1
|
Kashapov R, Razuvayeva Y, Fedorova E, Zakharova L. The role of macrocycles in supramolecular assembly with polymers. SOFT MATTER 2024; 20:8549-8560. [PMID: 39470183 DOI: 10.1039/d4sm01053a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Recently, supramolecular self-assembly has attracted the attention of researchers worldwide because it enables the creation of nanostructures with unique properties without additional costs. Spontaneous organization of molecules allows the design and development of new nanostructures that can interact with drugs and living cells and generate a response. Therefore, supramolecular structures have enormous potential and can be in demand in various fields of healthcare and ecology. One of the widely used building blocks of such supramolecular assemblies is polymers. This review examines the joint aggregation behavior of various macrocycles (cyclodextrins, calixarenes, cucurbiturils, porphyrins, and pillararenes) with polymers, the functional properties of these supramolecular systems and their potential applications.
Collapse
Affiliation(s)
- Ruslan Kashapov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, 420088, Kazan, Russian Federation.
| | - Yuliya Razuvayeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, 420088, Kazan, Russian Federation.
| | - Elena Fedorova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, 420088, Kazan, Russian Federation.
| | - Lucia Zakharova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, 420088, Kazan, Russian Federation.
| |
Collapse
|
2
|
Guchhait C, Suriyaa V, Sahu N, Sarkar SD, Adhikari B. Ferrocene: an exotic building block for supramolecular assemblies. Chem Commun (Camb) 2023; 59:14482-14496. [PMID: 37997157 DOI: 10.1039/d3cc03659f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Ferrocene (Fc), a classical organometallic complex, has found potential applications in ligand design, catalysis, and analytical, biological, medicinal and materials chemistry. In recent years, the use of Fc as a building block in supramolecular chemistry has emerged. The molecular shape, size, and hydrophobicity of Fc make it an ideal guest for a variety of macrocyclic host molecules to form stable host-guest complexes. The vertical distance (3.3 Å) between two cyclopentadienyl rings and molecular "ball bearing" property in Fc support the formation of intramolecular π-π stacking, H-bonding and metallophilic interactions between two appropriate substituents in 1,n'-disubstituted ferrocenes. Along with these molecular features, the rigidity along with rotational flexibility, redox reversibility and oxidation-triggered tunable hydrophobicity of Fc have led to its use as an exotic building block for the development of a wide range of supramolecular assemblies such as smart molecular receptors, intricate metal-organic assemblies, supramolecular polymers, and gels including out-of-equilibrium assemblies and metal nanoparticle assemblies. This review highlights the concepts behind the design and development of these assemblies, where the Fc unit has a direct and defined role in their formation and function. The use of Fc in supramolecular assembly is still a relatively young field and set to be the subject of increasing research interest towards the development of fascinating supramolecular structures with tailored properties and programmable functions towards applications in materials and biological sciences.
Collapse
Affiliation(s)
- Chandrakanta Guchhait
- Department of Chemistry, National Institute of Technology Rourkela, Rourkela, Odisha 769008, India.
| | - Vembanan Suriyaa
- Department of Chemistry, National Institute of Technology Rourkela, Rourkela, Odisha 769008, India.
| | - Nihar Sahu
- Department of Chemistry, National Institute of Technology Rourkela, Rourkela, Odisha 769008, India.
| | - Sovik Dey Sarkar
- Department of Chemistry, National Institute of Technology Rourkela, Rourkela, Odisha 769008, India.
| | - Bimalendu Adhikari
- Department of Chemistry, National Institute of Technology Rourkela, Rourkela, Odisha 769008, India.
| |
Collapse
|
3
|
Liu Z, Zhao X, Chu Q, Feng Y. Recent Advances in Stimuli-Responsive Metallogels. Molecules 2023; 28:molecules28052274. [PMID: 36903517 PMCID: PMC10005064 DOI: 10.3390/molecules28052274] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
Recently, stimuli-responsive supramolecular gels have received significant attention because their properties can be modulated through external stimuli such as heat, light, electricity, magnetic fields, mechanical stress, pH, ions, chemicals and enzymes. Among these gels, stimuli-responsive supramolecular metallogels have shown promising applications in material science because of their fascinating redox, optical, electronic and magnetic properties. In this review, research progress on stimuli-responsive supramolecular metallogels in recent years is systematically summarized. According to external stimulus sources, stimuli-responsive supramolecular metallogels, including chemical, physical and multiple stimuli-responsive metallogels, are discussed separately. Moreover, challenges, suggestions and opportunities regarding the development of novel stimuli-responsive metallogels are presented. We believe the knowledge and inspiration gained from this review will deepen the current understanding of stimuli-responsive smart metallogels and encourage more scientists to provide valuable contributions to this topic in the coming decades.
Collapse
Affiliation(s)
- Zhixiong Liu
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China
- Correspondence: (Z.L.); (Y.F.)
| | - Xiaofang Zhao
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China
| | - Qingkai Chu
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China
| | - Yu Feng
- School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China
- Correspondence: (Z.L.); (Y.F.)
| |
Collapse
|
4
|
Multistep sequence-controlled supramolecular polymerization by the combination of multiple self-assembly motifs. iScience 2023; 26:106023. [PMID: 36818297 PMCID: PMC9932128 DOI: 10.1016/j.isci.2023.106023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/25/2022] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
The precise sequence control of polymer chain is an important research topic of polymer chemistry. Although some methods such as iterative synthesis and supramolecular polymerization have been developed to fabricate sequence-controllable polymer, it is still a great challenge to consecutively prepare multiple supramolecular polymers with different sequence structures. In this work, through the reasonable utilization of assembly motifs, we integrated multiple host-guest recognitions and metal coordination interactions to prepare different sequence-controlled supramolecular polymers by a multistep assembly strategy. This research provides inspiration for the design and preparation of supramolecular polymers with different sequence structures.
Collapse
|
5
|
Zhang J, Bo S, Wang R, Fang J, Wang XG, Bai Y, Ma Z, Liang Y, Zhang M, Yu Q, Cai M, Zhou F, Liu W. Supramolecular Polymer Gel Lubricant with Excellent Mechanical Stability and Tribological Performances. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45934-45944. [PMID: 36166403 DOI: 10.1021/acsami.2c14306] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Lubricants performing better in machinery systems would lead to the remarkable reduction of environmental pollution problems and the significant improvement of fuel economy. A new family of supramolecular polymer gel lubricants with urea groups has been successfully prepared via self-assembling noncovalent bonds. These newly designed supramolecular polymer gels were well characterized with field-emission scanning electron microscopy, proton nuclear magnetic resonance, attenuated total reflection-Fourier transform infrared spectroscopy, a rheometer, oscillating reciprocating friction, and a wear tester. Compared to low molecular weight supramolecular gels, the covalent and noncovalent bonds cooperated in the supramolecular polymer gel based on macromolecules. Hence, the mechanical properties and viscoelasticity of gel lubricants are greater than those of the low molecular weight supramolecular gels. Furthermore, owing to the longer chain length of polymer gelators, the thickness of the adsorbed film formed on the surface lubricated by macromolecules is thicker than that on the surface lubricated by low molecular weight supramolecular gels, which positively correlates with the lubricating property, making supramolecular polymer gels based on macromolecules better than low molecular weight supramolecular gels. Excitingly, the supramolecular polymer gels based on macromolecules exhibit more excellent thermal reversibility, creep recovery, and thixotropic properties, which not only achieve the lubricating property but also lead to the remarkable reduction of environmental pollution problems due to oil creeping.
