1
|
Liu Y, Chen R, Li J, Liu X, Li H, Han Y. Introducing Noncovalent Interactions in Conjugated Polymers to Enhance Backbone Coplanarity and Aggregation at the Interface to Improve Carrier Mobility. ACS APPLIED MATERIALS & INTERFACES 2025; 17:1711-1724. [PMID: 39702957 DOI: 10.1021/acsami.4c16351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
In organic field-effect transistors (OFETs), the high carrier mobility of conjugated polymers (CPs) is significantly influenced by the maintenance of excellent coplanarity and aggregation, especially at the interface between the organic semiconductor and dielectric layer. Unfortunately, CPs typically exhibit poor coplanarity due to the single bond rotations between donor and acceptor units. Furthermore, there is relatively little research on the coplanarity of CPs at the interface. Herein, we propose a strategy of introducing noncovalent interactions to enhance the coplanarity of the backbone and promote the aggregation of the polymer at the interface, which should lead to significant enhancements in carrier mobility. The idea is proved by incorporating different volume fractions of oleic acid (OA) into poly(indacenodithiophene-co-benzothiadiazole) (IDTBT). OA can form hydrogen bonds, which has been verified by Fourier transform infrared spectroscopy (FT-IR). OA promotes the migration of IDTBT toward the interface, thereby enhancing aggregation, as verified by film-depth-dependent light absorption spectroscopy (FLAS) and contact angle (CA) experiments. The results from film-depth-dependent Raman spectroscopy (FRS), two-dimensional grazing incidence wide-angle X-ray scattering (2D GIWAXS), atomic force microscopy (AFM), and density functional theory (DFT) calculations suggest that films treated with OA exhibit enhanced backbone coplanarity and aggregation at the interface, resulting in an increase in carrier mobility to 4.24 ± 0.11 cm2 V-1 s-1 with the addition of OA.
Collapse
Affiliation(s)
- Yiting Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Rui Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Junhang Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xinyu Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Hongxiang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yanchun Han
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
2
|
Jin T, Li H, Liu X, Li J, Liu Y, Gao H, Zuo J, Zhang Q, Yu X, Han Y. Increasing the Content of Edge-On Orientation to Improve the Hole Mobility of IDTBT Film by the van der Waals Interaction between the Side Chain and Alkane Additives. ACS APPLIED MATERIALS & INTERFACES 2024; 16:63871-63883. [PMID: 39526648 DOI: 10.1021/acsami.4c16728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The molecular orientation in the conjugated polymer film critically impacts the performance of organic electronic devices. As for organic field-effect transistors (OFETs), the edge-on orientation is beneficial for efficient interchain charge transport. However, for the near amorphous indacenodithiophene-co-benzothiadiazole (IDTBT) film, the face-on orientation was dominated in the drop cast thin film. Herein, we proposed a strategy to increase the edge-on orientation in IDTBT films by inserting n-hexadecane (16C) additives with a high boiling point between the side chains. Because the 16C additives had a similar structure to that of the side chain, the 16C additives were distributed around the side chain in the nucleation stage. Then, the backbone aggregated quickly with the nuclei formation speed (k) nearly twice as high as that without the 16C additives. In the growth stage, some face-on nuclei turned to edge-on nuclei due to the van der Waals interactions between the side chain and 16C additives. This was verified by the results of in situ GIWAXS, where the intensity of (010) decreased and the intensity of (100) increased in the out-of-plane direction. The edge-on orientation content of the film with 16C additives reached 57%, higher than that of the neat film (33%). Moreover, compared to the neat IDTBT film, the lamellar packing distance of the film with 16C additives increased the lamellar packing distance from 16.97 to 23.26 Å and the π-π stacking distance decreased from 4.36 to 4.19 Å. The hole mobility of the film with 16C additives (3.24 ± 0.19 cm2 V-1 s-1) was higher than that of the neat film (0.94 ± 0.07 cm2 V-1 s-1).
