1
|
Huang J, Fu K, Liu H, Zhang J, Luo J. Unveiling the Differential Intensity of Fluorous Active Sites Toward Selective Polyfluoroalkyl Substance Removal: Insights into Adsorption and Desorption Trade-Offs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 40311092 DOI: 10.1021/acs.est.5c02960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
The design of selective sorption sites for per- and polyfluoroalkyl substance (PFAS) removal, integrated with efficient regenerative strategies, remains a critical yet underexplored challenge. While existing technologies prioritize adsorption capacity over regenerative sustainability, we engineered a fluorinated hydrogel with tailored fluorous binding sites to target PFAS via their hydrophobic C-F termini. This design achieved over 90% PFAS removal efficiency in real water matrices (e.g., tap and lake water), at environmentally relevant concentrations (1 μg L-1), with robust resistance to competing background ions and natural organic matter. Selectivity correlated strongly with PFAS chain length (F9 > F12 > F6), driven by stable adsorption configurations (C-F···F-C vs C-H···F-C) and a favorable adsorption energy of -29.06 kcal mol-1. Leveraging controlled noncovalent F···F interactions, the hydrogel enabled efficient desorption (60-80% efficiency using 1% NaCl, 1% NH4Cl, or 0.5% NH4OH-NH4Cl) without structural degradation. Full regeneration (>92% recovery) was achieved with 50% methanol, supporting five reuse cycles with minimal performance decline. In continuous operation, using 1% NaCl achieved a 10-fold PFAS enrichment, while 50% methanol enabled a significantly higher 51-fold enrichment. Both approaches reduced eluent consumption by 20-50% compared to conventional activated carbon and resins. Overall, balancing PFAS adsorption and desorption trade-offs significantly reduces environmental footprint and operational costs, providing a sustainable strategy for PFAS remediation.
Collapse
Affiliation(s)
- Jinjing Huang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Kaixing Fu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Hengzhi Liu
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, Guangdong, P. R. China
| | - Jing Zhang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Jinming Luo
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| |
Collapse
|
2
|
Cruz R, Becker MR, Kozuch J, Ataka K, Netz RR, Heberle J. Infrared Spectroscopic Signatures of the Fluorous Effect Arise from a Change of Conformational Dynamics. J Am Chem Soc 2025; 147:12040-12050. [PMID: 40130333 PMCID: PMC11987022 DOI: 10.1021/jacs.4c18434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 03/26/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are synthetic compounds widely employed in society due to their chemical inertness. These substances accumulate in the environment, from where they enter human bodies, leading to harmful effects like cancer. PFAS exhibit omniphobic properties, which often cause them to separate from both aqueous and organic phases, forming a fluorous phase. Yet, the physical nature of this fluorous effect is unknown. Here, we shed light on the fluorous effect by analyzing the infrared absorption spectra of perfluorinated and semifluorinated alkanes in various solvents. We find that specific bands in the C-F stretching vibrational region exhibit selective behaviors in fluorous and nonfluorous environments. In a fluorous environment, these bands undergo significant broadening, and the asymmetric CF3 stretching bands decrease in intensity. Using static density functional theory calculations and force-field molecular dynamics simulations, we decipher the underlying molecular mechanisms: The decrease in absorption intensities is related to the intermolecular vibrational coupling of the perfluoroalkyl chains, while an acceleration of conformational changes in the carbon backbone of the molecules causes the observed band broadening. Given the high specificity of the reported spectral changes to a fluorous environment, bands in the C-F stretching range can serve as spectroscopic markers for the fluorous phase, facilitating the study of PFAS aggregation. Such knowledge can lead to the rational design of absorber materials for PFAS, which are aimed at mitigating their environmental impact.
Collapse
Affiliation(s)
- R. Cruz
- Experimental
Molecular Biophysics, Freie Universität
Berlin, Arnimallee 14, Berlin 14195, Germany
| | - M. R. Becker
- Theoretical
Bio- and Soft Matter Physics, Freie Universität
Berlin, Arnimallee 14, Berlin 14195, Germany
| | - J. Kozuch
- Experimental
Molecular Biophysics, Freie Universität
Berlin, Arnimallee 14, Berlin 14195, Germany
| | - K. Ataka
- Experimental
Molecular Biophysics, Freie Universität
Berlin, Arnimallee 14, Berlin 14195, Germany
| | - R. R. Netz
- Theoretical
Bio- and Soft Matter Physics, Freie Universität
Berlin, Arnimallee 14, Berlin 14195, Germany
| | - J. Heberle
- Experimental
Molecular Biophysics, Freie Universität
Berlin, Arnimallee 14, Berlin 14195, Germany
| |
Collapse
|
3
|
Lobitz A, Steuber A, Jia S, Guo L. Harnessing Fluorine Chemistry: Strategies for Per- and Polyfluoroalkyl Substances Removal and Enrichment. Chempluschem 2025:e2400784. [PMID: 40194928 DOI: 10.1002/cplu.202400784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 04/09/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are ubiquitous, recalcitrant, bioaccumulative, and toxic. Effective concentration technologies are essential for remediating these compounds, a major focus of environmental science and engineering today. This review provides a comprehensive overview of PFAS, from fundamental chemistry to current research, encompassing fluorine chemistry, PFAS synthesis, and their applications. The review specifically thoroughly examines how fluorine chemistry can be utilized to enhance PFAS removal and enrichment, highlighting examples of aromatic/direct fluorination and aliphatic per- and polyfluorination, where the latter induces the fluorous effect. A comprehensive list of reactions used to design or modify PFAS sorbents is summarized, serving as a resource for ongoing research. Finally, insights are offered into how fluorine chemistry can be studied and employed to further improve PFAS characterization and management.
Collapse
Affiliation(s)
- Anne Lobitz
- Department of Civil Engineering, University of Arkansas, 800 W Dickson St, Bell Engineering Center, Fayetteville, AR, 72701, USA
| | - Alex Steuber
- Department of Chemistry and Biochemistry, University of Arkansas, 345 N. Campus Walk, Fayetteville, AR, 72701, USA
| | - Shang Jia
- Department of Chemistry, Rutgers University - Newark, 73 Warren Street, Newark, NJ, 07102, USA
| | - Lei Guo
- Department of Civil Engineering, University of Arkansas, 800 W Dickson St, Bell Engineering Center, Fayetteville, AR, 72701, USA
| |
Collapse
|
4
|
Anjum S, Arik M, Patel A, Abasali N, Wu L, Sarkar A. Fluorinated Block Copolymer: An Important Sorbent Design Criteria for Effective PFOA Removal from Its Aqueous Solution. ACS APPLIED POLYMER MATERIALS 2025; 7:1187-1193. [PMID: 39974744 PMCID: PMC11833762 DOI: 10.1021/acsapm.4c03792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/27/2025] [Accepted: 01/30/2025] [Indexed: 02/21/2025]
Abstract
An important question remains unresolved, despite extensive studies on polymer-based sorbents for adsorbing poly and perfluoro alkyl substances (PFAS): How does the positioning of the fluorine-rich segment in polymer affect PFAS removal? Herein, we designed a linear, uncharged triblock copolymer incorporating a fluorinated moiety in the polymer backbone, which effectively removed perfluorooctanoic acid (PFOA) from water. In contrast, polymers without fluorogenic moiety or with it in the side chains showed significantly poorer PFOA removal. Our finding suggests that PFOA adsorption is more influenced by C-F···F-C interactions when the fluorinated segment is in the polymer backbone, not in the side chain.