Collapse
Affiliation(s)
- Jiaying Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics Chinese Academy of Sciences, Lanzhou 730000, China
| | - Shangshang Bo
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics Chinese Academy of Sciences, Lanzhou 730000, China
| | - Rui Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics Chinese Academy of Sciences, Lanzhou 730000, China
| | - Junhui Fang
- Hangzhou Hikvision Digital Technology Co., Ltd, Hangzhou 310051, China
| | - Xin-Gang Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yanyan Bai
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhengfeng Ma
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics Chinese Academy of Sciences, Lanzhou 730000, China
- Baiyin Zhongke Innovation Research Institute of Green Materials, Baiyin 730900 China
| | - Yijing Liang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics Chinese Academy of Sciences, Lanzhou 730000, China
| | - Ming Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics Chinese Academy of Sciences, Lanzhou 730000, China
| | - Qiangliang Yu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics Chinese Academy of Sciences, Lanzhou 730000, China
| | - Meirong Cai
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics Chinese Academy of Sciences, Lanzhou 730000, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai 264006, China
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics Chinese Academy of Sciences, Lanzhou 730000, China
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
6
|
Li Y, Lou X, Wang C, Wang Y, Jia Y, Lin Q, Yang Y. Synthesis of stimuli-responsive pillararene-based supramolecular polymer materials for the detection and separation of metal ions. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Chao Y, Thikekar TU, Fang W, Chang R, Xu J, Ouyang N, Xu J, Gao Y, Guo M, Zuilhof H, Sue ACH. "Rim-Differentiated" Pillar[6]arenes. Angew Chem Int Ed Engl 2022; 61:e202204589. [PMID: 35451151 DOI: 10.1002/anie.202204589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Indexed: 11/06/2022]
Abstract
A "rim-differentiated" pillar[6]arene (RD-P[6]) was obtained successfully, with the assistance of a dimeric silver trifluoroacetate template, among eight different constitutional isomers in a direct and regioselective manner. The solid-state conformation of this macrocycle could switch from the 1,3,5-alternate to a truly rim-differentiated one upon guest inclusion. This highly symmetric RD-P[6] not only hosts metal-containing molecules inside its cavity, but also can form a pillar[6]arene-C60 adduct through co-crystallization on account of donor-acceptor interactions. The development of synthetic strategies to desymmetrize pillararenes offers new opportunities for engineering complex molecular architectures and organic electronic materials.
Collapse
Affiliation(s)
- Yang Chao
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China.,College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Siming District, Xiamen, 361005, P. R. China
| | - Tushar Ulhas Thikekar
- College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Siming District, Xiamen, 361005, P. R. China
| | - Wangjian Fang
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Rong Chang
- College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Siming District, Xiamen, 361005, P. R. China
| | - Jiong Xu
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Nianfeng Ouyang
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Jun Xu
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Yan Gao
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Minjie Guo
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Han Zuilhof
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China.,Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.,Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Andrew C-H Sue
- College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Siming District, Xiamen, 361005, P. R. China
| |
Collapse
|
8
|
Enhancing Mechanical Performance of a Polymer Material by Incorporating Pillar[5]arene-Based Host–Guest Interactions. Gels 2022; 8:gels8080475. [PMID: 36005076 PMCID: PMC9407059 DOI: 10.3390/gels8080475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 12/04/2022] Open
Abstract
Polymer gels have been widely used in the field for tissue engineering, sensing, and drug delivery due to their excellent biocompatibility, hydrophilicity, and degradability. However, common polymer gels are easily deformed on account of their relatively weak mechanical properties, thereby hindering their application fields, as well as shortening their service life. The incorporation of reversible non-covalent bonds is capable of improving the mechanical properties of polymer gels. Thus, here, a poly(methyl methacrylate) polymer network was prepared by introducing host–guest interactions between pillar[5]arene and pyridine cation. Owing to the incorporated host–guest interactions, the modified polymer gels exhibited extraordinary mechanical properties according to the results of the tensile tests. In addition, the influence of the host–guest interaction on the mechanical properties of the gels was also proved by rheological experiments and swelling experiments.
Collapse
|
9
|
Huang X, Li R, Duan Z, Xu F, Li H. Supramolecular polymer gels: from construction methods to functionality. SOFT MATTER 2022; 18:3828-3844. [PMID: 35506880 DOI: 10.1039/d2sm00352j] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Supramolecular polymer gels (SPGs) are precisely designed gels brought together by noncovalent interactions to form three-dimensional network structures of polymers. SPGs combine the merits of supramolecular polymers and gels, such as stimuli-responsiveness, self-healing, and self-adaptation, which endows SPGs with potential application value in the fields of biomaterials, etc. Recently, much effort has been made to design new SPGs and related materials with high performance. Herein, we review the research endeavor and future directions of SPGs depending on the construction methods, topological structures, stimuli-responsiveness, and functionality. We hope that the review will provide reference values for the researchers working in supramolecular chemistry and gels.
Collapse
Affiliation(s)
- Xiaohui Huang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China.
| | - Riqiang Li
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China.
| | - Zhaozhao Duan
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China.
| | - Fenfen Xu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China.
| | - Hui Li
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China.
| |
Collapse
|
10
|
Chao Y, Thikekar TU, Fang W, Chang R, Xu J, Ouyang N, Xu J, Gao Y, Guo M, Zuilhof H, Sue ACH. "Rim‐Differentiated" Pillar[6]arenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yang Chao
- Tianjin University School of Pharmaceutical Science and Technology CHINA
| | | | - Wangjian Fang
- Tianjin University School of Pharmaceutical Science & Technology CHINA
| | - Rong Chang
- Xiamen University College of Chemistry and Chemical Engineering CHINA
| | - Jiong Xu
- Xiamen University College of Chemistry and Chemical Engineering CHINA
| | - Nianfeng Ouyang
- Xiamen University College of Chemistry & Chemical Engineering CHINA
| | - Jun Xu
- Tianjin University School of Pharmaceutical Science and Technology CHINA
| | - Yan Gao
- Tianjin University School of Pharmaceutical Science and Technology CHINA
| | - Minjie Guo
- Tianjin University School of Pharmaceutical Science & Technology CHINA
| | - Han Zuilhof
- WUR: Wageningen University & Research Chemistry NETHERLANDS
| | - Andrew Chi-Hau Sue
- Xiamen University College of Chemistry and Chemical Engineering 422 Siming S. Rd.Siming Dist. 361005 Xiamen CHINA
| |
Collapse
|
11
|
Lu F, Chen Y, Fu B, Chen S, Wang L. Multistimuli responsive supramolecular polymer networks via host-guest complexation of pillararene-containing polymers and sulfonium salts. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Ju H, Zhu CN, Wang H, Page ZA, Wu ZL, Sessler JL, Huang F. Paper without a Trail: Time-Dependent Encryption using Pillar[5]arene-Based Host-Guest Invisible Ink. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108163. [PMID: 34802162 DOI: 10.1002/adma.202108163] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/16/2021] [Indexed: 06/13/2023]
Abstract
A stimuli-responsive invisible ink for time-dependent encryption of information is reported. Consisting of a pillar[5]arene-based supramolecular network grafted with spiropyran moieties, these materials display time-dependent photochromic behavior with tailorable fading rates. Ultraviolet (UV) light results in isomerization of the colorless spiropyran to the corresponding colored merocyanine, while visible light or heat causes the reverse isomerization with a rate that is dependent on the density of host-guest crosslinks. The kinetics of discoloration are a function of merocyanine aggregation, which becomes more pronounced as the host-guest crosslink density is increased, leading to a reduced conversion rate and slower time-dependent fading. The degree of crosslinking, and hence the fading rate, may be modulated via the addition of unbound pillar[5]arene host or nitrile guest as competitors. Time-dependent information encryption is enabled by combining selective placement of host and guest competitors and UV patterning. UV patterning provides an initially "false" image that does not reveal the desired information, and it is only after a given time that the encrypted data appears. This work provides a unique approach to enhance the security of information storage associated with offline portable data encryption.
