1
|
Watson BT, Dias HVR. Going for gold - the chemistry of structurally authenticated gold(I)-ethylene complexes. Chem Commun (Camb) 2024; 60:4872-4889. [PMID: 38567496 DOI: 10.1039/d4cc00676c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Gold coordination chemistry and catalysis involving unsaturated hydrocarbons such as olefins have experienced a remarkable growth during the last few decades. Despite the importance, isolable and well-characterized molecules with ethylene, the simplest and the most widely produced olefin, on gold are still limited. This review aims to cover features of, and strategies utilized to stabilize, gold-ethylene complexes and their diverse use in chemical transformations and homogeneous catalytic processes. Isolable and well-authenticated gold-ethylene complexes are important not only for structural, spectroscopic, and bonding studies but also as models for likely intermediates in gold mediated reactions of alkenes and gold-alkene species observed in the gas phase. There has also been development on AuI/III catalytic cycles. Nitrogen based ligands have been the most widely utilized ligand supports thus far for the successful stabilization of gold-ethylene adducts. Gold has a bright future in olefin chemistry and with ethylene.
Collapse
Affiliation(s)
- Brandon T Watson
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, USA.
| | - H V Rasika Dias
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, USA.
| |
Collapse
|
2
|
McQuade J, Jäkle F. Tris(pyridyl)borates: an emergent class of versatile and robust polydentate ligands for catalysis and materials applications. Dalton Trans 2023; 52:10278-10285. [PMID: 37462446 DOI: 10.1039/d3dt01665j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Tridentate ligands that incorporate pyridyl rather than pyrazolyl groups are emerging as an attractive class of "scorpionate"-type ligands with enhanced electron donation, increased stability, and divergent geometry at the metal centre relative to tris(pyrazolyl)borates originally introduced by Trofimenko. Following our initial reports, the tris(pyridyl)borate (Tpyb) ligand architecture has been adopted by several research groups in pursuit of functional metal complexes that offer new opportunities in catalysis and materials science. While earlier work had been focused on symmetric octahedral complexes, ML2, which are advantageous as highly robust building blocks in materials sciences, recently introduced new ligand designs provide access to heteroleptic metal complexes with vacant sites that lend themselves to applications in catalysis. Signficant progress has also been made in the post-complexation functionalization of these ligands via electrophilic and nucleophilic substitution reactions at the boron centres, opening up new routes for integration of Tpyb complexes with diverse functional materials while also raising interesting mechanistic questions.
Collapse
Affiliation(s)
- James McQuade
- Department of Chemistry, Rutgers University Newark, 73 Warren Street, Newark, New Jersey 07102, USA.
| | - Frieder Jäkle
- Department of Chemistry, Rutgers University Newark, 73 Warren Street, Newark, New Jersey 07102, USA.
| |
Collapse
|
3
|
Watson BT, Vanga M, Noonikara-Poyil A, Muñoz-Castro A, Dias HVR. Copper(I), Silver(I), and Gold(I) Ethylene Complexes of Fluorinated and Boron-Methylated Bis- and Tris(pyridyl)borate Chelators. Inorg Chem 2023; 62:1636-1648. [PMID: 36657123 DOI: 10.1021/acs.inorgchem.2c04009] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Bis- and tris-pyridyl borate ligands containing pyridyl donor arms, a methylated boron cap, and a fluorine-lined coordination pocket have been prepared and utilized in coinage metal chemistry. The tris(pyridyl)borate ligand has been synthesized using a convenient boron source, [NBu4][MeBF3]. These N-based ligands permitted the isolation of group 11 metal-ethylene complexes [MeB(6-(CF3)Py)3]M(C2H4) and [Me2B(6-(CF3)Py)2]M(C2H4) (M = Cu, Ag, Au). The gold complexes display the largest coordination-induced upfield shifts of the ethylene 13C resonance relative to that of the free ethylene in their NMR spectra, while the silver complexes show the smallest shift. Solid-state structures of five of these metal-ethylene complexes as well as the related free ligands were established by X-ray crystallography. Surprisingly, all three [MeB(6-(CF3)Py)3]M(C2H4) adopt the rare κ2 coordination mode rather than the typical κ3 coordination mode of facial capping tridentate ligands. Computational analyses indicate that κ2 coordination mode is favored over the κ3-mode in these coinage metal-ethylene complexes and point to the effects CF3-substituents have on κ2/κ3-energy difference. The M-C and M-N bond distances of [MeB(6-(CF3)Py)3]M(C2H4) follow the trend expected based on covalent radii of M(I) ions. The calculated ethylene-M interaction energy of κ2-[MeB(6-(CF3)Py)3]M(C2H4) indicated that the gold(I) forms the strongest interaction with ethylene. A comparison to the related poly(pyrazolyl)borates is also presented.
