1
|
Wang C, Xin Y, Gu H, Ye L, Liu Y, Zhou Y, Deng Y, Geng Y. An n-Doping Cross-Linkable Quinoidal Compound as an Electron Transport Material for Fully Stretchable Inverted Organic Solar Cells. Angew Chem Int Ed Engl 2025; 64:e202415440. [PMID: 39257370 DOI: 10.1002/anie.202415440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/12/2024]
Abstract
The photocatalytic activity and inherent brittleness of ZnO, which is commonly used as an electron transport layer (ETL) in inverted organic solar cells (OSCs), have impeded advancements in device stability and the development of fully stretchable OSCs. In this study, an intrinsically stretchable ETL for inverted OSCs through a side-chain cross-linking strategy has been developed. Specifically, cross-linking between bromine atoms on the side chains of a quinoidal compound and the amino groups in polyethylenimine resulted in a film, designated QBr-PEI-50, with high electrical conductivity (0.049 S/m) and excellent stretchability (crack-onset strain>45 %). When used as the ETL in inverted OSCs, QBr-PEI-50 was markedly superior to ZnO in terms of device performance and stability, yielding a power conversion efficiency (PCE) of 18.27 % and a T80 lifetime exceeding 10000 h. Moreover, incorporation of QBr-PEI-50 in fully stretchable inverted OSCs yielded a PCE of 14.01 %, and 80 % of the initial PCE was maintained after 21 % strain, showcasing its potential for wearable electronics.
Collapse
Affiliation(s)
- Cheng Wang
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P.R. China
| | - Yufei Xin
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry and Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, P.R. China
| | - Haoran Gu
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P.R. China
| | - Long Ye
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P.R. China
| | - Yongsheng Liu
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry and Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, P.R. China
| | - Yinhua Zhou
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Yunfeng Deng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P.R. China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Yanhou Geng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P.R. China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
2
|
Liu Y, Chen R, Li J, Liu X, Li H, Han Y. Introducing Noncovalent Interactions in Conjugated Polymers to Enhance Backbone Coplanarity and Aggregation at the Interface to Improve Carrier Mobility. ACS APPLIED MATERIALS & INTERFACES 2025; 17:1711-1724. [PMID: 39702957 DOI: 10.1021/acsami.4c16351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
In organic field-effect transistors (OFETs), the high carrier mobility of conjugated polymers (CPs) is significantly influenced by the maintenance of excellent coplanarity and aggregation, especially at the interface between the organic semiconductor and dielectric layer. Unfortunately, CPs typically exhibit poor coplanarity due to the single bond rotations between donor and acceptor units. Furthermore, there is relatively little research on the coplanarity of CPs at the interface. Herein, we propose a strategy of introducing noncovalent interactions to enhance the coplanarity of the backbone and promote the aggregation of the polymer at the interface, which should lead to significant enhancements in carrier mobility. The idea is proved by incorporating different volume fractions of oleic acid (OA) into poly(indacenodithiophene-co-benzothiadiazole) (IDTBT). OA can form hydrogen bonds, which has been verified by Fourier transform infrared spectroscopy (FT-IR). OA promotes the migration of IDTBT toward the interface, thereby enhancing aggregation, as verified by film-depth-dependent light absorption spectroscopy (FLAS) and contact angle (CA) experiments. The results from film-depth-dependent Raman spectroscopy (FRS), two-dimensional grazing incidence wide-angle X-ray scattering (2D GIWAXS), atomic force microscopy (AFM), and density functional theory (DFT) calculations suggest that films treated with OA exhibit enhanced backbone coplanarity and aggregation at the interface, resulting in an increase in carrier mobility to 4.24 ± 0.11 cm2 V-1 s-1 with the addition of OA.