Collapse
Affiliation(s)
- Huaqiang Ju
- State Key Laboratory of Chemical Engineering, Key Laboratory of Excited-State Materials of Zhejiang Province, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Chao Nan Zhu
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hu Wang
- State Key Laboratory of Chemical Engineering, Key Laboratory of Excited-State Materials of Zhejiang Province, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Zachariah A Page
- Department of Chemistry, 105 East 24th Street, Stop A5300, The University of Texas at Austin, Austin, TX, 78712, United States
| | - Zi Liang Wu
- Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jonathan L Sessler
- Department of Chemistry, 105 East 24th Street, Stop A5300, The University of Texas at Austin, Austin, TX, 78712, United States
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Key Laboratory of Excited-State Materials of Zhejiang Province, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
13
|
Bai R, Zhang H, Yang X, Zhao J, Wang Y, Zhang Z, Yan X. Supramolecular polymer networks crosslinked by crown ether-based host-guest recognition: dynamic materials with tailored mechanical properties in bulk. Polym Chem 2022. [DOI: 10.1039/d1py01536b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Supramolecular polymer networks (SPNs) based on host-guest recognition have attracted much research attention to develop smart supramolecular materials. However, these researches mainly focus on SPNs in solution or in gel...
Collapse
|
14
|
Wu Y, Qin H, Shen J, Li H, Shan X, Xie M, Liao X. Pillararene-containing polymers with tunable fluorescence properties based on host-guest interactions. Chem Commun (Camb) 2021; 58:581-584. [PMID: 34918016 DOI: 10.1039/d1cc05962a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Linear polymers containing pillar[5]arenes as the pendant groups were designed and synthesized via a ring-opening metathesis polymerization. Such polymers could form supramolecular brush polymers and exhibited tunable fluorescence properties based on the host-guest interactions.
Collapse
Affiliation(s)
- Yue Wu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China.
| | - Hongyu Qin
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China.
| | - Jun Shen
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China.
| | - Hequn Li
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China.
| | - Xiaotao Shan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China.
| | - Meiran Xie
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China.
| | - Xiaojuan Liao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China. .,Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
15
|
Zhang Q, Li K, Fan L, Li N, Li J, Guo H. Rapid Self‐Healing Supramoleular Gel Constructed from Pillar[5]arene. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Qian Zhang
- Key Laboratory of Green Chemical Media and Reactions Ministry of Education Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals NMPA Key Laboratory for Research and Evaluation of Innovative Drug School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Ke‐Qing Li
- Key Laboratory of Green Chemical Media and Reactions Ministry of Education Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals NMPA Key Laboratory for Research and Evaluation of Innovative Drug School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 P. R. China
- High and New Technology Research Center of Henan Academy of Sciences Zhengzhou Henan 450000 P. R. China
| | - Lu‐Lu Fan
- Key Laboratory of Green Chemical Media and Reactions Ministry of Education Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals NMPA Key Laboratory for Research and Evaluation of Innovative Drug School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Na Li
- Key Laboratory of Green Chemical Media and Reactions Ministry of Education Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals NMPA Key Laboratory for Research and Evaluation of Innovative Drug School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Jun Li
- Key Laboratory of Green Chemical Media and Reactions Ministry of Education Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals NMPA Key Laboratory for Research and Evaluation of Innovative Drug School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Hai‐Ming Guo
- Key Laboratory of Green Chemical Media and Reactions Ministry of Education Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals NMPA Key Laboratory for Research and Evaluation of Innovative Drug School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 P. R. China
| |
Collapse
|
16
|
Kato K, Onishi K, Maeda K, Yagyu M, Fa S, Ichikawa T, Mizuno M, Kakuta T, Yamagishi TA, Ogoshi T. Thermally Responsive Poly(ethylene oxide)-Based Polyrotaxanes Bearing Hydrogen-Bonding Pillar[5]arene Rings*. Chemistry 2021; 27:6435-6439. [PMID: 33543802 DOI: 10.1002/chem.202005099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/26/2020] [Indexed: 11/09/2022]
Abstract
Poly(ethylene oxide)s (PEOs) are useful polymers with good water solubility, biological compatibility, and commercial availability. PEOs with various end groups were threaded into pillar[5]arene rings in a mixture of water and methanol to afford pseudopolyrotaxanes. Corresponding polyrotaxanes were also constructed by capping COOH-terminated pseudopolyrotaxanes with bulky amines, in which multiple hydrogen bonds involving the pillar[5]arene OH groups were critically important to prevent dethreading. The number of threaded ring components could be rationally controlled in these materials, providing a simple and versatile method to tune the mechanical and thermal properties. Specifically, a polyrotaxane with a high-molecular-weight axle became elastic upon heating above the melting point of PEOs and exhibited temperature-dependent shape memory property because of the topological confinement and crosslinked hydrogen bonds.
Collapse
Affiliation(s)
- Kenichi Kato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 6158510, Japan
| | - Katsuto Onishi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 6158510, Japan
| | - Koki Maeda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 6158510, Japan
| | - Masafumi Yagyu
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 9201192, Japan
| | - Shixin Fa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 6158510, Japan
| | - Takahiro Ichikawa
- Department of Biotechnology, Faculty of Engineering, Tokyo University of Agriculture and Technology, Nakacho, Koganei, Tokyo, 1848588, Japan
| | - Motohiro Mizuno
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 9201192, Japan
| | - Takahiro Kakuta
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 9201192, Japan.,WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 9201192, Japan
| | - Tada-Aki Yamagishi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 9201192, Japan
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 6158510, Japan.,WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 9201192, Japan
| |
Collapse
|
17
|
Zhao M, Li C, Shan X, Han H, Zhao Q, Xie M, Chen J, Liao X. A Stretchable Pillararene-Containing Supramolecular Polymeric Material with Self-Healing Property. Molecules 2021; 26:2191. [PMID: 33920289 PMCID: PMC8070141 DOI: 10.3390/molecules26082191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 12/03/2022] Open
Abstract
Constructing polymeric materials with stretchable and self-healing properties arise increasing interest in the field of tissue engineering, wearable electronics and soft actuators. Herein, a new type of supramolecular cross-linker was constructed through host-guest interaction between pillar[5]arene functionalized acrylate and pyridinium functionalized acrylate, which could form supramolecular polymeric material via photo-polymerization of n-butyl acrylate (BA). Such material exhibited excellent tensile properties, with maximum tensile strength of 3.4 MPa and strain of 3000%, respectively. Moreover, this material can effectively dissipate energy with the energy absorption efficiency of 93%, which could be applied in the field of energy absorbing materials. In addition, the material showed self-healing property after cut and responded to competitive guest.
Collapse
Affiliation(s)
- Meng Zhao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China; (M.Z.); (C.L.); (X.S.); (H.H.); (Q.Z.); (M.X.)
| | - Changjun Li
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China; (M.Z.); (C.L.); (X.S.); (H.H.); (Q.Z.); (M.X.)
| | - Xiaotao Shan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China; (M.Z.); (C.L.); (X.S.); (H.H.); (Q.Z.); (M.X.)
| | - Huijing Han
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China; (M.Z.); (C.L.); (X.S.); (H.H.); (Q.Z.); (M.X.)
| | - Qiuhua Zhao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China; (M.Z.); (C.L.); (X.S.); (H.H.); (Q.Z.); (M.X.)
| | - Meiran Xie
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China; (M.Z.); (C.L.); (X.S.); (H.H.); (Q.Z.); (M.X.)
| | - Jianzhuang Chen
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaojuan Liao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China; (M.Z.); (C.L.); (X.S.); (H.H.); (Q.Z.); (M.X.)
| |
Collapse
|
18
|
Cao S, Zhou L, Liu C, Zhang H, Zhao Y, Zhao Y. Pillararene-based self-assemblies for electrochemical biosensors. Biosens Bioelectron 2021; 181:113164. [PMID: 33744670 DOI: 10.1016/j.bios.2021.113164] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 11/30/2022]
Abstract
The ingenious design and synthesis of novel macrocycles bring out renewed vigor of supramolecular chemistry in the past decade. As an intriguing class of macrocycles, pillararene and pillararene-based functional materials that are constructed through the noncovalent bond self-assembly approach have been undergoing a rapid growth, benefiting from their unique structures and physiochemical properties. This review elaborates recent significant advances of electrochemical studies based on pillararene systems. Fundamental electrochemical behavior of pillar[n]arene[m]quinone and pillararene-based self-assemblies as well as their applications in electrochemical biosensors are highlighted. In addition, the advantages and functions of pillararene self-assembly systems resulted from the unique molecular architectures are analyzed. Finally, current challenges and future development tendency in this burgeoning field are discussed from the viewpoint of both fundamental research and applications. Overall, this review not only manifests the main development vein of pillararene-based electrochemical systems, but also conquers a solid foundation for their further bioelectrochemical applications.