Collapse
Affiliation(s)
- Sadifa Anjum
- Department
of Chemistry & Biochemistry, Montclair
State University, Montclair, New Jersey 07043, United States
| | - Michael Arik
- Department
of Chemistry & Biochemistry, Montclair
State University, Montclair, New Jersey 07043, United States
| | - Arya Patel
- Department
of Chemistry & Biochemistry, Montclair
State University, Montclair, New Jersey 07043, United States
| | - Nyalah Abasali
- Department
of Chemistry & Biochemistry, Montclair
State University, Montclair, New Jersey 07043, United States
| | - Laying Wu
- College
of Science and Mathematics, Montclair State
University, Montclair, New Jersey 07043, United States
| | - Amrita Sarkar
- Department
of Chemistry & Biochemistry, Montclair
State University, Montclair, New Jersey 07043, United States
- Sokol
Institute for Pharmaceutical Life Sciences, Montclair State University, Montclair, New Jersey 07043, United States
| |
Collapse
|
5
|
Pramanik A, Kolawole OP, Kundu S, Gates K, Rai S, Shukla MK, Ray PC. Cooperative Molecular Interaction-Based Highly Efficient Capturing of Ultrashort- and Short-Chain Emerging Per- and Polyfluoroalkyl Substances Using Multifunctional Nanoadsorbents. ACS OMEGA 2024; 9:49452-49462. [PMID: 39713664 PMCID: PMC11656356 DOI: 10.1021/acsomega.4c07159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/13/2024] [Accepted: 11/19/2024] [Indexed: 12/24/2024]
Abstract
The short-chain (C4 to C7) and ultrashort-chain (C3 to C2) per- and polyfluoroalkyl substances (PFAS) are bioaccumulative, carcinogenic to humans, and harder to remove using current technologies, which are often detected in drinking and environmental water samples. Herein, we report the development of nonafluorobutanesulfonyl (NFBS) and polyethylene-imine (PEI)-conjugated Fe3O4 magnetic nanoparticle-based magnetic nanoadsorbents and demonstrated that the novel adsorbent has the capability for highly efficient removal of six different short- and ultrashort-chain PFAS from drinking and environmental water samples. Reported experimental data indicates that by capitalizing the cooperative hydrophobic, fluorophilic, and electrostatic interaction processes, NFBS-PEI-conjugated magnetic nanoadsorbents can remove ∼100% short-chain perfluorobutanesulfonic acid within 30 min from the water sample with a maximum absorption capacity q m of ∼234 mg g-1. Furthermore, to show how cooperative interactions are necessary for effective capturing of ultrashort and short PFAS, a comparative study has been performed using PEI-attached magnetic nanoadsorbents without NFBS and acid-functionalized magnetic nanoadsorbents without PEI and NFBS. Reported data show that the ultrashort-chain perfluoropropanesulfonic acid capture efficiency is the highest for the NFBS-PEI-attached nanoadsorbent (q m ∼ 187 mg g-1) in comparison to the PEI-attached nanoadsorbent (q m ∼ 119 mg g-1) or carboxylic acid-attached nanoadsorbent (q m ∼ 52 mg g-1). In addition, the role of cooperative molecular interactions in highly efficient removal of ultrashort-chain PFAS has been analyzed in detail. Moreover, reported data demonstrate that nanoadsorbents can be used for effective removal of short-chain PFAS (<92%) and ultrashort-chain PFAS (<70%) simultaneously from reservoir, lake, tape, and river water samples within 30 min, which shows the potential of nanoadsorbents for real-life PFAS remediation.
Collapse
Affiliation(s)
- Avijit Pramanik
- Department
of Chemistry and Biochemistry, Jackson State
University, Jackson, Mississippi 39217, United States
| | - Olorunsola Praise Kolawole
- Department
of Chemistry and Biochemistry, Jackson State
University, Jackson, Mississippi 39217, United States
| | - Sanchita Kundu
- Department
of Chemistry and Biochemistry, Jackson State
University, Jackson, Mississippi 39217, United States
| | - Kaelin Gates
- Department
of Chemistry and Biochemistry, Jackson State
University, Jackson, Mississippi 39217, United States
| | - Shivangee Rai
- Department
of Chemistry and Biochemistry, Jackson State
University, Jackson, Mississippi 39217, United States
| | - Manoj K. Shukla
- US Army
Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, Mississippi 39180-6199, United States
| | - Paresh Chandra Ray
- Department
of Chemistry and Biochemistry, Jackson State
University, Jackson, Mississippi 39217, United States
| |
Collapse
|
6
|
Qian S, Tan X, Zhu Y, Wang Y, Chen H, Zheng M, Zhang C, Zhang S, Lu J. Additives Capable of Stably Supplying Anions/Cations for Homogeneous Lithium Deposition/Stripping. ACS NANO 2024; 18:34363-34374. [PMID: 39636256 DOI: 10.1021/acsnano.4c13229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
One of the important factors leading to lithium dendrites is a slow lithium-ion mass transport and imbalanced distribution of the Li+ concentration and nuclei sites on the anode surface. To achieve uniform lithium deposition during the charge and discharge process, we introduce a homemade new copolymer (with the quaternary ammonium group N3R+I- on its side chain as the main functional group), named P35, as a functional electrolyte additive to regulate the lithium deposition. Theoretical calculations show that under the strong coordinating interaction between I- and N3R+, P35 preferentially adsorbs onto the lithium foil surface, effectively countering the adsorption of lithium salt anions such as PF6-. Moreover, the positive charge carried by the quaternary ammonium salt group of P35 could interact with PF6- to limit their mobility. Consequently, the dipole interaction on lithium ions is diminished, leading to an enhancement in the transport rate and a decrease in the concentration gradient of lithium ions. Furthermore, a more efficient SEI was formed due to the dual charges electrostatic shield formed by N3R+I-. Li-Li symmetric cells and Li-LiFePO4 full cells assembled with electrolytes with P35 exhibit better rate performance, smaller polarization, and smoother deposition morphology in comparison to the cells without the P35 additive.