Collapse
Affiliation(s)
- Yiting Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Rui Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Junhang Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xinyu Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Hongxiang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yanchun Han
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
3
|
Coker JF, Moro S, Gertsen AS, Shi X, Pearce D, van der Schelling MP, Xu Y, Zhang W, Andreasen JW, Snyder CR, Richter LJ, Bird MJ, McCulloch I, Costantini G, Frost JM, Nelson J. Perpendicular crossing chains enable high mobility in a noncrystalline conjugated polymer. Proc Natl Acad Sci U S A 2024; 121:e2403879121. [PMID: 39226361 PMCID: PMC11406284 DOI: 10.1073/pnas.2403879121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/22/2024] [Indexed: 09/05/2024] Open
Abstract
The nature of interchain π-system contacts, and their relationship to hole transport, are elucidated for the high-mobility, noncrystalline conjugated polymer C16-IDTBT by the application of scanning tunneling microscopy, molecular dynamics, and quantum chemical calculations. The microstructure is shown to favor an unusual packing motif in which paired chains cross-over one another at near-perpendicular angles. By linking to mesoscale microstructural features, revealed by coarse-grained molecular dynamics and previous studies, and performing simulations of charge transport, it is demonstrated that the high mobility of C16-IDTBT can be explained by the promotion of a highly interconnected transport network, stemming from the adoption of perpendicular contacts at the nanoscale, in combination with fast intrachain transport.
Collapse
Affiliation(s)
- Jack F Coker
- Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom
| | - Stefania Moro
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Anders S Gertsen
- Department of Energy Conversion and Storage, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Xingyuan Shi
- Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom
| | - Drew Pearce
- Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom
| | - Martin P van der Schelling
- Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom
- Department of Materials Science and Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands
| | - Yucheng Xu
- Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom
- Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Weimin Zhang
- King Abdullah University of Science and Technology Solar Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Kingdom of Saudi Arabia
| | - Jens W Andreasen
- Department of Energy Conversion and Storage, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Chad R Snyder
- Material Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD 20899
| | - Lee J Richter
- Material Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD 20899
| | - Matthew J Bird
- Chemistry Division, Brookhaven National Laboratory, Upton, NY 11973
| | - Iain McCulloch
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Giovanni Costantini
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Jarvist M Frost
- Department of Chemistry, Imperial College London, London W12 0BZ, United Kingdom
| | - Jenny Nelson
- Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
4
|
LeCroy G, Ghosh R, Sommerville P, Burke C, Makki H, Rozylowicz K, Cheng C, Weber M, Khelifi W, Stingelin N, Troisi A, Luscombe C, Spano FC, Salleo A. Using Molecular Structure to Tune Intrachain and Interchain Charge Transport in Indacenodithiophene-Based Copolymers. J Am Chem Soc 2024; 146:21778-21790. [PMID: 39058936 DOI: 10.1021/jacs.4c06006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
In this work, we compare two structurally near-amorphous rigid-rod polymers─poly(indacenodithiophene-co-benzothiadiazole), p(IDT-BT), and poly(indacenodithiophene-co-benzopyrollodione), p(IDT-BPD)─with orders of magnitude different mobilities to understand the effect charge carrier intrachain delocalization has on electronic transport. Quantum chemical calculations show that p(IDT-BPD) has a barrier to torsion that is significantly lower than that of p(IDT-BT) and is thus more likely to have reduced conjugation lengths. We utilize absorption and photoluminescence spectroscopy to characterize energetic disorder and show that p(IDT-BPD) has higher energetic disorder. Charge modulation spectroscopy (CMS) and model calculations are used to show that charge carriers are substantially delocalized in p(IDT-BT) and occupy near-uniform energetic environments. We find that mobility activated hopping barriers are similar in these two materials. Electronic structure calculations show that both intrachain and interchain couplings of monomer units are poor enough in p(IDT-BPD) that charge carriers collapse to single IDT units and transport via a through-space tunneling mechanism. This work highlights the remarkable charge transport properties of p(IDT-BT) by showing that high mobilities are achievable on device-relevant length scales with only 1D carrier delocalization.
