CORPORATION, Kanagawa, Japan
| | - Tomoyuki Ohtake
- I&S Department, Corporate R&D division, NOF CORPORATION, Kanagawa, Japan
| | - Yuto Honda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Kanagawa, Japan
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Kanagawa, Japan
- Innovation Center of Nanomedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kanagawa, Japan
| | - Takahiro Nomoto
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Kanagawa, Japan
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroyasu Takemoto
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Kanagawa, Japan
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Kanagawa, Japan
- Medical Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Nobuhiro Nishiyama
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Kanagawa, Japan
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Kanagawa, Japan
- Innovation Center of Nanomedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kanagawa, Japan
| |
Collapse
|
5
|
Mehta MJ, Kim HJ, Lim SB, Naito M, Miyata K. Recent Progress in the Endosomal Escape Mechanism and Chemical Structures of Polycations for Nucleic Acid Delivery. Macromol Biosci 2024; 24:e2300366. [PMID: 38226723 DOI: 10.1002/mabi.202300366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/22/2023] [Indexed: 01/17/2024]
Abstract
Nucleic acid-based therapies are seeing a spiralling surge. Stimuli-responsive polymers, especially pH-responsive ones, are gaining widespread attention because of their ability to efficiently deliver nucleic acids. These polymers can be synthesized and modified according to target requirements, such as delivery sites and the nature of nucleic acids. In this regard, the endosomal escape mechanism of polymer-nucleic acid complexes (polyplexes) remains a topic of considerable interest owing to various plausible escape mechanisms. This review describes current progress in the endosomal escape mechanism of polyplexes and state-of-the-art chemical designs for pH-responsive polymers. The importance is also discussed of the acid dissociation constant (i.e., pKa) in designing the new generation of pH-responsive polymers, along with assays to monitor and quantify the endosomal escape behavior. Further, the use of machine learning is addressed in pKa prediction and polymer design to find novel chemical structures for pH responsiveness. This review will facilitate the design of new pH-responsive polymers for advanced and efficient nucleic acid delivery.
Collapse
Affiliation(s)
- Mohit J Mehta
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Hyun Jin Kim
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
- Department of Biological Engineering, College of Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Sung Been Lim
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Mitsuru Naito
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kanjiro Miyata
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
6
|
Zhao HY, Chen YQ, Luo XY, Cai MJ, Li JY, Lin XY, Zhang H, Ding HM, Jiang GL, Hu Y. Ligand Phase Separation-Promoted, "Squeezing-Out" Mode Explaining the Mechanism and Implications of Neutral Nanoparticles That Escaped from Lysosomes. ACS NANO 2024; 18:2162-2183. [PMID: 38198577 DOI: 10.1021/acsnano.3c09452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Neutral nanomaterials functionalized with PEG or similar molecules have been popularly employed as nanomedicines. Compared to positive counterparts that are capable of harnessing the well-known proton sponge effect to facilitate their escape from lysosomes, it is yet unclear how neutral substances got their entry into the cytosol. In this study, by taking PEGylated, neutral Au nanospheres as an example, we systematically investigated their time-dependent translocation postuptake. Specifically, we harnessed dissipative particle dynamics simulations to uncover how nanospheres bypass lysosomal entrapment, wherein a mechanism termed as "squeezing-out" mode was discovered. We next conducted a comprehensive investigation on how nanomaterials implicate lysosomes in terms of integrity and functionality. By using single-molecule imaging, specific preservation of PEG-terminated with targeting moieties in lysosomes supports the "squeezing-out" mode as the mechanism underlying the lysosomal escape of nanomaterials. All evidence points out that such a process is benign to lysosomes, wherein the escape of nanomaterials proceeds at the expense of targeting moieties loss. Furthermore, we proved that by fine-tuning of the efficacy of nanomaterials escaping from lysosomes, modulation of distinct pathways and metabolic machinery can be achieved readily, thereby offering us a simple and robust tool to implicate cells.