Collapse
Affiliation(s)
- Shangshu Qian
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Centre for Catalysis and Clean Energy, School of Environment and Science, Gold Coast Campus, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Xiao Tan
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane QLD 4072, Australia
| | - Yutong Zhu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane QLD 4072, Australia
| | - Yun Wang
- Centre for Catalysis and Clean Energy, School of Environment and Science, Gold Coast Campus, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Hao Chen
- Centre for Catalysis and Clean Energy, School of Environment and Science, Gold Coast Campus, Griffith University, Gold Coast, Queensland 4222, Australia
- Institute for Sustainable Transformation, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 51006, China
| | - Mengting Zheng
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Centre for Catalysis and Clean Energy, School of Environment and Science, Gold Coast Campus, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Cheng Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane QLD 4072, Australia
| | - Shanqing Zhang
- Centre for Catalysis and Clean Energy, School of Environment and Science, Gold Coast Campus, Griffith University, Gold Coast, Queensland 4222, Australia
- Institute for Sustainable Transformation, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 51006, China
| | - Jun Lu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
7
|
Kim SJ, Baek M, Choe J, Shin JJ. Reprocessible, Reusable, and Self-Healing Polymeric Adsorbent for Removing Perfluorinated Pollutants. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5170. [PMID: 39517446 PMCID: PMC11547204 DOI: 10.3390/ma17215170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Here, we report a reprocessible, reusable, self-healing, and form-switching polymeric adsorbent for remediating fluorinated pollutants in water. The copolymer hydrogel is designed to contain fluorophilic segments and cationic segments to induce strong binding with perfluorinated pollutants. The sorption performance reveals rapid and quantitative removal of these pollutants, driven by the synergistic effect of fluorophilic and electrostatic interaction. Importantly, a disulfide-containing dynamic crosslinker plays a crucial role in imparting multifunctionality. This enables self-healing by the restoration of crosslinks at the cut surfaces by disulfide exchange reactions and allows for the repeated use of the adsorbent via multiple adsorption-desorption cycles. Furthermore, the adsorbent is reprocessible by cleaving the crosslinks to afford linear copolymers, which can be repolymerized into a hydrogel network on demand. Also, form-switching capability is showcased through the aqueous self-assembly of linear copolymers into a fluorinated micelle, serving as another form of adsorbent for pollutant removal.
Collapse
Affiliation(s)
- Sun Ju Kim
- Department of Materials Science and Engineering, Soongsil University, Seoul 06978, Republic of Korea; (S.J.K.); (M.B.); (J.C.)
| | - Minjoon Baek
- Department of Materials Science and Engineering, Soongsil University, Seoul 06978, Republic of Korea; (S.J.K.); (M.B.); (J.C.)
| | - Jihye Choe
- Department of Materials Science and Engineering, Soongsil University, Seoul 06978, Republic of Korea; (S.J.K.); (M.B.); (J.C.)
- Department of Green Chemistry and Materials Engineering, Soongsil University, Seoul 06978, Republic of Korea
| | - Jaeman J. Shin
- Department of Materials Science and Engineering, Soongsil University, Seoul 06978, Republic of Korea; (S.J.K.); (M.B.); (J.C.)
- Department of Green Chemistry and Materials Engineering, Soongsil University, Seoul 06978, Republic of Korea
| |
Collapse
|
8
|
Yang Z, Zhu Y, Tan X, Gunjal SJJ, Dewapriya P, Wang Y, Xin R, Fu C, Liu K, Macintosh K, Sprague LG, Leung L, Hopkins TE, Thomas KV, Guo J, Whittaker AK, Zhang C. Fluoropolymer sorbent for efficient and selective capturing of per- and polyfluorinated compounds. Nat Commun 2024; 15:8269. [PMID: 39333086 PMCID: PMC11436832 DOI: 10.1038/s41467-024-52690-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/19/2024] [Indexed: 09/29/2024] Open
Abstract
Per- and poly-fluoroalkyl substances (PFAS) have gained widespread attention due to their adverse effects on health and environment. Developing efficient technology to capture PFAS from contaminated sources remains a great challenge. In this study, we introduce a type of reusable polymeric sorbent (PFPE-IEX + ) for rapid, efficient, and selective removal of multiple PFAS impurities from various contaminated water sources. The resin achieves >98% removal efficiency ([PFPE-IEX + ] = 0.5-5 mg mL-1, [PFAS]0 = 1-10 ppb in potable water and landfill leachate) and >500 mg g-1 sorption capacity for the 11 types of examined PFAS. We achieve efficient PFAS removal without breakthrough and subsequent resin regeneration and demonstrate good PFAS recovery in a proof-of-concept cartridge setup. The outcomes of this study offer valuable guidance to the design of platforms for efficient and selective PFAS capture from contaminated water, such as drinking water and landfill leachate.
Collapse
Affiliation(s)
- Zhuojing Yang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- The Centre for Advanced Imaging (CAI), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yutong Zhu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- The Centre for Advanced Imaging (CAI), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Xiao Tan
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- The Centre for Advanced Imaging (CAI), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Samruddhi Jayendra Jayendra Gunjal
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- The Centre for Advanced Imaging (CAI), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Pradeep Dewapriya
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Level 4, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| | - Yiqing Wang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- The Centre for Advanced Imaging (CAI), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ruijing Xin
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Changkui Fu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Kehan Liu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- The Centre for Advanced Imaging (CAI), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Katie Macintosh
- City of Gold Coast 833 Southport Nerang Rd, Nerang, QLD 4211, Australia
| | - Lee G Sprague
- The Chemours Company, Chemours Discovery Hub, 201 Discovery Boulevard, Newark, DE, 19713, USA
| | - Lam Leung
- The Chemours Company, Chemours Discovery Hub, 201 Discovery Boulevard, Newark, DE, 19713, USA
| | - Timothy E Hopkins
- The Chemours Company, Chemours Discovery Hub, 201 Discovery Boulevard, Newark, DE, 19713, USA
| | - Kevin V Thomas
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Level 4, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, QLD, Australia
| | - Andrew K Whittaker
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Research Council Centre of Excellence for Green Electrochemical Transformation of Carbon Dioxide, The University of Queensland, Brisbane, Australia
| | - Cheng Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
- The Centre for Advanced Imaging (CAI), The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
9
|
Olomukoro AA, Xie R, Paucar FXF, DeRosa C, Danielson ND, Gionfriddo E. Characterization of a mixed mode fluorocarbon/weak anion exchange sorbent for the separation of perfluoroalkyl substances. J Sep Sci 2024; 47:e2400413. [PMID: 39192716 DOI: 10.1002/jssc.202400413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024]
Abstract
The ubiquitous presence and persistence of per- and polyfluoroalkyl substances (PFAS) in the environment have raised concerns in the scientific community. Current research efforts are prioritizing effective PFAS remediation through novel sorbents with orthogonal interaction mechanisms. Recognized sorption mechanisms between PFAS and sorbents include hydrophobic, electrostatic, and fluorine-fluorine interaction. The interplay of these mechanisms contributes significantly to improved sorption capacity and selectivity in PFAS separations. In this study, a primary/secondary amine-functionalized polystyrene-divinylbenzene (Sepra-WAX) polymer was modified to create a fluorinated WAX resin (Sepra-WAX-KelF-PEI). The synthesis intermediate (Sepra-WAX-KelF) was also tested to assess the improvement of the final product (Sepra-WAX-KelF-PEI). The adsorption capacity of Sepra-WAX, Sepra-WAX-KelF, and Sepra-WAX-KelF-PEI, and their interactions with PFAS were evaluated. The effect of pH, ionic strength, and organic solvents on PFAS sorption in aqueous solution was also investigated. The sorbents showed varied adsorption capacities for perfluorooctanoic acid, perfluoropentanoic acid, perfluoro-n-decanoic acid, and hexafluoropropylene oxide dimer acid, with the average extraction capacity of the four analytes being Sepra-WAX-KelF-PEI (523 mg/g) > Sepra-WAX (353 mg/g) > Sepra-WAX-KelF (220 mg/g). Sepra-WAX-KelF-PEI provided the highest adsorption capacity for all analytes tested, proving that the combination of electrostatic and hydrophobic/fluorophilic interactions is crucial for the effective preconcentration of PFAS and its future applications for PFAS remediation from aqueous solutions.