Collapse
Affiliation(s)
- Tianya Jin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Hongxiang Li
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xinyu Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Junhang Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yiting Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Hanyue Gao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Jiaming Zuo
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Qiang Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
| | - Xinhong Yu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
| | - Yanchun Han
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
3
|
Kakde N, Sharma H, Dalvi NV, Vanka K, S.K A. Rational Monomer Design for the Synthesis of Conjugated Polymers by Direct Heteroarylation Polymerization. ACS POLYMERS AU 2024; 4:449-459. [PMID: 39399887 PMCID: PMC11469724 DOI: 10.1021/acspolymersau.4c00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 10/15/2024]
Abstract
This study focuses on the design concepts that contribute to the C-H activation in bithiophene-flanked monomers incorporating naphthalene diimide (NDI), perylene diimide (PDI), and fluorene (FLU) and their polymerization by direct heteroarylation. Density functional theory (DFT) calculations reveal distinct energy requirements for C-H bond abstraction, which is dictated by the electron-withdrawing strength of the central aromatic core flanked by bithiophene. These provide insights into the reactivity of each monomer for C-H bond activation. Proton NMR spectroscopic experimental results confirm the favorable energetic profiles predicted by DFT, with NDI- and PDI-flanked monomers exhibiting lower energy requirements than fluorene-flanked monomers. Successful polymer synthesis is demonstrated for NDI and PDI, while the fluorene-flanked monomer shows challenges due to its higher energy demands.
Collapse
Affiliation(s)
- Navnath
R. Kakde
- Polymer
Science and Engineering Division, CSIR-National
Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy
of Scientific and Innovative Research, Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar
Pradesh, India
| | - Himanshu Sharma
- Physical
and Materials Chemistry Division, CSIR-National
Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
- Academy
of Scientific and Innovative Research, Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar
Pradesh, India
| | - Nitin V. Dalvi
- Polymer
Science and Engineering Division, CSIR-National
Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy
of Scientific and Innovative Research, Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar
Pradesh, India
- Department
of Chemistry, Indian Institute of Science
Education and Research (IISER Pune), Pune 411008, Maharashtra, India
| | - Kumar Vanka
- Physical
and Materials Chemistry Division, CSIR-National
Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
- Academy
of Scientific and Innovative Research, Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar
Pradesh, India
| | - Asha S.K
- Polymer
Science and Engineering Division, CSIR-National
Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy
of Scientific and Innovative Research, Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar
Pradesh, India
| |
Collapse
|
4
|
Liu C, Liang H, Xie R, Zhou Q, Qi M, Yang C, Gu X, Wang Y, Zhang G, Li J, Gong X, Chen J, Zhang L, Zhang Z, Ge X, Wang Y, Yang C, Liu Y, Liu X. A Three-in-One Hybrid Strategy for High-Performance Semiconducting Polymers Processed from Anisole. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401345. [PMID: 38647436 PMCID: PMC11220690 DOI: 10.1002/advs.202401345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/25/2024] [Indexed: 04/25/2024]
Abstract
The development of semiconducting polymers with good processability in green solvents and competitive electrical performance is essential for realizing sustainable large-scale manufacturing and commercialization of organic electronics. A major obstacle is the processability-performance dichotomy that is dictated by the lack of ideal building blocks with balanced polarity, solubility, electronic structures, and molecular conformation. Herein, through the integration of donor, quinoid and acceptor units, an unprecedented building block, namely TQBT, is introduced for constructing a serial of conjugated polymers. The TQBT, distinct in non-symmetric structure and high dipole moment, imparts enhanced solubility in anisole-a green solvent-to the polymer TQBT-T. Furthermore, PTQBT-T possess a highly rigid and planar backbone owing to the nearly coplanar geometry and quinoidal nature of TQBT, resulting in strong aggregation in solution and localized aggregates in film. Remarkably, PTQBT-T films spuncast from anisole exhibit a hole mobility of 2.30 cm2 V-1 s-1, which is record high for green solvent-processable semiconducting polymers via spin-coating, together with commendable operational and storage stability. The hybrid building block emerges as a pioneering electroactive unit, shedding light on future design strategies in high-performance semiconducting polymers compatible with green processing and marking a significant stride towards ecofriendly organic electronics.