Collapse
Affiliation(s)
- Shuai Cao
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Le Zhou
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Chang Liu
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Huacheng Zhang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.
| | - Yuxin Zhao
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore.
| |
Collapse
|
19
|
Hirao T, Fukuta K, Haino T. Polymerization of a biscalix[5]arene derivative. RSC Adv 2021; 11:17587-17594. [PMID: 35480194 PMCID: PMC9033180 DOI: 10.1039/d1ra02276h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/09/2021] [Indexed: 12/14/2022] Open
Abstract
Recent decades have seen an increased interest in the preparation of polymers possessing host or guest moieties as the end group, which has enabled new polymeric materials such as self-healable, shape-memory, and stimuli-responsive materials. Such polymers are commonly synthesized by tethering the host or guest moieties to polymers. On the other hand, there are limited reports demonstrating the preparation of host- or guest-appended polymers by directly polymerizing the corresponding host- or guest-appended monomers, which is valuable for easy access to diverse polymers from single molecular species. However, reactive host and/or guest moieties of the monomer interfere with the polymerization reaction. Here, we report that a biscalix[5]arene host-appended molecule can be polymerized with various monomers to form the corresponding host-appended polymers. The host–guest complexation behavior of calix[5]arene-appended polymers with fullerene derivatives was studied by 1H NMR and UV/Vis spectroscopic techniques, which revealed that the long polymer chains did not prevent host–guest complexation even when the fullerene derivative was equipped with a polymer chain. Thus, the present study shows the potential for developing polymers that have various combinations of polymer chains. A calix[5]arene appended monomer molecule was subjected to polymerization reaction to yield corresponding methacrylate polymers. The calix[5]arene appended polymers showed excellent encapsulation capability for fullerene molecules.![]()
Collapse
Affiliation(s)
- Takehiro Hirao
- Department of Chemistry
- Graduate School of Advanced Science and Engineering
- Hiroshima University
- Higashi-Hiroshima
- Japan
| | - Kazushi Fukuta
- Department of Chemistry
- Graduate School of Science
- Hiroshima University
- Higashi-Hiroshima
- Japan
| | - Takeharu Haino
- Department of Chemistry
- Graduate School of Advanced Science and Engineering
- Hiroshima University
- Higashi-Hiroshima
- Japan
| |
Collapse
|
20
|
Sun XW, Wang ZH, Li YJ, Zhang YF, Zhang YM, Yao H, Wei TB, Lin Q. Tri-pillar[5]arene-Based Multifunctional Stimuli-Responsive Supramolecular Polymer Network with Conductivity, Aggregation-Induced Emission, Thermochromism, Fluorescence Sensing, and Separation Properties. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01972] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Xiao-Wen Sun
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Zhong-Hui Wang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Ying-Jie Li
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yun-Fei Zhang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - You-Ming Zhang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Hong Yao
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Tai-Bao Wei
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Qi Lin
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
21
|
Zhang H, Liu Z, Xin F, Zhao Y. Metal-ligated pillararene materials: From chemosensors to multidimensional self-assembled architectures. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213425] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
22
|
Lou XY, Yang YW. Pillar[n]arene-Based Supramolecular Switches in Solution and on Surfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003263. [PMID: 32924206 DOI: 10.1002/adma.202003263] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/17/2020] [Indexed: 06/11/2023]
Abstract
The design and synthesis of new synthetic macrocycles has driven the rapid development of supramolecular chemistry and materials. Pillar[n]arenes, as a new type of macrocyclic compounds, are used as a promising type of building blocks for switchable supramolecular systems due to their versatile functionalization and the ability of binding toward various guest molecules. A number of guests can form inclusion complexes with pillar[n]arenes and their derivatives in solution, which are sensitive to different external triggers. Interestingly, the pursuit of complex stimuli-responsive functional materials and devices has largely motivated the shift of pillar[n]arene-based switches from solution media to surfaces for controllable macroscopic motions on solid platforms. Facilitated by the facile modification of pillar[n]arenes on various solid supports and the dynamic binding of host-guest complexes, numerous functional hybrid materials with adjustable physical or chemical properties and integrated functionalities have been reported in the last decade. Here, the advance of supramolecular switches in solution and on surfaces based on pillar[n]arenes and derivatives with an emphasis on the efforts and the latest contributions from the field is discussed.
Collapse
Affiliation(s)
- Xin-Yue Lou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Ying-Wei Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|
23
|
Hadar M, Kaizerman-Kane D, Zafrani Y, Cohen Y. Temperature-Dependent and pH-Responsive Pillar[5]arene-Based Complexes and Hydrogen-Bond-Based Supramolecular Pentagonal Boxes in Water. Chemistry 2020; 26:11250-11255. [PMID: 32259332 DOI: 10.1002/chem.202000972] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Indexed: 01/02/2023]
Abstract
Supramolecular systems in water are of paramount importance and those based on hydrogen bonds are both intriguing and scarce. Here, after studying the peculiar host-guest complexes formed between per-dimethylamino-pillar[5]arene (1) and the bis-sulfonates 2 a-c, we describe the formation of the first hydrogen-bond-based supramolecular pentagonal boxes (SPBs), which are stable in water. These pH-responsive SPBs are constructed from 1 as a body, benzene polycarboxylic acids 3 a,b as lid compounds, and 2 a-c as guests. We demonstrate that encapsulation of 2 a-c in pillar[5]arene 1 and in the highly stable water-soluble SPBs, that is, 1(3 a)2 and 1(3 b)2 , is both temperature and pH dependent and, quite interestingly, depends, on the nature of the lid compounds used for capping the boxes even at high pH. We also highlight the difference in the 1 H NMR characteristics of 2 b and 2 c in the cavity of 1 and the SPBs.
Collapse
Affiliation(s)
- Maya Hadar
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Dana Kaizerman-Kane
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Yossi Zafrani
- Department of Organic Chemistry, Israel Institute for Biological Research, Ness-Ziona, 74000, Israel
| | - Yoram Cohen
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| |
Collapse
|
24
|
Hua Y, Chen L, Hou C, Liu S, Pei Z, Lu Y. Supramolecular Vesicles Based on Amphiphilic Pillar[n]arenes for Smart Nano-Drug Delivery. Int J Nanomedicine 2020; 15:5873-5899. [PMID: 32848395 PMCID: PMC7429218 DOI: 10.2147/ijn.s255637] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/10/2020] [Indexed: 11/23/2022] Open
Abstract
Supramolecular vesicles are the most popular smart nano-drug delivery systems (SDDs) because of their unique cavities, which have high loading carrying capacity and controlled-release action in response to specific stimuli. These vesicles are constructed from amphiphilic molecules via host-guest complexation, typically with targeted stimuli-responsive units, which are particularly important in biotechnology and biomedicine applications. Amphiphilic pillar[n]arenes, which are novel and functional macrocyclic host molecules, have been widely used to construct supramolecular vesicles because of their intrinsic rigid and symmetrical structure, electron-rich cavities and excellent properties. In this review, we first explain the synthesis of three types of amphiphilic pillar[n]arenes: neutral, anionic and cationic pillar[n]arenes. Second, we examine supramolecular vesicles composed of amphiphilic pillar[n]arenes recently used for the construction of SDDs. In addition, we describe the prospects for multifunctional amphiphilic pillar[n]arenes, particularly their potential in novel applications.