Collapse
Affiliation(s)
- Garrett LeCroy
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Raja Ghosh
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Parker Sommerville
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Colm Burke
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Hesam Makki
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Kalee Rozylowicz
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Christina Cheng
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Mark Weber
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Wissem Khelifi
- pi-Conjugated Polymers Unit, Okinawa Institute of Science and Technology, Onna, Okinawa 904-0495, Japan
| | - Natalie Stingelin
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Alessandro Troisi
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Christine Luscombe
- pi-Conjugated Polymers Unit, Okinawa Institute of Science and Technology, Onna, Okinawa 904-0495, Japan
| | - Frank C Spano
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Alberto Salleo
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
5
|
Gao Y, Ke Y, Wang T, Shi Y, Wang C, Ding S, Wang Y, Deng Y, Hu W, Geng Y. An n-Type Conjugated Polymer with Low Crystallinity for High-Performance Organic Thermoelectrics. Angew Chem Int Ed Engl 2024; 63:e202402642. [PMID: 38453641 DOI: 10.1002/anie.202402642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/09/2024]
Abstract
Conjugated polymers (CPs) with low crystallinity are promising candidates for application in organic thermoelectrics (OTEs), particularly in flexible devices, because the disordered structures of these CPs can effectively accommodate dopants and ensure robust resistance to bending. However, n-doped CPs usually exhibit poor thermoelectric performance, which hinders the development of high-performance thermoelectric generators. Herein, we report an n-type CP (ThDPP-CNBTz) comprising two acceptor units: a thiophene-flanked diketopyrrolopyrrole and a cyano-functionalized benzothiadiazole. ThDPP-CNBTz shows a low LUMO energy level of below -4.20 eV and features low crystallinity, enabling high doping efficiency. Moreover, the dual-acceptor design enhances polaron delocalization, resulting in good thermoelectric performance. After n-doping, ThDPP-CNBTz exhibits an average electrical conductivity (σ) of 50.6 S cm-1 and a maximum power factor (PF) of 126.8 μW m-1 K-2, which is among the highest values reported for solution-processed n-type CPs to date. Additionally, a solution-processed flexible OTE device based on doped ThDPP-CNBTz exhibits a maximum PF of 70 μW m-1 K-2; the flexible device also shows remarkable resistance to bending strain, with only a marginal change in σ after 600 bending cycles. The findings presented in this work will advance the development of n-type CPs for OTE devices, and flexible devices in particular.
Collapse
Affiliation(s)
- Yuexin Gao
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P.R. China
| | - Yunzhe Ke
- Key Laboratory of Organic Integrated Circuits, Ministry of Education and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, P.R. China
| | - Tianzuo Wang
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P.R. China
| | - Yibo Shi
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P.R. China
| | - Cheng Wang
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P.R. China
| | - Shuaishuai Ding
- Key Laboratory of Organic Integrated Circuits, Ministry of Education and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, P.R. China
| | - Yupu Wang
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P.R. China
| | - Yunfeng Deng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P.R. China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Wenping Hu
- Key Laboratory of Organic Integrated Circuits, Ministry of Education and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, P.R. China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Yanhou Geng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P.R. China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
6
|
Wang S, Zhao K, Li J, Yu X, Zhang Q, Han Y. Microstructural Evolution of P(NDI2OD-T2) Films with Different Molecular Weight during Stretching Deformation. Macromol Rapid Commun 2024; 45:e2300624. [PMID: 38018318 DOI: 10.1002/marc.202300624] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/23/2023] [Indexed: 11/30/2023]
Abstract
Conjugated polymers exhibit excellent electrical and mechanical properties when their molecular weight (Mw) is above the critical molecular weight (Mc). The microstructural changes of polymers under strain are crucial to establish a structure-performance relationship. Herein, the tensile deformation of P(NDI2OD-T2) is visualized, and cracks are revealed either along the (100) crystal plane of side chain packing or along the main chain direction which depends on the Mw is below or above the Mc. When Mw < Mc, the film cracks along the (100) plane under small strains. When Mw > Mc, the polymer chains first undergo stretch-induced orientation and then fracture along the main chain direction at large strains. This is attributed to the fact that the low Mw film exhibits large crystalline domains and the absence of interdomain connectivity, which are vulnerable to mechanical stress. In contrast, the high Mw film displays a nearly amorphous morphology with adequate entanglements, the molecular chains can endure stresses in the stretching direction to release substantial strain energy under greater mechanical deformation. Therefore, the film with Mw > Mc exhibits the optimal electrical and mechanical performances simultaneously, i.e., the electron mobility is retained under 100% strain and after 100 stretching-releasing cycles.