Collapse
Affiliation(s)
- Cheng Liu
- College of Materials and MetallurgyGuizhou UniversityGuiyang550025P. R. China
| | - Huanhuan Liang
- College of Materials and MetallurgyGuizhou UniversityGuiyang550025P. R. China
| | - Runze Xie
- College of Materials and MetallurgyGuizhou UniversityGuiyang550025P. R. China
| | - Quanfeng Zhou
- College of Materials and MetallurgyGuizhou UniversityGuiyang550025P. R. China
| | - Miao Qi
- The Molecular FoundryLawrence Berkeley National LaboratoryOne Cyclotron RoadBerkeleyCA94720USA
| | - Chongqing Yang
- The Molecular FoundryLawrence Berkeley National LaboratoryOne Cyclotron RoadBerkeleyCA94720USA
| | - Xiaodan Gu
- School of Polymer Science and EngineeringCenter for Optoelectronic Materials and DevicesThe University of Southern MississippiHattiesburgMS39406USA
| | - Yunfei Wang
- School of Polymer Science and EngineeringCenter for Optoelectronic Materials and DevicesThe University of Southern MississippiHattiesburgMS39406USA
| | - Guoxiang Zhang
- College of Materials and MetallurgyGuizhou UniversityGuiyang550025P. R. China
| | - Jinlun Li
- College of Materials and MetallurgyGuizhou UniversityGuiyang550025P. R. China
| | - Xiu Gong
- College of PhysicsGuizhou UniversityGuiyang550025P. R. China
| | - Junwu Chen
- Institute of Polymer Optoelectronic Materials and DevicesState Key Laboratory of Luminescent Materials and DevicesSouth China University of TechnologyGuangzhou510640P. R. China
| | - Lianjie Zhang
- Institute of Polymer Optoelectronic Materials and DevicesState Key Laboratory of Luminescent Materials and DevicesSouth China University of TechnologyGuangzhou510640P. R. China
| | - Zesheng Zhang
- Institute of Polymer Optoelectronic Materials and DevicesState Key Laboratory of Luminescent Materials and DevicesSouth China University of TechnologyGuangzhou510640P. R. China
| | - Xiang Ge
- College of Materials and MetallurgyGuizhou UniversityGuiyang550025P. R. China
| | - Yuanyu Wang
- College of Materials and MetallurgyGuizhou UniversityGuiyang550025P. R. China
| | - Chen Yang
- College of Big Data and Information EngineeringGuizhou UniversityGuiyang550025P. R. China
| | - Yi Liu
- The Molecular FoundryLawrence Berkeley National LaboratoryOne Cyclotron RoadBerkeleyCA94720USA
- Materials Sciences DivisionLawrence Berkeley National LaboratoryOne Cyclotron RoadBerkeleyCA94720USA
| | - Xuncheng Liu
- College of Materials and MetallurgyGuizhou UniversityGuiyang550025P. R. China
| |
Collapse
|
5
|
Wang S, Zhao K, Li J, Yu X, Zhang Q, Han Y. Microstructural Evolution of P(NDI2OD-T2) Films with Different Molecular Weight during Stretching Deformation. Macromol Rapid Commun 2024; 45:e2300624. [PMID: 38018318 DOI: 10.1002/marc.202300624] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/23/2023] [Indexed: 11/30/2023]
Abstract
Conjugated polymers exhibit excellent electrical and mechanical properties when their molecular weight (Mw) is above the critical molecular weight (Mc). The microstructural changes of polymers under strain are crucial to establish a structure-performance relationship. Herein, the tensile deformation of P(NDI2OD-T2) is visualized, and cracks are revealed either along the (100) crystal plane of side chain packing or along the main chain direction which depends on the Mw is below or above the Mc. When Mw < Mc, the film cracks along the (100) plane under small strains. When Mw > Mc, the polymer chains first undergo stretch-induced orientation and then fracture along the main chain direction at large strains. This is attributed to the fact that the low Mw film exhibits large crystalline domains and the absence of interdomain connectivity, which are vulnerable to mechanical stress. In contrast, the high Mw film displays a nearly amorphous morphology with adequate entanglements, the molecular chains can endure stresses in the stretching direction to release substantial strain energy under greater mechanical deformation. Therefore, the film with Mw > Mc exhibits the optimal electrical and mechanical performances simultaneously, i.e., the electron mobility is retained under 100% strain and after 100 stretching-releasing cycles.
