1
|
Liu X, Hua L, Lai X, Kim JH, Zhu Q, Lee JY, Zhu W, Wang Y. High-Performance Solution Processable Red TADF-OLED with External Quantum Efficiency Exceeding 28% Using a Multi-Resonance Emitter Host. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2500690. [PMID: 40190049 DOI: 10.1002/adma.202500690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/18/2025] [Indexed: 05/28/2025]
Abstract
Achieving high-efficiency soluble red thermally activated delayed fluorescence (TADF) emitters remains a substantial challenge owing to the constraints imposed by the energy-gap law. In this study, an asymmetric pyrene-azaacene derivative, named PBCNT, is prepared and characterized, featuring a strong electron-donating tert-butyl diphenylamine moiety and an electron-withdrawing cyano group. PBCNT exhibits intense red emission with a peak wavelength of 664 nm in a toluene solution. It demonstrates an evident TADF character in the solid state, attributed to a small energy difference of 0.04 eV between its lowest singlet and triplet states. By employing a multi resonance-type TADF molecule as the host matrix, a solution-processed organic light-emitting diode (OLED) based on PBCNT achieved a record-high maximum external quantum efficiency (EQE) of 28.5%, with a red emission peak at 608 nm, facilitated by effective Förster energy transfer, good horizontal emitting dipole orientation and managed intermolecular interactions between the host and dopant. This represents one of the highest EQE values reported among solution-processed red TADF OLEDs emitting electroluminescence at wavelengths greater than 600 nm. This paper introduces a promising pathway for developing efficient red TADF emitters that overcome the limitations of the energy-gap law.
Collapse
Affiliation(s)
- Xiaolong Liu
- School of Materials Science & Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou, 213164, P. R. China
| | - Lei Hua
- School of Materials Science & Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou, 213164, P. R. China
| | - Xiaoyi Lai
- School of Materials Science & Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou, 213164, P. R. China
| | - Ji Hun Kim
- Department of Display Convergence Engineering, Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Qinyu Zhu
- School of Materials Science & Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou, 213164, P. R. China
| | - Jun Yeob Lee
- Department of Display Convergence Engineering, Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea
- SKKU Institute of Energy Science and Technology, Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Weiguo Zhu
- School of Materials Science & Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou, 213164, P. R. China
| | - Yafei Wang
- School of Materials Science & Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou, 213164, P. R. China
| |
Collapse
|
2
|
Li M, Hua L, Zhao J, Liu Y, Yan S, Ren Z. Regulating the Spatially Folded Arrangement of Donor and Acceptor Units To Achieve Efficient Orange-Red Thermally Activated Delayed Fluorescence. Angew Chem Int Ed Engl 2025; 64:e202501179. [PMID: 39906009 DOI: 10.1002/anie.202501179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 01/31/2025] [Accepted: 02/04/2025] [Indexed: 02/06/2025]
Abstract
Achieving efficient long-wavelength organic light-emitting diodes (OLEDs) remains a challenge due to the energy gap law, which leads to increased non-radiative decay rates as the emission wavelength shifts to longer regions. Herein, a strategy of constructing folded three-dimensional architectures is proposed to explore new orange-red thermally activated delayed fluorescence (TADF) emitters with through-space charge transfer characteristics. Innovatively, naphthalene is selected as a bridge to connect O-bridged triphenylamine donor and planar dibenzo[a,c]phenazine acceptor respectively via simple Suzuki-Miyaura Coupling. In this way, a series of rigid orange-red emitters with "U"-shaped, folded "Z"-shaped and "W"-shaped configurations are elaborately constructed by modifying end groups, adjusting the numbers of naphthalene and donor, and regulating the linkage sites. The excited state natures and photophysical properties of the emitters can be effectively regulated and optimized by changing three-dimensional architectures. Finally, the prepared emitter QX36 achieves a lower non-radiative transition rate, a higher radiative rate and a higher photoluminescence quantum efficiency. Solution-processed OLEDs based QX36 present the excellent electroluminescent performance with a maximum external quantum efficiency (EQE) of up to 32.3 % and EQE of 20.6 % at 1000 cd m-2, which are the leading values of solution-processed orange-red OLEDs. This work demonstrates the promising potential of folded TADF based naphthalene backbone as emitters for future efficient solution-processed long-wavelength OLEDs.