Collapse
Affiliation(s)
- Brandon T Watson
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Mukundam Vanga
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Anurag Noonikara-Poyil
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Alvaro Muñoz-Castro
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Bellavista 7, Santiago 8420524, Chile
| | - H V Rasika Dias
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, United States
| |
Collapse
|
4
|
Qian J, Comito RJ. Ethylene Polymerization with Thermally Robust Vanadium(III) Tris(2-pyridyl)borate Complexes. Organometallics 2023. [DOI: 10.1021/acs.organomet.2c00568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Jin Qian
- University of Houston, Department of Chemistry, 3585 Cullen Boulevard, Houston, Texas 77204-5003, United States
| | - Robert J. Comito
- University of Houston, Department of Chemistry, 3585 Cullen Boulevard, Houston, Texas 77204-5003, United States
| |
Collapse
|
5
|
Qian J, Comito RJ. Site-Isolated Main-Group Tris(2-pyridyl)borate Complexes by Pyridine Substitution and Their Ring-Opening Polymerization Catalysis. Inorg Chem 2022; 61:10852-10862. [PMID: 35776081 DOI: 10.1021/acs.inorgchem.2c01289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tris(2-pyridyl)borates are an emerging class of scorpionate ligands, distinguished as exceptionally robust and electron-donating. However, the rapid formation of inert homoleptic complexes with divalent metals has so far limited their catalytic utility. We report site-isolating tris(2-pyridyl)borate ligands, bearing isopropyl, tert-butyl, and mesityl substituents at the pyridine 6-position to suppress the formation of inert homoleptic complexes. These ligands form the first 1:1 complexes between tris(2-pyridyl)borates and Mg2+, Zn2+, or Ca2+, with isopropyl-substituted TpyiPrH showing the most generality. Single-crystal X-ray diffraction analysis of the resulting complexes and comparison to density functional theory (DFT) models showed geometric distortions driven by steric repulsion between the pyridine 6-substituents and the hexamethyldisilazide (HMDS-, -N(SiMe3)2) anion. We show that this steric profile is a feature of the six-membered pyridine ring and contrasts with more established tris(pyrazolyl)borate and tris(imidazoline)borate scorpionate complexes. TpyiPrMg(HMDS) (1) and its zinc analogue are moderately active for the controlled polymerization of l-lactide, ε-caprolactone, and trimethylene carbonate. Furthermore, 1 gives controlled polymerization under more demanding melt-phase polymerization conditions at 100 °C, and block copolymerization of ε-caprolactone and trimethylene carbonate. These results will enable useful catalysis and coordination chemistry studies with tris(2-pyridyl)borates, and characterizes their structural complementarity to more familiar scorpionate ligands.
Collapse
Affiliation(s)
- Jin Qian
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Robert J Comito
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| |
Collapse
|
6
|
|
7
|
Goura J, McQuade J, Shimoyama D, Lalancette RA, Sheridan JB, Jäkle F. Electrophilic and nucleophilic displacement reactions at the bridgehead borons of tris(pyridyl)borate scorpionate complexes. Chem Commun (Camb) 2022; 58:977-980. [PMID: 34979540 DOI: 10.1039/d1cc06181j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Although a wide variety of boron-based "scorpionate" ligands have been implemented, a modular route that offers facile access to different substitution patterns at boron has yet to be developed. Here, we demonstrate new reactivity patterns at the bridgehead positions of a ruthenium tris(pyrid-2-yl)borate complex that allow for facile tuning of steric and electronic properties.