Collapse
Affiliation(s)
- Sichun Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Kefeng Zhao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Junhang Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xinhong Yu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Qiang Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Yanchun Han
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
6
|
Guan C, Xiao C, Liu X, Hu Z, Wang R, Wang C, Xie C, Cai Z, Li W. Non-Covalent Interactions between Polyvinyl Chloride and Conjugated Polymers Enable Excellent Mechanical Properties and High Stability in Organic Solar Cells. Angew Chem Int Ed Engl 2023; 62:e202312357. [PMID: 37702544 DOI: 10.1002/anie.202312357] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/14/2023]
Abstract
The incorporation of insulating polymers into conjugated polymers has been widely explored as a strategy to improve mechanical properties of flexible organic electronics. However, phase separation due to the immiscibility of these polymers has limited their effectiveness. In this study, we report the discovery of multiple non-covalent interactions that enhances the miscibility between insulating and conjugated polymers, resulting in improved mechanical properties. Specifically, we have added polyvinyl chloride (PVC) into the conjugated polymer PM6 and observed a significant increase in solution viscosity, indicative of favorable miscibility between these two polymers. This phenomenon has been rarely observed in other insulating/conjugated polymer composites. Thin films of PM6/PVC exhibit a much-improved crack-onset strain of 19.35 %, compared to 10.12 % for pristine PM6 films. Analysis reveal that a "cyclohexyl-like" structure formed through dipole-dipole interactions and hydrogen bonding between PVC and PM6 acted as a cross-linking site in the thin films, leading to improved mechanical properties. Moreover, PM6/PVC blend films have demonstrated excellent thermal and bending stability when applied as an electron donor in organic solar cells. These findings provide new insights into non-covalent interactions that can be utilized to enhance the properties of conjugated polymers and may have potential applications in flexible organic electronics.
Collapse
Affiliation(s)
- Chong Guan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Chengyi Xiao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xin Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhijie Hu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Ruoyao Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Chao Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Chengcheng Xie
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Ziqi Cai
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Weiwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
7
|
Seo S, Lee JW, Kim DJ, Lee D, Phan TNL, Park J, Tan Z, Cho S, Kim TS, Kim BJ. Poly(dimethylsiloxane)-block-PM6 Polymer Donors for High-Performance and Mechanically Robust Polymer Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300230. [PMID: 36929364 DOI: 10.1002/adma.202300230] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/07/2023] [Indexed: 06/16/2023]
Abstract
High power conversion efficiency (PCE) and stretchability are the dual requirements for the wearable application of polymer solar cells (PSCs). However, most efficient photoactive films are mechanically brittle. In this work, highly efficient (PCE = 18%) and mechanically robust (crack-onset strain (COS) = 18%) PSCs are acheived by designing block copolymer (BCP) donors, PM6-b-PDMSx (x = 5k, 12k, and 19k). In these BCP donors, stretchable poly(dimethylsiloxane) (PDMS) blocks are covalently linked with the PM6 blocks to effectively increase the stretchability. The stretchability of the BCP donors increases with a longer PDMS block, and PM6-b-PDMS19k :L8-BO PSC exhibits a high PCE (18%) and 9-times higher COS value (18%) compared to that (COS = 2%) of the PM6:L8-BO-based PSC. However, the PM6:L8-BO:PDMS12k ternary blend shows inferior PCE (5%) and COS (1%) due to the macrophase separation between PDMS and active components. In the intrinsically stretchable PSC, the PM6-b-PDMS19k :L8-BO blend exhibits significantly greater mechanical stability PCE80% ((80% of the initial PCE) at 36% strain) than those of the PM6:L8-BO blend (PCE80% at 12% strain) and the PM6:L8-BO:PDMS ternary blend (PCE80% at 4% strain). This study suggests an effective design strategy of BCP PD to achieve stretchable and efficient PSCs.