Collapse
Affiliation(s)
- Sichun Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Kefeng Zhao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Junhang Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xinhong Yu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Qiang Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Yanchun Han
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
7
|
Chang TW, Weng YC, Tsai YT, Jiang Y, Matsuhisa N, Shih CC. Chain-Kinked Design: Improving Stretchability of Polymer Semiconductors through Nonlinear Conjugated Linkers. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37897812 DOI: 10.1021/acsami.3c10033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
Abstract
The manipulation of the polymer backbone structure has a profound influence on the crystalline behavior and charge transport characteristics of polymers. These strategies are commonly employed to optimize the performance of stretchable polymer semiconductors. However, a universal method that can be applied to conjugated polymers with different donor-acceptor combinations is still lacking. In this study, we propose a universal strategy to boost the stretchability of polymers by incorporating the nonlinear conjugated linker (NCL) into the main chain. Specifically, we incorporate meta-dibromobenzene (MB), characterized by its asymmetric linkage sites, as the NCL into the backbone of diketopyrrolopyrrole-thiophene-based (DPP-based) polymers. Our research demonstrates that the introduction of MB prompts chain-kinking, thereby disrupting the linearity and central symmetry of the DPP conjugated backbone. This modification reshapes the polymer conformation, decreasing the radius of gyration and broadening the free volume, which consequently adjusts the level of crystallinity, leading to a considerable increase in the stretchability of the polymer. Importantly, this method increases stretchability without compromising mobility and exhibits broad applicability across a wide range of donor-acceptor pair polymers. Leveraging this strategy, fully stretchable transistors were fabricated using a DPP polymer that incorporates 10 mol % of MB. These transistors display a mobility of approximately 0.5 cm2 V-1 s-1 and prove remarkably durable, maintaining 90% of this mobility even after enduring 1000 cycles at 25% strain. Overall, we propose a method to systematically control the main-chain conformation, thereby enhancing the stretchability of conjugated polymers in a widely applicable manner.
Collapse
Affiliation(s)
- Ting-Wei Chang
- Department of Chemical Engineering and Materials Engineering, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan
| | - Yu-Ching Weng
- Department of Chemical Engineering and Materials Engineering, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan
| | - Yi-Ting Tsai
- Department of Chemical Engineering and Materials Engineering, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan
| | - Yuanwen Jiang
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Naoji Matsuhisa
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8505, Japan
- Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Chien-Chung Shih
- Department of Chemical Engineering and Materials Engineering, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan
| |
Collapse
|
8
|
Guan C, Xiao C, Liu X, Hu Z, Wang R, Wang C, Xie C, Cai Z, Li W. Non-Covalent Interactions between Polyvinyl Chloride and Conjugated Polymers Enable Excellent Mechanical Properties and High Stability in Organic Solar Cells. Angew Chem Int Ed Engl 2023; 62:e202312357. [PMID: 37702544 DOI: 10.1002/anie.202312357] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/14/2023]
Abstract
The incorporation of insulating polymers into conjugated polymers has been widely explored as a strategy to improve mechanical properties of flexible organic electronics. However, phase separation due to the immiscibility of these polymers has limited their effectiveness. In this study, we report the discovery of multiple non-covalent interactions that enhances the miscibility between insulating and conjugated polymers, resulting in improved mechanical properties. Specifically, we have added polyvinyl chloride (PVC) into the conjugated polymer PM6 and observed a significant increase in solution viscosity, indicative of favorable miscibility between these two polymers. This phenomenon has been rarely observed in other insulating/conjugated polymer composites. Thin films of PM6/PVC exhibit a much-improved crack-onset strain of 19.35 %, compared to 10.12 % for pristine PM6 films. Analysis reveal that a "cyclohexyl-like" structure formed through dipole-dipole interactions and hydrogen bonding between PVC and PM6 acted as a cross-linking site in the thin films, leading to improved mechanical properties. Moreover, PM6/PVC blend films have demonstrated excellent thermal and bending stability when applied as an electron donor in organic solar cells. These findings provide new insights into non-covalent interactions that can be utilized to enhance the properties of conjugated polymers and may have potential applications in flexible organic electronics.
