1
|
Parvez AK, Jubyda FT, Karmakar J, Jahan A, Akter NE, Ayaz M, Kabir T, Akter S, Huq MA. Antimicrobial potential of biopolymers against foodborne pathogens: An updated review. Microb Pathog 2025; 204:107583. [PMID: 40228749 DOI: 10.1016/j.micpath.2025.107583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 03/26/2025] [Accepted: 04/11/2025] [Indexed: 04/16/2025]
Abstract
Biopolymers are natural polymers produced by the cells of living organisms such as plants, animals, microbes, etc. As these natural molecules possess antimicrobial activities against pathogens, they can be a suitable candidate for antimicrobials combating drug-resistant microorganisms including food-borne pathogens. Plant-derived biopolymers such as cellulose, starch, pullulans; microbes-derived chitosan, poly-L-lysine; animal-derived collagen, gelatin, spongin, etc. are proven to possess antimicrobial properties. They exert their antimicrobial activity against food-borne pathogens namely Salmonella typhi, Vibrio cholerae, Bacillus cereus, Clostridium perfringens, E. coli, Campylobacter jejuni, Staphylococcus aureus, etc. As antimicrobial resistance becomes a global phenomenon and threatens the effective prevention and treatment of infections caused by pathogens, biopolymers could be a promising candidate/substitute for conventional antimicrobials available in markets. Biopolymers can have detrimental effects on microbial cells such as disruption of the cell walls and cell membranes; damage to the DNA caused by strand breakage, unwinding, or cross-linking resulting in impeded DNA transcription and replication; lowering the amount of energy required for metabolic processes by compromising the proton motive force. Biopolymers also interfere with the quorum sensing mechanism and biofilm formation of microbes and modulate the host immune system by downregulating mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) signaling pathways resulting in the decreased production of pro-inflammatory cytokines. Furthermore, conjugating these biopolymers with other antimicrobial agents could be a promising approach to control multidrug-resistant foodborne pathogens. This review provides an overview of the various sources of biopolymers with special reference to their antimicrobial applications, especially against foodborne pathogens, and highlights their antimicrobial mechanisms.
Collapse
Affiliation(s)
| | - Fatema Tuz Jubyda
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Joyoshrie Karmakar
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Airen Jahan
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Nayeem-E Akter
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Mohammed Ayaz
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Tabassum Kabir
- M Abdur Rahim Medical College Hospital, Dinajpur, Bangladesh
| | - Shahina Akter
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120, Republic of Korea
| | - Md Amdadul Huq
- Department of Life Sciences, College of BioNano Technology, Gachon University, Seongnam, 13120, Republic of Korea.
| |
Collapse
|
2
|
Khamrui R, Mukherjee A, Jana SS, Ghosh S. Morphology Control in Supramolecular Assemblies of Sulfated π-Amphiphiles and Impact on the Antiviral Activity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:9027-9032. [PMID: 40148740 DOI: 10.1021/acs.langmuir.5c00468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
This manuscript reports H-bonding regulated morphology control in aqueous supramolecular assemblies of naphthalene-diimide (NDI)-derived sulfated amphiphiles and its direct correlation with antiviral activity. NDI-1 with a hydrazide group produces a polymersome structure with an efficient display of the sulfate groups on the outer surface, resulting in excellent antiviral activity by a fusion mechanism. NDI-3 lacking any H-bonding group or NDI-2 having the amide group produces particle-like or worm-like structures, respectively, with significantly low antiviral activity. Confocal microscopy images show that NDI-1 is able to fully deactivate and stop the entry of the virus to a host cell, indicating its great promise for future medicinal use, especially as it exhibits negligible toxicity toward a mammalian cell.
Collapse
Affiliation(s)
- Rajesh Khamrui
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Arjama Mukherjee
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Siddhartha S Jana
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Suhrit Ghosh
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, India
| |
Collapse
|
3
|
Hall BA, Wadsworth OJ, Breiner LM, Chappell JC, Brenner AS, McCord JP, Lowell AN, Schulz MD. Inherent antibacterial properties of mannose-containing polynorbornene glycomaterials. Chem Commun (Camb) 2025; 61:4539-4542. [PMID: 39998125 DOI: 10.1039/d5cc00590f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Monosaccharides are typically employed as targeting ligands in antimicrobial polymers, yet we discovered that certain glycopolymers prepared by ring-opening metathesis polymerization display inherent antibacterial activity, despite lacking conventional antimicrobial groups. Mannose-functionalized polymers proved potent against Escherichia coli, which could be rescued by adding excess mannose to the growth medium.
Collapse
Affiliation(s)
- Brady A Hall
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
- Macromolecules Innovation Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Ophelia J Wadsworth
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| | - Logan M Breiner
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Jacob C Chappell
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| | - Andrew S Brenner
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| | - Jennifer P McCord
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| | - Andrew N Lowell
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Michael D Schulz
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
- Macromolecules Innovation Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
4
|
Sceglovs A, Skadins I, Chitto M, Kroica J, Salma-Ancane K. Failure or future? Exploring alternative antibacterials: a comparative analysis of antibiotics and naturally derived biopolymers. Front Microbiol 2025; 16:1526250. [PMID: 39963493 PMCID: PMC11830819 DOI: 10.3389/fmicb.2025.1526250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/13/2025] [Indexed: 02/20/2025] Open
Abstract
The global crisis of antimicrobial resistance (AMR) is escalating due to the misuse and overuse of antibiotics, the slow development of new therapies, and the rise of multidrug-resistant (MDR) infections. Traditional antibiotic treatments face limitations, including the development of resistance, disruption of the microbiota, adverse side effects, and environmental impact, emphasizing the urgent need for innovative alternative antibacterial strategies. This review critically examines naturally derived biopolymers with intrinsic (essential feature) antibacterial properties as a sustainable, next-generation alternative to traditional antibiotics. These biopolymers may address bacterial resistance uniquely by disrupting bacterial membranes rather than cellular functions, potentially reducing microbiota interference. Through a comparative analysis of the mechanisms and applications of antibiotics and antibacterial naturally derived biopolymers, this review highlights the potential of such biopolymers to address AMR while supporting human and environmental health.
Collapse
Affiliation(s)
- Artemijs Sceglovs
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Ingus Skadins
- Department of Biology and Microbiology, Riga Stradins University, Riga, Latvia
| | | | - Juta Kroica
- Department of Biology and Microbiology, Riga Stradins University, Riga, Latvia
| | - Kristine Salma-Ancane
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| |
Collapse
|
5
|
Recupido F, Ricchi F, Lama GC, Soriente A, Raucci MG, Buonocore GG, Cermelli C, Marchesi I, Paduano S, Bargellini A, Mansi A, Verdolotti L. Zein-based nanostructured coatings: A green approach to enhance virucidal efficacy of protective face masks. Int J Biol Macromol 2025; 290:138830. [PMID: 39694360 DOI: 10.1016/j.ijbiomac.2024.138830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/10/2024] [Accepted: 12/14/2024] [Indexed: 12/20/2024]
Abstract
Face masks represent a valuable tool to prevent the spreading of airborne viruses; however, they show poor comfort and scarce antiviral efficacy. Zein-based coatings are herein exploited to enhance antiviral performance. Zein functionalization is done through acidifying agents (lactic acid, LA). Coatings are characterized in terms of morphological, mechanical, breathability, and cytotoxicity analyses. The antiviral efficacy is tested in vitro against four viruses (Human Coronavirus OC43, Herpes Simplex Virus type 1, Human Adenovirus type 5, and MPox Virus) according to a biological assay on cell cultures. Zein/Zein LA antiviral activity seems to be linked to its positive surface charge that enables to form electrostatic interactions with negatively charged-viruses, resulting in the highest activity (reduction >2 Log) on Human Coronavirus OC43 and Herpes Simplex Virus type 1, with efficacy comparable or higher than that of copper/copper oxide-based- coatings. No significant activity is observed against Human Adenovirus type 5 and MPox Virus, due to their high resistance to inactivating treatments. Zein-based systems are not cytotoxic and their water vapor permeability is reduced of 26 % compared to that of not-coated systems. These promising results offer interesting insights into design of antiviral and sustainable coatings for personal protective equipment.
Collapse
Affiliation(s)
- Federica Recupido
- Institute for Polymers, Composites and Biomaterials (IPCB-CNR), National Research Council, Piazzale E. Fermi 1, 80055 Portici, Naples, Italy
| | - Francesco Ricchi
- Surgical, Medical and Dental Department of Morphological Sciences related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124 Modena, Italy
| | - Giuseppe Cesare Lama
- Institute for Polymers, Composites and Biomaterials (IPCB-CNR), National Research Council, Piazzale E. Fermi 1, 80055 Portici, Naples, Italy
| | - Alessandra Soriente
- Institute for Polymers, Composites and Biomaterials (IPCB-CNR), National Research Council, Piazzale E. Fermi 1, 80055 Portici, Naples, Italy
| | - Maria Grazia Raucci
- Institute for Polymers, Composites and Biomaterials (IPCB-CNR), National Research Council, Piazzale E. Fermi 1, 80055 Portici, Naples, Italy
| | - Giovanna Giuliana Buonocore
- Institute for Polymers, Composites and Biomaterials (IPCB-CNR), National Research Council, Piazzale E. Fermi 1, 80055 Portici, Naples, Italy.
| | - Claudio Cermelli
- Surgical, Medical and Dental Department of Morphological Sciences related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124 Modena, Italy.
| | - Isabella Marchesi
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, Via Campi 287, 41125 Modena, Italy
| | - Stefania Paduano
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, Via Campi 287, 41125 Modena, Italy
| | - Annalisa Bargellini
- Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, Via Campi 287, 41125 Modena, Italy
| | - Antonella Mansi
- INAIL Research Area, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, via Fontana Candida 1, 00078 Monte Porzio Catone, Rome, Italy
| | - Letizia Verdolotti
- Institute for Polymers, Composites and Biomaterials (IPCB-CNR), National Research Council, Piazzale E. Fermi 1, 80055 Portici, Naples, Italy
| |
Collapse
|
6
|
Marton HL, Sagona AP, Kilbride P, Gibson MI. Acidic polymers reversibly deactivate phages due to pH changes. RSC APPLIED POLYMERS 2024; 2:1082-1090. [PMID: 39184364 PMCID: PMC11342163 DOI: 10.1039/d4lp00202d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024]
Abstract
Bacteriophages are promising as therapeutics and biotechnological tools, but they also present a problem for routine and commercial bacterial cultures, where contamination must be avoided. Poly(carboxylic acids) have been reported to inhibit phages' ability to infect their bacterial hosts and hence offer an exciting route to discover additives to prevent infection. Their mechanism and limitations have not been explored. Here, we report the role of pH in inactivating phages to determine if the polymers are unique or simply acidic. It is shown that lower pH (=3) triggered by either acidic polymers or similar changes in pH using HCl lead to inhibition. There is no inhibitory activity at higher pHs (in growth media). This was shown across a panel of phages and different molecular weights of commercial and controlled-radical polymerization-derived poly(acrylic acid)s. It is shown that poly(acrylic acid) leads to reversible deactivation of phage, but when the pH is adjusted using HCl alone the phage is irreversibly deactivated. Further experiments using metal binders ruled out ion depletion as the mode of action. These results show that polymeric phage inhibitors may work by unique mechanisms of action and that pH alone cannot explain the observed effects whilst also placing constraints on the practical utility of poly(acrylic acid).
Collapse
Affiliation(s)
- Huba L Marton
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK +44 247 652 4112
| | - Antonia P Sagona
- School of Life Sciences, University of Warwick Coventry CV4 7AL UK
| | | | - Matthew I Gibson
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK +44 247 652 4112
- Warwick Medical School, University of Warwick Coventry CV4 7AL UK
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
- Manchester Institute of Biotechnology, University of Manchester 131 Princess Street Manchester M1 7DN UK
| |
Collapse
|
7
|
Mengist HM, Denman P, Frost C, Sng JDJ, Logan S, Yarlagadda T, Spann KM, Barner L, Fairfull-Smith KE, Short KR, Boase NR. High-Throughput Synthesis and Evaluation of Antiviral Copolymers for Enveloped Respiratory Viruses. Biomacromolecules 2024; 25:7377-7391. [PMID: 39367828 DOI: 10.1021/acs.biomac.4c01049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
COVID-19 made apparent the devastating impact viral pandemics have had on global health and order. Development of broad-spectrum antivirals to provide early protection upon the inevitable emergence of new viral pandemics is critical. In this work, antiviral polymers are discovered using a combination of high-throughput polymer synthesis and antiviral screening, enabling diverse polymer compositions to be explored. Amphipathic polymers, with ionizable tertiary amine groups, are the most potent antivirals, effective against influenza virus and SARS-CoV-2, with minimal cytotoxicity. It is hypothesized that these polymers interact with the viral membrane as they showed no activity against a nonenveloped virus (rhinovirus). The switchable chemistry of the polymers during endosomal acidification was evaluated using lipid monolayers, indicating that a complex synergy between hydrophobicity and ionization drives polymer-membrane interactions. This new high-throughput methodology can be adapted to continue to engineer the potency of the lead candidates or develop antiviral polymers against other emerging viral classes.