Collapse
Affiliation(s)
- Yijie Hua
- Analysis Center of College of Science & Technology, Hebei Agricultural University, Huanghua, Hebei061100, People’s Republic of China
| | - Lan Chen
- Analysis Center of College of Science & Technology, Hebei Agricultural University, Huanghua, Hebei061100, People’s Republic of China
| | - Chenxi Hou
- College of Chemistry & Pharmacy, Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi712100, People’s Republic of China
| | - Shengbo Liu
- School of Chemistry, Biology, and Material Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu215009, People’s Republic of China
| | - Zhichao Pei
- College of Chemistry & Pharmacy, Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi712100, People’s Republic of China
| | - Yuchao Lu
- Analysis Center of College of Science & Technology, Hebei Agricultural University, Huanghua, Hebei061100, People’s Republic of China
| |
Collapse
|
25
|
Sun XW, Wang ZH, Li YJ, Yang HL, Gong GF, Zhang YM, Yao H, Wei TB, Lin Q. Transparency and AIE tunable supramolecular polymer hydrogel acts as TEA-HCl vapor controlled smart optical material. SOFT MATTER 2020; 16:5734-5739. [PMID: 32525181 DOI: 10.1039/d0sm00522c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Stimuli-responsive optical materials attract lots of attention due to their broad applications. Herein, a novel smart stimuli-responsive supramolecular polymer was successfully constructed using a simple tripodal quaternary ammonium-based gelator (TH). The TH self-assembles into a supramolecular polymer hydrogel (TH-G) and shows aggregation-induced emission (AIE) properties. Interestingly, the transparency and fluorescence of the TH-G xerogel film (TH-GF) could be reversibly regulated by use of triethylamine (TEA) and hydrochloric acid (HCl) vapor. When alternately fumed with TEA and HCl vapor, the optical transmittance of the TH-GF was changed from 8.9% to 92.7%. Meanwhile, the fluorescence of the TH-G shows an "ON/OFF" switch. The reversible switching of the transparency and the fluorescence of the TH-GF is attributed to the assembly and disassembly of the supramolecular polymer TH-G. Based on these stimuli-response properties, the TH-GF could act as an optical material and shows potential applications as smart windows or fluorescent display material controlled by TEA and HCl vapor.
Collapse
Affiliation(s)
- Xiao-Wen Sun
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-Environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | - Zhong-Hui Wang
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-Environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | - Ying-Jie Li
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-Environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | - Hai-Long Yang
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-Environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | - Guan-Fei Gong
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-Environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | - You-Ming Zhang
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-Environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | - Hong Yao
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-Environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | - Tai-Bao Wei
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-Environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | - Qi Lin
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-Environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| |
Collapse
|
26
|
Xia D, Wang P, Ji X, Khashab NM, Sessler JL, Huang F. Functional Supramolecular Polymeric Networks: The Marriage of Covalent Polymers and Macrocycle-Based Host–Guest Interactions. Chem Rev 2020; 120:6070-6123. [DOI: 10.1021/acs.chemrev.9b00839] [Citation(s) in RCA: 373] [Impact Index Per Article: 74.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Danyu Xia
- Scientific Instrument Center, Shanxi University, Taiyuan 030006, P. R. China
| | - Pi Wang
- Ministry of Education Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Xiaofan Ji
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Niveen M. Khashab
- Smart Hybrid Materials (SHMS) Laboratory, Chemical Science Program, King Abdullah University of Science and Technology (KAUST), 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jonathan L. Sessler
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
- Center for Supramolecular Chemistry and Catalysis, Shanghai University, Shanghai 200444, P. R. China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
27
|
An JN, Qu WJ, Zhang QP, Ma XQ, Zhu WB, Zhang YM, Yao H, Lin Q, Wei TB. A pillar[5]arene-based supramolecular polymer network gel and its application in adsorption and removal of organic dye in water. J INCL PHENOM MACRO 2020. [DOI: 10.1007/s10847-020-01000-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
28
|
Sinawang G, Osaki M, Takashima Y, Yamaguchi H, Harada A. Supramolecular self-healing materials from non-covalent cross-linking host-guest interactions. Chem Commun (Camb) 2020; 56:4381-4395. [PMID: 32249859 DOI: 10.1039/d0cc00672f] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The introduction of non-covalent bonds is effective for achieving self-healing properties because they can be controlled reversibly. One approach to introduce these bonds into supramolecular materials is use of host-guest interactions. This feature article summarizes the development of supramolecular materials constructed by non-covalent cross-linking through several approaches, such as host-guest interactions between host polymers and guest polymers, 1 : 2-type host-guest interactions, and host-guest interactions from the polymerization of host-guest inclusion complexes. Host-guest interactions show self-healing functions while also enabling stimuli-responsiveness (redox, pH, and temperature). The self-healing function of supramolecular materials is achieved by stress dispersion arising from host-guest interactions when stress is applied. Reversible bonds based on host-guest interactions have tremendous potential to expand the variety of functional materials.
Collapse
Affiliation(s)
- Garry Sinawang
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.
| | | | | | | | | |
Collapse
|
29
|
Zhang Z, Liang H, Li M, Shao L, Hua B. Host-Guest Complexation of Perethylated Pillar[6]arene toward Ferrocene Derivatives Both in Solution and Solid State: Different Binding Modes Induced by Minor Structural Changes of Guests. Org Lett 2020; 22:1552-1556. [PMID: 32003213 DOI: 10.1021/acs.orglett.0c00152] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Herein, novel host-guest properties between perethylated pillar[6]arene and four kinds of ferrocene derivatives were fully investigated. NMR titrations, 2D NOESY NMR spectroscopy, and ESI-MS are used to confirm that they indeed formed stable inclusion complexes. Two precious single-crystal structures were obtained and showed that ferrocene derivatives with different chemical structures exhibit different binding modes with perethylated pillar[6]arenes.
Collapse
Affiliation(s)
- Zhihua Zhang
- Department of Chemistry , Zhejiang University , Hangzhou 310027 , P.R. China
| | - Haozhong Liang
- Department of Chemistry , Zhejiang University , Hangzhou 310027 , P.R. China
| | - Ming Li
- Department of Chemistry , Zhejiang University , Hangzhou 310027 , P.R. China
| | - Li Shao
- Department of Chemistry , Zhejiang University , Hangzhou 310027 , P.R. China
| | - Bin Hua
- Department of Chemistry , Zhejiang University , Hangzhou 310027 , P.R. China
| |
Collapse
|
30
|
Li YF, Li Z, Lin Q, Yang YW. Functional supramolecular gels based on pillar[n]arene macrocycles. NANOSCALE 2020; 12:2180-2200. [PMID: 31916548 DOI: 10.1039/c9nr09532b] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Supramolecular gels constructed from low-molecular-weight gelators via noncovalent interactions have received increasing attention. The rapid development of stimuli-responsive supramolecular gels with attractive properties is highly desirable to meet the ever-growing demand of materials science and chemistry. The inherent reversible and dynamic nature of noncovalent interactions in supramolecular gels endows the materials with sensing, processing, and actuating functions in response to specific environmental changes and offers them great potential in flexible biomaterials and intelligent devices. In particular, pillar[n]arenes with symmetrical pillar-shaped architectures have been recognized as an emerging class of synthetic macrocycles after crown ethers, cyclodextrins, calixarenes, and cucurbiturils, and proven to be excellent candidates for the fabrication of functional supramolecular gels due to their many advantages including facile synthesis, diverse functionalization, and appealing host-guest properties. This review provides a comprehensive overview of recent progress in supramolecular gels involving pillar[n]arenes and their derivatives as synthetic macrocyclic arenes, from the viewpoints of the synthetic approach, controllable assembly, stimuli-responsiveness, and functions. Perspectives of this burgeoning field of research are also given at the end.