Collapse
Affiliation(s)
- Hui-Yue Zhao
- College of Engineering and Applied Sciences, MOE Key Laboratory of High Performance Polymer Materials & Technology, Nanjing University, Nanjing, 210033, China
| | - Yuan-Qiang Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou, 215031, China
| | - Xing-Yu Luo
- College of Engineering and Applied Sciences, MOE Key Laboratory of High Performance Polymer Materials & Technology, Nanjing University, Nanjing, 210033, China
| | - Ming-Jie Cai
- College of Engineering and Applied Sciences, MOE Key Laboratory of High Performance Polymer Materials & Technology, Nanjing University, Nanjing, 210033, China
| | - Jia-Yi Li
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Xin-Yu Lin
- School of Stomatology, Nanjing Medical University, Nanjing, 211166, China
| | - Hao Zhang
- Department of Oncology, the First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Hong-Ming Ding
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou, 215031, China
| | - Guang-Liang Jiang
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yong Hu
- College of Engineering and Applied Sciences, MOE Key Laboratory of High Performance Polymer Materials & Technology, Nanjing University, Nanjing, 210033, China
| |
Collapse
|
7
|
Pavan C, Santalucia R, Escolano-Casado G, Ugliengo P, Mino L, Turci F. Physico-Chemical Approaches to Investigate Surface Hydroxyls as Determinants of Molecular Initiating Events in Oxide Particle Toxicity. Int J Mol Sci 2023; 24:11482. [PMID: 37511241 PMCID: PMC10380507 DOI: 10.3390/ijms241411482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
The study of molecular recognition patterns is crucial for understanding the interactions between inorganic (nano)particles and biomolecules. In this review we focus on hydroxyls (OH) exposed at the surface of oxide particles (OxPs) which can play a key role in molecular initiating events leading to OxPs toxicity. We discuss here the main analytical methods available to characterize surface OH from a quantitative and qualitative point of view, covering thermogravimetry, titration, ζ potential measurements, and spectroscopic approaches (NMR, XPS). The importance of modelling techniques (MD, DFT) for an atomistic description of the interactions between membranes/proteins and OxPs surfaces is also discussed. From this background, we distilled a new approach methodology (NAM) based on the combination of IR spectroscopy and bioanalytical assays to investigate the molecular interactions of OxPs with biomolecules and membranes. This NAM has been already successfully applied to SiO2 particles to identify the OH patterns responsible for the OxPs' toxicity and can be conceivably extended to other surface-hydroxylated oxides.
Collapse
Affiliation(s)
- Cristina Pavan
- Department of Chemistry, University of Torino, Via Giuria 7, 10125 Torino, Italy
- "G. Scansetti" Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, University of Torino, 10125 Torino, Italy
- Louvain Centre for Toxicology and Applied Pharmacology, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Rosangela Santalucia
- Department of Chemistry, University of Torino, Via Giuria 7, 10125 Torino, Italy
- Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, University of Torino, 10125 Torino, Italy
| | - Guillermo Escolano-Casado
- Department of Chemistry, University of Torino, Via Giuria 7, 10125 Torino, Italy
- Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, University of Torino, 10125 Torino, Italy
| | - Piero Ugliengo
- Department of Chemistry, University of Torino, Via Giuria 7, 10125 Torino, Italy
- Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, University of Torino, 10125 Torino, Italy
| | - Lorenzo Mino
- Department of Chemistry, University of Torino, Via Giuria 7, 10125 Torino, Italy
- Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, University of Torino, 10125 Torino, Italy
| | - Francesco Turci
- Department of Chemistry, University of Torino, Via Giuria 7, 10125 Torino, Italy
- "G. Scansetti" Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, University of Torino, 10125 Torino, Italy
- Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, University of Torino, 10125 Torino, Italy
| |
Collapse
|
8
|
Tan SW, Gooran N, Lim HM, Yoon BK, Jackman JA. Tethered Bilayer Lipid Membrane Platform for Screening Triton X-100 Detergent Replacements by Electrochemical Impedance Spectroscopy. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:874. [PMID: 36903751 PMCID: PMC10005542 DOI: 10.3390/nano13050874] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
In light of regulatory considerations, there are ongoing efforts to identify Triton X-100 (TX-100) detergent alternatives for use in the biological manufacturing industry to mitigate membrane-enveloped pathogen contamination. Until now, the efficacy of antimicrobial detergent candidates to replace TX-100 has been tested regarding pathogen inhibition in endpoint biological assays or probing lipid membrane disruption in real-time biophysical testing platforms. The latter approach has proven especially useful to test compound potency and mechanism of action, however, existing analytical approaches have been limited to studying indirect effects of lipid membrane disruption such as membrane morphological changes. A direct readout of lipid membrane disruption by TX-100 detergent alternatives would be more practical to obtain biologically relevant information to guide compound discovery and optimization. Herein, we report the use of electrochemical impedance spectroscopy (EIS) to investigate how TX-100 and selected replacement candidates-Simulsol SL 11W (Simulsol) and cetyltrimethyl ammonium bromide (CTAB)-affect the ionic permeability of tethered bilayer lipid membrane (tBLM) platforms. The EIS results revealed that all three detergents exhibited dose-dependent effects mainly above their respective critical micelle concentration (CMC) values while displaying distinct membrane-disruptive behaviors. TX-100 caused irreversible membrane disruption leading to complete solubilization, whereas Simulsol caused reversible membrane disruption and CTAB induced irreversible, partial membrane defect formation. These findings establish that the EIS technique is useful for screening the membrane-disruptive behaviors of TX-100 detergent alternatives with multiplex formatting possibilities, rapid response, and quantitative readouts relevant to antimicrobial functions.