Collapse
Affiliation(s)
- Soodeok Seo
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jin-Woo Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Dong Jun Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Dongchan Lee
- Department of Physics and EHSRC, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Tan Ngoc-Lan Phan
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jinseok Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Zhengping Tan
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Shinuk Cho
- Department of Physics and EHSRC, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Taek-Soo Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Bumjoon J Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
8
|
Zhang L, Li H, Zhao K, Zhang T, Liu D, Wang S, Wu F, Zhang Q, Han Y. Achieving the high charge mobility of conjugated polymers under cyclic stretching by changing the interaction parameter between solvent and sidechain. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
9
|
Xu YC, Ding L, Yao ZF, Shao Y, Wang JY, Zhang WB, Pei J. Conjugated Polymers in Solution: A Physical Perspective. J Phys Chem Lett 2023; 14:927-939. [PMID: 36669464 DOI: 10.1021/acs.jpclett.2c03600] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Excellent progress has been made in the optoelectronic properties of conjugated polymers by controlling solution-state aggregation. However, due to the wide variety and complex structures of conjugated polymers, it is still challenging to fully understand the complex aggregation process and microstructures both in solution and in the solid state. This Perspective focuses on the chain conformations and the aggregation of conjugated polymers in solution. We discuss the factors in detail which affect solution-state aggregation and microstructures from the perspective of polymer physics in solutions, including chemical structures and environmental conditions. Based on the understanding of multiple interactions of conjugated polymers in solution, strategies to regulate solid-state microstructures and obtain high-performance polymer-based devices from solution-state aggregation are summarized.
Collapse
Affiliation(s)
- Yu-Chun Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing100871, China
| | - Li Ding
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing100871, China
| | - Ze-Fan Yao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing100871, China
| | - Yu Shao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing100871, China
| | - Jie-Yu Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing100871, China
| | - Wen-Bin Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing100871, China
| | - Jian Pei
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing100871, China
| |
Collapse
|
10
|
Peng Z, Xian K, Liu J, Zhang Y, Sun X, Zhao W, Deng Y, Li X, Yang C, Bian F, Geng Y, Ye L. Unraveling the Stretch-Induced Microstructural Evolution and Morphology-Stretchability Relationships of High-Performance Ternary Organic Photovoltaic Blends. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207884. [PMID: 36333886 DOI: 10.1002/adma.202207884] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/26/2022] [Indexed: 06/16/2023]
Abstract
The stretchability and stretch-induced structural evolution of organic solar cells (OSCs) are pivotal for their collapsible, portable, and wearable applications, and they are mainly affected by the complex morphology of active layers. Herein, a highly ductile conjugated polymer P(NDI2OD-T2) is incorporated into the active layers of high-efficiency OSCs based on nonfullerene small molecule acceptors to simultaneously investigate the morphological, mechanical, and photovoltaic properties and structural evolution under stretching of ternary blend films with various acceptor contents. The structural robustness of the blend films is indicated by their stretch-induced structural evolution, which is monitored in real-time by a combination of in situ wide/small angle X-ray scattering. It is found that adding the soft P(NDI2OD-T2) can enhance the stretchability and structural robustness of ternary blend films by more entangled chains and tie chains to dissipate strain. Furthermore, the stretchability of the ternary blends can be superbly predicted by a 3D equivalent box model. This work provides instructive insight and guidance for designing stretchable electronics and predicting the stretchability of multicomponent blends.