Collapse
Affiliation(s)
- Aghogho A Olomukoro
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio, USA
- Dr. Nina McClelland Laboratory for Water Chemistry and Environmental Analysis, The University of Toledo, Toledo, Ohio, USA
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Ruichao Xie
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | - Fabiola X Fernandez Paucar
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio, USA
- Dr. Nina McClelland Laboratory for Water Chemistry and Environmental Analysis, The University of Toledo, Toledo, Ohio, USA
| | - Charlotte DeRosa
- Dr. Nina McClelland Laboratory for Water Chemistry and Environmental Analysis, The University of Toledo, Toledo, Ohio, USA
- Department of Pharmacy Practice, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, Ohio, USA
| | - Neil D Danielson
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | - Emanuela Gionfriddo
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio, USA
- Dr. Nina McClelland Laboratory for Water Chemistry and Environmental Analysis, The University of Toledo, Toledo, Ohio, USA
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York, USA
| |
Collapse
|
10
|
Steppan CG, Simon L, Blackwood C, Emrick T. Sulfobetaine Zwitterions with Embedded Fluorocarbons: Synthesis and Interfacial Properties. ACS Macro Lett 2024; 13:761-767. [PMID: 38828757 DOI: 10.1021/acsmacrolett.4c00198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
We describe the preparation of a new set of fluorinated sulfobetaine (FSB) zwitterionic polymers in which fluorocarbon moieties are attached directly to the zwitterionic components. An efficient two-step modification to the conventional sulfobetaine methacrylate monomer synthesis gave access to a series of polymer zwitterions containing varying extents of fluorocarbon character. FSB methacrylates proved amenable to homo- and copolymerizations using reversible addition-fragmentation chain transfer (RAFT) conditions, affording polymers with molecular weights ranging from 5 to 20 kDa and with low molecular weight distributions. Thin films of FSB homopolymers on glass proved stable to aqueous environments and exhibited increasing hydrophobicity with fluorocarbon content, as well as remarkably large water contact angle hysteresis values that enable pinning of water droplets on hydrophobic surfaces, reminiscent of the "petal effect" found in nature. FSB-containing copolymers in aqueous media demonstrated markedly reduced oil-water interfacial tension values, even with moderate (20-50 mol %) FSB incorporation.
Collapse
Affiliation(s)
- Carla G Steppan
- Polymer Science and Engineering Department, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Lea Simon
- Polymer Science and Engineering Department, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Chantae Blackwood
- Polymer Science and Engineering Department, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Todd Emrick
- Polymer Science and Engineering Department, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
11
|
de Souza BB, Meegoda J. Insights into PFAS environmental fate through computational chemistry: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171738. [PMID: 38494023 DOI: 10.1016/j.scitotenv.2024.171738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/28/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are widely used chemicals that exhibit exceptional chemical and thermal stability. However, their resistance to degradation has led to their widespread environmental contamination. PFAS also negatively affect the environment and other organisms, highlighting the need for effective remediation methods to mitigate their presence and prevent further contamination. Computational chemistry methods, such as Density Functional Theory (DFT) and Molecular Dynamics (MD) offer valuable tools for studying PFAS and simulating their interactions with other molecules. This review explores how computational chemistry methods contribute to understanding and tackling PFAS in the environment. PFAS have been extensively studied using DFT and MD, each method offering unique advantages and computational limitations. MD simulates large macromolecules systems however it lacks the ability model chemical reactions, while DFT provides molecular insights however at a high computational cost. The integration of DFT with MD shows promise in predicting PFAS behavior in different environments. This work summarizes reported studies on PFAS compounds, focusing on adsorption, destruction, and bioaccumulation, highlighting contributions of computational methods while discussing the need for continued research. The findings emphasize the importance of computational chemistry in addressing PFAS contamination, guiding risk assessments, and informing future research and innovations in this field.
Collapse
Affiliation(s)
- Bruno Bezerra de Souza
- John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Jay Meegoda
- John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| |
Collapse
|
12
|
He Y, Cheng X, Gunjal SJ, Zhang C. Advancing PFAS Sorbent Design: Mechanisms, Challenges, and Perspectives. ACS MATERIALS AU 2024; 4:108-114. [PMID: 38496039 PMCID: PMC10941273 DOI: 10.1021/acsmaterialsau.3c00066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/30/2023] [Accepted: 10/24/2023] [Indexed: 03/19/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a group of synthetic chemicals characterized with persistence and multisurface resistance. Their accumulation in the environment and toxicity to human beings have contributed to the rapid development of regulations worldwide since 2002. The sorption strategy, taking advantage of intermolecular interactions for PFAS capture, provides a promising and efficient solution to the treatment of PFAS contaminated sources. Hydrophobic and electrostatic interactions are the two commonly found in commercially available PFAS sorbents, with the fluorous interaction being the novel mechanism applied for sorbent selectivity. The main object of this Perspective is to provide a critical review on the current design criteria of PFAS sorbents, with particular focus on their sorption and interaction mechanisms as well as limitations. An outlook on future innovative design for efficient PFAS sorbents is also provided.