Collapse
Affiliation(s)
- Sue Woon Tan
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Negin Gooran
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hye Min Lim
- School of Healthcare and Biomedical Engineering, Chonnam National University, Yeosu 59626, Republic of Korea
- Interdisciplinary Program of Biomedical Engineering, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Bo Kyeong Yoon
- School of Healthcare and Biomedical Engineering, Chonnam National University, Yeosu 59626, Republic of Korea
- Interdisciplinary Program of Biomedical Engineering, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Joshua A. Jackman
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
9
|
Sydor MJ, Kendall RL, Holian A. Cholesterol content regulates silica-induced lysosomal membrane permeability. FRONTIERS IN TOXICOLOGY 2023; 5:1112822. [PMID: 36860548 PMCID: PMC9969097 DOI: 10.3389/ftox.2023.1112822] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
Inhalation of crystalline silica has been well documented to cause pulmonary inflammation and lung disease such as silicosis. Respirable silica particles deposit in the lungs and are phagocytosed by alveolar macrophages. Subsequently, phagocytosed silica remains undegraded within lysosomes causing lysosomal damage known as phagolysosomal membrane permeability (LMP). LMP can trigger the assembly of the NLRP3 inflammasome resulting in release of inflammatory cytokines that contribute to disease. In order to better understand the mechanisms of LMP this study used murine bone marrow derived macrophages (BMdM) as a cellular model to investigate the mechanism of silica-induced LMP. Reduction of lysosomal cholesterol in bone marrow derived macrophages with 18:1 phosphatidylglycerol (DOPG) liposome treatment increased silica-induced LMP and IL-1β release. Conversely, increasing lysosomal and cellular cholesterol with U18666A reduced IL-1β release. Co-treatment of bone marrow derived macrophages with 18:1 phosphatidylglycerol and U18666A resulted in a significant reduction of the effects of U18666A on lysosomal cholesterol. Phosphatidylcholine 100-nm liposome model systems were used to examine the effects of silica particles on lipid membrane order. Time-resolved fluorescence anisotropy of the membrane probe, Di-4-ANEPPDHQ, was used to determine changes to membrane order. Silica increased lipid order that was attenuated by inclusion of cholesterol in the phosphatidylcholine liposomes. These results demonstrate that increased cholesterol can attenuate silica-induced membrane changes in liposomes and cell models, while decreasing cholesterol exacerbates silica-induced membrane changes. Selective manipulation of lysosomal cholesterol may be a way of attenuating lysosomal disruption and preventing silica-induced chronic inflammatory disease progression.
Collapse
Affiliation(s)
- Matthew J. Sydor
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, United States
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT, United States
| | - Rebekah L. Kendall
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, United States
| | - Andrij Holian
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, United States
| |
Collapse
|
10
|
Tyagi G, Greenfield JL, Jones BE, Sharratt WN, Khan K, Seddon D, Malone LA, Cowieson N, Evans RC, Fuchter MJ, Cabral JT. Light Responsiveness and Assembly of Arylazopyrazole-Based Surfactants in Neat and Mixed CTAB Micelles. JACS AU 2022; 2:2670-2677. [PMID: 36590257 PMCID: PMC9795462 DOI: 10.1021/jacsau.2c00453] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 06/17/2023]
Abstract
The self-assembly of an arylazopyrazole-based photosurfactant (PS), based on cetyltrimethylammonium bromide (CTAB), and its mixed micelle formation with CTAB in aqueous solution was investigated by small angle neutron and X-ray scattering (SANS/SAXS) and UV-vis absorption spectroscopy. Upon UV light exposure, PS photoisomerizes from E-PS (trans) to Z-PS (cis), which transforms oblate ellipsoidal micelles into smaller, spherical micelles with larger shell thickness. Doping PS with CTAB resulted in mixed micelle formation at all stoichiometries and conditions investigated; employing selectively deuterated PS, a monotonic variation in scattering length density and dimensions of the micellar core and shell is observed for all contrasts. The concentration- and irradiance-dependence of the E to Z configurational transition was established in both neat and mixed micelles. A liposome dye release assay establishes the enhanced efficacy of photosurfactants at membrane disruption, with E-PS exhibiting a 4-fold and Z-PS a 10-fold increase in fluorescence signal with respect to pure CTAB. Our findings pave the way for external triggering and modulation of the wide range of CTAB-based biomedical and material applications.