Collapse
Affiliation(s)
- Yong-Fu Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Zheng Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Qi Lin
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Ying-Wei Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China. and The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| |
Collapse
|
31
|
Wu Y, Li H, Yan Y, Shan X, Zhao M, Zhao Q, Liao X, Xie M. Pillararene-Containing Polymers with Tunable Conductivity Based on Host-Guest Complexations. ACS Macro Lett 2019; 8:1588-1593. [PMID: 35619394 DOI: 10.1021/acsmacrolett.9b00621] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Regulating the conductivity of conducting polymers has spurred increasing studies, aiming at meeting different demands in various fields, including chemosensors, photovoltaic cells, and so on. Herein, linear pillar[5]arene-containing conjugated polymers were designed and synthesized via metathesis cyclopolymerization of pillar[5]arene-functionalized 1,6-heptadiyne. Upon addition of an ionic guest, such polymers could form inclusion complexes, of which the glass transition temperature decreased dramatically. With the aid of ionic guest and host-guest complexations between the pendant pillararenes and guest, these supramolecular materials exhibited tunable conductivity from 10-12 to 10-3 S·cm-1 at 30 °C. In addition, compared with the polymers without pendant pillar[5]arenes, such polymers showed better compatibility with the ionic guest, which could prevent the leakage of the latter one and was good for the conductivity of the material.
Collapse
Affiliation(s)
- Yue Wu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Hongfei Li
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Yiqing Yan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Xiaotao Shan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Meng Zhao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Qiuhua Zhao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Xiaojuan Liao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Meiran Xie
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
32
|
Wang XH, Song N, Hou W, Wang CY, Wang Y, Tang J, Yang YW. Efficient Aggregation-Induced Emission Manipulated by Polymer Host Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1903962. [PMID: 31379097 DOI: 10.1002/adma.201903962] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/12/2019] [Indexed: 06/10/2023]
Abstract
Linear copolymer hosts bearing a number of pillar[5]arene dangling side chains are synthesized for the facile construction of highly emissive supramolecular polymer networks (SPNs) upon noncovalently cross-linking with a series of tetraphenyethylene (TPE)-based tetratopic guests terminated with different functional groups through supramolecular host-guest interactions. An extremely high fluorescence quantum yield (98.22%) of the SPNs materials is obtained in tetrahydrofuran (THF) by fine-tuning the parameters, and meanwhile supramolecular light-harvesting systems based on spherical supramolecular nanoparticles are constructed by interweaving 9,10-distyrylanthracene (DSA) and TPE-based guest molecules of aggregation-induced emission (AIE) with the copolymer hosts in the mixed solvent of THF/H2 O. The present study not only illustrates the restriction of the intramolecular rotations (RIR)-ruled emission enhancement mechanism regulated particularly by macrocyclic arene-containing copolymer hosts, but also suggests a new self-assembly approach to construct high-performance light-harvesting materials.
Collapse
Affiliation(s)
- Xing-Huo Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Nan Song
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Wei Hou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Chun-Yu Wang
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Yan Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Jun Tang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Ying-Wei Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|
33
|
Boominathan M, Kiruthika J, Arunachalam M. Construction of anion‐responsive crosslinked polypseudorotaxane based on molecular recognition of pillar[5]arene. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/pola.29413] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Muniyappan Boominathan
- Department of ChemistryThe Gandhigram Rural Institute (Deemed to be University) Tamil Nadu India 624 302
| | - Jeyavelraman Kiruthika
- Department of ChemistryThe Gandhigram Rural Institute (Deemed to be University) Tamil Nadu India 624 302
| | - Murugan Arunachalam
- Department of ChemistryThe Gandhigram Rural Institute (Deemed to be University) Tamil Nadu India 624 302
| |
Collapse
|
34
|
Xiao T, Zhou L, Xu L, Zhong W, Zhao W, Sun XQ, Elmes RB. Dynamic materials fabricated from water soluble pillar[n]arenes bearing triethylene oxide groups. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2018.05.039] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
35
|
Wang Y, Pei Z, Feng W, Pei Y. Stimuli-responsive supramolecular nano-systems based on pillar[n]arenes and their related applications. J Mater Chem B 2019; 7:7656-7675. [DOI: 10.1039/c9tb01913h] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Stimuli-responsive supramolecular nano-systems (SRNS) have been a trending interdisciplinary research area due to the responsiveness upon appropriate stimuli, which makes SRNS very attractive in multiple fields where precise control is vital.
Collapse
Affiliation(s)
- Yang Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- P. R. China
| | - Zhichao Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- P. R. China
| | - Weiwei Feng
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- P. R. China
| | - Yuxin Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- P. R. China
| |
Collapse
|
36
|
Ogoshi T, Kakuta T, Yamagishi T. Supramolekulare Pillar[
n
]aren‐Aggregate und ihre Anwendungen. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201805884] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tomoki Ogoshi
- Graduate School of Natural Science and Technology Kanazawa University, Kakuma-machi Kanazawa 920-1192 Japan
- JST, PRESTO 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
- WPI Nano Life Science Institute (NanoLSI) Kanazawa University, Kakuma-machi Kanazawa 920-1192 Japan
| | - Takahiro Kakuta
- Graduate School of Natural Science and Technology Kanazawa University, Kakuma-machi Kanazawa 920-1192 Japan
| | - Tada‐aki Yamagishi
- Graduate School of Natural Science and Technology Kanazawa University, Kakuma-machi Kanazawa 920-1192 Japan
| |
Collapse
|
37
|
Ogoshi T, Kakuta T, Yamagishi T. Applications of Pillar[
n
]arene‐Based Supramolecular Assemblies. Angew Chem Int Ed Engl 2018; 58:2197-2206. [DOI: 10.1002/anie.201805884] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Tomoki Ogoshi
- Graduate School of Natural Science and Technology Kanazawa University, Kakuma-machi Kanazawa 920-1192 Japan
- JST, PRESTO 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
- WPI Nano Life Science Institute (NanoLSI) Kanazawa University, Kakuma-machi Kanazawa 920-1192 Japan
| | - Takahiro Kakuta
- Graduate School of Natural Science and Technology Kanazawa University, Kakuma-machi Kanazawa 920-1192 Japan
| | - Tada‐aki Yamagishi
- Graduate School of Natural Science and Technology Kanazawa University, Kakuma-machi Kanazawa 920-1192 Japan
| |
Collapse
|
38
|
Song N, Lou XY, Hou W, Wang CY, Wang Y, Yang YW. Pillararene-Based Fluorescent Supramolecular Systems: The Key Role of Chain Length in Gelation. Macromol Rapid Commun 2018; 39:e1800593. [DOI: 10.1002/marc.201800593] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/21/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Nan Song
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry; International Joint Research Laboratory of Nano-Micro Architecture Chemistry; College of Chemistry; Jilin University; 2699 Qianjin Street Changchun 130012 P. R. China
| | - Xin-Yue Lou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry; International Joint Research Laboratory of Nano-Micro Architecture Chemistry; College of Chemistry; Jilin University; 2699 Qianjin Street Changchun 130012 P. R. China
| | - Wei Hou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry; International Joint Research Laboratory of Nano-Micro Architecture Chemistry; College of Chemistry; Jilin University; 2699 Qianjin Street Changchun 130012 P. R. China
| | - Chun-Yu Wang