Collapse
Affiliation(s)
- Zhongxiang Peng
- School of Materials Science & Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350, China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Kaihu Xian
- School of Materials Science & Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350, China
| | - Junwei Liu
- School of Materials Science & Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350, China
| | - Yaowen Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Xiaokang Sun
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Wenchao Zhao
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Yunfeng Deng
- School of Materials Science & Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350, China
| | - Xiuhong Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Chunming Yang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Fenggang Bian
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Yanhou Geng
- School of Materials Science & Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Long Ye
- School of Materials Science & Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350, China
| |
Collapse
|
11
|
The continuous fiber networks with a balanced bimodal orientation of P(NDI2OD-T2) by controlling solution nucleation and face-on and edge-on crystallization rates. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Controlling morphology and microstructure of conjugated polymers via solution-state aggregation. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Crystallization of D-A Conjugated Polymers: A Review of Recent Research. Polymers (Basel) 2022; 14:polym14214612. [DOI: 10.3390/polym14214612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/10/2022] [Accepted: 10/26/2022] [Indexed: 11/17/2022] Open
Abstract
D-A conjugated polymers are key materials for organic solar cells and organic thin-film transistors, and their film structure is one of the most important factors in determining device performance. The formation of film structure largely depends on the crystallization process, but the crystallization of D-A conjugated polymers is not well understood. In this review, we attempted to achieve a clearer understanding of the crystallization of D-A conjugated polymers. We first summarized the features of D-A conjugated polymers, which can affect their crystallization process. Then, the crystallization process of D-A conjugated polymers was discussed, including the possible chain conformations in the solution as well as the nucleation and growth processes. After that, the crystal structure of D-A conjugated polymers, including the molecular orientation and polymorphism, was reviewed. We proposed that the nucleation process and the orientation of the nuclei on the substrate are critical for the crystal structure. Finally, we summarized the possible crystal morphologies of D-A conjugated polymers and explained their formation process in terms of nucleation and growth processes. This review provides fundamental knowledge on how to manipulate the crystallization process of D-A conjugated polymers to regulate their film structure.
Collapse
|
14
|
Kim D, Park H, Kim T, Lee JW, Jeong D, Kwon HI, Kim BJ, Kim FS. Addition of Low-Molecular-Weight Batches Enhances Charge-Transport Properties of n-Type Polymer Semiconductors. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Donguk Kim
- School of Chemical Engineering and Materials Science, Chung-Ang University (CAU), Seoul 06974, Republic of Korea
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyeonjung Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Taemin Kim
- School of Chemical Engineering and Materials Science, Chung-Ang University (CAU), Seoul 06974, Republic of Korea
| | - Jin-Woo Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Dahyun Jeong
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyuck-In Kwon
- School of Electrical and Electronics Engineering, Chung-Ang University (CAU), Seoul 06974, Republic of Korea
| | - Bumjoon J. Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Felix Sunjoo Kim
- School of Chemical Engineering and Materials Science, Chung-Ang University (CAU), Seoul 06974, Republic of Korea
| |
Collapse
|
15
|
Zhang L, Zhang Z, Deng D, Zhou H, Zhang J, Wei Z. "N-π-N" Type Oligomeric Acceptor Achieves an OPV Efficiency of 18.19% with Low Energy Loss and Excellent Stability. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202513. [PMID: 35712769 PMCID: PMC9376851 DOI: 10.1002/advs.202202513] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/20/2022] [Indexed: 05/25/2023]
Abstract
A novel "N-π-N" type oligomeric acceptor of 2BTP-2F-T, constructed by two small non-fullerene acceptor (NFA) units linked with a thiophene π bridge is reported. The 2BTP-2F-T not only combines the advantages of small NFA and polymeric acceptors (PYF-T-o) with similar units but also exhibits superior characteristics of high absorption coefficient and high electron moblity(µe) ) with less dependence on molecular packing. Using PM6 as the donor, a remarkable efficiency of 18.19% is obtained with an open circuit (Voc ) of 0.911 V, short current circuit (Jsc ) of 25.50 mA cm-2 , and fill factor (FF) of 78.3%, which is much better than that of the corresponding monomer (16.54%) and PYF-T-o (15.8%) based devices. The much-improved efficiency results from two aspects: 1) an enhanced FF due to the largely improved µe and well-controlled morphology ; 2) a higher value of (Jsc × Voc ) due to its higher absorption coefficient and efficient charge generation at a similar low energy loss. Furthermore, the PM6/2BTP-2F-T device possesses the longest T80 lifetime to light-soaking and comparable high thermal stability with PM6/PYF-T-o. The results indicate that the "N-π-N" type oligomeric acceptor has a great application prospect due to its superior high efficiency and improved stability in organic solar cells.