Collapse
Affiliation(s)
- Yutong He
- Australian
Institute for Bioengineering and Nanotechnology, The University of
Queensland, Brisbane 4072, Australia
- The
Centre for Advanced Imaging, The University
of Queensland, Brisbane 4072, Australia
| | - Xinrong Cheng
- Australian
Institute for Bioengineering and Nanotechnology, The University of
Queensland, Brisbane 4072, Australia
- The
Centre for Advanced Imaging, The University
of Queensland, Brisbane 4072, Australia
| | - Samruddhi Jayendra Gunjal
- Australian
Institute for Bioengineering and Nanotechnology, The University of
Queensland, Brisbane 4072, Australia
- The
Centre for Advanced Imaging, The University
of Queensland, Brisbane 4072, Australia
| | - Cheng Zhang
- Australian
Institute for Bioengineering and Nanotechnology, The University of
Queensland, Brisbane 4072, Australia
- The
Centre for Advanced Imaging, The University
of Queensland, Brisbane 4072, Australia
| |
Collapse
|
13
|
Pramanik A, Kolawole OP, Gates K, Kundu S, Shukla MK, Moser RD, Ucak-Astarlioglu M, Al-Ostaz A, Ray PC. 2D Fluorinated Graphene Oxide (FGO)-Polyethyleneimine (PEI) Based 3D Porous Nanoplatform for Effective Removal of Forever Toxic Chemicals, Pharmaceutical Toxins, and Waterborne Pathogens from Environmental Water Samples. ACS OMEGA 2023; 8:44942-44954. [PMID: 38046318 PMCID: PMC10688155 DOI: 10.1021/acsomega.3c06360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 12/05/2023]
Abstract
Although water is essential for life, as per the United Nations, around 2 billion people in this world lack access to safely managed drinking water services at home. Herein we report the development of a two-dimensional (2D) fluorinated graphene oxide (FGO) and polyethylenimine (PEI) based three-dimensional (3D) porous nanoplatform for the effective removal of polyfluoroalkyl substances (PFAS), pharmaceutical toxins, and waterborne pathogens from contaminated water. Experimental data show that the FGO-PEI based nanoplatform has an estimated adsorption capacity (qm) of ∼219 mg g-1 for perfluorononanoic acid (PFNA) and can be used for 99% removal of several short- and long-chain PFAS. A comparative PFNA capturing study using different types of nanoplatforms indicates that the qm value is in the order FGO-PEI > FGO > GO-PEI, which indicates that fluorophilic, electrostatic, and hydrophobic interactions play important roles for the removal of PFAS. Reported data show that the FGO-PEI based nanoplatform has a capability for 100% removal of moxifloxacin antibiotics with an estimated qm of ∼299 mg g-1. Furthermore, because the pore size of the nanoplatform is much smaller than the size of pathogens, it has a capability for 100% removal of Salmonella and Escherichia coli from water. Moreover, reported data show around 96% removal of PFAS, pharmaceutical toxins, and pathogens simultaneously from spiked river, lake, and tap water samples using the nanoplatform.
Collapse
Affiliation(s)
- Avijit Pramanik
- Department
of Chemistry and Biochemistry, Jackson State
University, Jackson, Mississippi 39217, United States
| | - Olorunsola Praise Kolawole
- Department
of Chemistry and Biochemistry, Jackson State
University, Jackson, Mississippi 39217, United States
| | - Kaelin Gates
- Department
of Chemistry and Biochemistry, Jackson State
University, Jackson, Mississippi 39217, United States
| | - Sanchita Kundu
- Department
of Chemistry and Biochemistry, Jackson State
University, Jackson, Mississippi 39217, United States
| | - Manoj K. Shukla
- US
Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, Mississippi 39180-6199, United States
| | - Robert D Moser
- US
Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, Mississippi 39180-6199, United States
| | - Mine Ucak-Astarlioglu
- US
Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, Mississippi 39180-6199, United States
| | - Ahmed Al-Ostaz
- Department
of Civil Engineering, University of Mississippi, University, Mississippi 38677, United States
| | - Paresh Chandra Ray
- Department
of Chemistry and Biochemistry, Jackson State
University, Jackson, Mississippi 39217, United States
| |
Collapse
|
14
|
Bezerra de Souza B, Aluthgun Hewage S, A Kewalramani J, Ct van Duin A, N Meegoda J. A ReaxFF-based molecular dynamics study of the destruction of PFAS due to ultrasound. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122026. [PMID: 37315883 DOI: 10.1016/j.envpol.2023.122026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/05/2023] [Accepted: 06/10/2023] [Indexed: 06/16/2023]
Abstract
This work uses a computational approach to provide a mechanistic explanation for the experimentally observed destruction of per- and polyfluoroalkyl substances (PFAS) in water due to ultrasound. The PFAS compounds have caused a strong public and regulatory response due to their ubiquitous presence in the environment and toxicity to humans. In this research, ReaxFF -based Molecular Dynamics simulation under several temperatures ranging from 373 K to 5,000 K and different environments such as water vapor, O2, N2, and air were performed to understand the mechanism of PFAS destruction. The simulation results showed greater than 98% PFAS degradation was observed within 8 ns under a temperature of 5,000 K in a water vapor phase, replicating the observed micro/nano bubbles implosion and PFAS destruction during the application of ultrasound. Additionally, the manuscript discusses the reaction pathways and how PFAS degradation evolves providing a mechanistic basis for the destruction of PFAS in water due to ultrasound. The simulation showed that small chain molecules C1 and C2 fluoro-radical products are the most dominant species over the simulated period and are the impediment to an efficient degradation of PFAS. Furthermore, this research confirms the empirical findings observations that the mineralization of PFAS molecules occurs without the generation of byproducts. These findings highlight the potential of virtual experiments in complementing laboratory experiments and theoretical projections to enhance the understanding of PFAS mineralization during the application of ultrasound.
Collapse
Affiliation(s)
- Bruno Bezerra de Souza
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Shaini Aluthgun Hewage
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Jitendra A Kewalramani
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Adri Ct van Duin
- Department of Mechanical Engineering, The Pennsylvania State University, State College, PA, USA
| | - Jay N Meegoda
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ, USA.
| |
Collapse
|
15
|
Román Santiago A, Yin S, Elbert J, Lee J, Shukla D, Su X. Imparting Selective Fluorophilic Interactions in Redox Copolymers for the Electrochemically Mediated Capture of Short-Chain Perfluoroalkyl Substances. J Am Chem Soc 2023; 145:9508-9519. [PMID: 36944079 DOI: 10.1021/jacs.2c10963] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
With increasing regulations on per- and polyfluoroalkyl substances (PFAS) across the world, understanding the molecular level interactions that drive their binding by functional adsorbent materials is key to effective PFAS removal from water streams. With the phaseout of legacy long-chain PFAS, the emergence of short-chain PFAS has posed a significant challenge for material design due to their higher mobility and hydrophilicity and inefficient removal by conventional treatment methods. Here, we demonstrate how cooperative molecular interactions are essential to target short-chain PFAS (from C4 to C7) by tailoring structural units to enhance affinity while modulating the electrochemical control of capture and release of PFAS. We report a new class of fluorinated redox-active amine-functionalized copolymers to leverage both fluorophilic and electrostatic interactions for short-chain PFAS binding. We combine molecular dynamics (MD) simulations and electrosorption to elucidate the role of the designer functional groups in enabling affinity toward short-chain PFAS. Preferential interaction coefficients from MD simulations correlated closely with experimental trends: fluorination enhanced the overall PFAS uptake and promoted the capture of less hydrophobic short-chain PFAS (C ≤ 5), while electrostatic interactions provided by secondary amine groups were sufficient to capture PFAS with higher hydrophobicity (C ≥ 6). The addition of an induced electric field showed favorable kinetic enhancement for the shortest PFAS and increased the reversibility of release from the electrode. Integration of these copolymers with electrochemical separations showed potential for removing these contaminants at environmentally relevant conditions while eliminating the need for chemical regeneration.