- State Key Laboratory of Supramolecular Structure and Materials; Institute of Theoretical Chemistry; Jilin University; Changchun 130012 P. R. China
| | - Yan Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry; International Joint Research Laboratory of Nano-Micro Architecture Chemistry; College of Chemistry; Jilin University; 2699 Qianjin Street Changchun 130012 P. R. China
| | - Ying-Wei Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry; International Joint Research Laboratory of Nano-Micro Architecture Chemistry; College of Chemistry; Jilin University; 2699 Qianjin Street Changchun 130012 P. R. China
| |
Collapse
|
39
|
Tian H, Wang C, Lin PH, Meguellati K. Synthesis and characterization of a new pillar[5]arene-based [1]rotaxane. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
40
|
Kakuta T, Yamagishi TA, Ogoshi T. Stimuli-Responsive Supramolecular Assemblies Constructed from Pillar[ n]arenes. Acc Chem Res 2018; 51:1656-1666. [PMID: 29889488 DOI: 10.1021/acs.accounts.8b00157] [Citation(s) in RCA: 216] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Supramolecular assemblies are constructed from at least two molecules through various noncovalent bonding modes such as hydrogen bonding, cationic-anionic electrostatic interactions, aromatic interactions, metal-ligand bonding, hydrophobic-hydrophilic interactions, and charge-transfer interactions. Owing to the dynamic and reversible nature of these noncovalent bonds, the assembly and disassembly of these molecules are dynamic and reversible. Molecules self-assemble to form the most conformationally and thermally stable structures through these noncovalent interactions. The formation of these noncovalent interactions is affected by the properties of the environment such as its polarity, temperature, and pressure; thus, the structure of the assembled compounds is determined by the environment. The sizes and shapes of the supramolecular assemblies play an important role in determining their functions. Therefore, controlling their size and shape is important. Introducing stimuli-responsive groups into supramolecular assemblies is a useful way to control their size and shape. Controlling supramolecular structures and motions with external stimuli, i.e., periodic and rotational motions on the molecular scale, structures, and molecular weights at the nano- and micrometer scales, visible shrinking/expansion, and adhesive behavior at a macroscopic scale, is very useful. Macrocyclic host molecules are useful building blocks for the construction of stimuli-responsive supramolecular assemblies because their host ability can be tuned by changing the shape and electron density of the cavity. The size-dependent hosting ability of the cavity is similar to the lock-and-key model in biological systems. Stimuli-responsive supramolecular assemblies have been developed by using macrocyclic compounds such as cyclodextrins, cucurbit[ n]urils, calix[ n]arenes, crown ethers, and related macrocycles. We successfully developed new pillar-shaped macrocyclic hosts in 2008, which were coined pillar[ n]arenes. The unique structural features of pillar[ n]arenes allowed new properties. This year, 2018, marks one decade of research into pillar[ n]arene chemistry, and in that time the properties of pillar[ n]arenes have been widely investigated by various scientists. Thanks to their efforts, the characteristic properties of pillar[ n]arenes that result from their pillar-shaped structures have been elucidated. Their host ability, the chirality of their pillar-shaped structure, and their versatile functionality are unique features of pillar[ n]arenes not seen in other well-known hosts, and these properties are very useful for the creation of new stimuli-responsive supramolecular assemblies. In this Account, we describe photo-, pH- and redox-responsive supramolecular assemblies based on pillar[ n]arenes. First, we discuss molecular-scale stimuli-responsive supramolecular assemblies, i.e., pseudorotaxanes, pseudocatenanes, and supramolecular polymers. We also highlight subnanometer- and micrometer-scale stimuli-responsive supramolecular assembles such as particles and vesicles. Finally, we discuss the macroscopic stimuli-responsive structural changes of surfaces and gels. This Account will provide useful information for researchers working on not only pillar[ n]arene chemistry but also the chemistry of other macrocyclic hosts, and it will inspire new discoveries in the field of supramolecular assemblies and systems containing macrocyclic hosts.
Collapse
Affiliation(s)
- Takahiro Kakuta
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Tada-aki Yamagishi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Tomoki Ogoshi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| |
Collapse
|
41
|
Zafrani Y, Kaizerman D, Hadar M, Bigan N, Granot E, Ghosh M, Adler-Abramovich L, Patolsky F, Cohen Y. Pillararene-Based Two-Component Thixotropic Supramolecular Organogels: Complementarity and Multivalency as Prominent Motifs. Chemistry 2018; 24:15750-15755. [PMID: 29745993 DOI: 10.1002/chem.201801418] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/09/2018] [Indexed: 02/05/2023]
Abstract
Rationally designed two-component supramolecular organogels based on multiple chemical interactions between percarboxylato- and peramino-pillararenes are described. Mixing low concentration solutions (<1 % w/v) of decacarboxylato-pillar[5]arene (1) with decaamino-pillar[5]arenes (2 b-d) affords, rapidly and without heating, organogels displaying an exceptional combination of properties. These supramolecular organogels, the characteristics of which are tunable, were found to be thixotropic and thermally stable, with Tgel values in some cases exceeding the boiling point of the embedded solvent. It is demonstrated that both structural complementarity and multivalency are important determinants in the gelation process of these attractive soft materials.
Collapse
Affiliation(s)
- Yossi Zafrani
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel.,Department of Organic Chemistry, Israel Institute for Biological Research, Ness-Ziona, 740000, Israel
| | - Dana Kaizerman
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Maya Hadar
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Nitzan Bigan
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Eran Granot
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Moumita Ghosh
- Department of Oral Biology, Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Lihi Adler-Abramovich
- Department of Oral Biology, Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Fernando Patolsky
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Yoram Cohen
- School of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| |
Collapse
|
42
|
Löw H, Mena-Osteritz E, von Delius M. Self-assembled orthoester cryptands: orthoester scope, post-functionalization, kinetic locking and tunable degradation kinetics. Chem Sci 2018; 9:4785-4793. [PMID: 29910929 PMCID: PMC5982201 DOI: 10.1039/c8sc01750f] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 04/26/2018] [Indexed: 01/01/2023] Open
Abstract
Dynamic adaptability and biodegradability are key features of functional, 21st century host-guest systems. We have recently discovered a class of tripodal supramolecular hosts, in which two orthoesters act as constitutionally dynamic bridgeheads. Having previously demonstrated the adaptive nature of these hosts, we now report the synthesis and characterization - including eight solid state structures - of a diverse set of orthoester cages, which provides evidence for the broad scope of this new host class. With the same set of compounds, we demonstrated that the rates of orthoester exchange and hydrolysis can be tuned over a remarkably wide range, from rapid hydrolysis at pH 8 to nearly inert at pH 1, and that the Taft parameter of the orthoester substituent allows an adequate prediction of the reaction kinetics. Moreover, the synthesis of an alkyne-capped cryptand enabled the post-functionalization of orthoester cryptands by Sonogashira and CuAAC "click" reactions. The methylation of the resulting triazole furnished a cryptate that was kinetically inert towards orthoester exchange and hydrolysis at pH > 1, which is equivalent to the "turnoff" of constitutionally dynamic imines by means of reduction. These findings indicate that orthoester cages may be more broadly useful than anticipated, e.g. as drug delivery agents with precisely tunable biodegradability or, thanks to the kinetic locking strategy, as ion sensors.