Collapse
Affiliation(s)
| | - Paul Denman
- Centre for Materials Science, Queensland University of Technology, Brisbane 4000, Australia
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4000, Australia
| | - Charlotte Frost
- Centre for Materials Science, Queensland University of Technology, Brisbane 4000, Australia
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4000, Australia
| | - Julian D J Sng
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - Saskia Logan
- Centre for Materials Science, Queensland University of Technology, Brisbane 4000, Australia
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4000, Australia
| | - Tejasri Yarlagadda
- Centre for Immunology and Infection Control, Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane 4000, Australia
| | - Kirsten M Spann
- Centre for Immunology and Infection Control, Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane 4000, Australia
| | - Leonie Barner
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4000, Australia
| | - Kathryn E Fairfull-Smith
- Centre for Materials Science, Queensland University of Technology, Brisbane 4000, Australia
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4000, Australia
| | - Kirsty R Short
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - Nathan Rb Boase
- Centre for Materials Science, Queensland University of Technology, Brisbane 4000, Australia
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4000, Australia
| |
Collapse
|
8
|
Mukherjee S, Chemen ME, Pal S, Piccini LE, Jana S, Damonte EB, Ray B, Garcia CC, Ray S. Sulfated xylogalactofucans from Spatoglossum asperum: Production, structural features and antiviral activity. Carbohydr Res 2024; 545:109286. [PMID: 39405814 DOI: 10.1016/j.carres.2024.109286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/26/2024] [Accepted: 10/02/2024] [Indexed: 11/18/2024]
Abstract
In cultured cells, herpes simplex virus (HSV) infectivity is successfully inhibited by sulfated polysaccharides. Herein, we utilized an amalgamated extraction-sulfation procedure to produce two xylogalactofucan sulfates (S203 and S204) from Spatoglossum asperum using ClSO3H.Pyr/DMF and SO3.Pyr/DMF reagents, respectively. Among these xylogalactofucans, the 17 ± 12 kDa polymer (S203) with 14 % sulfate exhibited activity on several HSV variants, including an acyclovir-resistant HSV-1 strain. This is the first report of the anti-HSV activity of a sulfated xylogalactofucan of S. asperum. The effective concentration 50 % (EC50) value of S203 against HSV-1 strain F was 0.6 μg/mL with a selectivity index of 833. The backbone of this polymer (S203) is made up mostly of (1 → 4)-linked-α-l-Fucp units having sulfate groups typically at O-3 and sometimes at O-2 positions. Oligosaccharides containing Xyl, Gal and Fuc units confirms that they are an integral part of a single polymer, another novelty of this study. The EC50 values of the native xylogalactofucan (S202) and the SO3.Pyr/DMF modified polymer (S204), containing 2 % and 6 % sulfates, were >100 and 3.3 μg/mL, respectively. Introduction of sulfate groups enhanced their capability to inhibit the infection of cells by HSV-1. These findings suggest feasibility of inhibiting HSV attachment to cells by blocking viral entry with polysaccharide having specific structure.
Collapse
Affiliation(s)
- Shuvam Mukherjee
- Department of Chemistry, The University of Burdwan, Burdwan, West Bengal, India
| | - Mathias E Chemen
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales UBA, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), UBA-CONICET, Ciudad Universitaria, Pabellón 2 Piso, 4, 1428, Buenos Aires, Argentina
| | - Saikat Pal
- Department of Chemistry, The University of Burdwan, Burdwan, West Bengal, India
| | - Luana E Piccini
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales UBA, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), UBA-CONICET, Ciudad Universitaria, Pabellón 2 Piso, 4, 1428, Buenos Aires, Argentina
| | - Subrata Jana
- Department of Chemistry, The University of Burdwan, Burdwan, West Bengal, India
| | - Elsa B Damonte
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales UBA, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), UBA-CONICET, Ciudad Universitaria, Pabellón 2 Piso, 4, 1428, Buenos Aires, Argentina
| | - Bimalendu Ray
- Department of Chemistry, The University of Burdwan, Burdwan, West Bengal, India
| | - Cybele C Garcia
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales UBA, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), UBA-CONICET, Ciudad Universitaria, Pabellón 2 Piso, 4, 1428, Buenos Aires, Argentina
| | - Sayani Ray
- Department of Chemistry, The University of Burdwan, Burdwan, West Bengal, India.
| |
Collapse
|
9
|
Vasukutty A, Jang Y, Han D, Park H, Park IK. Navigating Latency-Inducing Viral Infections: Therapeutic Targeting and Nanoparticle Utilization. Biomater Res 2024; 28:0078. [PMID: 39416703 PMCID: PMC11480834 DOI: 10.34133/bmr.0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/17/2024] [Accepted: 08/10/2024] [Indexed: 10/19/2024] Open
Abstract
The investigation into viral latency illuminates its pivotal role in the survival strategies of diverse viruses, including herpesviruses, HIV, and HPV. This underscores the delicate balance between dormancy and the potential for reactivation. The study explores the intricate mechanisms governing viral latency, encompassing episomal and proviral forms, and their integration with the host's genetic material. This integration provides resilience against cellular defenses, substantially impacting the host-pathogen dynamic, especially in the context of HIV, with implications for clinical outcomes. Addressing the challenge of eradicating latent reservoirs, this review underscores the potential of epigenetic and genetic interventions. It highlights the use of innovative nanocarriers like nanoparticles and liposomes for delivering latency-reversing agents. The precision in delivery, capacity to navigate biological barriers, and sustained drug release by these nanocarriers present a promising strategy to enhance therapeutic efficacy. The review further explores nanotechnology's integration in combating latent viral infections, leveraging nanoparticle-based platforms for drug delivery, gene editing, and vaccination. Advances in lipid-based nanocarriers, polymeric nanoparticles, and inorganic nanoparticles are discussed, illustrating their potential for targeted, efficient, and multifunctional antiviral therapy. By merging a deep understanding of viral latency's molecular underpinnings with nanotechnology's transformative capabilities, this review underscores the promise of novel therapeutic interventions. These interventions have great potential for managing persistent viral infections, heralding a new era in the fight against diseases such as neuroHIV/AIDS, herpes, and HPV.
Collapse
Affiliation(s)
- Arathy Vasukutty
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP),
Chonnam National University Medical School, Jeollanam-do 58128, Republic of Korea
| | - Yeonwoo Jang
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Dongwan Han
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hansoo Park
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP),
Chonnam National University Medical School, Jeollanam-do 58128, Republic of Korea
| |
Collapse
|
10
|
de Moraes JFC, Rechenchoski DZ, Dyna AL, Cunha AP, Ricardo NMPS, de Farias SS, de Morais SM, Yamauchi LM, Faccin-Galhardi LC. Characterization and Promising in vitro Antiherpetic Effect of Galactomannan from Delonix regia Seeds. Curr Microbiol 2024; 81:375. [PMID: 39317904 DOI: 10.1007/s00284-024-03903-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 09/15/2024] [Indexed: 09/26/2024]
Abstract
Herpes simplex virus (HSV) infections can occur throughout life, thereby allowing transmission to new hosts, with an impact on public health. Acyclovir remains the treatment of choice for these infections; however, an increase in resistant strains in recent years has been observed. In this study, the activity of a native Delonix regia galactomannan (NDr) against HSV-1 was investigated in vitro. NDr was characterized using infrared spectroscopy and NMR. Evaluation of cytotoxicity and the antiviral effect was determined, respectively, by MTT and plaque reduction assays. The NDr concentrations that inhibited cell viability (CC50) and viral infection (IC50) by 50% were above 2000 and 64 μg/mL, respectively. Thus, the polysaccharide showed a high selectivity index (> 31.25). When NDr was added at different stages of HSV-1 replication, a strong inhibitory effect was found by direct interaction with the virus (71-67%, virucidal effect) or previously with the cell, 6 h before infection (99.8-68.4%, prophylactic effect) at concentrations from 200 to 50 μg/mL. NDr showed similar effects in prophylactic 1 h (52%) and adsorption inhibition (55%) assays at 200 μg/mL. A reduction in the antiherpetic effect was observed after infection. These results suggest that NDr is effective in the early stages of HSV-1 infection and is a promising agent for controlling herpetic infections.
Collapse
Affiliation(s)
| | | | - André Luiz Dyna
- Departamento de Microbiologia, Universidade Estadual de Londrina, Londrina, PR, CEP 86057-970, Brazil
| | - Arcelina Pacheco Cunha
- Departamento de Química Orgânica E Inorgânica, Universidade Federal Do Ceará, Fortaleza, CE, CEP 60455-760, Brazil
| | | | - Silvana Silveira de Farias
- Programa Rede Nordeste de Biotecnologia, Universidade Federal Do Ceará, Fortaleza, CE, CEP 60455-760, Brazil
| | - Selene Maia de Morais
- Programa Rede Nordeste de Biotecnologia, Universidade Federal Do Ceará, Fortaleza, CE, CEP 60455-760, Brazil
| | - Lucy Megumi Yamauchi
- Departamento de Microbiologia, Universidade Estadual de Londrina, Londrina, PR, CEP 86057-970, Brazil
| | | |
Collapse
|
11
|
Madushanka A, Laird E, Clark C, Kraka E. SmartCADD: AI-QM Empowered Drug Discovery Platform with Explainability. J Chem Inf Model 2024; 64:6799-6813. [PMID: 39177478 DOI: 10.1021/acs.jcim.4c00720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Artificial intelligence (AI) has emerged as a pivotal force in enhancing productivity across various sectors, with its impact being profoundly felt within the pharmaceutical and biotechnology domains. Despite AI's rapid adoption, its integration into scientific research faces resistance due to myriad challenges: the opaqueness of AI models, the intricate nature of their implementation, and the issue of data scarcity. In response to these impediments, we introduce SmartCADD, an innovative, open-source virtual screening platform that combines deep learning, computer-aided drug design (CADD), and quantum mechanics methodologies within a user-friendly Python framework. SmartCADD is engineered to streamline the construction of comprehensive virtual screening workflows that incorporate a variety of formerly independent techniques─spanning ADMET property predictions, de novo 2D and 3D pharmacophore modeling, molecular docking, to the integration of explainable AI mechanisms. This manuscript highlights the foundational principles, key functionalities, and the unique integrative approach of SmartCADD. Furthermore, we demonstrate its efficacy through a case study focused on the identification of promising lead compounds for HIV inhibition. By democratizing access to advanced AI and quantum mechanics tools, SmartCADD stands as a catalyst for progress in pharmaceutical research and development, heralding a new era of innovation and efficiency.
Collapse
Affiliation(s)
- Ayesh Madushanka
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75205, United States
| | - Eli Laird
- Department of Computer Science, Southern Methodist University, Dallas, Texas 75205, United States
| | - Corey Clark
- Department of Computer Science, Southern Methodist University, Dallas, Texas 75205, United States
| | - Elfi Kraka
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75205, United States
| |
Collapse
|
12
|
Jin W, Nagao M, Kumon Y, Matsumoto H, Hoshino Y, Miura Y. Effects of Cyclic Glycopolymers Molecular Mobility on their Interactions with Lectins. Chempluschem 2024; 89:e202400136. [PMID: 38535777 DOI: 10.1002/cplu.202400136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 08/22/2024]
Abstract
Cyclic polymers, which are found in the field of biopolymers, exhibit unique physical properties such as suppressed molecular mobility. Considering thermodynamics, the suppressed molecular mobility of cyclic polymers is expected to prevent unfavorable entropy loss in molecular interactions. In this study, we synthesized cyclic glycopolymers carrying galactose units and investigated the effects of their molecular mobility on the interactions with a lectin (peanut agglutinin). The synthesized cyclic glycopolymers exhibited delayed elution time on size exclusion chromatography and a short spin-spin relaxation time, indicating typical characteristics of cyclic polymers, including smaller hydrodynamic size and suppressed molecular mobility. The hemagglutination inhibition assay revealed that the cyclic glycopolymers exhibited weakened interactions with peanut agglutinin compared to the linear counterparts, attributable to the suppressed molecular mobility. Although the results are contrary to our expectations, the impact of polymer topology on molecular recognition remains intriguing, particularly in the context of protein repellent activity in the biomedical field.
Collapse
Affiliation(s)
- Wenkang Jin
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Japan
| | - Masanori Nagao
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Japan
| | - Yusuke Kumon
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Japan
| | - Hikaru Matsumoto
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Japan
| | - Yu Hoshino
- Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Japan
| | - Yoshiko Miura
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Japan
| |
Collapse
|
13
|
Jana S, Dyna AL, Pal S, Mukherjee S, Bissochi IMT, Yamada-Ogatta SF, Darido MLG, Oliveira DBL, Durigon EL, Ray B, Faccin-Galhardi LC, Ray S. Anti-respiratory syncytial virus and anti-herpes simplex virus activity of chemically engineered sulfated fucans from Cystoseira indica. Carbohydr Polym 2024; 337:122157. [PMID: 38710573 DOI: 10.1016/j.carbpol.2024.122157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 05/08/2024]
Abstract
Seaweed polysaccharides, particularly sulfated ones, exhibited potent antiviral activity against a wide variety of enveloped viruses, such as herpes simplex virus and respiratory viruses. Different mechanisms of action were suggested, which may range from preventing infection to intracellular antiviral activity, at different stages of the viral cycle. Herein, we generated two chemically engineered sulfated fucans (C303 and C304) from Cystoseira indica by an amalgamated extraction-sulfation procedure using chlorosulfonic acid-pyridine/N,N-dimethylformamide and sulfur trioxide-pyridine/N,N-dimethylformamide reagents, respectively. These compounds exhibited activity against HSV-1 and RSV with 50 % inhibitory concentration values in the range of 0.75-2.5 μg/mL and low cytotoxicity at concentrations up to 500 μg/mL. The antiviral activities of chemically sulfated fucans (C303 and C304) were higher than the water (C301) and CaCl2 extracted (C302) polysaccharides. Compound C303 had a (1,3)-linked fucan backbone and was branched. Sulfates were present at positions C-2, C-4, and C-2,4 of Fucp, and C-6 of Galp residues of this polymer. Compound C304 had a comparable structure but with more sulfates at C-4 of Fucp residue. Both C303 and C304 were potent antiviral candidates, acting in a dose-dependent manner on the adsorption and other intracellular stages of HSV-1 and RSV replication, in vitro.