Collapse
Affiliation(s)
- Gunjan Tyagi
- Department
of Chemical Engineering, Imperial College
London, London SW7 2AZ, U.K.
- Institute
for Molecular Science and Engineering, Imperial
College London, London SW7 2AZ, U.K.
| | - Jake L. Greenfield
- Institute
for Molecular Science and Engineering, Imperial
College London, London SW7 2AZ, U.K.
- Molecular
Sciences Research Hub, Department of Chemistry, Imperial College London, London W12 0BZ, U.K.
| | - Beatrice E. Jones
- Department
of Materials Science and Metallurgy, University
of Cambridge, Cambridge CB3 OFS, U.K.
- Diamond
Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11
0DE, U.K.
| | - William N. Sharratt
- Department
of Chemical Engineering, Imperial College
London, London SW7 2AZ, U.K.
| | - Kasim Khan
- Department
of Biology, Lund University, 22100 Lund, Sweden
| | - Dale Seddon
- Department
of Chemical Engineering, Imperial College
London, London SW7 2AZ, U.K.
| | - Lorna A. Malone
- Diamond
Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11
0DE, U.K.
| | - Nathan Cowieson
- Diamond
Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11
0DE, U.K.
| | - Rachel C. Evans
- Department
of Materials Science and Metallurgy, University
of Cambridge, Cambridge CB3 OFS, U.K.
| | - Matthew J. Fuchter
- Institute
for Molecular Science and Engineering, Imperial
College London, London SW7 2AZ, U.K.
- Molecular
Sciences Research Hub, Department of Chemistry, Imperial College London, London W12 0BZ, U.K.
| | - João T. Cabral
- Department
of Chemical Engineering, Imperial College
London, London SW7 2AZ, U.K.
- Institute
for Molecular Science and Engineering, Imperial
College London, London SW7 2AZ, U.K.
| |
Collapse
|
11
|
Pavan C, Sydor MJ, Bellomo C, Leinardi R, Cananà S, Kendall RL, Rebba E, Corno M, Ugliengo P, Mino L, Holian A, Turci F. Molecular recognition between membrane epitopes and nearly free surface silanols explains silica membranolytic activity. Colloids Surf B Biointerfaces 2022; 217:112625. [PMID: 35738078 PMCID: PMC10796170 DOI: 10.1016/j.colsurfb.2022.112625] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 11/24/2022]
Abstract
Inhaled crystalline silica causes inflammatory lung diseases, but the mechanism for its unique activity compared to other oxides remains unclear, preventing the development of potential therapeutics. Here, the molecular recognition mechanism between membrane epitopes and "nearly free silanols" (NFS), a specific subgroup of surface silanols, is identified and proposed as a novel broad explanation for particle toxicity in general. Silica samples having different bulk and surface properties, specifically different amounts of NFS, are tested with a set of membrane systems of decreasing molecular complexity and different charge. The results demonstrate that NFS content is the primary determinant of membrane disruption causing red blood cell lysis and changes in lipid order in zwitterionic, but not in negatively charged liposomes. NFS-rich silica strongly and irreversibly adsorbs zwitterionic self-assembled phospholipid structures. This selective interaction is corroborated by density functional theory and supports the hypothesis that NFS recognize membrane epitopes that exhibit a positive quaternary amino and negative phosphate group. These new findings define a new paradigm for deciphering particle-biomembrane interactions that will support safer design of materials and what types of treatments might interrupt particle-biomembrane interactions.
Collapse
Affiliation(s)
- Cristina Pavan
- Department of Chemistry, University of Turin, Italy; "G. Scansetti" Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, University of Turin, Italy; Louvain Centre for Toxicology and Applied Pharmacology, Université catholique de Louvain, Belgium.
| | - Matthew J Sydor
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, United States.
| | - Chiara Bellomo
- Department of Chemistry, University of Turin, Italy; "G. Scansetti" Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, University of Turin, Italy.
| | - Riccardo Leinardi
- Department of Chemistry, University of Turin, Italy; "G. Scansetti" Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, University of Turin, Italy; Louvain Centre for Toxicology and Applied Pharmacology, Université catholique de Louvain, Belgium.
| | - Stefania Cananà
- Department of Chemistry, University of Turin, Italy; "G. Scansetti" Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, University of Turin, Italy.
| | - Rebekah L Kendall
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, United States.
| | - Erica Rebba
- Department of Chemistry, University of Turin, Italy; Nanostructured Interfaces and Surfaces Interdepartmental Centre, University of Turin, Italy.
