1
|
Zhang H, Wang L, Xie Y, Zhang S, Ning P, Wang X. Silica-supported ionic liquid for efficient gaseous arsenic oxide removal through hydrogen bonding. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134482. [PMID: 38704905 DOI: 10.1016/j.jhazmat.2024.134482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/08/2024] [Accepted: 04/28/2024] [Indexed: 05/07/2024]
Abstract
The emission of highly-toxic gaseous As2O3 (As2O3 (g)) from nonferrous metal smelting poses environmental concerns. In this study, we prepared an adsorbent (SMIL-X) by loading an ionic liquid (IL) ([HOEtMI]NTf2) into MCM-41 through an impregnation-evaporation process and then applied it to adsorb As2O3 (g). SMIL-20% exhibited an As2O3 (g) adsorption capacity of 35.48 mg/g at 400 °C, which was 490% times higher than that of neat MCM-41. Characterization of SMIL-X indicated that the IL was mainly supported on MCM-41 through O-H…O bonds formed between the hydroxyl groups (-OH) and the silanol groups (Si-OH) and the O-H…F bonds formed between the C-F groups and the Si-OH groups. The hydrogen bonds significantly contributed to the adsorption of As2O3 (g), with -NH and -OH groups forming hydrogen bonds with As-O species (i.e., N-H…O and O-H…O). This showed superior performance to traditional adsorbents that rely on van der Waals forces and chemisorption. Moreover, after exposure to high concentrations of SO2, the adsorption capacities remained at 76% of their initial values, demonstrating some sulfur resistance. This study presents an excellent adsorbent for the purification of As2O3 (g) and shows promising application potential for treating flue gas emitted by nonferrous metal smelting processes.
Collapse
Affiliation(s)
- Hui Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Hubei Key Laboratory of Industrial Fume and Dust Pollution Control, Jianghan University, Wuhan 430056, China
| | - Langlang Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yibing Xie
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Shici Zhang
- Hubei Key Laboratory of Industrial Fume and Dust Pollution Control, Jianghan University, Wuhan 430056, China
| | - Ping Ning
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Xueqian Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
2
|
Yang H, Wang H, Du G, Ni K, Wu Y, Su H, Gao W, Tan X, Yang Z, Yang L, Ran X. Ureido Hyperbranched Polymer Modified Urea-Formaldehyde Resin as High-Performance Particleboard Adhesive. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16114021. [PMID: 37297155 DOI: 10.3390/ma16114021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023]
Abstract
The performance of urea-formaldehyde (UF) resin and its formaldehyde emission is a natural contradiction. High molar ratio UF resin performance is very good, but its formaldehyde release is high; low molar ratio UF resin formaldehyde release is reduced, but the resin itself performance becomes very bad. In order to solve this traditional problem, an excellent strategy of UF resin modified by hyperbranched polyurea is proposed. In this work, hyperbranched polyurea (UPA6N) is first synthesized by a simple method without any solvent. UPA6N is then added into industrial UF resin in different proportions as additives to manufacture particleboard and test its related properties. UF resin with a low molar ratio has a crystalline lamellar structure, and UF-UPA6N resin has an amorphous structure and rough surface. The results show that internal bonding strength increased by 58.5%, modulus of rupture increased by 24.4%, 24 h thickness swelling rate (%) decreased by 54.4%, and formaldehyde emission decreased by 34.6% compared with the unmodified UF particleboard. This may be ascribed to the polycondensation between UF and UPA6N, while UF-UPA6N resin forms more dense three-dimensional network structures. Finally, the application of UF-UPA6N resin adhesives to bond particleboard significantly improves the adhesive strength and water resistance and reduces formaldehyde emission, suggesting that the adhesive can be used as a green and eco-friendly adhesive resource for the wood industry.
