1
|
Wang Y, Guo J, He Z, Zhou Z, Shi S, Cheng X, Zhang W. Regulating the Chiroptical Expression of Aggregated Solvophobic Core by Solvophilic Segments. Macromol Rapid Commun 2025; 46:e2400178. [PMID: 38683103 DOI: 10.1002/marc.202400178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/24/2024] [Indexed: 05/01/2024]
Abstract
The investigation of chiral supramolecular stacking is of essential significance for the understanding of the origin of homochirality in nature. Unlike structurally well-defined amphiphilic liposomes, it remains unclear whether the solvophilic segments of the amphiphilic block copolymer play a decisive role in the construction of asymmetric superstructures. Herein, insights are presented into the stacking patterns and morphological regulation in azobenzene-containing block copolymer assemblies solely by modulating the solvophilic chain length. The solvophilic poly(methacrylic acid) (PMAA) segments of different molecular weights could cause multi-mode chirality inversions involving stacking transitions between intra-chain π-π stacking, inter-chain H- and J-aggregation. Furthermore, the length of the solvophilic PMAA also affects the morphology of the chiral supramolecular assemblies; rice grain-like micelles, worms, nanofibers, floccules, and lamellae can be prepared at different solvophilic-solvophobic balance. The comprehensive mechanism is collectively revealed by utilizing various measurement methods, such as including circular dichroism (CD), small-angle X-ray scattering (SAXS), and wide-angle X-ray diffraction (WAXD). This study highlights the critical importance of fully dissolved solvophilic segments for the chiroptical regulation of the aggregated core, providing new insights into the arrangement of chiral supramolecular structures in polymer systems.
Collapse
Affiliation(s)
- Yuqing Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jiaying Guo
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zixiang He
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhenyang Zhou
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Shengyu Shi
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| | - Xiaoxiao Cheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Wei Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| |
Collapse
|
2
|
Liu B, Lu H, Guo Y, Liu H, Zhou T, Xue YH. Modular addition strategy-regulated polymerization-induced self-assembly: an in silico experiment. SOFT MATTER 2025; 21:1180-1191. [PMID: 39829210 DOI: 10.1039/d4sm01403k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
We propose a modular addition strategy-regulated polymerization-induced self-assembly (PISA) system to effectively control the reaction kinetics and self-assembly morphologies. We validated this strategy by performing in silico experiments on a well-established PISA system. Two categories of modular addition strategies, i.e., the multistep addition strategy and the constant rate addition strategy, were investigated. Results showed that the modular addition operation of macromolecular chain transfer agents (macro-CTAs) effectively regulated the width of the molecular weight distribution for the hydrophobic PSt block, which further led to an assembly of vesicle structures with irregular aspherical cavities. Besides, we found a new transition pathway for the formation of vesicles, which involved generation of small vesicles in the early stage followed by a gradual growth in the intermediate and late stages. In the constant rate addition strategy, with the increase in the addition rate of macro-CTA, we found that the morphology basically tended to change from a micellar structure to a vesicle structure. This study holds potential to inspire future work toward the improvement of experimental techniques in PISA-relevant systems.
Collapse
Affiliation(s)
- Bin Liu
- School of Bridge and Building, Shaanxi Railway Institute, Zhanbei St. East 1#, Weinan 714000, P. R. China
| | - Hui Lu
- Key Laboratory of Theoretical Chemistry of Environment Ministry of Education, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Yuqi Guo
- Department of Chemical and Material Engineering, Lyuliang University, Lishi 033001, China
| | - Hong Liu
- Key Laboratory of Theoretical Chemistry of Environment Ministry of Education, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Tianhang Zhou
- College of Carbon Neutrality Future Technology, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China.
| | - Yao-Hong Xue
- Information Science School, Guangdong University of Finance and Economics, Guangzhou 510320, China.
| |
Collapse
|
3
|
Solea AB, Dermutas D, Fadaei-Tirani F, Leanza L, Delle Piane M, Pavan GM, Severin K. Nano onions based on an amphiphilic Au 3(pyrazolate) 3 complex. NANOSCALE 2025; 17:1007-1012. [PMID: 39589070 DOI: 10.1039/d4nr03901g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Multilayer vesicles with an onion-like architecture can form by self-assembly of organic amphiphiles such as dendrimers, small-molecule surfactants, and block copolymers. Thus far, there are limited reports about multilayer vesicles based on coordination compounds. Herein, we show that nano onions are obtained by aggregation of an amphiphilic Au3(pyrazolate)3 complex in aqueous solution. The nanostructures were characterized by cryogenic and transition electron microscopy, dynamic light scattering, and energy-dispersive X-ray analysis. Control experiments with analogous Ag(I) and Cu(I) complexes revealed the importance of Au(I) for the formation of well-defined nano onions. A structurally related Au(I) complex without solubilizing polyethylene glycol side chains was analyzed by single-crystal X-ray diffraction. In the solid state, columns of offset, π-stacked Au3(pyrazolate)3 complexes are observed, but short intermolecular Au⋯Au contacts were not found. Molecular dynamics simulations provided further insights into the aggregation process in aqueous solution, supporting the formation of nano-onion structures through lateral interactions between stacked complexes.