| | - Marta Corno
- Department of Chemistry, University of Turin, Italy; Nanostructured Interfaces and Surfaces Interdepartmental Centre, University of Turin, Italy.
| | - Piero Ugliengo
- Department of Chemistry, University of Turin, Italy; Nanostructured Interfaces and Surfaces Interdepartmental Centre, University of Turin, Italy.
| | - Lorenzo Mino
- Department of Chemistry, University of Turin, Italy; Nanostructured Interfaces and Surfaces Interdepartmental Centre, University of Turin, Italy.
| | - Andrij Holian
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, United States.
| | - Francesco Turci
- Department of Chemistry, University of Turin, Italy; "G. Scansetti" Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, University of Turin, Italy; Nanostructured Interfaces and Surfaces Interdepartmental Centre, University of Turin, Italy.
| |
Collapse
|
12
|
Nakamura M, Nakamura J, Mochizuki C, Kuroda C, Kato S, Haruta T, Kakefuda M, Sato S, Tamanoi F, Sugino N. Analysis of cell-nanoparticle interactions and imaging of in vitro labeled cells showing barcorded endosomes using fluorescent thiol-organosilica nanoparticles surface-functionalized with polyethyleneimine. NANOSCALE ADVANCES 2022; 4:2682-2703. [PMID: 36132282 PMCID: PMC9417756 DOI: 10.1039/d1na00839k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 04/18/2022] [Indexed: 06/15/2023]
Abstract
Biomedical imaging using cell labeling is an important technique to visualize cell dynamics in the body. To label cells, thiol-organosilica nanoparticles (thiol-OS) containing fluorescein (thiol-OS/Flu) and rhodamine B (thiol-OS/Rho) were surface-functionalized with polyethyleneimine (PEI) (OS/Flu-PEI and OS/Rho-PEI) with 4 molecular weights (MWs). We hypothesized PEI structures such as brush, bent brush, bent lie-down, and coiled types on the surface depending on MWs based on dynamic light scattering and thermal gravimetric analyses. The labeling efficacy of OS/Flu-PEIs was dependent on the PEI MW and the cell type. A dual-particle administration study using thiol-OS and OS-PEIs revealed differential endosomal sorting of the particles depending on the surface of the NPs. The endosomes in the labeled cells using OS/Flu-PEI and thiol-OS/Rho revealed various patterns of fluorescence termed barcoded endosomes. The cells labeled with OS-PEI in vitro were administrated to mice intraperitoneally after in situ labeling of peritoneal cells using thiol-OS/Rho. The in vitro labeled cells were detected and identified in cell aggregates in vivo seamlessly. The labeled cells with barcoded endosomes were also identified in cell aggregates. Biomedical imaging of in vitro OS-PEI-labeled cells combined with in situ labeled cells showed high potential for observation of cell dynamics.
Collapse
Affiliation(s)
- Michihiro Nakamura
- Department of Organ Anatomy and Nanomedicine, Graduate School of Medicine, Yamaguchi University 1-1-1 Minami-Kogushi Ube Yamaguchi 755-8505 Japan
| | - Junna Nakamura
- Department of Organ Anatomy and Nanomedicine, Graduate School of Medicine, Yamaguchi University 1-1-1 Minami-Kogushi Ube Yamaguchi 755-8505 Japan
| | - Chihiro Mochizuki
- Department of Organ Anatomy and Nanomedicine, Graduate School of Medicine, Yamaguchi University 1-1-1 Minami-Kogushi Ube Yamaguchi 755-8505 Japan
| | - Chika Kuroda
- Department of Organ Anatomy and Nanomedicine, Graduate School of Medicine, Yamaguchi University 1-1-1 Minami-Kogushi Ube Yamaguchi 755-8505 Japan
| | - Shigeki Kato
- Department of Organ Anatomy and Nanomedicine, Graduate School of Medicine, Yamaguchi University 1-1-1 Minami-Kogushi Ube Yamaguchi 755-8505 Japan
| | | | - Mayu Kakefuda
- EM Application Group, EM Business Unit, JEOL Ltd. Japan
| | - Shun Sato
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Yamaguchi University 1-1-1 Minami-Kogushi Ube Yamaguchi 755-8505 Japan
| | - Fuyuhiko Tamanoi
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles CA 90095 USA
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University Yoshida-Honmachi, Sakyo-ku Kyoto 606-8501 Japan
| | - Norihiro Sugino
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Yamaguchi University 1-1-1 Minami-Kogushi Ube Yamaguchi 755-8505 Japan
| |
Collapse
|
13
|
Qamhieh K, Nylander T. Electrostatic interactions between cationic dendrimers and anionic model biomembrane. Chem Phys Lipids 2022; 246:105214. [DOI: 10.1016/j.chemphyslip.2022.105214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 11/03/2022]