Collapse
Affiliation(s)
- Maoqiu Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lei Hua
- School of Materials Science & Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou 213164, China
| | - Jinyang Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuchao Liu
- Key Laboratory of Rubber-Plastics, Ministry of Education, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Shouke Yan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Rubber-Plastics, Ministry of Education, Qingdao University of Science & Technology, Qingdao, 266042, China
- Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhongjie Ren
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
3
|
Primrose WL, Mayder DM, Hojo R, Hudson ZM. Dibenzodipyridophenazines with Dendritic Electron Donors Exhibiting Deep-Red Emission and Thermally Activated Delayed Fluorescence. J Org Chem 2023; 88:4224-4233. [PMID: 36920272 DOI: 10.1021/acs.joc.2c02774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
The development of deep-red thermally activated delayed fluorescence (TADF) emitters is important for applications such as organic light-emitting diodes (OLEDs) and biological imaging. Design strategies for red-shifting emission include synthesizing rigid acceptor cores to limit nonradiative decay and employing strong electron-donating groups. In this work, three novel luminescent donor-acceptor compounds based on the dibenzo[a,c]dipyrido[3,2-h:20-30-j]-phenazine-12-yl (BPPZ) acceptor were prepared using dendritic carbazole-based donors 3,3″,6,6″-tetramethoxy-9'H-9,3':6',9″-tercarbazole (TMTC), N3,N3,N6,N6-tetra-p-tolyl-9H-carbazole-3,6-diamine (TTAC), and N3,N3,N6,N6-tetrakis(4-methoxyphenyl)-9H-carbazole-3,6-diamine (TMAC). Here, dimethoxycarbazole, ditolylamine, and bis(4-methoxyphenyl)amine were introduced at the 3,6-positions of carbazole to increase the strength of these donors and induce long-wavelength emission. Substituent effects were investigated with experiments and theoretical calculations. The emission maxima of these materials in toluene were found to be 562, 658, and 680 nm for BPPZ-2TMTC, BPPZ-2TTAC, and BPPZ-2TMAC, respectively, highlighting the exceptional strength of the TMAC donor, which pushes the emission into the deep-red region of the visible spectrum as well as into the biological transparency window (650-1350 nm). Long-lived emission lifetimes were observed in each emitter due to TADF in BPPZ-2TMC and BPPZ-2TTAC, as well as room-temperature phosphorescence in BPPZ-2TMAC. Overall, this work showcases deep-red emissive dendritic donor-acceptor materials which have potential as bioimaging agents with emission in the biological transparency window.