Collapse
Affiliation(s)
- Chong Guan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Chengyi Xiao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xin Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhijie Hu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Ruoyao Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Chao Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Chengcheng Xie
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Ziqi Cai
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Weiwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
9
|
Makki H, Burke CA, Troisi A. Microstructural Model of Indacenodithiophene- co-benzothiadiazole Polymer: π-Crossing Interactions and Their Potential Impact on Charge Transport. J Phys Chem Lett 2023; 14:8867-8873. [PMID: 37756473 PMCID: PMC10561260 DOI: 10.1021/acs.jpclett.3c02305] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/26/2023] [Indexed: 09/29/2023]
Abstract
Morphological and electronic properties of indacenodithiophene-co-benzothiadiazole (IDTBT) copolymer with varying molecular weights are calculated through combined molecular dynamics (MD) and quantum chemical (QC) methods. Our study focuses on the polymer chain arrangements, interchain connectivity pathways, and interplay between morphological and electronic structure properties of IDTBT. Our models, which are verified against GIWAXS measurements, show a considerable number of BT-BT π-π interactions with a (preferential) perpendicular local orientation of polymer chains due to the steric hindrance of bulky side chains around IDT. Although our models predict a noncrystalline structure for IDTBT, the BT-BT (interchain) crossing points show a considerable degree of short-range order in spatial arrangement which most likely result in a mesh-like structure for the polymer and provide efficient pathways for interchain charge transport.
Collapse
Affiliation(s)
- Hesam Makki
- Department
of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L69 7ZD, U.K.
| | - Colm A. Burke
- Department
of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L69 7ZD, U.K.
| | - Alessandro Troisi
- Department
of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L69 7ZD, U.K.
| |
Collapse
|
10
|
Sun J, Liu X, Tong Y, Zhao G, Ni Y, Zhao X, Wang B, Wang X, Zhang M, Guo S, Han X, Tang Q, Liu Y. Air/Liquid Interfacial Self-Assembled Intrinsically Stretchable IDT-BT Film Combining a Deliberate Transfer Adherence Strategy for Stretchable Electronics. ACS APPLIED MATERIALS & INTERFACES 2023; 15:46108-46118. [PMID: 37740925 DOI: 10.1021/acsami.3c08330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Indacenodithiophene-benzothiadiazole (IDT-BT) has emerged as one of the most promising candidates for stretchable electronics due to its good stretchability and high mobility. Here, we present an air/liquid interface self-assembly method for the stretchable IDT-BT films and design an air-side transfer adherence strategy for improving the carrier mobility of IDT-BT. By controlling the cosolvent ratio in solution and the solvent evaporation rate, the large-scale intrinsically stretchable IDT-BT film with the diameter as high as ∼3 cm was self-assembled at the air/liquid interface. The resulting stretchable film with lightweight and good uniformity could be easily transferred to curved objects such as flexible 3 M tape, glass ball, and seashell. It is found that the transfer adherence strategy of the semiconductor film significantly affects the carrier transport. The transfer adherence from air-side can effectively decrease the number of the adsorbed water molecules at semiconductor/dielectric interface, which presents the mobility as high as 2.98 cm2 V-1 s-1. Based on the air/liquid interface self-assembled IDT-BT film, the peeling process of the film for preparation of full stretchable transistors could be eliminated. The resulting intrinsically stretchable transistor exhibits mobility higher than that of the transistor with a conventional spin-coated film. Our research provides new pathways for preparing the stretchable films and intrinsically stretchable organic field-effect transistors and shows the promising potential of the air/liquid interface self-assembly strategy for stretchable electronics.