|
14
|
Sydor MJ, Anderson DS, Steele HBB, Ross JBA, Holian A. Fluorescence lifetime imaging microscopy and time-resolved anisotropy of nanomaterial-induced changes to red blood cell membranes. Methods Appl Fluoresc 2021; 9. [PMID: 33973872 DOI: 10.1088/2050-6120/abf424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/31/2021] [Indexed: 11/11/2022]
Abstract
With the use of engineered nano-materials (ENM) becoming more prevalent, it is essential to determine potential human health impacts. Specifically, the effects on biological lipid membranes will be important for determining molecular events that may contribute to both toxicity and suitable biomedical applications. To better understand the mechanisms of ENM-induced hemolysis and membrane permeability, fluorescence lifetime imaging microscopy (FLIM) was performed on human red blood cells (RBC) exposed to titanium dioxide ENM, zinc oxide ENM, or micron-sized crystalline silica. In the FLIM images, changes in the intensity-weighted fluorescence lifetime of the lipophilic fluorescence probe Di-4-ANEPPDHQ were used to identify localized changes to membrane. Time-resolved fluorescence anisotropy and FLIM of RBC treated with methyl-ß-cyclodextrin was performed to aid in interpreting how changes to membrane order influence changes in the fluorescence lifetime of the probe. Treatment of RBC with methyl-ß-cyclodextrin caused an increase in the wobble-in-a-cone angle and shorter fluorescence lifetimes of di-4-ANEPPDHQ. Treatment of RBC with titanium dioxide caused a significant increase in fluorescence lifetime compared to non-treated samples, indicating increased membrane order. Crystalline silica also increased the fluorescence lifetime compared to control levels. In contrast, zinc oxide decreased the fluorescence lifetime, representing decreased membrane order. However, treatment with soluble zinc sulfate resulted in no significant change in fluorescence lifetime, indicating that the decrease in order of the RBC membranes caused by zinc oxide ENM was not due to zinc ions formed during potential dissolution of the nanoparticles. These results give insight into mechanisms for how these three materials might disrupt RBC membranes and membranes of other cells. The results also provide evidence for a direct correlation between the size, interaction-available surface area of the nano-material and cell membrane disruption.
Collapse
Affiliation(s)
- Matthew J Sydor
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, United States of America
| | - Donald S Anderson
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, United States of America
| | - Harmen B B Steele
- Department of Chemistry and Biochemistry, University of Montana, Missoula, United States of America.,Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, United States of America
| | - J B Alexander Ross
- Department of Chemistry and Biochemistry, University of Montana, Missoula, United States of America.,Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, United States of America
| | - Andrij Holian
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, United States of America
| |
Collapse
|
15
|
Cell-bound nanoparticles for tissue targeting and immunotherapy: Engineering of the particle–membrane interface. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2020.101408] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Zhang Y, Zhang Y, Wu J, Liu J, Kang Y, Hu C, Feng X, Liu W, Luo H, Chen A, Chen L, Shao L. Effects of carbon-based nanomaterials on vascular endothelia under physiological and pathological conditions: interactions, mechanisms and potential therapeutic applications. J Control Release 2021; 330:945-962. [DOI: 10.1016/j.jconrel.2020.10.067] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/31/2020] [Accepted: 10/31/2020] [Indexed: 12/11/2022]
|
17
|
Ha Y, Koo Y, Park SK, Kim GE, Oh HB, Kim HR, Kwon JH. Liposome leakage and increased cellular permeability induced by guanidine-based oligomers: effects of liposome composition on liposome leakage and human lung epithelial barrier permeability. RSC Adv 2021; 11:32000-32011. [PMID: 35495488 PMCID: PMC9042049 DOI: 10.1039/d1ra05478c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/17/2021] [Indexed: 11/21/2022] Open
Abstract
In this study, liposome leakage using different liposome compositions and increased cellular permeability of human lung monolayer models induced by PHMG and PHMB were investigated.
