1
|
Jung E, Rizzo A, Ryu H, Cho M, Choi TL. Controlled polymerization of levoglucosenone-derived enynes to give bio-based polymers with tunable degradation rates and high glass transition temperatures. Chem Sci 2025; 16:8435-8442. [PMID: 40225180 PMCID: PMC11986836 DOI: 10.1039/d5sc00630a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/26/2025] [Indexed: 04/15/2025] Open
Abstract
In recent years, pollution from plastic waste has intensified the demand for sustainable polymers. Hence, biomass-derived degradable polymers offer a promising solution. For example, levoglucosenone, a readily available biomass product from cellulose pyrolysis, is an attractive building block for polymer synthesis. However, the metathesis polymerization of levoglucosenone-derived monomers has been difficult to control due to poor monomer reactivity, requiring an unstable but reactive ruthenium catalyst (C793). To facilitate the polymerization, we introduced a cascade motif to successfully demonstrate controlled polymerization of levoglucosenone-derived enynes using a commercially available 3rd-generation Grubbs catalyst. This living polymerization also enabled block copolymer synthesis. Furthermore, the degradation rates of these polymers can be adjusted over 2 orders of magnitude through monomer structural modifications. Notably, we observed higher glass transition temperatures of 152-198 °C by varying structural parameters.
Collapse
Affiliation(s)
- Eunsong Jung
- Department of Materials, ETH Zürich Zürich 8093 Switzerland
| | - Antonio Rizzo
- Department of Chemistry, the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong 999077 P. R. China
| | - Hanseul Ryu
- Department of Materials, ETH Zürich Zürich 8093 Switzerland
| | - Minyoung Cho
- Department of Materials, ETH Zürich Zürich 8093 Switzerland
| | - Tae-Lim Choi
- Department of Materials, ETH Zürich Zürich 8093 Switzerland
| |
Collapse
|
2
|
Xiong W, Gutekunst WR. Ring-Opening Metathesis Polymerization of 1,2-Dihydroazete Derivatives. Angew Chem Int Ed Engl 2025; 64:e202416124. [PMID: 39578228 DOI: 10.1002/anie.202416124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/29/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Fischer carbenes have recently found great utility in the construction of degradable metathesis materials, but investigations have been limited to oxygen-containing enol ether monomers. Here, the ring-opening metathesis polymerization of 1,2-dihydroazetes is reported. The polymerization proceeds regioselectively, and the resulting molecular weights are targetable by adjusting the Grubbs initiator loading. Under acidic conditions, the resulting polymers degrade into 3-aminopropanal derivatives through hydrolysis of the recurring enamide motifs in the polymer backbone. Additionally, the underlying kinetics and thermodynamics of the polymerization were studied through DFT calculations to elucidate the origins of metathesis regioselectivity. This work further expands the suite of monomers available to generate degradable metathesis materials and provides a flexible platform for target applications.
Collapse
Affiliation(s)
- Wei Xiong
- Department School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, 30332, United States
| | - Will R Gutekunst
- Department School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, 30332, United States
| |
Collapse
|
3
|
Zhang N, Dong L, Wang Y, Wang X, Wen Y, Lu X, Dong Y, You W. Elucidating the backbone degradation mechanism of poly(7-oxa-2,3-diazanorbornene). Chem Commun (Camb) 2024; 60:13714-13717. [PMID: 39494486 DOI: 10.1039/d4cc04484c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Our recent study introduced a novel class of polymers, poly(7-oxa-2,3-diazanorbornene), characterized by synthetic accessibility and the capacity for living polymerization and degradation even under pH = 7.4 buffered conditions. In this work, our research delves into the polymer's degradation behavior, revealing a detailed mechanism of degradation under both acidic and neutral pH environments.