Collapse
Affiliation(s)
- William L Primrose
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Don M Mayder
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Ryoga Hojo
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Zachary M Hudson
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
4
|
Howell SA, Koodalingam M, Jang J, Ranasinghe CSK, Gao M, Chu R, Babazadeh M, Huang DM, Burn PL, Shaw PE, Puttock EV. Twisted Carbazole Dendrons for Solution-Processable Green Emissive Phosphorescent Dendrimers. ACS APPLIED MATERIALS & INTERFACES 2023; 15:13393-13404. [PMID: 36856260 DOI: 10.1021/acsami.2c22990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A family of first-generation dendrimers containing 3,5-bis(carbazolyl)phenyl dendrons attached to a green emissive fac-tris(2-phenylpyridyl)iridium(III) core were prepared. The solubility of the dendrimers was imparted by the attachment of tert-butyl surface groups to the carbazole moieties. The dendrimers differed in the number of dendrons attached to each ligand (one or two dendrons) as well as the degree of rotational restriction within the dendrons. The densities of the films containing the doubly dendronized materials were higher than those of their mono-dendronized counterparts, with the dendrimer containing two rotationally constrained dendrons per ligand having the highest density at 1.12 ± 0.04 g cm-3. The dendrimers were found to have high photoluminescence quantum yields (PLQYs) in solution of between 80 and 90%, with the doubly dendronized materials having the lower values and a red-shifted emission. The neat film PLQY values of the dendrimers were less than those measured in solution although the relative decrease was smaller for the doubly dendronized materials. The dendrimers were incorporated into solution-processed bilayer organic light-emitting diodes (OLEDs) composed of neat or blend emissive layers and an electron transport layer. The best-performing devices had the dendrimers blended with a host material and external quantum efficiencies as high as 14.0%, which is higher than previously reported results for carbazole-incorporating emissive dendrimers. A feature of the devices containing blends of the doubly dendronized materials was that the maximum efficiency was relatively insensitive to the concentration in the host between 1 and 7 mol %.
Collapse
Affiliation(s)
- Sidney A Howell
- Centre for Organic Photonics & Electronics (COPE), School of Chemistry & Molecular Biosciences, The University of Queensland, St. Lucia 4072, QLD, Australia
| | - Manikandan Koodalingam
- Centre for Organic Photonics & Electronics (COPE), School of Chemistry & Molecular Biosciences, The University of Queensland, St. Lucia 4072, QLD, Australia
| | - Junhyuk Jang
- Centre for Organic Photonics & Electronics (COPE), School of Chemistry & Molecular Biosciences, The University of Queensland, St. Lucia 4072, QLD, Australia
| | - Chandana Sampath Kumara Ranasinghe
- Centre for Organic Photonics & Electronics (COPE), School of Chemistry & Molecular Biosciences, The University of Queensland, St. Lucia 4072, QLD, Australia
| | - Mile Gao
- Centre for Organic Photonics & Electronics (COPE), School of Chemistry & Molecular Biosciences, The University of Queensland, St. Lucia 4072, QLD, Australia
| | - Ronan Chu
- Centre for Organic Photonics & Electronics (COPE), School of Chemistry & Molecular Biosciences, The University of Queensland, St. Lucia 4072, QLD, Australia
| | - Mohammad Babazadeh
- Centre for Organic Photonics & Electronics (COPE), School of Chemistry & Molecular Biosciences, The University of Queensland, St. Lucia 4072, QLD, Australia
| | - David M Huang
- Department of Chemistry, School of Physical Sciences, The University of Adelaide, Adelaide 5005, South Australia, Australia
| | - Paul L Burn
- Centre for Organic Photonics & Electronics (COPE), School of Chemistry & Molecular Biosciences, The University of Queensland, St. Lucia 4072, QLD, Australia
| | - Paul E Shaw
- Centre for Organic Photonics & Electronics (COPE), School of Chemistry & Molecular Biosciences, The University of Queensland, St. Lucia 4072, QLD, Australia
| | - Emma V Puttock
- Centre for Organic Photonics & Electronics (COPE), School of Chemistry & Molecular Biosciences, The University of Queensland, St. Lucia 4072, QLD, Australia
| |
Collapse
|
5
|