Collapse
Affiliation(s)
- Subrata Jana
- Department of Chemistry, The University of Burdwan, Golapbag campus, Burdwan 713 104, West Bengal, India
| | - Andre Luiz Dyna
- Department of Microbiology, State University of Londrina, 86057-970 Londrina, PR, Brazil
| | - Saikat Pal
- Department of Chemistry, The University of Burdwan, Golapbag campus, Burdwan 713 104, West Bengal, India
| | - Shuvam Mukherjee
- Department of Chemistry, The University of Burdwan, Golapbag campus, Burdwan 713 104, West Bengal, India
| | | | | | | | - Danielle Bruna Leal Oliveira
- Laboratory of Clinical and Molecular Virology, University of São Paulo, 05508-000 São Paulo, SP, Brazil.; Albert Einstein Hospital, 05652-900 São Paulo, SP, Brazil
| | - Edison Luiz Durigon
- Laboratory of Clinical and Molecular Virology, University of São Paulo, 05508-000 São Paulo, SP, Brazil
| | - Bimalendu Ray
- Department of Chemistry, The University of Burdwan, Golapbag campus, Burdwan 713 104, West Bengal, India
| | | | - Sayani Ray
- Department of Chemistry, The University of Burdwan, Golapbag campus, Burdwan 713 104, West Bengal, India.
| |
Collapse
|
14
|
Zhang P, Li C, Ma X, Ye J, Wang D, Cao H, Yu G, Wang W, Lv X, Cai C. Glycopolymer with Sulfated Fucose and 6'-Sialyllactose as a Dual-Targeted Inhibitor on Resistant Influenza A Virus Strains. ACS Macro Lett 2024; 13:874-881. [PMID: 38949618 DOI: 10.1021/acsmacrolett.4c00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The frequent mutations of influenza A virus (IAV) have led to an urgent need for the development of innovative antiviral drugs. Glycopolymers offer significant advantages in biomedical applications owing to their biocompatibility and structural diversity. However, the primary challenge lies in the design and synthesis of well-defined glycopolymers to precisely control their biological functionalities. In this study, functional glycopolymers with sulfated fucose and 6'-sialyllactose were successfully synthesized through ring-opening metathesis polymerization and a postmodification strategy. The optimized heteropolymer exhibited simultaneous targeting of hemagglutinin and neuraminidase on the surface of IAV, as evidenced by MU-NANA assay and hemagglutination inhibition data. Antiviral experiments demonstrated that the glycopolymer displayed broad and efficient inhibitory activity against wild-type and mutant strains of H1N1 and H3N2 subtypes in vitro, thereby establishing its potential as a dual-targeted inhibitor for combating IAV resistance.
Collapse
Affiliation(s)
- Ping Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
| | - Chenning Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Chaoyang District, Beijing 100101, P. R. China
| | - Xiaoyao Ma
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
| | - Jinfeng Ye
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
| | - Depeng Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
| | - Hongzhi Cao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, P. R. China
| | - Guangli Yu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, P. R. China
| | - Wei Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, P. R. China
| | - Xun Lv
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Chaoyang District, Beijing 100101, P. R. China
| | - Chao Cai
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, P. R. China
| |
Collapse
|
15
|
Behbahanipour M, Navarro S, Bárcenas O, Garcia-Pardo J, Ventura S. Bioengineered self-assembled nanofibrils for high-affinity SARS-CoV-2 capture and neutralization. J Colloid Interface Sci 2024; 674:753-765. [PMID: 38955007 DOI: 10.1016/j.jcis.2024.06.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/10/2024] [Accepted: 06/23/2024] [Indexed: 07/04/2024]
Abstract
The recent coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spurred intense research efforts to develop new materials with antiviral activity. In this study, we genetically engineered amyloid-based nanofibrils for capturing and neutralizing SARS-CoV-2. Building upon the amyloid properties of a short Sup35 yeast prion sequence, we fused it to SARS-CoV-2 receptor-binding domain (RBD) capturing proteins, LCB1 and LCB3. By tuning the reaction conditions, we achieved the spontaneous self-assembly of the Sup35-LCB1 fusion protein into a highly homogeneous and well-dispersed amyloid-like fibrillar material. These nanofibrils exhibited high affinity for the SARS-CoV-2 RBD, effectively inhibiting its interaction with the angiotensin-converting enzyme 2 (ACE2) receptor, the primary entry point for the virus into host cells. We further demonstrate that this functional nanomaterial entraps and neutralizes SARS-CoV-2 virus-like particles (VLPs), with a potency comparable to that of therapeutic antibodies. As a proof of concept, we successfully fabricated patterned surfaces that selectively capture SARS-CoV-2 RBD protein on wet environments. Collectively, these findings suggest that these protein-only nanofibrils hold promise as disinfecting coatings endowed with selective SARS-CoV-2 neutralizing properties to combat viral spread or in the development of sensitive viral sampling and diagnostic tools.
Collapse
Affiliation(s)
- Molood Behbahanipour
- Institut de Biotecnologia i de Biomedicina (IBB) and Departament de Bioquímica i Biologia Molecular; Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain.
| | - Susanna Navarro
- Institut de Biotecnologia i de Biomedicina (IBB) and Departament de Bioquímica i Biologia Molecular; Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain.
| | - Oriol Bárcenas
- Institut de Biotecnologia i de Biomedicina (IBB) and Departament de Bioquímica i Biologia Molecular; Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain.
| | - Javier Garcia-Pardo
- Institut de Biotecnologia i de Biomedicina (IBB) and Departament de Bioquímica i Biologia Molecular; Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain.
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina (IBB) and Departament de Bioquímica i Biologia Molecular; Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain.
| |
Collapse
|
16
|
Nahain AA, Li J, Modhiran N, Watterson D, Li JP, Ignjatovic V, Monagle P, Tsanaktsidis J, Vamvounis G, Ferro V. Antiviral Activities of Heparan Sulfate Mimetic RAFT Polymers Against Mosquito-borne Viruses. ACS APPLIED BIO MATERIALS 2024; 7:2862-2871. [PMID: 38699864 DOI: 10.1021/acsabm.3c01223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Mosquito-borne viruses are a major worldwide health problem associated with high morbidity and mortality rates and significant impacts on national healthcare budgets. The development of antiviral drugs for both the treatment and prophylaxis of these diseases is thus of considerable importance. To address the need for therapeutics with antiviral activity, a library of heparan sulfate mimetic polymers was screened against dengue virus (DENV), Yellow fever virus (YFV), Zika virus (ZIKV), and Ross River virus (RRV). The polymers were prepared by RAFT polymerization of various acidic monomers with a target MW of 20 kDa (average Mn ∼ 27 kDa by GPC). Among the polymers, poly(SS), a homopolymer of sodium styrenesulfonate, was identified as a broad spectrum antiviral with activity against all the tested viruses and particularly potent inhibition of YFV (IC50 = 310 pM). Our results further uncovered that poly(SS) exhibited a robust inhibition of ZIKV infection in both mosquito and human cell lines, which points out the potential functions of poly(SS) in preventing mosquito-borne viruses associated diseases by blocking viral transmission in their mosquito vectors and mitigating viral infection in patients.
Collapse
Affiliation(s)
- Abdullah Al Nahain
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jinlin Li
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, University of Uppsala, 75123 Uppsala, Sweden
| | - Naphak Modhiran
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Daniel Watterson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jin-Ping Li
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, University of Uppsala, 75123 Uppsala, Sweden
| | - Vera Ignjatovic
- Haematology Research, Murdoch Children's Research Institute, Parkville, Victoria 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Paul Monagle
- Haematology Research, Murdoch Children's Research Institute, Parkville, Victoria 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria 3052, Australia
- Department of Clinical Haematology, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| | - John Tsanaktsidis
- CSIRO Manufacturing, Research Way, Clayton, Victoria 3168, Australia
| | - George Vamvounis
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Vito Ferro
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
17
|
Tanaka T. Recent Advances in Polymers Bearing Activated Esters for the Synthesis of Glycopolymers by Postpolymerization Modification. Polymers (Basel) 2024; 16:1100. [PMID: 38675019 PMCID: PMC11053895 DOI: 10.3390/polym16081100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Glycopolymers are functional polymers with saccharide moieties on their side chains and are attractive candidates for biomaterials. Postpolymerization modification can be employed for the synthesis of glycopolymers. Activated esters are useful in various fields, including polymer chemistry and biochemistry, because of their high reactivity and ease of reaction. In particular, the formation of amide bonds caused by the reaction of activated esters with amino groups is of high synthetic chemical value owing to its high selectivity. It has been employed in the synthesis of various functional polymers, including glycopolymers. This paper reviews the recent advances in polymers bearing activated esters for the synthesis of glycopolymers by postpolymerization modification. The development of polymers bearing hydrophobic and hydrophilic activated esters is described. Although water-soluble activated esters are generally unstable and hydrolyzed in water, novel polymer backbones bearing water-soluble activated esters are stable and useful for postpolymerization modification for synthesizing glycopolymers in water. Dual postpolymerization modification can be employed to modify polymer side chains using two different molecules. Thiolactone and glycine propargyl esters on the polymer backbone are described as activated esters for dual postpolymerization modification.
Collapse
Affiliation(s)
- Tomonari Tanaka
- Department of Biobased Materials Science, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
18
|
Kim J, Lee J, Kim S, Kim T, Lee KM, Lee D, Cho J, Kim JY, Jeong YW, Park HJ, Lee JC, Lee C. Virucidal activity of Cu-doped TiO 2 nanoparticles under visible light illumination: Effect of Cu oxidation state. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133525. [PMID: 38237436 DOI: 10.1016/j.jhazmat.2024.133525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/25/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024]
Abstract
Copper (Cu) is an effective antimicrobial material; however, its activity is inhibited by oxidation. Titanium dioxide (TiO2) photocatalysis prevents Cu oxidation and improves its antimicrobial activity and stability. In this study, the virucidal efficacy of Cu-doped TiO2 nanoparticles (Cu-TiO2) with three different oxidation states of the Cu dopant (i.e., zero-valent Cu (Cu0), cuprous (CuI), and cupric (CuII) oxides) was evaluated for the phiX174 bacteriophage under visible light illumination (Vis/Cu-TiO2). CuI-TiO2 exhibited superior virucidal activity (5 log inactivation in 30 min) and reusability (only 11 % loss of activity in the fifth cycle) compared to Cu0-TiO2 and CuII-TiO2. Photoluminescence spectroscopy and photocurrent measurements showed that CuI-TiO2 exhibited the highest charge separation efficiency and photocurrent density (approximately 0.24 μA/cm2) among the three materials, resulting in the most active redox reactions of Cu. Viral inactivation tests under different additives and viral particle integrity analyses (i.e., protein oxidation and DNA damage analyses) revealed that different virucidal species played key roles in the three Vis/Cu-TiO2 systems; Cu(III) was responsible for the viral inactivation by Vis/CuI-TiO2. The Vis/CuI-TiO2 system exhibited substantial virucidal performance for different viral species and in different water matrices, demonstrating its potential practical applications. The findings of this study offer valuable insights into the design of effective and sustainable antiviral photocatalysts for disinfection.
Collapse
Affiliation(s)
- Joohyun Kim
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), and Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Juri Lee
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), and Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sungwon Kim
- Samsung Research, Samsung Electronics Co., Ltd., Seoul 06756, Republic of Korea
| | - Taewan Kim
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), and Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Ki-Myeong Lee
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), and Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Donghyun Lee
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), and Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jiyoon Cho
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), and Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jee Yeon Kim
- Samsung Research, Samsung Electronics Co., Ltd., Seoul 06756, Republic of Korea
| | - Yong Won Jeong
- Samsung Research, Samsung Electronics Co., Ltd., Seoul 06756, Republic of Korea
| | - Hee-Jin Park
- Samsung Research, Samsung Electronics Co., Ltd., Seoul 06756, Republic of Korea
| | - Jong-Chan Lee
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), and Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Changha Lee
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), and Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
19
|
Hasan SF, Abo Elsoud MM, Sidkey NM, Elhateir MM. Production and characterization of polyhydroxybutyrate bioplastic precursor from Parageobacillus toebii using low-cost substrates and its potential antiviral activity. Int J Biol Macromol 2024; 262:129915. [PMID: 38325682 DOI: 10.1016/j.ijbiomac.2024.129915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
There is an increasing desire for bioplastics produced from renewable resources as an alternative to their petrochemical counterparts. These biopolymers have long-unnoticed antiviral properties. This study aimed to produce and characterize bioplastics by Parageobacillus toebii using low-cost substrates and determine their antiviral activity against coxsackievirus B4. Seven low-cost substrates (bagasse, water hyacinth, rice straw, rice water, sesame husks, molasses, and corn syrup) were compared with glucose for bioplastic precursor production. The highest bioplastic produced was from water hyacinth and glucose, followed by molasses, rice straw, rice water, sesame husks, and bagasse. Water hyacinth and glucose media were further optimized to increase the bioplastic precursor yield. The optimization of the media leads to increases in bioplastic precursor yields of 1.8-fold (3.456 g/L) and 1.496-fold (2.768 g/L), respectively. These bioplastics were further characterized by thermogravimetric analysis (TGA), Fourier-transformed infrared (FTIR) spectroscopy, proton nuclear magnetic resonance (1H NMR), and gas chromatography-mass spectrometry (GC-MS). They are thermostable, and their characterizations confirm the presence of polyhydroxybutyrate. The antiviral assay showed reasonable antiviral effects for bioplastics from water hyacinth (80.33 %) and glucose (55.47 %) media at 250 μg/mL maximum non-toxic concentrations (MNTC). The present investigation demonstrates a low-cost model for producing polyhydroxybutyrate bioplastic precursor for antiviral applications.