Collapse
Affiliation(s)
- Na Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China
| | - Lianqiang Dong
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Colloid, Inter-face and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
| | - Xiaoyang Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
| | - Yixing Wen
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Colloid, Inter-face and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China
| | - Xueguang Lu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Colloid, Inter-face and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuanchen Dong
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Colloid, Inter-face and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei You
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Song D, Koo B, Kang H, Seo K, Kim C. Chiral Acetal-Based Stereo-Controlled Degradable Polymer Synthesis. Chemistry 2024; 30:e202402064. [PMID: 38923725 DOI: 10.1002/chem.202402064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
The precise synthesis of chiral polymers remains a significant challenge in polymer chemistry, particularly for applications in advanced biomedical and electronic materials. The development of degradable polymers is important for eco-friendly and advanced materials. Here, we introduce a stereo-controlled degradable polymer via cascade enyne metathesis polymerization and enantioselective acetal synthesis through Pd-catalyzed asymmetric hydroamination. This approach allows for the creation of chiral acetal-based polymers with controlled stereochemistry and degradability, highlighting their potential for use in drug delivery and electronic applications. This concept article reviews the background, development, and potential applications of these stereo-controlled degradable polymers.
Collapse
Affiliation(s)
- Dayong Song
- Department of Chemistry, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, 28644, Republic of Korea
| | - Bonwoo Koo
- Department of Chemistry, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, 28644, Republic of Korea
| | - Houng Kang
- Department of Chemistry Education, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, 28644, Republic of Korea
| | - Kyeongdeok Seo
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Choeljae Kim
- Department of Chemistry, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, 28644, Republic of Korea
| |
Collapse
|
5
|
Mendez LC, Boadi FO, Kennedy M, Bhatia SR, Sampson NS. Glycopolymers Prepared by Alternating Ring-Opening Metathesis Polymerization Provide Access to Distinct, Multivalent Structures for the Probing of Biological Activity. ACS BIO & MED CHEM AU 2024; 4:214-225. [PMID: 39184055 PMCID: PMC11342347 DOI: 10.1021/acsbiomedchemau.4c00018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/04/2024] [Accepted: 05/16/2024] [Indexed: 08/27/2024]
Abstract
A myriad of biological processes are facilitated by ligand-receptor interactions. The low affinities of these interactions are typically enhanced by multivalent engagements to promote binding. However, each biological interaction requires a unique display and orientation of ligands. Therefore, the availability and diversity of synthetic multivalent probes are invaluable to the investigation of ligand-receptor binding interactions. Here, we report glycopolymers prepared from bicyclo[4.2.0]oct-6-ene-7-carboxamide and 4,7-dihydro-1,3-dioxepin or cyclohexene. These glycopolymers, synthesized by alternating ring-opening metathesis polymerization, display precise ligand spacing as well as the option of a hydrophobic or acetal-functionalized polymer backbone. Small-angle X-ray scattering (SAXS) data analysis revealed that these [4.2.0] glycopolymers adopted distinct conformations in solution. In aqueous media, [4.2.0]-dioxepin glycopolymers formed swollen polymer chains with rod-like, flexible structures while [4.2.0]-cyclohexene glycopolymers assumed compact, globular structures. To illustrate how these glycopolymers could aid in the exploration of ligand-receptor interactions, we incorporated the [4.2.0] glycopolymers into a biological assay to assess their potential as activators of acrosomal exocytosis (AE) in mouse sperm. The results of the biological assay confirmed that the differing structures of the [4.2.0] glycopolymers would evoke distinct biological responses; [4.2.0]-cyclohexene glycopolymers induced AE in mouse sperm while [4.2.0]-dioxepin glycopolymers did not. Herein, we provide two options for glycopolymers with low to moderate molecular weight dispersities and low cytotoxicity that can be implemented into biological assays based on the desired hydrophobicity, rigidity, and structural conformation of the polymer probe.
Collapse
Affiliation(s)
- Luz C. Mendez
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United
States
| | - Francis O. Boadi
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United
States
| | - Mitchell Kennedy
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United
States
| | - Surita R. Bhatia
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United
States
| | - Nicole S. Sampson
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United
States
- Department
of Chemistry, University of Rochester, Rochester, New York 14627-0216, United
States
| |
Collapse
|
6
|
Sathe D, Yoon S, Wang Z, Chen H, Wang J. Deconstruction of Polymers through Olefin Metathesis. Chem Rev 2024; 124:7007-7044. [PMID: 38787934 DOI: 10.1021/acs.chemrev.3c00748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
The consumption of synthetic polymers has ballooned; so has the amount of post-consumer waste generated. The current polymer economy, however, is largely linear with most of the post-consumer waste being either landfilled or incinerated. The lack of recycling, together with the sizable carbon footprint of the polymer industry, has led to major negative environmental impacts. Over the past few years, chemical recycling technologies have gained significant traction as a possible technological route to tackle these challenges. In this regard, olefin metathesis, with its versatility and ease of operation, has emerged as an attractive tool. Here, we discuss the developments in olefin-metathesis-based chemical recycling technologies, including the development of new materials and the application of olefin metathesis to the recycling of commercial materials. We delve into structure-reactivity relationships in the context of polymerization-depolymerization behavior, how experimental conditions influence deconstruction outcomes, and the reaction pathways underlying these approaches. We also look at the current hurdles in adopting these technologies and relevant future directions for the field.