Collapse
Affiliation(s)
- Anaira Román Santiago
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Song Yin
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Johannes Elbert
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jiho Lee
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Diwakar Shukla
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Xiao Su
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
16
|
Tan X, Dewapriya P, Prasad P, Chang Y, Huang X, Wang Y, Gong X, Hopkins TE, Fu C, Thomas KV, Peng H, Whittaker AK, Zhang C. Efficient Removal of Perfluorinated Chemicals from Contaminated Water Sources Using Magnetic Fluorinated Polymer Sorbents. Angew Chem Int Ed Engl 2022; 61:e202213071. [PMID: 36225164 PMCID: PMC10946870 DOI: 10.1002/anie.202213071] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Indexed: 11/07/2022]
Abstract
Efficient removal of per- and polyfluoroalkyl substances (PFAS) from contaminated waters is urgently needed to safeguard public and environmental health. In this work, novel magnetic fluorinated polymer sorbents were designed to allow efficient capture of PFAS and fast magnetic recovery of the sorbed material. The new sorbent has superior PFAS removal efficiency compared with the commercially available activated carbon and ion-exchange resins. The removal of the ammonium salt of hexafluoropropylene oxide dimer acid (GenX) reaches >99 % within 30 s, and the estimated sorption capacity was 219 mg g-1 based on the Langmuir model. Robust and efficient regeneration of the magnetic polymer sorbent was confirmed by the repeated sorption and desorption of GenX over four cycles. The sorption of multiple PFAS in two real contaminated water matrices at an environmentally relevant concentration (1 ppb) shows >95 % removal for the majority of PFAS tested in this study.
Collapse
Affiliation(s)
- Xiao Tan
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandCorner College and Cooper Rds (Bldg 75)BrisbaneQueensland4072Australia
| | - Pradeep Dewapriya
- Queensland Alliance for Environmental Health SciencesThe University of Queensland, Level 420 Cornwall StreetWoolloongabbaQueensland4102Australia
| | - Pritesh Prasad
- Queensland Alliance for Environmental Health SciencesThe University of Queensland, Level 420 Cornwall StreetWoolloongabbaQueensland4102Australia
| | - Yixin Chang
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandCorner College and Cooper Rds (Bldg 75)BrisbaneQueensland4072Australia
| | - Xumin Huang
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandCorner College and Cooper Rds (Bldg 75)BrisbaneQueensland4072Australia
| | - Yiqing Wang
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandCorner College and Cooper Rds (Bldg 75)BrisbaneQueensland4072Australia
| | - Xiaokai Gong
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandCorner College and Cooper Rds (Bldg 75)BrisbaneQueensland4072Australia
| | - Timothy E. Hopkins
- The Chemours Company, Chemours Discovery Hub201 Discovery BoulevardNewarkDE 19713USA
| | - Changkui Fu
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandCorner College and Cooper Rds (Bldg 75)BrisbaneQueensland4072Australia
| | - Kevin V. Thomas
- Queensland Alliance for Environmental Health SciencesThe University of Queensland, Level 420 Cornwall StreetWoolloongabbaQueensland4102Australia
| | - Hui Peng
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandCorner College and Cooper Rds (Bldg 75)BrisbaneQueensland4072Australia
| | - Andrew K. Whittaker
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandCorner College and Cooper Rds (Bldg 75)BrisbaneQueensland4072Australia
| | - Cheng Zhang
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandCorner College and Cooper Rds (Bldg 75)BrisbaneQueensland4072Australia
| |
Collapse
|
17
|
Jin X, Wang Z, Hong R, Chen Z, Wu B, Ding S, Zhu W, Lin Y, Gu C. Supramolecular assemblies of a newly developed indole derivative for selective adsorption and photo-destruction of perfluoroalkyl substances. WATER RESEARCH 2022; 225:119147. [PMID: 36206684 DOI: 10.1016/j.watres.2022.119147] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/31/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Per-/polyfluoroalkyl substances (PFASs) contamination has caused worldwide health concerns, and increased demand for effective elimination strategies. Herein, we developed a new indole derivative decorated with a hexadecane chain and a tertiary amine center (named di-indole hexadecyl ammonium, DIHA), which can form stable nanospheres (100-200 nm) in water via supramolecular assembly. As the DIHA nanospheres can induce electrostatic, hydrophobic and van der Waals interactions (all are long-ranged) that operative cooperatively, in addition to the nano-sized particles with large surface area, the DIHA nanocomposite exhibited extremely fast adsorption rates (in seconds), high adsorption capacities (0.764-0.857 g g-1) and selective adsorption for perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS), outperformed the previous reported high-end PFASs adsorbents. Simultaneously, the DIHA nanospheres can produce hydrated electron (eaq-) when subjected to UV irradiation, with the virtue of constraining the photo-generated eaq- and the adsorbed PFOA/PFOS molecules entirely inside the nanocomposite. As such, the UV/DIHA system exhibits extremely high degradation/defluorination efficiency for PFOA/PFOS, even under ambient conditions, especially with the advantages of low chemical dosage requirement (μM level) and robust performance against environmental variables. Therefore, it is a new attempt of using supramolecular approach to construct an indole-based nanocomposite, which can elegantly combine adsorption and degradation functions. The novel DIHA nanoemulsion system would shed light on the treatment of PFAS-contaminated wastewater.
Collapse
Affiliation(s)
- Xin Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 201123, China
| | - Zhe Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 201123, China
| | - Ran Hong
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Zhanghao Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 201123, China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 201123, China
| | - Shichao Ding
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| | - Wenlei Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 201123, China.
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 201123, China.
| |
Collapse
|
18
|
Manning IM, Guan Pin Chew N, Macdonald HP, Miller KE, Strynar MJ, Coronell O, Leibfarth FA. Hydrolytically Stable Ionic Fluorogels for High-Performance Remediation of Per- and Polyfluoroalkyl Substances (PFAS) from Natural Water. Angew Chem Int Ed Engl 2022; 61:e202208150. [PMID: 35945652 PMCID: PMC9711936 DOI: 10.1002/anie.202208150] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Indexed: 01/11/2023]
Abstract
PFAS are known bioaccumulative and persistent chemicals which pollute natural waters globally. There exists a lack of granular sorbents to efficiently remove both legacy and emerging PFAS at environmentally relevant concentrations. Herein, we report a class of polymer networks with a synergistic combination of ionic and fluorous components that serve as granular materials for the removal of anionic PFAS from water. A library of Ionic Fluorogels (IFs) with systematic variation in charge density and polymer network architecture was synthesized from hydrolytically stable fluorous building blocks. The IFs were demonstrated as effective sorbents for the removal of 21 legacy and emerging PFAS from a natural water and were regenerable over multiple cycles of reuse. Comparison of one IF to a commercial ion exchange resin in mini-rapid small-scale column tests demonstrated superior performance for the removal of short-chain PFAS from natural water under operationally relevant conditions.