Collapse
Affiliation(s)
- Yeonjeong Ha
- Division of Environmental Science and Ecological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Yerim Koo
- Division of Environmental Science and Ecological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Seon-Kyung Park
- Division of Environmental Science and Ecological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Ga-Eun Kim
- College of Pharmacy, Daegu Catholic University, 13-13 Hayang-ro, Hayang-eup, Gyeongsan 38430, Republic of Korea
| | - Han Bin Oh
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Ha Ryong Kim
- College of Pharmacy, Daegu Catholic University, 13-13 Hayang-ro, Hayang-eup, Gyeongsan 38430, Republic of Korea
| | - Jung-Hwan Kwon
- Division of Environmental Science and Ecological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
18
|
Almeida B, Nag OK, Rogers KE, Delehanty JB. Recent Progress in Bioconjugation Strategies for Liposome-Mediated Drug Delivery. Molecules 2020; 25:E5672. [PMID: 33271886 PMCID: PMC7730700 DOI: 10.3390/molecules25235672] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 02/06/2023] Open
Abstract
In nanoparticle (NP)-mediated drug delivery, liposomes are the most widely used drug carrier, and the only NP system currently approved by the FDA for clinical use, owing to their advantageous physicochemical properties and excellent biocompatibility. Recent advances in liposome technology have been focused on bioconjugation strategies to improve drug loading, targeting, and overall efficacy. In this review, we highlight recent literature reports (covering the last five years) focused on bioconjugation strategies for the enhancement of liposome-mediated drug delivery. These advances encompass the improvement of drug loading/incorporation and the specific targeting of liposomes to the site of interest/drug action. We conclude with a section highlighting the role of bioconjugation strategies in liposome systems currently being evaluated for clinical use and a forward-looking discussion of the field of liposomal drug delivery.
Collapse
Affiliation(s)
- Bethany Almeida
- American Society for Engineering Education, Washington, DC 20036, USA;
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA; (O.K.N.); (K.E.R.)
| | - Okhil K. Nag
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA; (O.K.N.); (K.E.R.)
| | - Katherine E. Rogers
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA; (O.K.N.); (K.E.R.)
- Fischell Department of Bioengineering, 2330 Kim Engineering Building, University of Maryland, College Park, MD 20742, USA
| | - James B. Delehanty
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA; (O.K.N.); (K.E.R.)
| |
Collapse
|
19
|
Chen Q, Liu Y, Liu J, Liu J. Liposome‐Boosted Peroxidase‐Mimicking Nanozymes Breaking the pH Limit. Chemistry 2020; 26:16659-16665. [DOI: 10.1002/chem.202004133] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/03/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Qiaoshu Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and, Molecular Engineering of, Hunan Province Hunan University Changsha 410082 P. R. China
- Department of Chemistry Waterloo Institute for Nanotechnology University of Waterloo Waterloo Ontario N2L 3G1 Canada
| | - Yibo Liu
- Department of Chemistry Waterloo Institute for Nanotechnology University of Waterloo Waterloo Ontario N2L 3G1 Canada
| | - Jianbo Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and, Molecular Engineering of, Hunan Province Hunan University Changsha 410082 P. R. China
| | - Juewen Liu
- Department of Chemistry Waterloo Institute for Nanotechnology University of Waterloo Waterloo Ontario N2L 3G1 Canada
- Centre for Eye and Vision Research 17W Hong Kong Science Park Hong Kong China
| |
Collapse
|
20
|
Miller EM, Samec TM, Alexander-Bryant AA. Nanoparticle delivery systems to combat drug resistance in ovarian cancer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 31:102309. [PMID: 32992019 DOI: 10.1016/j.nano.2020.102309] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/04/2020] [Accepted: 09/17/2020] [Indexed: 12/17/2022]
Abstract
Due to the lack of early symptoms and difficulty of accurate diagnosis, ovarian cancer is the most lethal gynecological cancer faced by women. First-line therapy includes a combination of tumor resection surgery and chemotherapy regimen. However, treatment becomes more complex upon recurrence due to development of drug resistance. Drug resistance has been linked to many mechanisms, including efflux transporters, apoptosis dysregulation, autophagy, cancer stem cells, epigenetics, and the epithelial-mesenchymal transition. Thus, developing and choosing effective therapies is exceptionally complex. There is a need for increased specificity and efficacy in therapies for drug-resistant ovarian cancer, and research in targeted nanoparticle delivery systems aims to fulfill this challenge. Although recent research has focused on targeted nanoparticle-based therapies, few of these therapies have been clinically translated. In this review, non-viral nanoparticle delivery systems developed to overcome drug-resistance in ovarian cancer were analyzed, including their structural components, surface modifications, and drug-resistance targeted mechanisms.