Collapse
Affiliation(s)
- Devavrat Sathe
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
| | - Seiyoung Yoon
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
| | - Zeyu Wang
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
| | - Hanlin Chen
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
| | - Junpeng Wang
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
7
|
Koo B, Kim C. Synthesis of Stereocontrolled Degradable Polymer by Living Cascade Enyne Metathesis Polymerization. Angew Chem Int Ed Engl 2023; 62:e202312399. [PMID: 37737689 DOI: 10.1002/anie.202312399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 09/23/2023]
Abstract
A stereocontrolled degradable polymer was synthesized via living cascade enyne metathesis polymerization. Highly stereodefined N,O-acetal-containing enyne monomers were prepared using the Pd-catalyzed hydroamination of alkoxyallenes and ring-closing metathesis. The resulting chiral polymer exhibited a narrow dispersity window. Block copolymers were prepared not only by sequentially adding nondegradable and degradable monomers but also by using enantiomerically different monomers to produce stereocontrolled blocks. Owing to the hydrolyzable N,O-acetal moiety in the backbone structure, the resulting polymer could degrade under acidic conditions generated using various acid concentrations to control the degradation. Additionally, the aza-Diels-Alder reaction modified the polymer without losing the stereochemistry.
Collapse
Affiliation(s)
- Bonwoo Koo
- Department of Chemistry, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, 28644, Cheongju, Republic of Korea
| | - Cheoljae Kim
- Department of Chemistry, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, 28644, Cheongju, Republic of Korea
| |
Collapse
|
8
|
Boadi F, Sampson NS. Long-Range Kinetic Effects on the Alternating Ring Opening Metathesis of Bicyclo[4.2.0]oct-6-ene-7-carboxamides and Cyclohexene. ACS ORGANIC & INORGANIC AU 2023; 3:233-240. [PMID: 37545655 PMCID: PMC10401671 DOI: 10.1021/acsorginorgau.3c00013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 08/08/2023]
Abstract
We report an investigation of rates of ruthenium-catalyzed alternating ring opening metathesis (AROM) of cyclohexene with two different Ru-cyclohexylidene carbenes derived from bicyclo[4.2.0]oct-6-ene-7-carboxamides (A monomer) that bear different side chains. These monomers are propylbicyclo[4.2.0]oct-6-ene-7-carboxamide and N-(2-(2-ethoxyethoxy)ethanylbicyclo[4.2.0]oct-6-ene-7-carboxamide. The amide substitution of these monomers directly affects both the rate of the bicyclo[4.2.0]oct-6-ene-7-carboxamide ring opening and the rate of reaction of the resulting carbene with cyclohexene (B monomer). The resulting Ru-cyclohexylidenes underwent reversible ring opening metathesis with cyclohexene. However, the thermodynamic equilibrium disfavored cyclohexene ring opening. Utilization of triphenylphosphine forms a more stable PPh3 ligated complex, which suppresses the reverse ring closing reaction and allowed direct measurements of the forward rate constants for formation of various A-B and A-B-A' complexes through carbene-catalyzed ring-opening metathesis and thus gradient polymer structure-determining steps. The relative rate of the propylbicyclo[4.2.0]oct-6-ene-7-carboxamide ring opening is 3-fold faster than that of the N-(2-(2-ethoxyethoxy)ethanylbicyclo[4.2.0]oct-6-ene-7-carboxamide. In addition, the rate of cyclohexene ring-opening catalyzed by the propyl bicyclooctene is 1.4 times faster than when catalyzed by the ethoxyethoxy bicyclooctene. Also, the subsequent rates of bicyclo[4.2.0]oct-6-ene-7-carboxamide ring opening by propyl-based Ru-hexylidene are 1.6-fold faster than ethoxyethoxy-based Ru-hexylidene. Incorporation of the rate constants into reactivity ratios of bicyclo[4.2.0]amide-cyclohexene provides prediction of copolymerization kinetics and gradient copolymer structures.