Collapse
Affiliation(s)
- Jing Sun
- Center for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Xiaoqian Liu
- Center for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Yanhong Tong
- Center for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Guodong Zhao
- Center for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Yanping Ni
- Center for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Xiaoli Zhao
- Center for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Bin Wang
- Center for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Xue Wang
- Center for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Mingxin Zhang
- Center for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Shanlei Guo
- Center for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Xu Han
- Center for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Qingxin Tang
- Center for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Yichun Liu
- Center for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| |
Collapse
|
11
|
Zhao G, Sun J, Zhang M, Guo S, Wang X, Li J, Tong Y, Zhao X, Tang Q, Liu Y. Highly Strain-Stable Intrinsically Stretchable Olfactory Sensors for Imperceptible Health Monitoring. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302974. [PMID: 37610561 PMCID: PMC10582427 DOI: 10.1002/advs.202302974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/31/2023] [Indexed: 08/24/2023]
Abstract
Intrinsically stretchable gas sensors possess outstanding advantages in seamless conformability and high-comfort wearability for real-time detection toward skin/respiration gases, making them promising candidates for health monitoring and non-invasive disease diagnosis and therapy. However, the strain-induced deformation of the sensitive semiconductor layers possibly causes the sensing signal drift, resulting in failure in achievement of the reliable gas detection. Herein, a surprising result that the stretchable organic polymers present a universal strain-insensitive gas sensing property is shown. All the stretchable polymers with different degrees of crystallinity, including indacenodithiophene-benzothiadiazole (PIDTBT), diketo-pyrrolo-pyrrole bithiophene thienothiophene (DPPT-TT) and poly[4-(4,4-dihexadecyl-4H-cyclopenta[1,2-b:5,4-b']dithiophen-2-yl)-alt-[1,2,5]thiad-iazolo [3,4-c] pyridine] (PCDTPT), show almost unchanged gas response signals in the different stretching states. This outstanding advantage enables the intrinsically stretchable devices to imperceptibly adhere on human skin and well conform to the versatile deformations such as bending, twisting, and stretching, with the highly strain-stable gas sensing property. The intrinsically stretchable PIDTBT sensor also demonstrates the excellent selectivity toward the skin-emitted trimethylamine (TMA) gas, with a theoretical limit of detection as low as 0.3 ppb. The work provides new insights into the preparation of the reliable skin-like gas sensors and highlights the potential applications in the real-time detection of skin gas and respiration gas for non-invasive medical treatment and disease diagnosis.
Collapse
Affiliation(s)
- Guodong Zhao
- Center for Advanced Optoelectronic Functional Materials Research and Key Lab of UV‐Emitting Materials and Technology of Ministry of EducationNortheast Normal UniversityChangchun130024P. R. China
| | - Jing Sun
- Center for Advanced Optoelectronic Functional Materials Research and Key Lab of UV‐Emitting Materials and Technology of Ministry of EducationNortheast Normal UniversityChangchun130024P. R. China
| | - Mingxin Zhang
- Center for Advanced Optoelectronic Functional Materials Research and Key Lab of UV‐Emitting Materials and Technology of Ministry of EducationNortheast Normal UniversityChangchun130024P. R. China
| | - Shanlei Guo
- Center for Advanced Optoelectronic Functional Materials Research and Key Lab of UV‐Emitting Materials and Technology of Ministry of EducationNortheast Normal UniversityChangchun130024P. R. China
| | - Xue Wang
- Center for Advanced Optoelectronic Functional Materials Research and Key Lab of UV‐Emitting Materials and Technology of Ministry of EducationNortheast Normal UniversityChangchun130024P. R. China
| | - Juntong Li
- Center for Advanced Optoelectronic Functional Materials Research and Key Lab of UV‐Emitting Materials and Technology of Ministry of EducationNortheast Normal UniversityChangchun130024P. R. China
| | - Yanhong Tong
- Center for Advanced Optoelectronic Functional Materials Research and Key Lab of UV‐Emitting Materials and Technology of Ministry of EducationNortheast Normal UniversityChangchun130024P. R. China