Collapse
Affiliation(s)
- Henrik Löw
- Institute of Organic Chemistry and Advanced Materials , University of Ulm , Albert-Einstein-Allee 11 , 89081 Ulm , Germany .
| | - Elena Mena-Osteritz
- Institute of Organic Chemistry and Advanced Materials , University of Ulm , Albert-Einstein-Allee 11 , 89081 Ulm , Germany .
| | - Max von Delius
- Institute of Organic Chemistry and Advanced Materials , University of Ulm , Albert-Einstein-Allee 11 , 89081 Ulm , Germany .
| |
Collapse
|
43
|
He J, Chen J, Lin S, Niu D, Hao J, Jia X, Li N, Gu J, Li Y, Shi J. Synthesis of a Pillar[5]arene-Based Polyrotaxane for Enhancing the Drug Loading Capacity of PCL-Based Supramolecular Amphiphile as an Excellent Drug Delivery Platform. Biomacromolecules 2018; 19:2923-2930. [DOI: 10.1021/acs.biomac.8b00488] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jianping He
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jianzhuang Chen
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shaoliang Lin
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Dechao Niu
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jina Hao
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaobo Jia
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Nan Li
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jinlou Gu
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yongsheng Li
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jianlin Shi
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
- State Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| |
Collapse
|
44
|
Du Z, Ke K, Chang X, Dong R, Ren B. Controlled Self-Assembly of Multiple-Responsive Superamphiphilc Polymers Based on Host-Guest Inclusions of a Modified PEG with β-Cyclodextrin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:5606-5614. [PMID: 29681154 DOI: 10.1021/acs.langmuir.8b00470] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Superamphiphilic polymers (SAPs) constructed by host-guest inclusion can self-assemble into various nanostructures in solution, which can find applications in many fields such as nanodevices, drug delivery, and template synthesis. Herein, we report the controlled self-assembly of multiple-responsive SAP based on a selective host-guest inclusion of β-cyclodextrin (β-CD) with a modified poly(ethylene glycol) (PEG) (FcC11AzoPEG) consisting of a ferrocene (Fc) end group, a C11 alkyl chain, an azobenzene (Azo) block, and a poly(ethylene glycol)methyl ether (PEG) chain. These SAPs can self-assemble into interesting nanostructures in water upon exposure to different stimuli because β-CD can be selectively included with different guests, such as Fc, Azo, and C11 alkyl chain, under different stimuli. The inclusion complex of Fc with β-CD (Fc@β-CD SAP) can form nanowire micelles in aqueous solution. The nanowire micelles can be transformed into spindle micelles with the addition of oxidant because the majority of β-CDs dissociated from the complex Fc@β-CD SAP due to a conversion of Fc to Fc+ and will preferentially include with Azo group to form another dominant inclusion complex (Azo@β-CD SAP). After UV irradiation, the spindle micelles can be further transformed into spherical micelles because most of β-CDs are excluded from the complex Azo@β-CD SAP due to a trans- to cis-Azo conversion and then form a dominant inclusion complex with C11 alkyl chains (C11@β-CD SAP). This work not only demonstrates the selective host-guest inclusion of stimuli-responsive groups modified PEG with β-CD but also provides a useful approach for construction of diverse morphologies.
Collapse
Affiliation(s)
- Zhukang Du
- School of Materials Science and Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Kang Ke
- School of Materials Science and Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Xueyi Chang
- School of Materials Science and Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Renfeng Dong
- School of Chemistry and Environment , South China Normal University , Guangzhou 510006 , China
| | - Biye Ren
- School of Materials Science and Engineering , South China University of Technology , Guangzhou 510640 , China
| |
Collapse
|
45
|
Warm/cool-tone switchable thermochromic material for smart windows by orthogonally integrating properties of pillar[6]arene and ferrocene. Nat Commun 2018; 9:1737. [PMID: 29712901 PMCID: PMC5928112 DOI: 10.1038/s41467-018-03827-3] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/15/2018] [Indexed: 11/08/2022] Open
Abstract
Functional materials play a vital role in the fabrication of smart windows, which can provide a more comfortable indoor environment for humans to enjoy a better lifestyle. Traditional materials for smart windows tend to possess only a single functionality with the purpose of regulating the input of solar energy. However, different color tones also have great influences on human emotions. Herein, a strategy for orthogonal integration of different properties is proposed, namely the thermo-responsiveness of ethylene glycol-modified pillar[6]arene (EGP6) and the redox-induced reversible color switching of ferrocene/ferrocenium groups are orthogonally integrated into one system. This gives rise to a material with cooperative and non-interfering dual functions, featuring both thermochromism and warm/cool tone-switchability. Consequently, the obtained bifunctional material for fabricating smart windows can not only regulate the input of solar energy but also can provide a more comfortable color tone to improve the feelings and emotions of people in indoor environments. Materials for smart windows usually possess single functionality, thus developing materials that regulate solar energy whilst changing color to affect human emotion is desirable. Here the authors combine pillar[6]arenes and ferrocene/ferrocenium groups to produce warm/cool tone-switchable thermochromic materials.
Collapse
|
46
|
Recent advances of functional gels controlled by pillar[n]arene-based host–guest interactions. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.02.028] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
47
|
Yang K, Pei Y, Wen J, Pei Z. Recent advances in pillar[n]arenes: synthesis and applications based on host-guest interactions. Chem Commun (Camb) 2018; 52:9316-26. [PMID: 27332040 DOI: 10.1039/c6cc03641d] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pillar[n]arenes (n = 5-15) are a novel class of macrocyclic molecules with hydroquinone as the repeating unit linked by methylene bridges at para-positions. Introduced by T. Ogoshi for the first time in 2008, pillararenes have attracted increasing interest and have been widely studied during the last eight years, due to their unique structural advantages as host molecules, such as symmetrical rigid architecture, electron-rich cavities and facile functional modification. In this review, we first describe the syntheses of pillar[n]arenes including cyclooligomerization of pillar[n]arenes and modification of pillar[n]arenes after cyclooligomerization, summarising almost twenty different kinds of guest motifs and dividing them into three types: cationic, neutral and anionic motifs. The main section of this review examines the applications of pillar[n]arenes based on the host-guest interactions in different research fields, including biology, materials science and environmental science. Finally, future research directions and potential for novel applications are discussed.
Collapse
Affiliation(s)
- Kui Yang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| | - Yuxin Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| | - Jia Wen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| | - Zhichao Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| |
Collapse
|
48
|
Wei TB, Ding JD, Chen JF, Han BB, Jiang XM, Yao H, Zhang YM, Lin Q. A cyanide-triggered hydrogen-bond-breaking deprotonation mechanism: fluorescent detection of cyanide using a thioacetohydrazone-functionalized bispillar[5]arene. NEW J CHEM 2018. [DOI: 10.1039/c7nj03937a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bispillar[5]arene-based fluorescent sensor was used for fluorescent detection of cyanide anions through deprotonation accompanied by intermolecular hydrogen bond breakage.
Collapse
Affiliation(s)
- Tai-Bao Wei
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Jin-Dong Ding
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Jin-Fa Chen
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Bing-Bing Han
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Xiao-Mei Jiang
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Hong Yao
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - You-Ming Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Qi Lin
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| |
Collapse
|
49
|
Wang W, Xing H. A novel supramolecular polymer network based on a catenane-type crosslinker. Polym Chem 2018. [DOI: 10.1039/c7py02034a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel supramolecular mechanically interlocked crosslinker was designed and used to prepare a supramolecular polymer network.
Collapse
Affiliation(s)
- Wenbo Wang
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Hao Xing
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- P. R. China
| |
Collapse
|
50
|
Li L, He L, Wang B, Ge P, Jing L, Liu H, Gong C, Zhang B, Zhang J, Bu W. Secondary dialkylammonium salt/crown ether [2]pseudorotaxanes as nanostructured platforms for proton transport. Chem Commun (Camb) 2018; 54:8092-8095. [DOI: 10.1039/c8cc04518f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Secondary dialkylammonium salt/crown ether [2]pseudorotaxanes can be confined into two-dimensional nanochannels, leading to remarkable enhancements and rational control of proton conductivity.
Collapse
|