Collapse
Affiliation(s)
- Francis
O. Boadi
- Department of Chemistry, Stony Brook University, Stony
Brook, New York 11794-3400, United States
| | - Nicole S. Sampson
- Department of Chemistry, Stony Brook University, Stony
Brook, New York 11794-3400, United States
| |
Collapse
|
9
|
Xu J, Hadjichristidis N. Heteroatom-containing degradable polymers by ring-opening metathesis polymerization. Prog Polym Sci 2023. [DOI: 10.1016/j.progpolymsci.2023.101656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
10
|
Mandal A, Mandal I, Kilbinger AFM. Catalytic Living Ring-Opening Metathesis Polymerization Using Vinyl Ethers as Effective Chain-Transfer Agents. Angew Chem Int Ed Engl 2023; 62:e202211842. [PMID: 36445835 DOI: 10.1002/anie.202211842] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 11/30/2022]
Abstract
A catalytic living ring-opening metathesis copolymerization (ROMP) method is described that relies on a degenerative, reversible and regioselective exchange of propagating Fischer-carbenes. All characteristics of a living polymerization such as narrow dispersity, excellent molar mass control and the ability to form block copolymers are achieved by this method. The method allows the use of up to 200 times less ruthenium complex than traditional living ROMP. We demonstrate the synthesis of ROMP-ROMP diblock copolymers, ATRP from a ROMP macro-initiator and living ROMP from a PEG-based macro chain transfer agent. The cost-effective, sustainable and environmentally friendly synthesis of degradable polymers and block copolymers enabled by this strategy will find various applications in biomedicine, materials science, and technology.
Collapse
Affiliation(s)
- Ankita Mandal
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700, Fribourg, Switzerland
| | - Indradip Mandal
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700, Fribourg, Switzerland
| | - Andreas F M Kilbinger
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700, Fribourg, Switzerland
| |
Collapse
|
11
|
Yu X, Li G, Zheng B, Youn G, Jiang T, Quah SP, Laughlin ST, Sampson NS, Bhatia SR. Controlling Rheology of Fluid Interfaces through Microblock Length of Sequence-Controlled Amphiphilic Copolymers. MACROMOL CHEM PHYS 2022; 223:2200110. [PMID: 36588980 PMCID: PMC9799073 DOI: 10.1002/macp.202200110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Indexed: 01/05/2023]
Abstract
Previous studies have demonstrated that films of sequence-controlled amphiphilic copolymers display contact angles that depend on microblock size. This suggests that microblock length may provide a means of tuning surface and interfacial properties. In this work, the interfacial rheology of a series of sequence-controlled copolymers, prepared through the addition of bicyclo[4.2.0]oct-1(8)-ene-8-carboxamide (monomer A) and cyclohexene (monomer B) to generate sequences up to 24 monomeric units composed of (A m B n ) i microblocks, where m, n, and i range from 1 to 6. Interfacial rheometry is used to measure the mechanical properties of an air-water interface with these copolymers. As the microblock size increases, the interfacial storage modulus, G', increases, which may be due to an increase in the size of interfacial hydrophobic domains. Small-angle X-ray scattering shows that the copolymers have a similar conformation in solution, suggesting that any variations in the mechanics of the interface are due to assembly at the interface, and not on solution association or bulk rheological properties. This is the first study demonstrating that microblock size can be used to control interfacial rheology of amphiphilic copolymers. Thus, the results provide a new strategy for controlling the dynamics of fluid interfaces through precision sequence-controlled polymers.