Collapse
Affiliation(s)
- Seham F Hasan
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University (Girls Branch), Yossuf Abbas St., P.O. 11754, Nasr City, Cairo, Egypt.
| | - Mostafa M Abo Elsoud
- Microbial Biotechnology Department, National Research Centre, 33 El-Buhouth St., Dokki, P.O. 12622, Giza, Egypt
| | - Nagwa M Sidkey
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University (Girls Branch), Yossuf Abbas St., P.O. 11754, Nasr City, Cairo, Egypt
| | - Mai M Elhateir
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University (Girls Branch), Yossuf Abbas St., P.O. 11754, Nasr City, Cairo, Egypt
| |
Collapse
|
20
|
Hirao R, Takeuchi H, Kawada J, Ishida N. Polypropylene-Rendered Antiviral by Three-Dimensionally Surface-Grafted Poly( N-benzyl-4-vinylpyridinium bromide). ACS APPLIED MATERIALS & INTERFACES 2024; 16:10590-10600. [PMID: 38343039 PMCID: PMC10910468 DOI: 10.1021/acsami.3c15125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/28/2023] [Accepted: 02/02/2024] [Indexed: 03/01/2024]
Abstract
To inhibit viral infection, it is necessary for the surface of polypropylene (PP), a polymer of significant industrial relevance, to possess biocidal properties. However, due to its low surface energy, PP weakly interacts with other organic molecules. The biocidal effects of quaternary ammonium compounds (QACs) have inspired the development of nonwoven PP fibers with surface-bound quaternary ammonium (QA). Despite this advancement, there is limited knowledge regarding the durability of these coatings against scratching and abrasion. It is hypothesized that the durability could be improved if the thickness of the coating layer were controlled and increased. We herein functionalized PP with three-dimensionally surface-grafted poly(N-benzyl-4-vinylpyridinium bromide) (PBVP) by a simple and rapid method involving graft polymerization and benzylation and examined the influence of different factors on the antiviral effect of the resulting plastic by using a plaque assay. The thickness of the PBVP coating, surface roughness, and amount of QACs, which jointly determine biocidal activity, could be controlled by adjusting the duration and intensity of the ultraviolet irradiation used for grafting. The best-performing sample reduced the viral infection titer of an enveloped model virus (bacteriophage ϕ6) by approximately 5 orders of magnitude after 60 min of contact and retained its antiviral activity after surface polishing-simulated scratching and abrasion, which indicated the localization of QACs across the coating interior. Our method may expand the scope of application to resin plates as well as fibers of PP. Given that the developed approach is not limited to PP and may be applied to other low-surface-energy olefinic polymers such as polyethylene and polybutene, our work paves the way for the fabrication of a wide range of biocidal surfaces for use in diverse environments, helping to prevent viral infection.
Collapse
Affiliation(s)
- Rie Hirao
- Toyota
Central R&D Labs, Inc., Nagakute, Aichi 480-1192, Japan
| | - Hisato Takeuchi
- Toyota
Central R&D Labs, Inc., Nagakute, Aichi 480-1192, Japan
| | - Jumpei Kawada
- Toyota
Central R&D Labs, Inc., Nagakute, Aichi 480-1192, Japan
| | - Nobuhiro Ishida
- Toyota
Central R&D Labs, Inc., Nagakute, Aichi 480-1192, Japan
| |
Collapse
|
21
|
Patra S, Pareek D, Gupta PS, Wasnik K, Singh G, Yadav DD, Mastai Y, Paik P. Progress in Treatment and Diagnostics of Infectious Disease with Polymers. ACS Infect Dis 2024; 10:287-316. [PMID: 38237146 DOI: 10.1021/acsinfecdis.3c00528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
In this era of advanced technology and innovation, infectious diseases still cause significant morbidity and mortality, which need to be addressed. Despite overwhelming success in the development of vaccines, transmittable diseases such as tuberculosis and AIDS remain unprotected, and the treatment is challenging due to frequent mutations of the pathogens. Formulations of new or existing drugs with polymeric materials have been explored as a promising new approach. Variations in shape, size, surface charge, internal morphology, and functionalization position polymer particles as a revolutionary material in healthcare. Here, an overview is provided of major diseases along with statistics on infection and death rates, focusing on polymer-based treatments and modes of action. Key issues are discussed in this review pertaining to current challenges and future perspectives.
Collapse
Affiliation(s)
- Sukanya Patra
- School of Biomedical Engineering, Indian Institute of Technology-BHU, Varanasi 221005, India
| | - Divya Pareek
- School of Biomedical Engineering, Indian Institute of Technology-BHU, Varanasi 221005, India
| | - Prem Shankar Gupta
- School of Biomedical Engineering, Indian Institute of Technology-BHU, Varanasi 221005, India
| | - Kirti Wasnik
- School of Biomedical Engineering, Indian Institute of Technology-BHU, Varanasi 221005, India
| | - Gurmeet Singh
- School of Biomedical Engineering, Indian Institute of Technology-BHU, Varanasi 221005, India
| | - Desh Deepak Yadav
- School of Biomedical Engineering, Indian Institute of Technology-BHU, Varanasi 221005, India
| | - Yitzhak Mastai
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Pradip Paik
- School of Biomedical Engineering, Indian Institute of Technology-BHU, Varanasi 221005, India
| |
Collapse
|
22
|
Raza S, Wdowiak M, Paczesny J. An Overview of Diverse Strategies To Inactivate Enterobacteriaceae-Targeting Bacteriophages. EcoSal Plus 2023; 11:eesp00192022. [PMID: 36651738 PMCID: PMC10729933 DOI: 10.1128/ecosalplus.esp-0019-2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/20/2022] [Indexed: 01/19/2023]
Abstract
Bacteriophages are viruses that infect bacteria and thus threaten industrial processes relying on the production executed by bacterial cells. Industries bear huge economic losses due to such recurring and resilient infections. Depending on the specificity of the process, there is a need for appropriate methods of bacteriophage inactivation, with an emphasis on being inexpensive and high efficiency. In this review, we summarize the reports on antiphagents, i.e., antibacteriophage agents on inactivation of bacteriophages. We focused on bacteriophages targeting the representatives of the Enterobacteriaceae family, as its representative, Escherichia coli, is most commonly used in the bio-industry. The review is divided into sections dealing with bacteriophage inactivation by physical factors, chemical factors, and nanotechnology-based solutions.
Collapse
Affiliation(s)
- Sada Raza
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Mateusz Wdowiak
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Jan Paczesny
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
23
|
Li TJ, Lin TW, Lu TY, Tseng CK, Lin CK, Chu HT, Li IC, Chen CC. Phellinus linteus mycelia extract in COVID-19 prevention and identification of its key metabolic compounds profiling using UPLC-QTOF-MS/MS spectrometry. Fitoterapia 2023; 171:105695. [PMID: 37797793 DOI: 10.1016/j.fitote.2023.105695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/27/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
For centuries, food, herbal medicines, and natural products have been valuable resources for discovering novel antiviral drugs, uncovering new structure-activity relationships, and developing effective strategies to prevent/treat viral infections. One such resource is Phellinus linteus, a mushroom used in folk medicine in Taiwan, Japan, Korea, and China. In this rich historical context, the key metabolites of Phellinus linteus mycelia ethanolic extract (GKPL) impacting the entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at multiple stages have yet to be explored. Thus, this study systematically identifies and assesses the inhibitory effect of GKPL on the SARS-CoV-2 virus. Initially, the concentrations and contact times of GKPL against SARS-CoV-2 pseudovirus were assessed in HepG2 cells. Subsequently, utilizing the Ultra Performance Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry method, potential biomarkers in the fungal extract were discerned. Metabolomic analysis identified 18 compounds in GKPL, with hispidin and hypholomine B present in the highest amounts. These compounds were isolated using chromatographic techniques and further identified through 1D NMR spectroscopic and mass spectrometry analysis. Hispidin and hypholomine B were found to inhibit the infection of SARS-CoV-2 pseudovirus by reducing angiotensin-converting enzyme 2 gene expression in HepG2, thereby decreasing viral entry. Moreover, hispidin and hypholomine B effectively block the spike receptor-binding domain, while hypholomine B, for the first time, showed significant inhibition of 3CL protease. This suggests that GKPL, enriched with hispidin and hypholomine B, has the potential to be used as an active ingredient against SARS-CoV-2.
Collapse
Affiliation(s)
- Tsung-Ju Li
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan City 325, Taiwan
| | - Ting-Wei Lin
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan City 325, Taiwan
| | - Ting-Yu Lu
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan City 325, Taiwan
| | | | | | - Hsin-Tung Chu
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan City 325, Taiwan
| | - I-Chen Li
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan City 325, Taiwan.
| | - Chin-Chu Chen
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan City 325, Taiwan; Department of Food Science, Nutrition, and Nutraceutical Biotechnology, Shih Chien University, Taipei City 104, Taiwan; Institute of Food Science and Technology, National Taiwan University, Taipei City 106, Taiwan; Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan City 320, Taiwan.
| |
Collapse
|
24
|
Barman R, Mukherjee A, Nag A, Rajdev P, Ghosh S. Hierarchical assembly of foldable polymers and applications in organic optoelectronics and antibacterial or antiviral materials. Chem Commun (Camb) 2023; 59:13951-13961. [PMID: 37937399 DOI: 10.1039/d3cc04855a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Aggregation of amphiphilic polymers in block-selective solvents produces different nanostructures, which have been studied extensively for wide-ranging applications. Nevertheless, such immiscibility-driven aggregation does not endow them with the desired structural precision, predictability or surface functional group exposure, which significantly impact their functional applications. More recently, biomimetic folded structures of synthetic macromolecules (mostly oligomers) have come to the fore, but such studies have been limited to probe the secondary structures. In this article, we have collated hierarchical structures of foldamers, especially highlighting our recent contribution to the field of chain-folding regulated assembly of segmented polyurethanes (PUs) and their functional applications. A series of such PUs have been discussed, which contain a segmented hydrocarbon backbone and alternately placed pendant solvophilic groups. In either water or highly non-polar solvents (TCE, MCH), depending on the nature of the pendant group, they exhibit folded structures stabilized by intra-chain H-bonding. Hierarchical assembly of such folded chains by inter-chain H-bonding and/or π-stacking leads to the formation of well-defined nanostructures with functional applications ranging from organic optoelectronics to biomaterials. For example, a segmented PU with appended naphthalene-diimide (NDI) chromophores showed a pleated structure in MCH, which helped in organization of the NDI chromophores within π-stacking distance. Such folded polymer chains eventually produced nanotubular structures with excellent electron mobility. They also showed efficient intercalation of the pyrene (Py) donor by NDI-Py charge-transfer interaction and in this case the mixed nanotubular structure exhibited prominent room-temperature ferroelectricity. On the other hand, having cationic functionalities as the pendant groups such chain-folding regulated assembly produced unilamellar polymersomes with excellent antibacterial activity with very low minimum inhibitory concentrations (<10 μg mL-1). Replacing the pendant amine functionality with sulphate groups made these polyurethanes highly potent antiviral materials. In the absence of the alternating connectivity of the solvophobic and solvophilic segments or rigid hydrocarbon backbone, such folding propensity is destroyed, leading to structural collapse. While significant efforts have been made in correlating primary structures of wide-ranging polymers with their functional applications, this article demonstrates the direct correlation between the secondary structures of polymers and their functional properties.
Collapse
Affiliation(s)
- Ranajit Barman
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, 700032, India.
| | - Anurag Mukherjee
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, 700032, India.
| | - Atish Nag
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, 700032, India.
| | - Priya Rajdev
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, 700032, India.
| | - Suhrit Ghosh
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, 700032, India.
| |
Collapse
|
25
|
Nagao M, Matsumoto H, Miura Y. Design of Glycopolymers for Controlling the Interactions with Lectins. Chem Asian J 2023; 18:e202300643. [PMID: 37622191 DOI: 10.1002/asia.202300643] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 08/26/2023]
Abstract
Carbohydrates are involved in life activities through the interactions with their corresponding proteins (lectins). Pathogen infection and the regulation of cell activity are controlled by the binding between lectins and glycoconjugates on cell surfaces. A deeper understanding of the interactions of glycoconjugates has led to the development of therapeutic and preventive methods for infectious diseases. Glycopolymer is one of the classes of the materials present multiple carbohydrates. The properties of glycopolymers can be tuned through the molecular design of the polymer structures. This review focuses on research over the past decade on the design of glycopolymers with the aim of developing inhibitors against pathogens and manipulator of cellular functions.