Collapse
Affiliation(s)
- Hongxing Yang
- Yunnan Province Key Lab of Wood Adhesives and Glued Products, International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming 650224, China
| | - Hao Wang
- Yunnan Province Key Lab of Wood Adhesives and Glued Products, International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming 650224, China
| | - Guanben Du
- Yunnan Province Key Lab of Wood Adhesives and Glued Products, International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming 650224, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Sou thwest Mountains, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Kelu Ni
- Yunnan Province Key Lab of Wood Adhesives and Glued Products, International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming 650224, China
| | - Yingchen Wu
- Yunnan Province Key Lab of Wood Adhesives and Glued Products, International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming 650224, China
| | - Hang Su
- Yunnan Province Key Lab of Wood Adhesives and Glued Products, International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming 650224, China
| | - Wei Gao
- Yunnan Province Key Lab of Wood Adhesives and Glued Products, International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming 650224, China
| | - Xiaoping Tan
- Yunnan Province Key Lab of Wood Adhesives and Glued Products, International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming 650224, China
| | - Zhaojin Yang
- Yunnan Province Key Lab of Wood Adhesives and Glued Products, International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming 650224, China
- Kunming Feilin Panel Board Co., Ltd., Kunming 650224, China
| | - Long Yang
- Yunnan Province Key Lab of Wood Adhesives and Glued Products, International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming 650224, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Sou thwest Mountains, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Xin Ran
- Yunnan Province Key Lab of Wood Adhesives and Glued Products, International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
3
|
Lankes V, Reymus M, Mayinger F, Coldea A, Liebermann A, Hoffmann M, Stawarczyk B. Three-Dimensional Printed Resin: Impact of Different Cleaning Protocols on Degree of Conversion and Tensile Bond Strength to a Composite Resin Using Various Adhesive Systems. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16093580. [PMID: 37176461 PMCID: PMC10179867 DOI: 10.3390/ma16093580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
The present investigation tested the effect of cleaning methods and adhesives on the tensile bond strength (TBS) of a resin-based composite luted to a temporary 3D printed resin. Substrates (n= 360) were printed using a Rapidshape D20II and cleaned with a butyldiglycol-based solution, isopropanol, or by centrifugation. Specimens were air-abraded with Al2O3 (mean particle size 50 µm) at 0.1 MPa followed by pretreatment (n = 30/subgroup) with: (1) Clearfil Ceramic Primer (CCP); (2) Clearfil Universal Bond (CUB); (3) Scotchbond Universal Plus (SUP) or 4. Visio.link (VL) and luted to PanaviaV5. TBS (n = 15/subgroup) was measured initially (24 h at 37 °C water) or after thermal cycling (10,000×, 5/55 °C). The degree of conversion (DC) for each cleaning method was determined prior and after air-abrasion. Univariate ANOVA followed by post-hoc Scheffé test was computed (p < 0.05). Using Ciba-Geigy tables and chi-square, failure types were analyzed. The DC values were >85% after all cleaning methods, with centrifugation showing the lowest. CCP pretreatment exhibited the lowest TBS values, with predominantly adhesive failures. The combination of CCP and centrifugation increased the TBS values (p < 0.001) compared to the chemical cleaning. CUB, SUP, and VL, regardless of cleaning, can increase the bond strength between the 3D printed resin and the conventional luting resin.
Collapse
Affiliation(s)
- Valerie Lankes
- Department of Prosthetic Dentistry, University Hospital, LMU Munich, 80336 Munich, Germany
| | - Marcel Reymus
- Department of Conservative Dentistry and Peridontology, University Hospital, LMU Munich, 80336 Munich, Germany
| | - Felicitas Mayinger
- Department of Prosthetic Dentistry, University Hospital, LMU Munich, 80336 Munich, Germany
| | - Andrea Coldea
- Department of Prosthetic Dentistry, University Hospital, LMU Munich, 80336 Munich, Germany
| | - Anja Liebermann
- Head of the Department of Prosthetic Dentistry, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
| | - Moritz Hoffmann
- Department of Prosthetic Dentistry, University Hospital, LMU Munich, 80336 Munich, Germany
| | - Bogna Stawarczyk
- Scientific Head Dental Material Unit, Department of Prosthetic Dentistry, University Hospital, LMU Munich, 80336 Munich, Germany
| |
Collapse
|
4
|
Wibowo ES, Park BD. The role of acetone-fractionated Kraft lignin molecular structure on surface adhesion to formaldehyde-based resins. Int J Biol Macromol 2023; 225:1449-1461. [PMID: 36436598 DOI: 10.1016/j.ijbiomac.2022.11.202] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/02/2022] [Accepted: 11/20/2022] [Indexed: 11/26/2022]
Abstract
One of the key strategies for valorizing kraft lignin (KL) into value-added products such as bio-based adhesives is to perform solvent fractionation of KL to produce lignin with improved homogeneity. Understanding the structure and properties of fractionated KL will aid in the selection of the best samples for certain applications. In this study, acetone-fractionated KL from softwood and hardwood was characterized to understand its chemical structure, elemental composition, molecular weight, and thermal properties. The results revealed that acetone-insoluble KL (AIKL) fractions from softwood and hardwood have greater molecular weight, polydispersity, glass temperature, carbohydrate content, aliphatic hydroxyl groups, and a variety of native wood lignin side chains. In contrast, acetone-soluble KL (ASKL) fractions have a significantly lower molecular weight and polydispersity, a lower glass-transition temperature, a more condensed structure, more aromatic hydroxyl groups, and fewer native wood lignin side chains. In addition, the ASKL samples demonstrated stronger adhesive force and work of adhesion toward phenol-formaldehyde (PF) and urea-formaldehyde (UF) resins than the AIKL samples, regardless of the lignin source. These findings suggest that ASKL has great potential as a substitute for phenol in PF resins and as a green additive to reinforce UF resins.