| | - Xiaoli Zhao
- Center for Advanced Optoelectronic Functional Materials Research and Key Lab of UV‐Emitting Materials and Technology of Ministry of EducationNortheast Normal UniversityChangchun130024P. R. China
| | - Qingxin Tang
- Center for Advanced Optoelectronic Functional Materials Research and Key Lab of UV‐Emitting Materials and Technology of Ministry of EducationNortheast Normal UniversityChangchun130024P. R. China
| | - Yichun Liu
- Center for Advanced Optoelectronic Functional Materials Research and Key Lab of UV‐Emitting Materials and Technology of Ministry of EducationNortheast Normal UniversityChangchun130024P. R. China
| |
Collapse
|
12
|
Kim Y, Ahn H, Yoo D, Sung M, Yoo H, Park S, Lee J, Lee BH. A Semi-Crystalline Polymer Semiconductor with Thin Film Stretchability Exceeding 200. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2302683. [PMID: 37229768 PMCID: PMC10401152 DOI: 10.1002/advs.202302683] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Indexed: 05/27/2023]
Abstract
Despite the emerging scientific interest in polymer-based stretchable electronics, the trade-off between the crystallinity and stretchability of intrinsically stretchable polymer semiconductors-charge-carrier mobility increases as crystallinity increases while stretchability decreases-hinders the development of high-performance stretchable electronics. Herein, a highly stretchable polymer semiconductor is reported that shows concurrently improved thin film crystallinity and stretchability upon thermal annealing. The polymer thin films annealed at temperatures higher than their crystallization temperatures exhibit substantially improved thin film stretchability (> 200%) and hole mobility (≥ 0.2 cm2 V-1 s-1 ). The simultaneous enhancement of the crystallinity and stretchability is attributed to the thermally-assisted structural phase transition that allows the formation of edge-on crystallites and reinforces interchain noncovalent interactions. These results provide new insights into how the current crystallinity-stretchability limitation can be overcome. Furthermore, the results will facilitate the design of high-mobility stretchable polymer semiconductors for high-performance stretchable electronics.
Collapse
Affiliation(s)
- Yejin Kim
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Hyungju Ahn
- Pohang Accelerator Laboratory, POSTECH, Pohang, 37673, Republic of Korea
| | - Dahyeon Yoo
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Mingi Sung
- Division of Chemical Engineering, Dongseo University, Busan, 47011, Republic of Korea
| | - Hyeonjin Yoo
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Sohee Park
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Junghoon Lee
- Division of Chemical Engineering, Dongseo University, Busan, 47011, Republic of Korea
| | - Byoung Hoon Lee
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| |
Collapse
|
13
|
Yuan Y, Zhu H, Wang X, Zhang G, Qiu L. Enhancing the Elasticity of Conjugated Polymers through Precise Control of the Spacing between the Backbone and Siloxane Side-Chains. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22341-22350. [PMID: 37102202 DOI: 10.1021/acsami.3c02841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Intrinsically stretchable conjugated polymers (CPs) have extensively been studied for the development of novel flexible electronic devices. In this work, a method to control the elastic properties of CPs has been proposed via regulation of spacer length between the siloxane side-chain and the backbone. The target polymers were CP films with the structure P(mC-Si) for four different numbers of the spacer methylene groups, namely, m = 5, 6, 7, and 8. The effect of spacer length on the aggregation state as well as on electrical and elastic properties of the prepared films was then investigated. An adjustable lamellar spacing (dL-L), in addition to improved elastic properties, was achieved as the spacer length was changed in the prepared polymer films. Moreover, P(7C-Si) has a sufficient dL-L value of 35.77 Å, which provides enough space for inter-chain sliding to dissipate stress. This facilitated the dissipation of stress during the straining process. At a strain value of 100% in the vertical direction, the mobility of the P(7C-Si) film was 0.79 cm2 V-1 s-1 and reduced to 84.0% of the initial value without any applied strain. The study provides clear evidence that tuning the spacer length between the silicone endgroup and backbone is an effective way to improve the intrinsic stretchability of CPs with siloxane side chains.