Kothavale S, Kim SC, Cheong K, Zeng S, Wang Y, Lee JY. Solution-Processed Pure Red TADF Organic Light-Emitting Diodes With High External Quantum Efficiency and Saturated Red Emission Color. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208602. [PMID: 36653735 DOI: 10.1002/adma.202208602] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/29/2022] [Indexed: 06/17/2023]
Abstract
In spite of recent research progress in red thermally activated delayed fluorescence (TADF) emitters, highly efficient solution-processable pure red TADF emitters are rarely reported. Most of the red TADF emitters reported to date are designed using a rigid acceptor unit which renders them insoluble and unsuitable for solution-processed organic light-emitting diodes (OLEDs). To resolve this issue, a novel TADF emitter, 6,7-bis(4-(bis(4-(tert-butyl)phenyl)amino)phenyl)-2,3-bis(4-(tert-butyl)phenyl)quinoxaline-5,8-dicarbonitrile (tBuTPA-CNQx) is designed and synthesized. The highly twisted donor-acceptor architecture and appropriate highest occupied molecular orbital/lowest unoccupied molecular orbital distribution lead to a very small singlet-triplet energy gap of 0.07 eV, high photoluminescence quantum yield of 92%, and short delayed fluorescence lifetime of 52.4 µs. The peripheral t-butyl phenyl decorated quinoxaline acceptor unit and t-butyl protected triphenylamine donor unit are proven to be useful building blocks to improve solubility and minimize the intermolecular interaction. The solution-processed OLED based on tBuTPA-CNQx achieves a high external quantum efficiency (EQE) of 16.7% with a pure red emission peak at 662 nm, which is one of the highest EQE values reported till date in the solution-processed pure red TADF OLEDs. Additionally, vacuum-processable OLED based on tBuTPA-CNQx exhibits a high EQE of 22.2% and negligible efficiency roll-off.
Collapse
Affiliation(s)
- Shantaram Kothavale
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Seung Chan Kim
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Kiun Cheong
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Songkun Zeng
- School of Materials Science & Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou, 213164, P. R. China
| | - Yafei Wang
- School of Materials Science & Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou, 213164, P. R. China
| | - Jun Yeob Lee
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi, 16419, Republic of Korea
- SKKU Advanced Institute of Nano Technology, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi, 16419, Republic of Korea
- SKKU Institute of Energy Science and Technology, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi, 16419, Republic of Korea
| |
Collapse
|
6
|
Song X, Peng L, Chen W, Gao Y, Fang W, Cui G. Thermally Activated Delayed Fluorescence of a Dinuclear Platinum(II) Compound: Mechanism and Roles of an Upper Triplet State. Chemistry 2022; 28:e202201782. [DOI: 10.1002/chem.202201782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Xiu‐Fang Song
- Key Laboratory of Theoretical and Computational Photochemistry Ministry of Education, Chemistry College Beijing Normal University Beijing 100875 P.R. China
| | - Ling‐Ya Peng
- Key Laboratory of Theoretical and Computational Photochemistry Ministry of Education, Chemistry College Beijing Normal University Beijing 100875 P.R. China
| | - Wen‐Kai Chen
- Key Laboratory of Theoretical and Computational Photochemistry Ministry of Education, Chemistry College Beijing Normal University Beijing 100875 P.R. China
| | - Yuan‐Jun Gao
- Key Laboratory of Theoretical and Computational Photochemistry Ministry of Education, Chemistry College Beijing Normal University Beijing 100875 P.R. China
| | - Wei‐Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry Ministry of Education, Chemistry College Beijing Normal University Beijing 100875 P.R. China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry Ministry of Education, Chemistry College Beijing Normal University Beijing 100875 P.R. China
| |
Collapse
|
7
|
Yu Y, Xing H, Liu D, Zhao M, Sung HH, Williams ID, Lam JWY, Xie G, Zhao Z, Tang BZ. Solution‐processed AIEgen NIR OLEDs with EQE Approaching 15 %. Angew Chem Int Ed Engl 2022; 61:e202204279. [DOI: 10.1002/anie.202204279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Ying Yu
- School of Science and Engineering Shenzhen Institute of Aggregate Science and Technology The Chinese University of Hong Kong, Shenzhen Guangdong 518172 China
- HKUST-Shenzhen Research Institute Shenzhen 518057 China
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction The Hong Kong University of Science and Technology Kowloon 100071 Hong Kong China