Collapse
Affiliation(s)
- Eko Setio Wibowo
- Department of Wood and Paper Science, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Byung-Dae Park
- Department of Wood and Paper Science, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
5
|
Use of Thymus Plants as an Ecological Filler in Urea-Formaldehyde Adhesives Intended for Bonding Plywood. Processes (Basel) 2022. [DOI: 10.3390/pr10112209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Innovative adhesive formulations have been developed in the laboratory based on urea-formaldehyde resin by adding medicinal plants to an industrial adhesive formulation containing raw materials: urea-formaldehyde resin, urea, ammonium sulphate and starch. Specifically, Thymus species (Thymus bleicherianus, Thymus capitates, Thymus satureioides, Thymus vulgaris and Thymus zygis) replaced part of the starch and were considered as the second filler in the formulations. The physico-chemical properties of the resulting adhesive formulations, such as: pH, viscosity, gel time, solids content, density, concentration of free formaldehyde and color were measured, and characterized using Scanning Electron Microscope (SEM), X-ray Diffraction (XRD), Differential Thermal Analysis (DTA), Thermogravimetric Analysis (TGA) and Fourier Transform Infrared spectroscopy (FTIR). In order to evaluate the mechanical performances of adhesive formulations based on plants, plywood panels were produced and their mechanical properties were studied. These mechanical properties included the shear strength, bending strength and the modulus of elasticity. The performance of these panels is comparable to that of plywood panels made using the standard adhesive formulation. From the results obtained, and following the statistical studies, the new adhesive formulations based on plants have the same physico-chemical properties, the same morphologies, and the same mechanical properties. Moreover, the novel adhesives are more viscous, and they have less free formaldehyde content than the commercial formulation.
Collapse
|
6
|
Park S, Park BD. Sustainable Bio-Based Dialdehyde Cellulose for Transforming Crystalline Urea–Formaldehyde Resins into Amorphous Ones to Improve Their Performance. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Wibowo ES, Park BD, Causin V. Recent advances in urea–formaldehyde resins: converting crystalline thermosetting polymers back to amorphous ones. POLYM REV 2021. [DOI: 10.1080/15583724.2021.2014520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Eko Setio Wibowo
- Department of Wood and Paper Science, Kyungpook National University, Daegu, Republic of Korea
| | - Byung-Dae Park
- Department of Wood and Paper Science, Kyungpook National University, Daegu, Republic of Korea
| | - Valerio Causin
- Departimento di Scienze Chimiche, Università di Padova, Padova, Italy
| |
Collapse
|
8
|
Li G, Zhang X, Yang S, Li T, Wang Y, Chen M, Dong W. Fabricating a Repairable, Recyclable, Imine-based Dynamic Covalent Thermosetting Resin with Excellent Water Resistance by Introducing Dynamic Covalent Oxime Bonds. CHEMSUSCHEM 2021; 14:4340-4348. [PMID: 34467655 DOI: 10.1002/cssc.202101408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/26/2021] [Indexed: 06/13/2023]
Abstract
The sustainable production of adaptive, recyclable and imine-based dynamic covalent thermosetting resins (DCTRs) presents an opportunity for polymer scientists to address the prevalent environmental and energy concerns associated with current petroleum-based plastics. However, the imine-based DCTRs easily decompose in the presence of water, which can weaken the mechanical properties in imine-based polymers. In this study, we designed oxime-imine DCTRs that are stable in the presence of water and exhibit good mechanical properties. In the presence of one kind of amino group catalyst, the oxime-imine DCTRs could be completely recycled. Additionally, these well-designed oxime-imine DCTRs have good mechanical properties, high glass transition temperatures (166 °C), and good thermal stabilities. Taken together, this work offers a sustainable solution for the design and manufacture of high-value degradable materials intended for applications in which recyclability and reusability are indispensable.