Collapse
Affiliation(s)
- Atena B Solea
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Davide Dermutas
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Farzaneh Fadaei-Tirani
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Luigi Leanza
- Department of Applied Science and Technology, Politecnico di Torino, Torino 10129, Italy
| | - Massimo Delle Piane
- Department of Applied Science and Technology, Politecnico di Torino, Torino 10129, Italy
| | - Giovanni M Pavan
- Department of Applied Science and Technology, Politecnico di Torino, Torino 10129, Italy
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Lugano, Viganello 6962, Switzerland
| | - Kay Severin
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
4
|
Li Z, Feng W, Zhang X, Xu B, Wang L, Lin S. Self-assembly of amphiphilic asymmetric comb-like copolymers with responsive rigid side chains. SOFT MATTER 2024; 20:2823-2830. [PMID: 38451223 DOI: 10.1039/d4sm00076e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Amphiphilic asymmetric comb-like copolymers (AACCs) exhibit distinct self-assembly behaviours due to their unique architecture. However, the synthetic difficulties of well-defined AACCs have prohibited a systematic understanding of the architecture-morphology relationship. In this work, we conducted dissipative particle dynamics simulations to investigate the self-assembly behaviours of AACCs with responsive rigid side chains in selective solvents. The effects of side chain length, number of branches, and spacers on the morphology of aggregates were investigated by mapping out morphology diagrams. Besides, the numbers and surface areas of aggregates clearly depicted the morphological transitions during the self-assembly process. Moreover, the rod-to-coil conformation transitions were simulated to explore the stimuli-responsive behaviour of the AACCs with responsive rigid side chains by adjusting the bond angle parameter of the rigid chains. The results indicated that without the support of the rigid chains, the assembly structure collapsed, leading to the tube-to-channelized micelles and one-compartment-to-multicompartment vesicle morphology transformations. The simulation results are consistent with earlier experimental results, which can provide theoretical guidance for assembly toward desired nanostructures.
Collapse
Affiliation(s)
- Zhengyi Li
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Weisheng Feng
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Xing Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Binbin Xu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Liquan Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Shaoliang Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
5
|
A Simple Stochastic Reaction Model for Heterogeneous Polymerizations. Polymers (Basel) 2022; 14:polym14163269. [PMID: 36015526 PMCID: PMC9414839 DOI: 10.3390/polym14163269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
The stochastic reaction model (SRM) treats polymerization as a pure probability‐based issue, which is widely applied to simulate various polymerization processes. However, in many studies, active centers were assumed to react with the same probability, which cannot reflect the heterogeneous reaction microenvironment in heterogeneous polymerizations. Recently, we have proposed a simple SRM, in which the reaction probability of an active center is directly determined by the local reaction microenvironment. In this paper, we compared this simple SRM with other SRMs by examining living polymerizations with randomly dispersed and spatially localized initiators. The results confirmed that the reaction microenvironment plays an important role in heterogeneous polymerizations. This simple SRM provides a good choice to simulate various polymerizations.
Collapse
|
6
|
Song W, Lu H, He J, Zhu Z, He S, Liu D, Liu H, Wang Y. Dynamics and morphology of self‐assembly behavior of polymer‐grafted nanoparticles: a
DPD
simulation study. POLYM INT 2022. [DOI: 10.1002/pi.6437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wen‐Yuan Song
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry South China Normal University Guangzhou 510006 China
| | - Hui Lu
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry South China Normal University Guangzhou 510006 China
| | - Jing‐Wen He
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry South China Normal University Guangzhou 510006 China
| | - Zi‐Jie Zhu
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry South China Normal University Guangzhou 510006 China
| | - Si‐Yi He
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry South China Normal University Guangzhou 510006 China
| | - De‐Huan Liu
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry South China Normal University Guangzhou 510006 China
| | - Hong Liu
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Environment South China Normal University Guangzhou 510006 China
| | - Yan Wang
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Environment South China Normal University Guangzhou 510006 China
| |
Collapse
|
7
|
Hu S, Yan J, Yang G, Ma C, Yin J. Self-Assembled Polymeric Materials: Design, Morphology, and Functional-Oriented Applications. Macromol Rapid Commun 2021; 43:e2100791. [PMID: 34967061 DOI: 10.1002/marc.202100791] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/15/2021] [Indexed: 11/10/2022]
Abstract
This Review focuses on the current research advances of the synthesis of various amphiphilic block copolymers (ABCs), such as conventional ABCs and newly-presented polyprodrug amphiphiles (PPAs), and the development of corresponding self-assemblies in selective solvents driven by the intermolecular interactions, like noncovalent hydrophobic interactions, π-π interactions, and hydrogen bonds, between ABCs or preformed small polymeric nanoparticles. The design of these assemblies is systematically introduced, and the diverse examples concerning the unique assembly structures along with the fast development of their exclusive properties and various applications in different fields were discussed. Possible perspectives on the existential challenges and glorious future were elucidated finally. We hope this review will provide a convenient way for readers to motivate more evolutional innovative concepts and methods to design next generation of novel polymeric nanoassemblies, and fill the gap between material design and practical applications. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Shoukui Hu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei, Anhui, 230009, P. R. China
| | - Jinhao Yan
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei, Anhui, 230009, P. R. China
| | - Guangwei Yang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei, Anhui, 230009, P. R. China
| | - Chao Ma
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei, Anhui, 230009, P. R. China
| | - Jun Yin
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei, Anhui, 230009, P. R. China
| |
Collapse
|