Collapse
Affiliation(s)
- Irene M. Manning
- Department of ChemistryUniversity of North Carolina at Chapel Hill131 South RdChapel HillNC 27599USA
| | - Nick Guan Pin Chew
- Department of Environmental Sciences and EngineeringGillings School of Global Public HealthUniversity of North Carolina at Chapel Hill135 Dauer DrChapel HillNC 27599USA
| | - Haley P. Macdonald
- Department of Environmental Sciences and EngineeringGillings School of Global Public HealthUniversity of North Carolina at Chapel Hill135 Dauer DrChapel HillNC 27599USA
| | - Kelsey E. Miller
- Office of Research and DevelopmentCenter for Environmental Measurement and ModelingU.S. Environmental Protection AgencyResearch Triangle ParkNC 27709USA
| | - Mark J. Strynar
- Office of Research and DevelopmentCenter for Environmental Measurement and ModelingU.S. Environmental Protection AgencyResearch Triangle ParkNC 27709USA
| | - Orlando Coronell
- Department of Environmental Sciences and EngineeringGillings School of Global Public HealthUniversity of North Carolina at Chapel Hill135 Dauer DrChapel HillNC 27599USA
| | - Frank A. Leibfarth
- Department of ChemistryUniversity of North Carolina at Chapel Hill131 South RdChapel HillNC 27599USA
| |
Collapse
|
19
|
Wang Y, Tan X, Usman A, Zhang Y, Sawczyk M, Král P, Zhang C, Whittaker AK. Elucidating the Impact of Hydrophilic Segments on 19F MRI Sensitivity of Fluorinated Block Copolymers. ACS Macro Lett 2022; 11:1195-1201. [DOI: 10.1021/acsmacrolett.2c00414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yiqing Wang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Xiao Tan
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Adil Usman
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yuhao Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Michał Sawczyk
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Petr Král
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
- Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, United States
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Cheng Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Andrew K. Whittaker
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
20
|
Wang X, Zhang C, Sawczyk M, Sun J, Yuan Q, Chen F, Mendes TC, Howlett PC, Fu C, Wang Y, Tan X, Searles DJ, Král P, Hawker CJ, Whittaker AK, Forsyth M. Ultra-stable all-solid-state sodium metal batteries enabled by perfluoropolyether-based electrolytes. NATURE MATERIALS 2022; 21:1057-1065. [PMID: 35788569 DOI: 10.1038/s41563-022-01296-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Rechargeable batteries paired with sodium metal anodes are considered to be one of the most promising high-energy and low-cost energy-storage systems. However, the use of highly reactive sodium metal and the formation of sodium dendrites during battery operation have caused safety concerns, especially when highly flammable liquid electrolytes are used. Here we design and develop solvent-free solid polymer electrolytes (SPEs) based on a perfluoropolyether-terminated polyethylene oxide (PEO)-based block copolymer for safe and stable all-solid-state sodium metal batteries. Compared with traditional PEO SPEs, our results suggest that block copolymer design allows for the formation of self-assembled nanostructures leading to high storage modulus at elevated temperatures with the PEO domains providing transport channels even at high salt concentration (ethylene oxide/sodium = 8/2). Moreover, it is demonstrated that the incorporation of perfluoropolyether segments enhances the Na+ transference number of the electrolyte to 0.46 at 80 °C and enables a stable solid electrolyte interface. The new SPE exhibits highly stable symmetric cell-cycling performance at high current density (0.5 mA cm-2 and 1.0 mAh cm-2, up to 1,000 h). Finally, the assembled all-solid-state sodium metal batteries demonstrate outstanding capacity retention, long-term charge/discharge stability (Coulombic efficiency, 99.91%; >900 cycles with Na3V2(PO4)3 cathode) and good capability with high loading NaFePO4 cathode (>1 mAh cm-2).
Collapse
Affiliation(s)
- Xiaoen Wang
- Institute for Frontier Materials (IFM), ARC Industry Training Transformation Centre for Future Energy Storage, storEnergy, Deakin University, Geelong, Victoria, Australia.
| | - Cheng Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia.
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, Queensland, Australia.
| | - Michal Sawczyk
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Ju Sun
- Institute for Frontier Materials (IFM), ARC Industry Training Transformation Centre for Future Energy Storage, storEnergy, Deakin University, Geelong, Victoria, Australia
| | - Qinghong Yuan
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai, P. R. China
| | - Fangfang Chen
- Institute for Frontier Materials (IFM), ARC Industry Training Transformation Centre for Future Energy Storage, storEnergy, Deakin University, Geelong, Victoria, Australia
| | - Tiago C Mendes
- Institute for Frontier Materials (IFM), ARC Industry Training Transformation Centre for Future Energy Storage, storEnergy, Deakin University, Geelong, Victoria, Australia
| | - Patrick C Howlett
- Institute for Frontier Materials (IFM), ARC Industry Training Transformation Centre for Future Energy Storage, storEnergy, Deakin University, Geelong, Victoria, Australia
| | - Changkui Fu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, Queensland, Australia
| | - Yiqing Wang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Xiao Tan
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Debra J Searles
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences and Centre for Theoretical and Computational Molecular Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Petr Král
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA
- Departments of Physics, Pharmaceutical Sciences, and Chemical Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Craig J Hawker
- Materials Research Laboratory, University of California Santa Barbara, CA, USA
- Materials Department, University of California Santa Barbara, CA, USA
- Department of Chemistry and Biochemistry, University of California Santa Barbara, CA, USA
| | - Andrew K Whittaker
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia.
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, Queensland, Australia.
| | - Maria Forsyth
- Institute for Frontier Materials (IFM), ARC Industry Training Transformation Centre for Future Energy Storage, storEnergy, Deakin University, Geelong, Victoria, Australia.
| |
Collapse
|
21
|
Choudhary A, Bedrov D. Interaction of Short-Chain PFAS with Polycationic Gels: How Much Fluorination is Necessary for Efficient Adsorption? ACS Macro Lett 2022; 11:1123-1128. [PMID: 36036717 DOI: 10.1021/acsmacrolett.2c00383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The short-chain per- and polyfluorinated alkyl substances (PFAS), introduced to replace the legacy PFAS compounds, turned out to be as toxic and harmful as their longer-chain predecessors and even harder to sequester from contaminated water sources. In this work, molecular dynamics (MD) simulations are employed to investigate the adsorption mechanism of GenX, a representative compound for short-chain PFAS, on a polycationic hydrogel with various extents of fluorination in its backbone and cross-linkers. Simulations indicate that the presence of fluorinated segments next to cationic groups in the polymer gel structure provides the most efficient environment for GenX adsorption. The combination of electrostatic and hydrophobic interactions offered by the cationic-fluorophilic segments amplifies the binding of GenX molecules compared to polymer segments with nonfluorinated cationic or noncationic fluorinated segments. Moreover, such a gel demonstrates high selectivity toward GenX against its hydrogenated analogue.