Collapse
Affiliation(s)
- Emily M Miller
- Nanobiotechnology Laboratory, Department of Bioengineering, Clemson University, Clemson, SC
| | - Timothy M Samec
- Nanobiotechnology Laboratory, Department of Bioengineering, Clemson University, Clemson, SC
| | | |
Collapse
|
21
|
Jing H, Wang Y, Desai PR, Ramamurthi KS, Das S. Formation and Properties of a Self-Assembled Nanoparticle-Supported Lipid Bilayer Probed through Molecular Dynamics Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:5524-5533. [PMID: 32362127 PMCID: PMC7494177 DOI: 10.1021/acs.langmuir.0c00593] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We have carried out coarse-grained molecular dynamics (MD) simulations to study the self-assembly procedure of a system of randomly placed lipid molecules, water beads, and a nanoparticle (NP). The self-assembly results in the formation of the nanoparticle-supported lipid bilayer (NPSLBL), with the self-assembly mechanism being driven by events such as the formation of small lipid clusters, merging of the lipid clusters in the vicinity of the NP to form NP-embedded vesicle with a pore, and collapsing of that pore to eventually form the equilibrated NPSLBL system overcoming a large free-energy barrier. Subsequently, we quantify the properties and the configurations of this NPSLBL system. We reveal that unlike our proposition of an equal number of lipid molecules occupying the inner and outer leaflets in a recent report studying the properties of a preassembled lipid bilayer, the equilibrated self-assembled NPSLBL system demonstrates a much larger number of lipid molecules occupying the outer leaflet as compared to the inner leaflet. Second, the thickness of the water layer entrapped between the NP and the inner leaflet shows similar values as predicted by experiments and our previous study. Finally, we reveal that, similar to our previous study, the diffusivity of the lipid molecules in the outer leaflet is larger than that in the inner leaflet but, due to higher temperature employed during our simulations, are even larger than that predicted by our previous study.
Collapse
Affiliation(s)
- Haoyuan Jing
- Department of Mechanical Engineering, University of Maryland, 4298 Campus Drive, College Park, MD 20742
| | - Yanbin Wang
- Department of Mechanical Engineering, University of Maryland, 4298 Campus Drive, College Park, MD 20742
| | - Parth Rakesh Desai
- Department of Mechanical Engineering, University of Maryland, 4298 Campus Drive, College Park, MD 20742
| | - Kumaran S. Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Siddhartha Das
- Department of Mechanical Engineering, University of Maryland, 4298 Campus Drive, College Park, MD 20742
| |
Collapse
|
22
|
Sydor MJ, Anderson DS, Steele HBB, Ross JBA, Holian A. Effects of titanium dioxide and zinc oxide nano-materials on lipid order in model membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183313. [PMID: 32304756 DOI: 10.1016/j.bbamem.2020.183313] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/08/2020] [Accepted: 04/13/2020] [Indexed: 12/14/2022]
Abstract
Engineered nano-materials (ENM) have been reported to affect lipid membrane permeability in cell models, but a mechanistic understanding of how these materials interact with biological membranes has not been described. To assess mechanisms of permeability, liposomes composed of DOPC, DOPS, or POPC, with or without cholesterol, were used as model membranes for measuring ENM-induced changes to lipid order to improve our understanding of ENM effects on membrane permeability. Liposomes were treated with either titanium dioxide (TiO2) or zinc oxide (ZnO) ENM, and changes to lipid order were measured by time-resolved fluorescence anisotropy of a lipophilic probe, Di-4-ANEPPDHQ. Both ENM increased lipid order in two lipid models differing in headgroup charge. TiO2 increased lipid order of POPC liposomes (neutral charge), while ZnO acted primarily on DOPS liposomes (negative charge). Addition of cholesterol to these models significantly increased lipid order while in some cases attenuated ENM-induced changes to lipid order. To assess the ability of ENM to induce membrane permeability, liposomes composed of the above lipids were assayed for membrane permeability by calcein leakage in response to ENM. Both ENM caused a dose-dependent increase in permeability in all liposome models tested, and the addition of cholesterol to the liposome models neither blocked nor reduced calcein leakage. Together, these experiments show that ENM increased permeability of small molecules (calcein) from model liposomes, and that the magnitude of the effect of ENM on lipid order depended on ENM surface charge, lipid head group charge and the presence of cholesterol in the membrane.
Collapse
Affiliation(s)
- Matthew J Sydor
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, United States of America.
| | - Donald S Anderson
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, United States of America.
| | - Harmen B B Steele
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT 59812, United States of America; Center for Biomolecular and Structure & Dynamics, University of Montana, Missoula, MT 59812, United States of America.
| | - J B Alexander Ross
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT 59812, United States of America; Center for Biomolecular and Structure & Dynamics, University of Montana, Missoula, MT 59812, United States of America.
| | - Andrij Holian
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, United States of America.
| |
Collapse
|