Collapse
Affiliation(s)
- Guanglong Li
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, P. R. China
| | - Xuhui Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, P. R. China
| | - Shuobing Yang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, P. R. China
| | - Ting Li
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, P. R. China
| | - Yang Wang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, P. R. China
| | - Mingqing Chen
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, P. R. China
| | - Weifu Dong
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, P. R. China
| |
Collapse
|
9
|
Chen K, Cheng X, Chen Y, Qi J, Xie J, Huang X, Jiang Y, Xiao H. Thermal Degradation Kinetics of Urea-Formaldehyde Resins Modified by Almond Shells. ACS OMEGA 2021; 6:25702-25709. [PMID: 34632226 PMCID: PMC8495856 DOI: 10.1021/acsomega.1c03896] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Indexed: 05/27/2023]
Abstract
Almond shell-modified urea-formaldehyde resins (AUF) were prepared in this study. The optimal addition amount of almond shells was selected by formaldehyde emission and wet shear strength. The activation energy (E a) values at different conversion rates and the reaction kinetics were estimated based on the Flynn-Wall-Ozawa method. The results indicated that almond shells can significantly reduce the formaldehyde emission and increase wet shear strength and thermal stability of the urea-formaldehyde resin adhesive. The optimal addition of almond shells is 3 wt %.
Collapse
Affiliation(s)
- Kexin Chen
- College
of Forestry, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Wood
Industry and Furniture Engineering Key Laboratory of Sichuan Provincial
Department of Education, Sichuan Agricultural
University, Chengdu 611130, Sichuan, China
| | - Xue Cheng
- College
of Forestry, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Wood
Industry and Furniture Engineering Key Laboratory of Sichuan Provincial
Department of Education, Sichuan Agricultural
University, Chengdu 611130, Sichuan, China
| | - Yuzhu Chen
- College
of Forestry, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Wood
Industry and Furniture Engineering Key Laboratory of Sichuan Provincial
Department of Education, Sichuan Agricultural
University, Chengdu 611130, Sichuan, China
| | - Jinqiu Qi
- College
of Forestry, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Wood
Industry and Furniture Engineering Key Laboratory of Sichuan Provincial
Department of Education, Sichuan Agricultural
University, Chengdu 611130, Sichuan, China
| | - Jiulong Xie
- College
of Forestry, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Wood
Industry and Furniture Engineering Key Laboratory of Sichuan Provincial
Department of Education, Sichuan Agricultural
University, Chengdu 611130, Sichuan, China
| | - Xingyan Huang
- College
of Forestry, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Wood
Industry and Furniture Engineering Key Laboratory of Sichuan Provincial
Department of Education, Sichuan Agricultural
University, Chengdu 611130, Sichuan, China
| | - Yongze Jiang
- College
of Forestry, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Wood
Industry and Furniture Engineering Key Laboratory of Sichuan Provincial
Department of Education, Sichuan Agricultural
University, Chengdu 611130, Sichuan, China
| | - Hui Xiao
- College
of Forestry, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Wood
Industry and Furniture Engineering Key Laboratory of Sichuan Provincial
Department of Education, Sichuan Agricultural
University, Chengdu 611130, Sichuan, China
| |
Collapse
|
10
|
A Comparison of Adhesion Behavior of Urea-Formaldehyde Resins with Melamine-Urea-Formaldehyde Resins in Bonding Wood. FORESTS 2021. [DOI: 10.3390/f12081037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This paper reports a comparison of adhesion behavior of urea-formaldehyde (UF) with those of melamine-urea-formaldehyde (MU) resins in bonding wood by analyzing the results published in literatures. For this purpose, the adhesion behavior of UF resins prepared by blending low-viscosity resin (LVR) with high-viscosity resin (HVR) at five different blending and two formaldehyde/urea (F/U) molar ratios (1.0 and 1.2) was compared with those of two MUF resins synthesized by either simultaneous reaction (MUF-A resins) or multi-step reaction (MUF-B resins) with three melamine contents (5, 10, and 20 wt%). As the blending (LVR:HVR) ratio increased from 100:0 to 0:100, the viscosity and molar mass (Mw and Mn) of the blended UF resins increased while the gelation time decreased. The interphase features such as maximum storage modulus (E′max), resin penetration depth, and bond-line thickness of the UF resins increased to a maximum and then decreased as the blending ratio increased. In addition, both MUF-A and MUF-B resins also showed an increase in the Mw and Mn as the melamine content increased from 5% to 20%. However, the E′max, resin penetration depth, and bond-line thickness of the MUF resins decreased as the molar mass or melamine content increased. These results indicated that the adhesion of UF resins heavily depends on the interphase features while that of the MUF resins highly depends on the cohesion of the resins.
Collapse
|