Collapse
Affiliation(s)
- Masanori Nagao
- Chemical Engineering, Kyushu University, Motooka 744, Nishi-ku Fukuoka, Japan
| | - Hikaru Matsumoto
- Chemical Engineering, Kyushu University, Motooka 744, Nishi-ku Fukuoka, Japan
| | - Yoshiko Miura
- Chemical Engineering, Kyushu University, Motooka 744, Nishi-ku Fukuoka, Japan
| |
Collapse
|
26
|
Dabrowska A, Botwina P, Barreto-Duran E, Kubisiak A, Obloza M, Synowiec A, Szczepanski A, Targosz-Korecka M, Szczubialka K, Nowakowska M, Pyrc K. Reversible rearrangement of the cellular cytoskeleton: A key to the broad-spectrum antiviral activity of novel amphiphilic polymers. Mater Today Bio 2023; 22:100763. [PMID: 37600352 PMCID: PMC10433002 DOI: 10.1016/j.mtbio.2023.100763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/22/2023] Open
Abstract
The battle against emerging viral infections has been uneven, as there is currently no broad-spectrum drug available to contain the spread of novel pathogens throughout the population. Consequently, the pandemic outbreak that occurred in early 2020 laid bare the almost empty state of the pandemic box. Therefore, the development of novel treatments with broad specificity has become a paramount concern in this post-pandemic era. Here, we propose copolymers of poly (sodium 2-(acrylamido)-2-methyl-1-propanesulfonate) (PAMPS) and poly (sodium 11-(acrylamido)undecanoate (AaU), both block (PAMPS75-b-PAaUn) and random (P(AMPSm-co-AaUn)) that show efficacy against a broad range of alpha and betacoronaviruses. Owing to their intricate architecture, these polymers exhibit a highly distinctive mode of action, modulating nano-mechanical properties of cells and thereby influencing viral replication. Through the employment of confocal and atomic force microscopy techniques, we discerned perturbations in actin and vimentin filaments, which correlated with modification of cellular elasticity and reduction of glycocalyx layer. Intriguingly, this process was reversible upon polymer removal from the cells. To ascertain the applicability of our findings, we assessed the efficacy and underlying mechanism of the inhibitors using fully differentiated human airway epithelial cultures, wherein near-complete abrogation of viral replication was documented. Given their mode of action, these polymers can be classified as biologically active nanomaterials that exploit a highly conserved molecular target-cellular plasticity-proffering the potential for truly broad-spectrum activity while concurrently for drug resistance development is minimal.
Collapse
Affiliation(s)
- Agnieszka Dabrowska
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387, Cracow, Poland
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Cracow, Poland
| | - Pawel Botwina
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387, Cracow, Poland
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Cracow, Poland
| | - Emilia Barreto-Duran
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387, Cracow, Poland
| | - Agata Kubisiak
- Department of Physics of Nanostructures and Nanotechnology, Faculty of Physics, Astronomy and Applied Computer Science, M. Smoluchowski Institute of Physics, Jagiellonian University, Lojasiewicza 11, 30-348, Cracow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Lojasiewicza 11, 30-348, Cracow, Poland
| | - Magdalena Obloza
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Cracow, Poland
| | - Aleksandra Synowiec
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387, Cracow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Lojasiewicza 11, 30-348, Cracow, Poland
| | - Artur Szczepanski
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387, Cracow, Poland
| | - Marta Targosz-Korecka
- Department of Physics of Nanostructures and Nanotechnology, Faculty of Physics, Astronomy and Applied Computer Science, M. Smoluchowski Institute of Physics, Jagiellonian University, Lojasiewicza 11, 30-348, Cracow, Poland
| | - Krzysztof Szczubialka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Cracow, Poland
| | - Maria Nowakowska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Cracow, Poland
| | - Krzysztof Pyrc
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387, Cracow, Poland
| |
Collapse
|
27
|
Jiang W, Chen J, Duan X, Li Y, Tao Z. Comparative Transcriptome Profiling Reveals Two WRKY Transcription Factors Positively Regulating Polysaccharide Biosynthesis in Polygonatum cyrtonema. Int J Mol Sci 2023; 24:12943. [PMID: 37629123 PMCID: PMC10454705 DOI: 10.3390/ijms241612943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Polygonatum cyrtonema (P. cyrtonema) is a valuable rhizome-propagating traditional Chinese medical herb. Polysaccharides (PCPs) are the major bioactive constituents in P. cyrtonema. However, the molecular basis of PCP biosynthesis in P. cyrtonema remains unknown. In this study, we measured the PCP contents of 11 wild P. cyrtonema germplasms. The results showed that PCP content was the highest in Lishui Qingyuan (LSQY, 11.84%) and the lowest in Hangzhou Lin'an (HZLA, 7.18%). We next analyzed the transcriptome profiles of LSQY and HZLA. Through a qRT-PCR analysis of five differential expression genes from the PCP biosynthesis pathway, phosphomannomutase, UDP-glucose 4-epimerase (galE), and GDP-mannose 4,6-dehydratase were determined as the key enzymes. A protein of a key gene, galE1, was localized in the chloroplast. The PCP content in the transiently overexpressed galE1 tobacco leaves was higher than in the wild type. Moreover, luciferase and Y1H assays indicated that PcWRKY31 and PcWRKY34 could activate galE1 by binding to its promoter. Our research uncovers the novel regulatory mechanism of PCP biosynthesis in P. cyrtonema and is critical to molecular-assisted breeding.
Collapse
Affiliation(s)
- Wu Jiang
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou 325005, China; (W.J.); (J.C.); (X.D.)
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China;
| | - Jiadong Chen
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou 325005, China; (W.J.); (J.C.); (X.D.)
| | - Xiaojing Duan
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou 325005, China; (W.J.); (J.C.); (X.D.)
| | - Yaping Li
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China;
| | - Zhengming Tao
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou 325005, China; (W.J.); (J.C.); (X.D.)
| |
Collapse
|
28
|
Pavan M, Fanti CD, Lucia AD, Canato E, Acquasaliente L, Sonvico F, Delgado J, Hicks A, Torrelles JB, Kulkarni V, Dwivedi V, Zanellato AM, Galesso D, Pasut G, Buttini F, Martinez-Sobrido L, Guarise C. AEROSOLIZED SULFATED HYALURONAN DERIVATIVES PROLONG THE SURVIVAL OF K18 ACE2 MICE INFECTED WITH A LETHAL DOSE OF SARS-COV-2. Eur J Pharm Sci 2023:106489. [PMID: 37311533 DOI: 10.1016/j.ejps.2023.106489] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/19/2023] [Accepted: 06/06/2023] [Indexed: 06/15/2023]
Abstract
Despite several vaccines that are currently approved for human use to control the pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), there is an urgent medical need for therapeutic and prophylactic options. SARS-CoV-2 binding and entry in human cells involves interactions of its spike (S) protein with several host cell surface factors, including heparan sulfate proteoglycans (HSPGs), transmembrane protease serine 2 (TMPRSS2), and angiotensin-converting enzyme 2 (ACE2). In this paper we investigated the potential of sulphated Hyaluronic Acid (sHA), a HSPG mimicking polymer, to inhibit the binding of SARS-CoV-2 S protein to human ACE2 receptor. After the assessment of different sulfation degree of sHA backbone, a series of sHA functionalized with different hydrophobic side chains were synthesized and screened. The compound showing the highest binding affinity to the viral S protein was further characterized by surface plasmon resonance (SPR) towards ACE2 and viral S protein binding domain. Selected compounds were formulated as solutions for nebulization and, after being characterized in terms of aerosolization performance and droplet size distribution, their efficacy was assessed in vivo using the K18 human (h)ACE2 transgenic mouse model of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Mauro Pavan
- Fidia Farmaceutici SpA, via Ponte della Fabbrica 3/A, 35031 Abano Terme, Italy.
| | - Chiara D Fanti
- Fidia Farmaceutici SpA, via Ponte della Fabbrica 3/A, 35031 Abano Terme, Italy
| | - Alba Di Lucia
- Fidia Farmaceutici SpA, via Ponte della Fabbrica 3/A, 35031 Abano Terme, Italy
| | - Elena Canato
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131, Padova, Italy
| | - Laura Acquasaliente
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131, Padova, Italy
| | - Fabio Sonvico
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27a, 43124 Parma, Italy
| | - Jennifer Delgado
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Amberlee Hicks
- Population Health and Host-Pathogens Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Jordi B Torrelles
- Population Health and Host-Pathogens Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Viraj Kulkarni
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Varun Dwivedi
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Anna M Zanellato
- Fidia Farmaceutici SpA, via Ponte della Fabbrica 3/A, 35031 Abano Terme, Italy
| | - Devis Galesso
- Fidia Farmaceutici SpA, via Ponte della Fabbrica 3/A, 35031 Abano Terme, Italy
| | - Gianfranco Pasut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131, Padova, Italy
| | - Francesca Buttini
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27a, 43124 Parma, Italy
| | - Luis Martinez-Sobrido
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Cristian Guarise
- Fidia Farmaceutici SpA, via Ponte della Fabbrica 3/A, 35031 Abano Terme, Italy
| |
Collapse
|
29
|
Nishigami M, Uno Y, Tsumoto K. Microscopic Observation of Membrane Fusion between Giant Liposomes and Baculovirus Budded Viruses Activated by the Release of a Caged Proton. MEMBRANES 2023; 13:membranes13050507. [PMID: 37233568 DOI: 10.3390/membranes13050507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023]
Abstract
Baculovirus (Autographa californica multiple nucleopolyhedrovirus, AcMNPV) is an envelope virus possessing a fusogenic protein, GP64, which can be activated under weak acidic conditions close to those in endosomes. When the budded viruses (BVs) are bathed at pH 4.0 to 5.5, they can bind to liposome membranes with acidic phospholipids, and this results in membrane fusion. In the present study, using the caged-proton reagent 1-(2-nitrophenyl)ethyl sulfate, sodium salt (NPE-caged-proton), which can be uncaged by irradiation with ultraviolet light, we triggered the activation of GP64 by lowering the pH and observed membrane fusion on giant liposomes (giant unilamellar vesicles, GUVs) by visualizing the lateral diffusion of fluorescence emitted from a lipophilic fluorochrome (octadecyl rhodamine B chloride, R18) that stained viral envelopes of BVs. In this fusion, entrapped calcein did not leak from the target GUVs. The behavior of BVs prior to the triggering of membrane fusion by the uncaging reaction was closely monitored. BVs appeared to accumulate around a GUV with DOPS, implying that BVs preferred phosphatidylserine. The monitoring of viral fusion triggered by the uncaging reaction could be a valuable tool for revealing the delicate behavior of viruses affected by various chemical and biochemical environments.
Collapse
Affiliation(s)
- Misako Nishigami
- Division of Chemistry for Materials, Graduate School of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu 514-8507, Mie, Japan
| | - Yuki Uno
- Division of Chemistry for Materials, Graduate School of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu 514-8507, Mie, Japan
| | - Kanta Tsumoto
- Division of Chemistry for Materials, Graduate School of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu 514-8507, Mie, Japan
| |
Collapse
|
30
|
Page TM, Nie C, Neander L, Povolotsky TL, Sahoo AK, Nickl P, Adler JM, Bawadkji O, Radnik J, Achazi K, Ludwig K, Lauster D, Netz RR, Trimpert J, Kaufer B, Haag R, Donskyi IS. Functionalized Fullerene for Inhibition of SARS-CoV-2 Variants. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206154. [PMID: 36651127 DOI: 10.1002/smll.202206154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/25/2022] [Indexed: 06/17/2023]
Abstract
As virus outbreaks continue to pose a challenge, a nonspecific viral inhibitor can provide significant benefits, especially against respiratory viruses. Polyglycerol sulfates recently emerge as promising agents that mediate interactions between cells and viruses through electrostatics, leading to virus inhibition. Similarly, hydrophobic C60 fullerene can prevent virus infection via interactions with hydrophobic cavities of surface proteins. Here, two strategies are combined to inhibit infection of SARS-CoV-2 variants in vitro. Effective inhibitory concentrations in the millimolar range highlight the significance of bare fullerene's hydrophobic moiety and electrostatic interactions of polysulfates with surface proteins of SARS-CoV-2. Furthermore, microscale thermophoresis measurements support that fullerene linear polyglycerol sulfates interact with the SARS-CoV-2 virus via its spike protein, and highlight importance of electrostatic interactions within it. All-atom molecular dynamics simulations reveal that the fullerene binding site is situated close to the receptor binding domain, within 4 nm of polyglycerol sulfate binding sites, feasibly allowing both portions of the material to interact simultaneously.