| | - Hao Xing
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction The Hong Kong University of Science and Technology Kowloon 100071 Hong Kong China
| | - Dan Liu
- School of Science and Engineering Shenzhen Institute of Aggregate Science and Technology The Chinese University of Hong Kong, Shenzhen Guangdong 518172 China
- HKUST-Shenzhen Research Institute Shenzhen 518057 China
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| | - Mengying Zhao
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction The Hong Kong University of Science and Technology Kowloon 100071 Hong Kong China
| | - Herman H.‐Y. Sung
- The Hong Kong University of Science and Technology Kowloon 100071 Hong Kong China
| | - Ian D. Williams
- The Hong Kong University of Science and Technology Kowloon 100071 Hong Kong China
| | - Jacky W. Y. Lam
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction The Hong Kong University of Science and Technology Kowloon 100071 Hong Kong China
| | - Guohua Xie
- Sauvage Center for Molecular Sciences Hubei Key Lab on Organic and Polymeric Optoelectronic Materials Department of Chemistry Wuhan University Wuhan 430072 P. R. China
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology) China
| | - Zheng Zhao
- School of Science and Engineering Shenzhen Institute of Aggregate Science and Technology The Chinese University of Hong Kong, Shenzhen Guangdong 518172 China
- HKUST-Shenzhen Research Institute Shenzhen 518057 China
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction The Hong Kong University of Science and Technology Kowloon 100071 Hong Kong China
| | - Ben Zhong Tang
- School of Science and Engineering Shenzhen Institute of Aggregate Science and Technology The Chinese University of Hong Kong, Shenzhen Guangdong 518172 China
- HKUST-Shenzhen Research Institute Shenzhen 518057 China
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction The Hong Kong University of Science and Technology Kowloon 100071 Hong Kong China
| |
Collapse
|
8
|
Yu Y, Xing H, Liu D, Zhao M, Sung HHY, Williams ID, Lam JWY, Xie G, Zhao Z, Tang BZ. Solution‐processed AIEgen NIR OLEDs with EQE Approaching 15%. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ying Yu
- CUHKS: The Chinese University of Hong Kong - Shenzhen Science and Engineering CHINA
| | - Hao Xing
- HKUST: The Hong Kong University of Science and Technology Chemistry CHINA
| | - Dan Liu
- CUHKS: The Chinese University of Hong Kong - Shenzhen School of Science and Engineering CHINA
| | - Mengying Zhao
- HKUST: The Hong Kong University of Science and Technology Chemistry CHINA
| | - Herman H.-Y. Sung
- HKUST: The Hong Kong University of Science and Technology Chemistry CHINA
| | - Ian D. Williams
- HKUST: The Hong Kong University of Science and Technology Chemistry CHINA
| | - Jacky W. Y. Lam
- HKUST: The Hong Kong University of Science and Technology Chemistry CHINA
| | | | - Zheng Zhao
- CUHKS: The Chinese University of Hong Kong - Shenzhen School of Science and Engineering CHINA
| | - Ben Zhong Tang
- The Chinese University of Hong Kong, Shenzhen School of Science and Engineering 2001 Longxiang Boulevard, Longgang District 518172 Shenzhen CHINA
| |
Collapse
|
9
|
Zeng X, Wang X, Zhang Y, Meng G, Wei J, Liu Z, Jia X, Li G, Duan L, Zhang D. Nitrogen-Embedded Multi-Resonance Heteroaromatics with Prolonged Homogeneous Hexatomic Rings. Angew Chem Int Ed Engl 2022; 61:e202117181. [PMID: 35092123 DOI: 10.1002/anie.202117181] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Indexed: 01/15/2023]
Abstract
Nitrogen-containing polycyclic heteroaromatics have exhibited fascinating multi-resonance (MR) characteristics for efficient narrowband emission, but strategies to bathochromic shift their emissions while maintaining the narrow bandwidths remain exclusive. Here, homogeneous hexatomic rings are introduced into nitrogen-embedded MR skeletons to prolong the π-conjugation length for low-energy electronic transitions while retaining the non-bonding character of the remaining parts. The proof-of-the-concept emitters exhibit near unity photoluminescence quantum yields with peaks at 598 nm and 620 nm and small full-width-at-half-maximums of 28 nm and 31 nm, respectively. Optimal organic light-emitting diodes exhibit a high external quantum efficiency of 18.2 %, negligible efficiency roll-off, and ultra-long lifetime with negligible degradation at an initial luminance of 10 000 cd m-2 after 94 hours.