Collapse
Affiliation(s)
- Ye Yuan
- National Engineering Laboratory of Special Display Technology, State Key Laboratory of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
| | - Haoran Zhu
- National Engineering Laboratory of Special Display Technology, State Key Laboratory of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
| | - Xiaohong Wang
- National Engineering Laboratory of Special Display Technology, State Key Laboratory of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
| | - Guobing Zhang
- National Engineering Laboratory of Special Display Technology, State Key Laboratory of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
| | - Longzhen Qiu
- National Engineering Laboratory of Special Display Technology, State Key Laboratory of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
- Intelligent Interconnected Systems Laboratory of Anhui, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
14
|
Zhang L, Li H, Zhao K, Zhang T, Liu D, Wang S, Wu F, Zhang Q, Han Y. Achieving the high charge mobility of conjugated polymers under cyclic stretching by changing the interaction parameter between solvent and sidechain. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
15
|
Pei D, An C, Zhao B, Ge M, Wang Z, Dong W, Wang C, Deng Y, Song D, Ma Z, Han Y, Geng Y. Polyurethane-Based Stretchable Semiconductor Nanofilms with High Intrinsic Recovery Similar to Conventional Elastomers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:33806-33816. [PMID: 35849824 DOI: 10.1021/acsami.2c07445] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Polymer semiconductors with large elastic recovery (ER) under high strain in thin film state are highly desirable for stretchable electronics. Here we report a type of stretchable semiconductor PU(DPP)x, by copolymerization of oligodiketopyrrolopyrrole-based conjugated block and hydrogenated polybutadiene flexible block via urethane linkage for intermolecular hydrogen bonding. By regulating block ratio, PU(DPP)35 with 35 wt % conjugated block exhibits high intrinsic ER > 80% under 175% strain (ε) in pseudo free-standing thin film state, comparable with commercial elastomers, and crack onset strain (COS) > 300% along with maximum hole mobility of 0.19 cm2 V-1 s-1 in organic thin film transistors to bring it to the best performing block copolymer-type stretchable semiconductors. Enhanced mobility is achieved using PU(DPP)35 as the binder for conjugated polymer PDPPT3. The 25 wt %-PDPPT3 blend displays mobility up to 1.28 cm2 V-1 s-1 along with COS ∼120%, and 10 wt %-PDPPT3 blend exhibits ER of 78% at ε = 150%, COS of ∼230%, modulus of 36.5 MPa, maximum mobility of 0.62 cm2 V-1 s-1 and no obvious degradation of mobility at ε = 150% after 100 cycles of strain. Moreover, the structural similarity enables the blend film uniform and stable microstructure against mechanical and thermal deformation. Notably, PU(DPP)35 and the blend are characterized by high mechanical performance similar to that of commercial elastomers in thin film state, and demonstrate their potential for high performance stretchable electronics.
Collapse
Affiliation(s)
- Dandan Pei
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
| | - Chuanbin An
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China
| | - Bin Zhao
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
| | - Mengke Ge
- Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Zhongli Wang
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
| | - Weijia Dong
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
| | - Cheng Wang
- Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yunfeng Deng
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
| | - Dongpo Song
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Zhe Ma
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yang Han
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
| | - Yanhou Geng
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China
| |
Collapse
|
16
|
Luo N, Ren P, Feng Y, Shao X, Zhang HL, Liu Z. Side-Chain Engineering of Conjugated Polymers for High-Performance Organic Field-Effect Transistors. J Phys Chem Lett 2022; 13:1131-1146. [PMID: 35084195 DOI: 10.1021/acs.jpclett.1c03909] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Past decades have witnessed the rapid development of conjugated polymers because of their promising semiconducting properties and applications in organic field-effect transistors (OFETs). Recent studies have shown that side-chain engineering of conjugated polymers is an efficient strategy to increase semiconducting performance. This Perspective focuses on the side-chain modulation of conjugated polymers and evaluating their effects on the performance of OFETs. The challenges and potential applications of functional high-performance OFETs through side-chain engineering are also discussed.
Collapse
Affiliation(s)
- Nan Luo
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Peng Ren
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yu Feng
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Xiangfeng Shao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Hao-Li Zhang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Zitong Liu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
| |
Collapse
|