Collapse
Affiliation(s)
- Taylor M Page
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| | - Chuanxiong Nie
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| | - Lenard Neander
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
- Physics Department, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Tatyana L Povolotsky
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| | - Anil Kumar Sahoo
- Physics Department, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Philip Nickl
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
- BAM - Federal Institute for Material Science and Testing, Division of Surface Analysis and Interfacial Chemistry, Unter den Eichen 44-46, 12205, Berlin, Germany
| | - Julia M Adler
- Institut für Virologie, Freie Universität Berlin, Robert-von-Ostertag-Straße 7, 14163, Berlin, Germany
- Tiermedizinischen Zentrum für Resistenzforschung (TZR), Freie Universität Berlin, 14163, Berlin, Germany
| | - Obida Bawadkji
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| | - Jörg Radnik
- BAM - Federal Institute for Material Science and Testing, Division of Surface Analysis and Interfacial Chemistry, Unter den Eichen 44-46, 12205, Berlin, Germany
| | - Katharina Achazi
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| | - Kai Ludwig
- Forschungszentrum für Elektronenmikroskopie and Core Facility BioSupraMol, Freie Universität Berlin, Fabeckstraße 36A, 14195, Berlin, Germany
| | - Daniel Lauster
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| | - Roland R Netz
- Physics Department, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Jakob Trimpert
- Institut für Virologie, Freie Universität Berlin, Robert-von-Ostertag-Straße 7, 14163, Berlin, Germany
- Tiermedizinischen Zentrum für Resistenzforschung (TZR), Freie Universität Berlin, 14163, Berlin, Germany
| | - Benedikt Kaufer
- Institut für Virologie, Freie Universität Berlin, Robert-von-Ostertag-Straße 7, 14163, Berlin, Germany
- Tiermedizinischen Zentrum für Resistenzforschung (TZR), Freie Universität Berlin, 14163, Berlin, Germany
| | - Rainer Haag
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| | - Ievgen S Donskyi
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
- BAM - Federal Institute for Material Science and Testing, Division of Surface Analysis and Interfacial Chemistry, Unter den Eichen 44-46, 12205, Berlin, Germany
| |
Collapse
|
31
|
Dubacheva GV, Curk T, Richter RP. Determinants of Superselectivity─Practical Concepts for Application in Biology and Medicine. Acc Chem Res 2023; 56:729-739. [PMID: 36916901 PMCID: PMC10077582 DOI: 10.1021/acs.accounts.2c00672] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
ConspectusMultivalent interactions are common in biological systems and are also widely deployed for targeting applications in biomedicine. A unique feature of multivalent binding is "superselectivity". Superselectivity refers to the sharp discrimination of surfaces (e.g., on cells or cell compartments) by their comparative surface densities of a given receptor. This feature is different from the conventional "type" selectivity, which discriminates surfaces by their distinct receptor types. In a broader definition, a probe is superselective if it converts a gradual change in any one interaction parameter into a sharp on/off dependency in probe binding.This Account describes our systematic experimental and theoretical efforts over the past decade to analyze the determinants of superselective binding. It aims to offer chemical biologists, biophysicists, biologists, and biomedical scientists a set of guidelines for the interpretation of multivalent binding data, and design rules for tuning superselective targeting. We first provide a basic introduction that identifies multiple low-affinity interactions and combinatorial entropy as the minimal set of conditions required for superselective recognition. We then introduce the main experimental and theoretical tools and analyze how salient features of the multivalent probes (i.e., their concentration, size, ligand valency, and scaffold type), of the surface receptors (i.e., their affinity for ligands, surface density, and mobility), and of competitors and cofactors (i.e., their concentration and affinity for the ligands and/or receptors) influence the sharpness and the position of the threshold for superselective recognition.Emerging from this work are a set of relatively simple yet quantitative data analysis guidelines and superselectivity design rules that apply to a broad range of probe types and interaction systems. The key finding is the scaling variable xS which faithfully predicts the influence of the surface receptor density, probe ligand valency, receptor-ligand affinity, and competitor/cofactor concentrations and affinities on superselective recognition. The scaling variable is a simple yet versatile tool to quantitatively tune the on/off threshold of superselective probes. We exemplify its application by reviewing and reinterpreting literature data for selected biological and biomedical interaction systems where superselectivity clearly is important.Our guidelines can be deployed to generate a new mechanistic understanding of multivalent recognition events inside and outside cells and the downstream physiological/pathological implications. Moreover, the design rules can be harnessed to develop novel superselective probes for analytical purposes in the life sciences and for diagnostic/therapeutic intervention in biomedicine.
Collapse
Affiliation(s)
- Galina V Dubacheva
- Département de Chimie Moléculaire (DCM), UMR 5250, Université Grenoble Alpes, CNRS, 38000 Grenoble, France
| | - Tine Curk
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Ralf P Richter
- School of Biomedical Sciences, Faculty of Biological Sciences, School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, Astbury Centre for Structural Molecular Biology, and Bragg Centre for Materials Research, University of Leeds, Leeds, LS2 9JT, United Kingdom
| |
Collapse
|
32
|
Smith MM, Melrose J. Pentosan Polysulfate Affords Pleotropic Protection to Multiple Cells and Tissues. Pharmaceuticals (Basel) 2023; 16:437. [PMID: 36986536 PMCID: PMC10132487 DOI: 10.3390/ph16030437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/18/2023] [Accepted: 03/01/2023] [Indexed: 03/16/2023] Open
Abstract
Pentosan polysulfate (PPS), a small semi-synthetic highly sulfated heparan sulfate (HS)-like molecule, shares many of the interactive properties of HS. The aim of this review was to outline the potential of PPS as an interventional therapeutic protective agent in physiological processes affecting pathological tissues. PPS is a multifunctional molecule with diverse therapeutic actions against many disease processes. PPS has been used for decades in the treatment of interstitial cystitis and painful bowel disease, it has tissue-protective properties as a protease inhibitor in cartilage, tendon and IVD, and it has been used as a cell-directive component in bioscaffolds in tissue engineering applications. PPS regulates complement activation, coagulation, fibrinolysis and thrombocytopenia, and it promotes the synthesis of hyaluronan. Nerve growth factor production in osteocytes is inhibited by PPS, reducing bone pain in osteoarthritis and rheumatoid arthritis (OA/RA). PPS also removes fatty compounds from lipid-engorged subchondral blood vessels in OA/RA cartilage, reducing joint pain. PPS regulates cytokine and inflammatory mediator production and is also an anti-tumor agent that promotes the proliferation and differentiation of mesenchymal stem cells and the development of progenitor cell lineages that have proven to be useful in strategies designed to effect repair of the degenerate intervertebral disc (IVD) and OA cartilage. PPS stimulates proteoglycan synthesis by chondrocytes in the presence or absence of interleukin (IL)-1, and stimulates hyaluronan production by synoviocytes. PPS is thus a multifunctional tissue-protective molecule of potential therapeutic application for a diverse range of disease processes.
Collapse
Affiliation(s)
- Margaret M. Smith
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, Faculty of Health and Science, University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2065, Australia;
| | - James Melrose
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, Faculty of Health and Science, University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2065, Australia;
- Graduate Schools of Biomedical Engineering, University of NSW, Sydney, NSW 2052, Australia
- Sydney Medical School, Northern Campus, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| |
Collapse
|
33
|
Chi Y, Sun W, Zhou L, Pei S, Zeng H, Cheng Y, Chai S. The preparation of hybrid silicon quantum dots by one-step synthesis for tetracycline detection and antibacterial applications. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:1145-1156. [PMID: 36787098 DOI: 10.1039/d2ay02102a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In this study, we prepared three different silicon quantum dots (SiQDs-1, SiQDs-2 and SiQDs-3) by hydrothermal synthesis with rose Bengal as the reducing agent and triacetoxy(methyl)silane and allyloxytrimethylsilane as silicon sources. The as-prepared SiQDs not only exhibited potent antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) but also showed specific responses to tetracycline (TC). The minimum inhibitory concentrations (MICs) of SiQDs-1, SiQDs-2 and SiQDs-3 were 0.55 mg mL-1, 0.47 mg mL-1 and 0.39 mg mL-1 against E. coli, respectively, and 0.45 mg mL-1, 0.34 mg mL-1 and 0.34 mg mL-1 against S. aureus, respectively. By examining the morphologies of bacteria and generation of reactive oxygen species (ROS), we speculated that these SiQDs shrink the bacteria and even directly destroy the bacterial structural integrity through the production of singlet oxygen. In addition, the fluorescence quenching effectiveness of SiQDs-3 also showed a strong linear relationship with TC concentration in the range of 0-1.2 μM with a detection limit of 0.318 μM, as a result of the internal filtering effect. Together, SiQDs not only can be a candidate to treat resistant bacterial infections, but also may be applied in practical detection of TC.
Collapse
Affiliation(s)
- Yuting Chi
- Chongqing Key Laboratory of Industrial Fermentation Microorganism, Chongqing University of Science and Technology, Chongqing 401331, P. R. China.
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, P. R. China
| | - Wanlin Sun
- Chongqing Key Laboratory of Industrial Fermentation Microorganism, Chongqing University of Science and Technology, Chongqing 401331, P. R. China.
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, P. R. China
| | - Lijia Zhou
- Chongqing Key Laboratory of Industrial Fermentation Microorganism, Chongqing University of Science and Technology, Chongqing 401331, P. R. China.
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, P. R. China
| | - Shuchen Pei
- Chongqing Key Laboratory of Industrial Fermentation Microorganism, Chongqing University of Science and Technology, Chongqing 401331, P. R. China.
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, P. R. China
| | - Haichun Zeng
- Chongqing Key Laboratory of Industrial Fermentation Microorganism, Chongqing University of Science and Technology, Chongqing 401331, P. R. China.
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, P. R. China
| | - Yunying Cheng
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, P. R. China.
| | - Shuiqin Chai
- Chongqing Key Laboratory of Industrial Fermentation Microorganism, Chongqing University of Science and Technology, Chongqing 401331, P. R. China.
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, P. R. China
| |
Collapse
|
34
|
Žigrayová D, Mikušová V, Mikuš P. Advances in Antiviral Delivery Systems and Chitosan-Based Polymeric and Nanoparticulate Antivirals and Antiviral Carriers. Viruses 2023; 15:647. [PMID: 36992356 PMCID: PMC10054433 DOI: 10.3390/v15030647] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Current antiviral therapy research is focused on developing dosage forms that enable highly effective drug delivery, providing a selective effect in the organism, lower risk of adverse effects, a lower dose of active pharmaceutical ingredients, and minimal toxicity. In this article, antiviral drugs and the mechanisms of their action are summarized at the beginning as a prerequisite background to develop relevant drug delivery/carrier systems for them, classified and briefly discussed subsequently. Many of the recent studies aim at different types of synthetic, semisynthetic, and natural polymers serving as a favorable matrix for the antiviral drug carrier. Besides a wider view of different antiviral delivery systems, this review focuses on advances in antiviral drug delivery systems based on chitosan (CS) and derivatized CS carriers. CS and its derivatives are evaluated concerning methods of their preparation, their basic characteristics and properties, approaches to the incorporation of an antiviral drug in the CS polymer as well as CS nanoparticulate systems, and their recent biomedical applications in the context of actual antiviral therapy. The degree of development (i.e., research study, in vitro/ex vivo/in vivo preclinical testing), as well as benefits and limitations of CS polymer and CS nanoparticulate drug delivery systems, are reported for particular viral diseases and corresponding antivirotics.
Collapse
Affiliation(s)
- Dominika Žigrayová
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
| | - Veronika Mikušová
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
| | - Peter Mikuš
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
| |
Collapse
|
35
|
Gopal J, Muthu M. The COVID-19 pandemic redefining the mundane food packaging material industry? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160463. [PMID: 36503651 PMCID: PMC9701582 DOI: 10.1016/j.scitotenv.2022.160463] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/15/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
COVID-19 pandemic has been the talk of the globe, as it swept across the world population, changing enumerable aspects. The pandemic affected all sectors directly or indirectly. The food sector took a direct hit. The food packaging sector rose to the occasion to serve and feed the pandemic affected, but there were interactions, reactions, and consequences that evolved through the course of the journey through the pandemic. The aim of this perspective is to address the importance of the food packaging industry (from the COVID-19 point of view) and to highlight the unpreparedness of the food packaging materials, for times as these. As the world has been asked to learn to live with Corona, improvisations are definitely necessary, the lapses in the system need to be rectified, and the entire packaging industry has to go through fortification to co-exist with Corona or confront something worse than Corona. This discussion is set out to understand the gravity of the actual situation, assimilating information available from the scattered shreds of reports. Food packaging materials were used, and plastic wastes were generated in bulks, single-use plastics for fear of contamination gained prominence, leading to an enormous turnover of wastes. Fear of Corona, sprayed overloads of sanitizers and disinfectants on food package material surfaces for surface sterilization. The food packages were tailored for food containment needs, never were they planned for sanitizer sprays. The consequences of these sanitization procedures are unprecedented, neglected and in the post-COVID-19 phase no action appears to have been taken. Corona took us by surprise this time, but next time atleast the food packaging industry needs to be fully equipped. Speculated consequences have been reviewed and plausible suggestions have been proposed. The need for extensive research focus in this direction in exploring the ground-reality has been highlighted.