Collapse
Affiliation(s)
- Xiaoxi Yu
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Guofang Li
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Bingqian Zheng
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Gyusaang Youn
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Ting Jiang
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Suan P Quah
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Scott T Laughlin
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Nicole S Sampson
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Surita R Bhatia
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| |
Collapse
|
12
|
Mandal A, Mandal I, Kilbinger AFM. Catalytic Syntheses of Degradable Polymers via Ring-Opening Metathesis Copolymerization Using Vinyl Ethers as Chain Transfer Agents. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ankita Mandal
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
| | - Indradip Mandal
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
| | - Andreas F. M. Kilbinger
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
| |
Collapse
|
13
|
Carboué Q, Fadlallah S, Lopez M, Allais F. Progress in degradation behavior of most common types of functionalized polymers: a review. Macromol Rapid Commun 2022; 43:e2200254. [DOI: 10.1002/marc.202200254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Quentin Carboué
- URD Agro‐Biotechnologies Industrielles (ABI) CEBB AgroParisTech Pomacle 51110 France
| | - Sami Fadlallah
- URD Agro‐Biotechnologies Industrielles (ABI) CEBB AgroParisTech Pomacle 51110 France
| | - Michel Lopez
- URD Agro‐Biotechnologies Industrielles (ABI) CEBB AgroParisTech Pomacle 51110 France
| | - Florent Allais
- URD Agro‐Biotechnologies Industrielles (ABI) CEBB AgroParisTech Pomacle 51110 France
| |
Collapse
|
14
|
Koo B, Kim D, Song DY, Han WJ, Kim D, Park JW, Kim M, Kim C. The formation of photodegradable nitrophenylene polymers via ring-opening metathesis polymerization. Polym Chem 2022. [DOI: 10.1039/d2py00684g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A photodegradable nitrophenylene polymer was prepared via ring-opening metathesis polymerization (ROMP). The resulting polymer was degraded in the presence of UVA light without any chemical additives within 1 hour.
Collapse
Affiliation(s)
- Bonwoo Koo
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Korea
| | - Dopil Kim
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Korea
| | - Da Yong Song
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Korea
| | - Woo Joo Han
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Korea
| | - Dongwook Kim
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Jae Woo Park
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Korea
| | - Min Kim
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Korea
| | - Cheoljae Kim
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Korea
| |
Collapse
|
15
|
Kimura T, Kuroda K, Kubota H, Ouchi M. Metal-Catalyzed Switching Degradation of Vinyl Polymers via Introduction of an "In-Chain" Carbon-Halogen Bond as the Trigger. ACS Macro Lett 2021; 10:1535-1539. [PMID: 35549134 DOI: 10.1021/acsmacrolett.1c00601] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this work, we achieved switching degradation of vinyl polymers made of a carbon-carbon bonded backbone. Crucial in this strategy was a small feed of methyl α-chloroacrylate (MCA) as the comonomer in radical polymerization of methyl methacrylate (MMA) so that the carbon-halogen bonds were introduced as the triggers for degradation. The "in-chain" trigger was activated by a one-electron redox metal catalyst as the chemical stimulus to generate the carbon-centered radical species, and subsequently, the neighboring carbon-carbon bond was cleaved via an electron transfer of the radical species giving the terminal olefin. Particularly, an iron complex (FeCl2) in conjunction with tributylamine (n-Bu3N) was effective as the chemical stimulus to allow the switching degradation, where the molecular weight was gradually decreased over time. The switching feature was confirmed by some control experiments.
Collapse
Affiliation(s)
- Taichi Kimura
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Keita Kuroda
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Hiroyuki Kubota
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Makoto Ouchi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
16
|
A versatile approach for the synthesis of degradable polymers via controlled ring-opening metathesis copolymerization. Nat Chem 2021; 14:53-58. [PMID: 34795434 DOI: 10.1038/s41557-021-00810-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 09/08/2021] [Indexed: 12/11/2022]
Abstract
Norbornene derivatives (NBEs) are common monomers for living ring-opening metathesis polymerization and yield polymers with low dispersities and diverse functionalities. However, the all-carbon backbone of poly-NBEs is non-degradable. Here we report a method to synthesize degradable polymers by copolymerizing 2,3-dihydrofuran with NBEs. 2,3-Dihydrofuran rapidly reacts with Grubbs catalyst to form a thermodynamically stable Ru Fischer carbene-the only detectable active Ru species during copolymerization-and the addition of NBEs becomes rate determining. This reactivity attenuates the NBE homoaddition and allows uniform incorporation of acid-degradable enol ether linkages throughout the copolymers, which enables complete polymer degradation while maintaining the favourable characteristics of living ring-opening metathesis polymerization. Copolymerization of 2,3-dihydrofuran with NBEs gives low dispersity polymers with tunable solubility, glass transition temperature and mechanical properties. These polymers can be fully degraded into small molecule or oligomeric species under mildly acidic conditions. This method can be readily adapted to traditional ring-opening metathesis polymerization of widely used NBEs to synthesize easily degradable polymers with tunable properties for various applications and for environmental sustainability.