Collapse
Affiliation(s)
- Aditya Choudhary
- Department Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| | - Dmitry Bedrov
- Department Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
22
|
Manning IM, Chew NGP, Macdonald HP, Miller KE, Strynar MJ, Coronell O, Leibfarth F. Hydrolytically Stable Ionic Fluorogels for High‐Performance Remediation of Per‐ and Polyfluoroalkyl Substances (PFAS) from Natural Water. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Irene M Manning
- University of North Carolina at Chapel Hill Kenan Science Library: The University of North Carolina at Chapel Hill Chemistry 27599 Chapel Hill UNITED STATES
| | - Nick Guan Pin Chew
- University of North Carolina at Chapel Hill Kenan Science Library: The University of North Carolina at Chapel Hill Environmental Sciences and Engineering UNITED STATES
| | - Haley P Macdonald
- University of North Carolina at Chapel Hill Kenan Science Library: The University of North Carolina at Chapel Hill Environmental Sciences and Engineering UNITED STATES
| | - Kelsey E Miller
- Environmental Protection Agency Office of Research and Development, Center for Environmental Measurement and Modeling UNITED STATES
| | - Mark J Strynar
- Environmental Protection Agency Office of Research and Development, Center for Environmental Measurement and Modeling UNITED STATES
| | - Orlando Coronell
- University of North Carolina at Chapel Hill Kenan Science Library: The University of North Carolina at Chapel Hill Environmental Sciences and Engineering UNITED STATES
| | - Frank Leibfarth
- University of North Carolina Chemistry University of North CarolinaKenan Labs A500 27599 Chapel Hill UNITED STATES
| |
Collapse
|
23
|
Xie R, Zhou L, Smith AE, Almquist CB, Berberich JA, Danielson ND. A dual grafted fluorinated hydrocarbon amine weak anion exchange resin polymer for adsorption of perfluorooctanoic acid from water. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128521. [PMID: 35231815 DOI: 10.1016/j.jhazmat.2022.128521] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/12/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a persistent and recalcitrant organic contaminant of exceptional environmental concern, and its removal from water has increasingly attracted global attention due to its wide distribution and strong bioaccumulation. Adsorption is considered an effective technique for PFOA removal and more efficient PFOA sorbents are still of interest. This study developed a dual grafted fluorinated hydrocarbon amine weak anion exchange (WAX) polymeric resin (Sepra-WAX-KelF-PEI) for PFOA removal from water. This polymer was synthesized by a two-step amine grafting reaction procedure involving first the reaction of the Sepra-WAX hydrocarbon polymer with poly(vinylidinefluoride-chlorotrifluoroethylene) (Kel-F 800) and then a second reaction with polyethyleneimine (PEI). Characterization of the synthesized polymers was performed using scanning electron microscopy and elemental analysis (F and Cl) by energy dispersive X-ray spectroscopy. The PFOA adsorption performance evaluations were conducted by packed column flow analyses with on-line detection. The results show the breakthrough of the Sepra-WAX-KelF-PEI synthesized with optimum stoichiometry was two times better than the starting anion exchange polymer Sepra-WAX, and six times better than powdered activated carbon, when using the same column size. The adsorption mechanisms of this novel adsorbent including hydrophobic interaction and electrostatic interaction were also clarified in this study. The adsorption kinetic parameters of the two optimum synthesized sorbents were determined using the Thomas model, the Yoon-Nelson model, and batch isotherm studies, and compared with those found with activated carbon and the starting WAX resin. Good agreement of the batch isotherm and column studies with respect to adsorption capacities trends between all three polymers (Sepra-WAX, Sepra-WAX-KelF, and Sepra-WAX-KelF-PEI) were noted.
Collapse
Affiliation(s)
- Ruichao Xie
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Ling Zhou
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Abigail E Smith
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | | | - Jason A Berberich
- Department of Chemical Engineering, Miami University, Oxford, OH 45056, USA
| | - Neil D Danielson
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA.
| |
Collapse
|
24
|
Kancharla S, Dong D, Bedrov D, Alexandridis P, Tsianou M. Binding of Perfluorooctanoate to Poly(ethylene oxide). Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Samhitha Kancharla
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, New York 14260-4200, United States
| | - Dengpan Dong
- Department of Materials Science and Engineering, University of Utah, 122 South Central Campus Drive, Room 304, Salt Lake City, Utah 84112, United States
| | - Dmitry Bedrov
- Department of Materials Science and Engineering, University of Utah, 122 South Central Campus Drive, Room 304, Salt Lake City, Utah 84112, United States
| | - Paschalis Alexandridis
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, New York 14260-4200, United States
| | - Marina Tsianou
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, New York 14260-4200, United States
| |
Collapse
|
25
|
Tan X, Sawczyk M, Chang Y, Wang Y, Usman A, Fu C, Král P, Peng H, Zhang C, Whittaker AK. Revealing the Molecular-Level Interactions between Cationic Fluorinated Polymer Sorbents and the Major PFAS Pollutant PFOA. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xiao Tan
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Michał Sawczyk
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Yixin Chang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yiqing Wang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Adil Usman
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Changkui Fu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Petr Král
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
- Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, United States
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Hui Peng
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Cheng Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Andrew K. Whittaker
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
26
|
Zhang C, Yan K, Fu C, Peng H, Hawker CJ, Whittaker AK. Biological Utility of Fluorinated Compounds: from Materials Design to Molecular Imaging, Therapeutics and Environmental Remediation. Chem Rev 2022; 122:167-208. [PMID: 34609131 DOI: 10.1021/acs.chemrev.1c00632] [Citation(s) in RCA: 176] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The applications of fluorinated molecules in bioengineering and nanotechnology are expanding rapidly with the controlled introduction of fluorine being broadly studied due to the unique properties of C-F bonds. This review will focus on the design and utility of C-F containing materials in imaging, therapeutics, and environmental applications with a central theme being the importance of controlling fluorine-fluorine interactions and understanding how such interactions impact biological behavior. Low natural abundance of fluorine is shown to provide sensitivity and background advantages for imaging and detection of a variety of diseases with 19F magnetic resonance imaging, 18F positron emission tomography and ultrasound discussed as illustrative examples. The presence of C-F bonds can also be used to tailor membrane permeability and pharmacokinetic properties of drugs and delivery agents for enhanced cell uptake and therapeutics. A key message of this review is that while the promise of C-F containing materials is significant, a subset of highly fluorinated compounds such as per- and polyfluoroalkyl substances (PFAS), have been identified as posing a potential risk to human health. The unique properties of the C-F bond and the significant potential for fluorine-fluorine interactions in PFAS structures necessitate the development of new strategies for facile and efficient environmental removal and remediation. Recent progress in the development of fluorine-containing compounds as molecular imaging and therapeutic agents will be reviewed and their design features contrasted with environmental and health risks for PFAS systems. Finally, present challenges and future directions in the exploitation of the biological aspects of fluorinated systems will be described.
Collapse
Affiliation(s)
- Cheng Zhang
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Queensland, Brisbane, Queensland 4072, Australia
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Kai Yan
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, China
- Xi'an Key Laboratory of Green Chemicals and Functional Materials, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Changkui Fu
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Hui Peng
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Craig J Hawker
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
- Materials Department, University of California, Santa Barbara, California 93106, United States
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Andrew K Whittaker
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|