Collapse
Affiliation(s)
- Judy Gopal
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, Tamil Nadu, India
| | - Manikandan Muthu
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, Tamil Nadu, India.
| |
Collapse
|
36
|
Gerling-Driessen UIM, Hoffmann M, Schmidt S, Snyder NL, Hartmann L. Glycopolymers against pathogen infection. Chem Soc Rev 2023; 52:2617-2642. [PMID: 36820794 DOI: 10.1039/d2cs00912a] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Pathogens including viruses, bacteria, fungi, and parasites continue to shape our lives in profound ways every day. As we have learned to live in parallel with pathogens, we have gained a better understanding of the rules of engagement for how they bind, adhere, and invade host cells. One such mechanism involves the exploitation of host cell surface glycans for attachment/adhesion, one of the first steps of infection. This knowledge has led to the development of glycan-based diagnostics and therapeutics for the treatment and prevention of infection. One class of compounds that has become increasingly important are the glycopolymers. Glycopolymers are macromolecules composed of a synthetic scaffold presenting carbohydrates as side chain motifs. Glycopolymers are particularly attractive because their properties can be tuned by careful choice of the scaffold, carbohydrate/glycan, and overall presentation. In this review, we highlight studies over the past ten years that have examined the role of glycopolymers in pathogen adhesion and host cell infection, biofilm formation and removal, and drug delivery with the aim of examining the direct effects of these macromolecules on pathogen engagement. In addition, we also examine the role of glycopolymers as diagnostics for the detection and monitoring of pathogens.
Collapse
Affiliation(s)
- Ulla I M Gerling-Driessen
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | - Miriam Hoffmann
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | - Stephan Schmidt
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany. .,Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31, 79104 Freiburg, Germany
| | - Nicole L Snyder
- Department of Chemistry, Davidson College, Davidson, North Carolina 28035, USA
| | - Laura Hartmann
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
37
|
Botwina P, Obłoza M, Bonarek P, Szczubiałka K, Pyrć K, Nowakowska M. Poly(ethylene glycol) -block-poly(sodium 4-styrenesulfonate) Copolymers as Efficient Zika Virus Inhibitors: In Vitro Studies. ACS OMEGA 2023; 8:6875-6883. [PMID: 36844524 PMCID: PMC9948194 DOI: 10.1021/acsomega.2c07610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
A series of poly(ethylene glycol)-block-poly(sodium 4-styrenesulfonate) (PEG-b-PSSNa) copolymers were synthesized, and their antiviral activity against Zika virus (ZIKV) was determined. The polymers inhibit ZIKV replication in vitro in mammalian cells at nontoxic concentrations. The mechanistic analysis revealed that the PEG-b-PSSNa copolymers interact directly with viral particles in a zipper-like mechanism, hindering their interaction with the permissive cell. The antiviral activity of the copolymers is well-correlated with the length of the PSSNa block, indicating that the copolymers' ionic blocks are biologically active. The blocks of PEG present in copolymers studied do not hinder that interaction. Considering the practical application of PEG-b-PSSNa and the electrostatic nature of the inhibition, the interaction between the copolymers and human serum albumin (HSA) was evaluated. The formation of PEG-b-PSSNa-HSA complexes in the form of negatively charged nanoparticles well-dispersed in buffer solution was observed. That observation is promising, given the possible practical application of the copolymers.
Collapse
Affiliation(s)
- Paweł Botwina
- Virogenetics
Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland
- Microbiology
Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Magdalena Obłoza
- Department
of Physical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Piotr Bonarek
- Department
of Physical Biochemistry, Faculty of Biochemistry, Biophysics and
Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Krzysztof Szczubiałka
- Department
of Physical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Krzysztof Pyrć
- Virogenetics
Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland
| | - Maria Nowakowska
- Department
of Physical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| |
Collapse
|
38
|
Fu J, Liu T, Binte Touhid SS, Fu F, Liu X. Functional Textile Materials for Blocking COVID-19 Transmission. ACS NANO 2023; 17:1739-1763. [PMID: 36683285 PMCID: PMC9885531 DOI: 10.1021/acsnano.2c08894] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
The outbreak of COVID-19 provided a warning sign for society worldwide: that is, we urgently need to explore effective strategies for combating unpredictable viral pandemics. Protective textiles such as surgery masks have played an important role in the mitigation of the COVID-19 pandemic, while revealing serious challenges in terms of supply, cross-infection risk, and environmental pollution. In this context, textiles with an antivirus functionality have attracted increasing attention, and many innovative proposals with exciting commercial possibilities have been reported over the past three years. In this review, we illustrate the progress of textile filtration for pandemics and summarize the recent development of antiviral textiles for personal protective purposes by cataloging them into three classes: metal-based, carbon-based, and polymer-based materials. We focused on the preparation routes of emerging antiviral textiles, providing a forward-looking perspective on their opportunities and challenges, to evaluate their efficacy, scale up their manufacturing processes, and expand their high-volume applications. Based on this review, we conclude that ideal antiviral textiles are characterized by a high filtration efficiency, reliable antiviral effect, long storage life, and recyclability. The expected manufacturing processes should be economically feasible, scalable, and quickly responsive.
Collapse
Affiliation(s)
- Jiajia Fu
- School of Materials Science and Engineering,
Zhejiang Sci-Tech University, Xiasha Higher Education Zone,
Hangzhou310018, People’s Republic of China
| | - Tianxing Liu
- Department of Cell and Systems Biology,
University of Toronto, Toronto, OntarioM5S1A1,
Canada
| | - S Salvia Binte Touhid
- School of Materials Science and Engineering,
Zhejiang Sci-Tech University, Xiasha Higher Education Zone,
Hangzhou310018, People’s Republic of China
| | - Feiya Fu
- School of Materials Science and Engineering,
Zhejiang Sci-Tech University, Xiasha Higher Education Zone,
Hangzhou310018, People’s Republic of China
| | - Xiangdong Liu
- School of Materials Science and Engineering,
Zhejiang Sci-Tech University, Xiasha Higher Education Zone,
Hangzhou310018, People’s Republic of China
| |
Collapse
|
39
|
Nag A, Banerjee K, Barman R, Kar J, Sarkar DP, Jana SS, Ghosh S. Direct Correlation between the Secondary Structure of an Amphiphilic Polymer and Its Prominent Antiviral Activity. J Am Chem Soc 2023; 145:579-584. [PMID: 36524964 DOI: 10.1021/jacs.2c11216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
An amphiphilic segmented polyurethane (F-PU-S), with pendant sulfate groups and a flexible hydrocarbon backbone, exhibits intrachain H-bonding-reinforced folding and hierarchical assembly, producing an anionic polymersome with efficient display of sulfate groups at the surface. It shows an excellent antiviral activity against Sendai virus (SV) by inhibiting its entry to the cells. Mechanistic investigation suggests fusion of the SV and the polymersome to produce larger particles in which neither the folded structure of the polymer nor the fusogenic property of the SV exists anymore. In sharp contrast, a structurally similar polymer R-PU-S, in which the chain folding pathway is blocked by replacing the flexible C6 chain with a rigid cyclohexane chain in the backbone, cannot form a similar polymersome structure and hence does not exhibit any antiviral activity. On the other hand, the third polymer (F-PU-C), which is similar to F-PU-S except for the pendant anionic groups (carboxylate instead of sulfate), also fails to exhibit any antiviral activity against SV, confirming the essential role of the chain folding as well as the pendant sulfate groups for the fusion-induced antiviral activity of F-PU-S, which provides an important structural guideline for developing new antiviral polymers.
Collapse
Affiliation(s)
- Atish Nag
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Kumarjeet Banerjee
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Ranajit Barman
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Joy Kar
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Debi P Sarkar
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India
| | - Siddhartha Sankar Jana
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Suhrit Ghosh
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India
| |
Collapse
|
40
|
John A, Črešnar KP, Bikiaris DN, Zemljič LF. Colloidal Solutions as Advanced Coatings for Active Packaging Development: Focus on PLA Systems. Polymers (Basel) 2023; 15:273. [PMID: 36679154 PMCID: PMC9865051 DOI: 10.3390/polym15020273] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023] Open
Abstract
Due to rising consumer demand the food packaging industry is turning increasingly to packaging materials that offer active functions. This is achieved by incorporating active compounds into the basic packaging materials. However, it is currently believed that adding active compounds as a coating over the base packaging material is more beneficial than adding them in bulk or in pouches, as this helps to maintain the physicochemical properties of the base material along with higher efficiency at the interface with the food. Colloidal systems have the potential to be used as active coatings, while the application of coatings in the form of colloidal dispersions allows for prolonged and controlled release of the active ingredient and uniform distribution, due to their colloidal/nano size and large surface area ratio. The objective of this review is to analyse some of the different colloidal solutions previously used in the literature as coatings for active food packaging and their advantages. The focus is on natural bio-based substances and packaging materials such as PLA, due to consumer awareness and environmental and regulatory issues. The antiviral concept through the surface is also discussed briefly, as it is an important strategy in the context of the current pandemic crisis and cross-infection prevention.
Collapse
Affiliation(s)
- Athira John
- Laboratory for Characterization and Processing of Polymer Materials, Faculty of Mechanical Engineering, University of Maribor, 2000 Maribor, Slovenia
| | - Klementina Pušnik Črešnar
- Laboratory for Characterization and Processing of Polymer Materials, Faculty of Mechanical Engineering, University of Maribor, 2000 Maribor, Slovenia
| | - Dimitrios N. Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Lidija Fras Zemljič
- Laboratory for Characterization and Processing of Polymer Materials, Faculty of Mechanical Engineering, University of Maribor, 2000 Maribor, Slovenia
| |
Collapse
|
41
|
Hu S, Li Y, Yue F, Chen Y, Qi H. Bio-inspired synthesis of amino acids modified sulfated cellulose nanofibrils into multivalent viral inhibitors via the Mannich reaction. Carbohydr Polym 2023; 299:120202. [PMID: 36876813 DOI: 10.1016/j.carbpol.2022.120202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/14/2022] [Accepted: 10/06/2022] [Indexed: 11/07/2022]
Abstract
Virus cross-infection via surfaces poses a serious threat to public health. Inspired by natural sulfated polysaccharides and antiviral peptides, we prepared multivalent virus blocking nanomaterials by introducing amino acids to sulfated cellulose nanofibrils (SCNFs) via the Mannich reaction. The antiviral activity of the resulting amino acid-modified sulfated nanocellulose was significantly improved. Specifically, 1 h treatment with arginine modified SCNFs at a concentration of 0.1 g/mL led to a complete inactivation of the phage-X174 (reduction by more than three orders of magnitude). Atomic force microscope showed that amino acid-modified sulfated nanofibrils can bind phage-X174 to form linear clusters, thus preventing the virus from infecting the host. When we coated wrapping paper and the inside of a face-mask with our amino acid-modified SCNFs, phage-X174 was completely deactivated on the coated surfaces, demonstrating the potential of our approach for use in the packaging and personal protective equipment industries. This work provides an environmentally friendly and cost-efficient approach to fabricating multivalent nanomaterials for antiviral applications.
Collapse
Affiliation(s)
- Songnan Hu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, PR China
| | - Yuehu Li
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, PR China
| | - Fengxia Yue
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, PR China
| | - Yian Chen
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, PR China.
| | - Haisong Qi
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, PR China.
| |
Collapse
|
42
|
de la Mata FJ, Gómez R, Cano J, Sánchez‐Nieves J, Ortega P, Gallego SG. Carbosilane dendritic nanostructures, highly versatile platforms for pharmaceutical applications. WIRES NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 15:e1871. [PMID: 36417901 DOI: 10.1002/wnan.1871] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 11/25/2022]
Abstract
Dendrimers are multifunctional molecules with well-defined size and structure due to the step-by-step synthetic procedures required in their preparation. Dendritic constructs based on carbosilane scaffolds present carbon-carbon and carbon-silicon bonds, which results in stable, lipophilic, inert, and flexible structures. These properties are highly appreciated in different areas, including the pharmaceutical field, as they can increase the interaction with cell membranes and improve the therapeutic action. This article summarizes the most recent advances in the pharmaceutical applications of carbosilane dendritic molecules, from therapeutics to diagnostics and prevention tools. Dendrimers decorated with cationic, anionic, or other moieties, including metallodendrimers; supramolecular assemblies; dendronized nanoparticles and surfaces; as well as dendritic networks like hydrogels are described. The collected examples confirm the potential of carbosilane dendrimers and dendritic materials as antiviral or antibacterial agents; in therapy against cancer, neurodegenerative disease, or oxidative stress; or many other biomedical applications. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Francisco Javier de la Mata
- Department of Organic and Inorganic Chemistry, Faculty of Sciences, and Research Institute in Chemistry “Andrés M. del Río” (IQAR) Universidad de Alcala Alcalá de Henares Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III
- Institute Ramón y Cajal for Health Research (IRYCIS) Madrid Spain
| | - Rafael Gómez
- Department of Organic and Inorganic Chemistry, Faculty of Sciences, and Research Institute in Chemistry “Andrés M. del Río” (IQAR) Universidad de Alcala Alcalá de Henares Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III
- Institute Ramón y Cajal for Health Research (IRYCIS) Madrid Spain
| | - Jesús Cano
- Department of Organic and Inorganic Chemistry, Faculty of Sciences, and Research Institute in Chemistry “Andrés M. del Río” (IQAR) Universidad de Alcala Alcalá de Henares Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III
- Institute Ramón y Cajal for Health Research (IRYCIS) Madrid Spain
| | - Javier Sánchez‐Nieves
- Department of Organic and Inorganic Chemistry, Faculty of Sciences, and Research Institute in Chemistry “Andrés M. del Río” (IQAR) Universidad de Alcala Alcalá de Henares Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III
- Institute Ramón y Cajal for Health Research (IRYCIS) Madrid Spain
| | - Paula Ortega
- Department of Organic and Inorganic Chemistry, Faculty of Sciences, and Research Institute in Chemistry “Andrés M. del Río” (IQAR) Universidad de Alcala Alcalá de Henares Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III
- Institute Ramón y Cajal for Health Research (IRYCIS) Madrid Spain
| | - Sandra García Gallego
- Department of Organic and Inorganic Chemistry, Faculty of Sciences, and Research Institute in Chemistry “Andrés M. del Río” (IQAR) Universidad de Alcala Alcalá de Henares Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III
- Institute Ramón y Cajal for Health Research (IRYCIS) Madrid Spain
| |
Collapse
|
43
|
Structure-based design, drug-likeness, and pharmacokinetic studies of novel substituted pyrimidine derivatives as potent HCV NS3/A4 protease inhibitors. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
44
|
Hoffmann M, Snyder NL, Hartmann L. Polymers Inspired by Heparin and Heparan Sulfate for Viral Targeting. Macromolecules 2022; 55:7957-7973. [PMID: 36186574 PMCID: PMC9520969 DOI: 10.1021/acs.macromol.2c00675] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/12/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Miriam Hoffmann
- Department of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Nicole L. Snyder
- Department of Chemistry, Davidson College, Davidson, North Carolina 28035, United States
| | - Laura Hartmann
- Department of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
45
|
Murashevych B, Stepanskyi D, Toropin V, Mironenko A, Maslak H, Burmistrov K, Teteriuk N. Virucidal properties of new multifunctional fibrous N-halamine-immobilized styrene-divinylbenzene copolymers. J BIOACT COMPAT POL 2022. [DOI: 10.1177/08839115221121852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Virucidal properties of N-chlorosulfonamides immobilized on fibrous styrene-divinylbenzene copolymers have been studied. Corresponding materials with different functional group structures and chlorine content have been synthesized on FIBAN polymer carriers in the form of staple fibers and non-woven fabrics. The study has been conducted in general accordance with EN 14476 standard on poliovirus type-1 and adenovirus type-5. It has been found that all tested samples exhibit pronounced virucidal activity: regardless of the carrier polymer form, sodium N-chlorosulfonamides inactivated both viruses in less than 30 s, and N,N-dichlorosulfonamides—in 30–60 s. The main mechanism of action of these materials, obviously, consists in the emission of active chlorine from the functional group into the treated medium under the action of the amino groups of virus fragments and cell culture. Considering the previously described antimicrobial and reparative properties of such materials, as well as their satisfactory physical and mechanical properties, the synthesized polymers are promising for the creation of medical devices with increased resistance to microbial contamination, such as protective masks, filter elements, long-acting wound dressings, and others.