Collapse
|
17
|
Boadi FO, Sampson NS. Gradient Copolymer Prepared from Alternating Ring-Opening Metathesis of Three Monomers. Polym Chem 2021; 12:5613-5622. [PMID: 35480962 PMCID: PMC9038129 DOI: 10.1039/d1py00690h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Bicyclo[4.2.0]oct-6-ene-7-carboxamide is a simple but highly strained olefin monomer which forms an alternating copolymer with cyclohexene in the presence of N-heterocyclic carbene-ruthenium catalyst. [4.2.0] moiety with bulky substituent on C7 that chelate with the ruthenium center of the catalyst propagate more slowly than monomers that cannot chelate. Accordingly, the reactivity ratio of N-propylbicyclo[4.2.0]oct-6-ene-7-carboxamide with cyclohexene is significantly higher than that of N-(2-(2-ethoxyethoxy)ethan)-bicyclo[4.2.0]oct-6-ene-7-carboxamide with cyclohexene. A copolymerization involving the three monomers in a 1:1:2 (propyl:ethylene glycol:cyclohexene) molar ratio formed a gradient copolymer in a one-pot reaction. Surface hydrophobicity, topology, and thermal properties of the gradient copolymer were similar to those of a copolymer comprised of six microblocks prepared through multistep synthesis by alternately employing the same two bicyclo[4.2.0]oct-6-ene-7-carboxamides in each microblock. The properties of the gradient copolymer were distinct from a copolymer comprised of two larger blocks based on the same bicyclo[4.2.0]oct-6-ene-7-carboxamides.
Collapse
Affiliation(s)
- Francis O Boadi
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Nicole S Sampson
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
18
|
Abstract
The development of degradable polymers has commanded significant attention over the past half century. Approaches have predominantly relied on ring-opening polymerization of cyclic esters (e.g., lactones, lactides) and N-carboxyanhydrides, as well as radical ring-opening polymerizations of cyclic ketene acetals. In recent years, there has been a significant effort applied to expand the family of degradable polymers accessible via olefin metathesis polymerization. Given the excellent functional group tolerance of olefin metathesis polymerization reactions generally, a broad range of conceivable degradable moieties can be incorporated into appropriate monomers and thus into polymer backbones. This approach has proven particularly versatile in synthesizing a broad spectrum of degradable polymers including poly(ester), poly(amino acid), poly(acetal), poly(carbonate), poly(phosphoester), poly(phosphoramidate), poly(enol ether), poly(azobenzene), poly(disulfide), poly(sulfonate ester), poly(silyl ether), and poly(oxazinone) among others. In this review, we will highlight the main olefin metathesis polymerization strategies that have been used to access degradable polymers, including (i) acyclic diene metathesis polymerization, (ii) entropy-driven and (iii) enthalpy-driven ring-opening metathesis polymerization, as well as (iv) cascade enyne metathesis polymerization. In addition, the livingness or control of polymerization reactions via different strategies are highlighted and compared. Potential applications, challenges and future perspectives of this new library of degradable polyolefins are discussed. It is clear from recent and accelerating developments in this field that olefin metathesis polymerization represents a powerful synthetic tool towards degradable polymers with novel structures and properties inaccessible by other polymerization approaches.