Collapse
Affiliation(s)
- Lili Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical FabricationNational Center for Nanoscience and TechnologyBeijing100190China
- Sino‐Danish Center for Education and ResearchSino‐Danish CollegeUniversity of Chinese Academy of SciencesBeijing100190China
| | - Ziqi Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical FabricationNational Center for Nanoscience and TechnologyBeijing100190China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Dan Deng
- CAS Key Laboratory of Nanosystem and Hierarchical FabricationNational Center for Nanoscience and TechnologyBeijing100190China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Huiqiong Zhou
- CAS Key Laboratory of Nanosystem and Hierarchical FabricationNational Center for Nanoscience and TechnologyBeijing100190China
| | - Jianqi Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical FabricationNational Center for Nanoscience and TechnologyBeijing100190China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Zhixiang Wei
- CAS Key Laboratory of Nanosystem and Hierarchical FabricationNational Center for Nanoscience and TechnologyBeijing100190China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
16
|
Liu C, Xiao C, Wang J, Liu B, Hao Y, Guo J, Song J, Tang Z, Sun Y, Li W. Revisiting Conjugated Polymers with Long-Branched Alkyl Chains: High Molecular Weight, Excellent Mechanical Properties, and Low Voltage Losses. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chunhui Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Chengyi Xiao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jing Wang
- Center for Advanced Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Baiqiao Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yidi Hao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jiayi Guo
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jiali Song
- School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Zheng Tang
- Center for Advanced Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Yanming Sun
- School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Weiwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
17
|
Huang G, Wu N, Wang X, Zhang G, Qiu L. Role of Molecular Weight in the Mechanical Properties and Charge Transport of Conjugated Polymers Containing Siloxane Side Chains. Macromol Rapid Commun 2022; 43:e2200149. [PMID: 35592913 DOI: 10.1002/marc.202200149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/16/2022] [Indexed: 11/08/2022]
Abstract
The molecular weight is a key factor affecting the properties of conjugated polymers. To determine the critical molecular weights of conjugated polymers modified with siloxane side chains, poly-diketo-pyrrolopyrrole-selenophene (PTDPPSe-5Si) samples with molecular weights ranging from 20 to 350 kDa are synthesized. The critical molecular weight of the polymer is determined in the range of 60-100 kDa by testing the viscosity of the solution. When the molecular weight of the 27-60 kDa polymers is below the critical molecular weight, they exhibit a high crystallinity and low ductility. When the molecular weight of the 100 kDa polymer reaches the critical molecular weight, the crystallinity decreases, and the ductility increases. As the molecular weight increases, the polymer film also gradually changes from brittle to ductile. Furthermore, when the molecular weight of the 315 kDa polymer is much higher than the critical molecular weight, the film exhibits a significant ductility, which results in the polymer films showing no pronounced cracks after high-percentage stretching. Additionally, due to the oriented alignment of the molecular chains caused by stretching, the carrier mobility in the parallel direction becomes 2.14-fold of the initial film.