Collapse
Affiliation(s)
- Xuan Zeng
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.,Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Xiang Wang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yuewei Zhang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Guoyun Meng
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Jinbei Wei
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Ziyang Liu
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Xiaoqin Jia
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Guomeng Li
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Lian Duan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.,Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Dongdong Zhang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
10
|
Zeng X, Wang X, Zhang Y, Meng G, Wei J, Liu Z, Jia X, Li G, Duan L, Zhang D. Nitrogen‐Embedded Multi‐Resonance Heteroaromatics with Prolonged Homogeneous Hexatomic Rings. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xuan Zeng
- Tsinghua University Department of Chemistry 100084 Beijing CHINA
| | - Xiang Wang
- Tsinghua University Department of Chemistry 100084 Beijing CHINA
| | - Yuewei Zhang
- Tsinghua University Department of Chemistry 100084 Beijing CHINA
| | - Guoyun Meng
- Tsinghua University Department of Chemistry 100084 Beijing CHINA
| | - Jinbei Wei
- Chinese Academy of Sciences Institute of Chemistry 100190 Beijing CHINA
| | - Ziyang Liu
- Tsinghua University Department of Chemistry 100084 Beijing CHINA
| | - Xiaoqin Jia
- Tsinghua University Department of Chemistry 100084 Beijing CHINA
| | - Guomeng Li
- Tsinghua University Department of Chemistry 100084 Beijing CHINA
| | - Lian Duan
- Tsinghua University Chemistry HeTian Building Dept. of Chemistry, Tsinghua University, Beijing, P. R. China 100084 Beijing CHINA
| | - Dongdong Zhang
- Tsinghua University Department of Chemistry 100084 Beijing CHINA
| |
Collapse
|
11
|
Poudel DP, Taylor RT. Thiol-Ene Click-Inspired Late-Stage Modification of Long-Chain Polyurethane Dendrimers. REACTIONS 2021; 3:12-29. [DOI: 10.3390/reactions3010002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
The construction of well-defined polyurethane dendrimers is challenging due to the high reactivity of externally added or in situ formed isocyanates leading to the formation of side products. With a primary focus of dendrimer research being the interaction of the periphery and the core, we report the synthesis of a common polyurethane dendron, which allows for the late-stage variation of both the periphery and the core. The periphery can be varied simply by installing a clickable unit in the dendron and then attaching to the core and vice-versa. Thus, a common dendron allows for varying periphery and core in the final two steps. To accomplish this, a protecting group-free, one-pot multicomponent Curtius reaction was utilized to afford a robust and versatile AB2 type polyurethane dendron employing commercially available simple molecules: 5-hydroxyisophthalic acid, 11-bromoundecanol, and 4-penten-1-ol. Subsequent late-stage modifications of either dendrons or dendrimers via a thiol-ene click reaction gave surface-functionalized alternating aromatic-aliphatic polyurethane homodendrimers to generation-three (G3). The dendrons and the dendrimers were characterized by NMR, mass spectrometry, and FT-IR analysis. A bifunctional AB2 type dendritic monomer demonstrated this approach’s versatility that can either undergo a thiol-ene click or attachment to the core. This approach enables the incorporation of functionalities at the periphery and the core that may not withstand the dendrimer growth for the synthesis of polyurethane dendrimers and other dendritic macromolecules.
Collapse
Affiliation(s)
- Dhruba P. Poudel
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Richard T. Taylor
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| |
Collapse
|