Collapse
Affiliation(s)
- Hao Sun
- Department of Chemistry, International Institute for
Nanotechnology, Northwestern University, Evanston, IL 60208, USA
| | - Yifei Liang
- Department of Chemistry, International Institute for
Nanotechnology, Northwestern University, Evanston, IL 60208, USA
| | - Matthew P. Thompson
- Department of Chemistry, International Institute for
Nanotechnology, Northwestern University, Evanston, IL 60208, USA
| | - Nathan C. Gianneschi
- Department of Chemistry, International Institute for
Nanotechnology, Northwestern University, Evanston, IL 60208, USA
- Department of Materials Science & Engineering,
Department of Biomedical Engineering, Department of Pharmacology, Chemistry of Life
Processes Institute, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
19
|
Youn G, Sampson NS. Substituent Effects Provide Access to Tetrasubstituted Ring-Opening Olefin Metathesis of Bicyclo[4.2.0]oct-6-enes. ACS ORGANIC & INORGANIC AU 2021; 1:29-36. [PMID: 34693402 PMCID: PMC8529632 DOI: 10.1021/acsorginorgau.1c00016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Indexed: 01/20/2023]
Abstract
Herein, we report the origin of unexpected reactivity of bicyclo[4.2.0]oct-6-ene substrates containing an α,β-unsaturated amide moiety in ruthenium-catalyzed alternating ring-opening metathesis polymerization reactions. Specifically, compared with control substrates bearing an ester, alkyl ketone, nitrile, or tertiary amide substituent, α,β-unsaturated substrates with a weakly acidic proton showed increased rates of ring-opening metathesis mediated by Grubbs-type ruthenium catalysts. 1H NMR and IR spectral analyses indicated that deprotonation of the α,β-unsaturated amide substrates resulted in stronger coordination of the carbonyl group to the ruthenium metal center. Principal component analysis identified ring strain and the electron density on the carbonyl oxygen (based on structures optimized by means of ωB97X-D/6311+G(2df,2p) calculations) as the two key contributors to fast ring-opening metathesis of the bicyclo[4.2.0]oct-6-enes; whereas the dipole moment, conjugation, and energy of the highest occupied molecular orbital had little to no effect on the reaction rate. We conclude that alternating ring-opening metathesis polymerization reactions of bicyclo[4.2.0]oct-6-enes with unstrained cycloalkenes require an ionizable proton for efficient generation of alternating polymers.
Collapse
|
20
|
Rizzo A, Peterson GI, Bhaumik A, Kang C, Choi T. Sugar‐Based Polymers from
d
‐Xylose: Living Cascade Polymerization, Tunable Degradation, and Small Molecule Release. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Antonio Rizzo
- Department of Chemistry Seoul National University Seoul 08826 Republic of Korea
| | - Gregory I. Peterson
- Department of Chemistry Seoul National University Seoul 08826 Republic of Korea
| | - Atanu Bhaumik
- Department of Chemistry Seoul National University Seoul 08826 Republic of Korea
| | - Cheol Kang
- Department of Chemistry Seoul National University Seoul 08826 Republic of Korea
| | - Tae‐Lim Choi
- Department of Chemistry Seoul National University Seoul 08826 Republic of Korea
| |
Collapse
|
21
|
Hu J, Sun C, Li S, Yuan Y, Zhang Y. Heterotellurium-containing macrocycles towards degradable tellurium-functionalized polymers. Polym Chem 2021. [DOI: 10.1039/d1py00703c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We first disclose a facile strategy to synthesize a heterotellurium-containing macrocycle series, and then well-defined degradable poly(telluride-carbonate)s were obtained by ring-opening polymerization.
Collapse
Affiliation(s)
- Jieni Hu
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Chuanhao Sun
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Siqi Li
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Yuan Yuan
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Yan Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
| |
Collapse
|
22
|
Rizzo A, Peterson GI, Bhaumik A, Kang C, Choi TL. Sugar-Based Polymers from d-Xylose: Living Cascade Polymerization, Tunable Degradation, and Small Molecule Release. Angew Chem Int Ed Engl 2020; 60:849-855. [PMID: 33067845 DOI: 10.1002/anie.202012544] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/12/2020] [Indexed: 11/08/2022]
Abstract
Enyne monomers derived from D-xylose underwent living cascade polymerizations to prepare new polymers with a ring-opened sugar and degradable linkage incorporated into every repeat unit of the backbone. Polymerizations were well-controlled and had living character, which enabled the preparation of high molecular weight polymers with narrow molecular weight dispersity values and a block copolymer. By tuning the type of acid-sensitive linkage (hemi-aminal ether, acetal, or ether functional groups), we could change the degradation profile of the polymer and the identity of the resulting degradation products. For instance, the large difference in degradation rates between hemi-aminal ether and ether-based polymers enabled the sequential degradation of a block copolymer. Furthermore, we exploited the generation of furan-based degradation products, from an acetal-based polymer, to achieve the release of covalently bound reporter molecules upon degradation.
Collapse
Affiliation(s)
- Antonio Rizzo
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Gregory I Peterson
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Atanu Bhaumik
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Cheol Kang
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Tae-Lim Choi
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|