Collapse
Affiliation(s)
- Gang Huang
- National Engineering Lab of Special Display Technology, Special Display and Imaging Technology Innovation Center of Anhui Province, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei, 230009, China
| | - Ning Wu
- National Engineering Lab of Special Display Technology, Special Display and Imaging Technology Innovation Center of Anhui Province, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei, 230009, China
| | - Xiaohong Wang
- National Engineering Lab of Special Display Technology, Special Display and Imaging Technology Innovation Center of Anhui Province, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei, 230009, China
| | - Guobing Zhang
- National Engineering Lab of Special Display Technology, Special Display and Imaging Technology Innovation Center of Anhui Province, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei, 230009, China
| | - Longzhen Qiu
- National Engineering Lab of Special Display Technology, Special Display and Imaging Technology Innovation Center of Anhui Province, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei, 230009, China.,Intelligent Interconnected Systems Laboratory of Anhui, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Opto-Electronic Engineering, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|
18
|
Li H, Liu X, Jin T, Zhao K, Zhang Q, He C, Yang H, Chen Y, Huang J, Yu X, Han Y. Optimizing the Intercrystallite Connection of Donor-Acceptor Conjugated Semiconductor Polymer by Controlling the Crystallization Rate via Temperature. Macromol Rapid Commun 2022; 43:e2200084. [PMID: 35339116 DOI: 10.1002/marc.202200084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/03/2022] [Indexed: 11/10/2022]
Abstract
The charge carrier transport of conjugated polymer thin film is mainly decided by the crystalline domain and intercrystallite connection. High density tie-chain can provide an effective bridge between crystalline domains. Herein, the tie-chain connection behavior is optimized by decreasing the crystal region length (lc ) and increasing the crystallization rate. Poly[4-(4,4-bis(2-octyldodecyl)-4H-cyclopenta[1,2-b:5,4-b']dithiophen-2-yl)-alt-[1,2,5]-thiadiazolo[3,4-c]pyridine] (PCDTPT-ODD) is dissolved in nonpolar solvent isooctane and high ordered rod-like aggregations are formed. As the temperature increases, the changes of solution state and crystallization behavior lead to three different chain arrangement morphologies in the films: (1) at 25°C, large and separated crystal regions are formed; (2) at 55°C, small and well-connected crystal regions are formed due to faster crystallization rate and smaller nucleus size; (3) at 90°C, the amorphous film is formed. Further results show that the film prepared at 55°C has a smaller crystal region length (lc , 7.6 nm) and higher tie-chains content. Thus, the film exhibits the best device mobility of 2.3 × 10-3 cm2 V-1 s-1 . This result shows the great influence of crystallization kinetics on the microstructure of conjugated polymer films and provides an effective way for the optimization of the intercrystallite tie-chain. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hongxiang Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Xinyu Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Tianya Jin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Kefeng Zhao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Qiang Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Chunyong He
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.,Spallation Neutron Source Science Center, Dongguan, 523803, China
| | - Hua Yang
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.,Spallation Neutron Source Science Center, Dongguan, 523803, China
| | - Yu Chen
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianyao Huang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xinhong Yu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Yanchun Han
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| |
Collapse
|
19
|
Wang S, Li H, Zhao K, Zhang L, Zhang Q, Yu X, Tian H, Han Y. Increasing the Charge Transport of P(NDI2OD-T2) by Improving the Polarization of the NDI2OD Unit along the Backbone Direction and Preaggregation via H-Bonding. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Sichun Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P.R. China
| | - Hongxiang Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P.R. China
| | - Kefeng Zhao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
| | - Lu Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P.R. China
| | - Qiang Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
| | - Xinhong Yu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
| | - Hongkun Tian
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P.R. China
| | - Yanchun Han
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P.R. China
| |
Collapse
|