Collapse
Affiliation(s)
- Bohdan Murashevych
- Department of Biochemistry and Medical Chemistry, Dnipro State Medical University, Dnipro, Ukraine
| | - Dmytro Stepanskyi
- Department of Microbiology, Virology, Immunology and Epidemiology, Dnipro State Medical University, Dnipro, Ukraine
| | - Volodymyr Toropin
- Department of Pharmacy and Technology of Organic Substances, Ukrainian State University of Chemical Technology, Dnipro, Ukraine
| | - Alla Mironenko
- Department of Respiratory and Other Viral Infections, L.V. Gromashevsky Institute of Epidemiology and Infectious Diseases, Kyiv, Ukraine
| | - Hanna Maslak
- Department of Biochemistry and Medical Chemistry, Dnipro State Medical University, Dnipro, Ukraine
| | - Konstantin Burmistrov
- Department of Pharmacy and Technology of Organic Substances, Ukrainian State University of Chemical Technology, Dnipro, Ukraine
| | - Nataliia Teteriuk
- Department of Respiratory and Other Viral Infections, L.V. Gromashevsky Institute of Epidemiology and Infectious Diseases, Kyiv, Ukraine
| |
Collapse
|
46
|
Bictegravir nanomicelles and anionic pullulan loaded vaginal film: Dual mechanistic pre-exposure prophylaxis (PrEP) for HIV. Int J Biol Macromol 2022; 221:416-425. [PMID: 36075305 DOI: 10.1016/j.ijbiomac.2022.08.211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/28/2022] [Accepted: 08/31/2022] [Indexed: 11/24/2022]
Abstract
Locally delivered pre-exposure prophylaxis (PrEP) has proven to be a promising strategy to combat Human immunodeficiency virus (HIV) transmission but several findings encountered toxicities or proved to be marginally effective in clinical settings. Therefore, innovative, multifunctional, and safer alternatives are being progressively investigated. Herein, we explored negatively charged carbohydrate, anionic pullulan (AP) as a rapidly soluble film-former and novel anti-HIV agent. Additionally, Bictegravir (BCT), an HIV integrase inhibitor was co-delivered in the form of nanomicelles for sustained antiviral activity. BCT-loaded PLGA-PEG polymeric nanomicelles (BN) were incorporated into PVA/pullulan-based film matrix comprising of 2 % w/v AP (BN-AP film). In cell-based assays, biocompatibility and TEER values for BN-AP films were similar to control while the commercial vaginal contraceptive film (VCF®) showed severe cytotoxicity and drastically reduced the tight junction integrity. Rapid disintegration of BN-AP film with >85 % drug release was observed in simulated vaginal and seminal fluid. Most importantly, AP and BN-AP film significantly inhibited HIV-1 replication with IC50 at as low as 91 μg/mL and 0.708 nM, respectively. Therefore, this study entails successful development of BN-AP film that functioned as an effective, biocompatible dual-acting PrEP formulation.
Collapse
|
47
|
Vagin AA, Borisenko MS, Solovskii MV, Tarabukina EB. Synthesis and Properties of Polymeric Rifabutin Forms with Different Types of Polymer–Antibiotic Bonding. RUSS J APPL CHEM+ 2022. [DOI: 10.1134/s1070427222090051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
48
|
Francese R, Cecone C, Costantino M, Hoti G, Bracco P, Lembo D, Trotta F. Identification of a βCD-Based Hyper-Branched Negatively Charged Polymer as HSV-2 and RSV Inhibitor. Int J Mol Sci 2022; 23:8701. [PMID: 35955832 PMCID: PMC9369026 DOI: 10.3390/ijms23158701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 02/01/2023] Open
Abstract
Cyclodextrins and cyclodextrin derivatives were demonstrated to improve the antiviral potency of numerous drugs, but also to be endowed with intrinsic antiviral action. They are suitable building blocks for the synthesis of functionalized polymer structures with potential antiviral activity. Accordingly, four water-soluble hyper-branched beta cyclodextrin (βCD)-based anionic polymers were screened against herpes simplex virus (HSV-2), respiratory syncytial virus (RSV), rotavirus (HRoV), and influenza virus (FluVA). They were characterized by FTIR-ATR, TGA, elemental analyses, zeta-potential measurements, and potentiometric titrations, while the antiviral activity was investigated with specific in vitro assays. The polymer with the highest negative charge, pyromellitic dianhydride-linked polymer (P_PMDA), showed significant antiviral action against RSV and HSV-2, by inactivating RSV free particles and by altering HSV-2 binding to the cell. The polymer fraction with the highest molecular weight showed the strongest antiviral activity and both P_PMDA and its active fractions were not toxic for cells. Our results suggest that the polymer virucidal activity against RSV can be exploited to produce new antiviral materials to counteract the virus dissemination through the air or direct contact. Additionally, the strong HSV-2 binding inhibition along with the water solubility of P_PMDA and the acyclovir complexation potential of βCD are attractive features for developing new therapeutic topical options against genital HSV-2 infection.
Collapse
Affiliation(s)
- Rachele Francese
- Laboratory of Molecular Virology and Antiviral Research, Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, Orbassano, 10043 Turin, Italy
| | - Claudio Cecone
- Department of Chemistry, NIS Interdepartmental Centre, University of Turin, Via P. Giuria 7, 10125 Turin, Italy
| | - Matteo Costantino
- Laboratory of Molecular Virology and Antiviral Research, Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, Orbassano, 10043 Turin, Italy
| | - Gjylije Hoti
- Department of Chemistry, NIS Interdepartmental Centre, University of Turin, Via P. Giuria 7, 10125 Turin, Italy
| | - Pierangiola Bracco
- Department of Chemistry, NIS Interdepartmental Centre, University of Turin, Via P. Giuria 7, 10125 Turin, Italy
| | - David Lembo
- Laboratory of Molecular Virology and Antiviral Research, Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, Orbassano, 10043 Turin, Italy
| | - Francesco Trotta
- Department of Chemistry, NIS Interdepartmental Centre, University of Turin, Via P. Giuria 7, 10125 Turin, Italy
| |
Collapse
|
49
|
Mukherjee S, Jana S, Khawas S, Kicuntod J, Marschall M, Ray B, Ray S. Synthesis, molecular features and biological activities of modified plant polysaccharides. Carbohydr Polym 2022; 289:119299. [DOI: 10.1016/j.carbpol.2022.119299] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 12/17/2022]
|
50
|
Groß R, Dias Loiola LM, Issmail L, Uhlig N, Eberlein V, Conzelmann C, Olari L, Rauch L, Lawrenz J, Weil T, Müller JA, Cardoso MB, Gilg A, Larsson O, Höglund U, Pålsson SA, Tvilum AS, Løvschall KB, Kristensen MM, Spetz A, Hontonnou F, Galloux M, Grunwald T, Zelikin AN, Münch J. Macromolecular Viral Entry Inhibitors as Broad-Spectrum First-Line Antivirals with Activity against SARS-CoV-2. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201378. [PMID: 35543527 PMCID: PMC9284172 DOI: 10.1002/advs.202201378] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/11/2022] [Indexed: 05/03/2023]
Abstract
Inhibitors of viral cell entry based on poly(styrene sulfonate) and its core-shell nanoformulations based on gold nanoparticles are investigated against a panel of viruses, including clinical isolates of SARS-CoV-2. Macromolecular inhibitors are shown to exhibit the highly sought-after broad-spectrum antiviral activity, which covers most analyzed enveloped viruses and all of the variants of concern for SARS-CoV-2 tested. The inhibitory activity is quantified in vitro in appropriate cell culture models and for respiratory viral pathogens (respiratory syncytial virus and SARS-CoV-2) in mice. Results of this study comprise a significant step along the translational path of macromolecular inhibitors of virus cell entry, specifically against enveloped respiratory viruses.
Collapse
Affiliation(s)
- Rüdiger Groß
- Institute of Molecular VirologyUlm University Medical CenterUlm89081Germany
| | - Lívia Mesquita Dias Loiola
- Department of Chemistry and iNano Interdisciplinary Nanoscience CentreAarhus UniversityAarhus8000Denmark
- Brazilian Synchrotron Light LaboratoryBrazilian Center for Research in Energy and MaterialsCampinasSão Paulo13083‐970Brazil
| | - Leila Issmail
- Fraunhofer Institute for Cell Therapy and Immunology IZILeipzig04103Germany
| | - Nadja Uhlig
- Fraunhofer Institute for Cell Therapy and Immunology IZILeipzig04103Germany
| | - Valentina Eberlein
- Fraunhofer Institute for Cell Therapy and Immunology IZILeipzig04103Germany
| | - Carina Conzelmann
- Institute of Molecular VirologyUlm University Medical CenterUlm89081Germany
| | - Lia‐Raluca Olari
- Institute of Molecular VirologyUlm University Medical CenterUlm89081Germany
| | - Lena Rauch
- Institute of Molecular VirologyUlm University Medical CenterUlm89081Germany
| | - Jan Lawrenz
- Institute of Molecular VirologyUlm University Medical CenterUlm89081Germany
| | - Tatjana Weil
- Institute of Molecular VirologyUlm University Medical CenterUlm89081Germany
| | - Janis A. Müller
- Institute of Molecular VirologyUlm University Medical CenterUlm89081Germany
| | - Mateus Borba Cardoso
- Brazilian Synchrotron Light LaboratoryBrazilian Center for Research in Energy and MaterialsCampinasSão Paulo13083‐970Brazil
| | - Andrea Gilg
- Institute of Molecular VirologyUlm University Medical CenterUlm89081Germany
| | | | | | - Sandra Axberg Pålsson
- Department of Molecular BiosciencesThe Wenner‐Gren Institute Stockholm UniversityStockholm10691Sweden
| | - Anna Selch Tvilum
- Department of Chemistry and iNano Interdisciplinary Nanoscience CentreAarhus UniversityAarhus8000Denmark
| | - Kaja Borup Løvschall
- Department of Chemistry and iNano Interdisciplinary Nanoscience CentreAarhus UniversityAarhus8000Denmark
| | - Maria M. Kristensen
- Department of Chemistry and iNano Interdisciplinary Nanoscience CentreAarhus UniversityAarhus8000Denmark
| | - Anna‐Lena Spetz
- Department of Molecular BiosciencesThe Wenner‐Gren Institute Stockholm UniversityStockholm10691Sweden
| | | | - Marie Galloux
- Université Paris‐SaclayINRAE, UVSQ, VIMJouy‐en‐Josas78352France
| | - Thomas Grunwald
- Fraunhofer Institute for Cell Therapy and Immunology IZILeipzig04103Germany
| | - Alexander N. Zelikin
- Department of Chemistry and iNano Interdisciplinary Nanoscience CentreAarhus UniversityAarhus8000Denmark
| | - Jan Münch
- Institute of Molecular VirologyUlm University Medical CenterUlm89081Germany
| |
Collapse
|