Collapse
Affiliation(s)
- Joydeb Goura
- Department of Chemistry, Rutgers University-Newark, Newark, NJ 07102, USA.
| | - James McQuade
- Department of Chemistry, Rutgers University-Newark, Newark, NJ 07102, USA.
| | - Daisuke Shimoyama
- Department of Chemistry, Rutgers University-Newark, Newark, NJ 07102, USA.
| | - Roger A Lalancette
- Department of Chemistry, Rutgers University-Newark, Newark, NJ 07102, USA.
| | - John B Sheridan
- Department of Chemistry, Rutgers University-Newark, Newark, NJ 07102, USA.
| | - Frieder Jäkle
- Department of Chemistry, Rutgers University-Newark, Newark, NJ 07102, USA.
| |
Collapse
|
8
|
Shi QX, Xiao H, Sheng YJ, Li DS, Su M, Sun XL, Bao H, Wan WM. Barbier single-atom polymerization induced emission as a one-pot approach towards stimuli-responsive luminescent polymers. Polym Chem 2022. [DOI: 10.1039/d2py00816e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A one-pot strategy for the design of stimuli-responsive luminescent polymers has been demonstrated through Barbier PIE, where the N,N-dimethyl moiety endows the polymers with both stimuli-responsive and red-shifted nonconjugated emission properties.
Collapse
Affiliation(s)
- Quan-Xi Shi
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China
- College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Hang Xiao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China
- College of Environmental Science and Engineering, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Yu-Jing Sheng
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, P. R. China
| | - De-Shan Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China
| | - Min Su
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China
| | - Xiao-Li Sun
- College of Environmental Science and Engineering, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Hongli Bao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China
| | - Wen-Ming Wan
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China
- College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| |
Collapse
|
9
|
Fujiwara Y, Takayama T, Nakazawa J, Okamura M, Hikichi S. Development of a novel scorpionate ligand with 6-methylpyridine and comparison of structural and electronic properties of nickel(II) complexes with related tris(azolyl)borates. Dalton Trans 2022; 51:10338-10342. [DOI: 10.1039/d2dt01548j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel anionic tridentate borate ligand with 6-methlpyridyl donor, TpyMe, has been synthesized. Comparison of molecular structures and reactivities of nickel(II)-bromido complexes with tris(azolyl)borate ligands composed of pyridyl, pyrazolyl, or...
Collapse
|
10
|
Waters JE, Berger G, Peel AJ, García-Rodríguez R, Bond AD, Wright DS. Uncovering the Hidden Landscape of Tris(4-pyridyl) Ligands: Topological Complexity Derived from the Bridgehead. Chemistry 2021; 27:12036-12040. [PMID: 34128570 DOI: 10.1002/chem.202101291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Indexed: 11/09/2022]
Abstract
Supramolecular main group chemistry is a developing field which parallels the conventional domain of metallo-organic chemistry. Little explored building blocks in this area are main group metal-based ligands which have the appropriate donor symmetry to build desired molecular or extended arrangements. Tris(pyridyl) main group ligands (E(py)3 , E=main group metal) are potentially highly versatile building blocks since shifting the N-donor arms from the 2- to the 3-positions and 4-positions provides a very simple way of changing the ligand character from mononuclear/chelating to multidentate/metal-bridging. Here, the coordination behaviour of the first main group metal tris(4-pyridyl) ligands, E(4-py)3 (E=Sb, Bi, Ph-Sn) is explored, as well as their ability to build metal-organic frameworks (MOFs). The complicated topology of these MOFs shows a marked influence on the counter anion and on the ability of the E(4-py)3 ligands to switch coordination mode, depending on the steric and donor character of the bridgehead. This structure-directing influence of the bridgehead provides a potential building strategy for future molecular and MOF design in this area.
Collapse
Affiliation(s)
- Jessica E Waters
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Georg Berger
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.,Anorganisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Andrew J Peel
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Raúl García-Rodríguez
- GIR MIOMeT, IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, E-47011, Valladolid, Spain
| | - Andrew D Bond
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Dominic S Wright
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| |
Collapse
|
11
|
Qian J, Comito RJ. A Robust Vanadium(V) Tris(2-pyridyl)borate Catalyst for Long-Lived High-Temperature Ethylene Polymerization. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00334] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jin Qian
- Department of Chemistry, University of Houston, 3585 Cullen Boulevard, Room 112, Houston, Texas 77204-5003, United States
| | - Robert J. Comito
- Department of Chemistry, University of Houston, 3585 Cullen Boulevard, Room 112, Houston, Texas 77204-5003, United States
| |
Collapse
|
12
|
Peel AJ, Waters JE, Plajer AJ, García-Rodríguez R, Wright DS. Recent advances in the synthesis and application of tris(pyridyl) ligands containing metallic and semimetallic p-block bridgeheads. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2021. [DOI: 10.1016/bs.adomc.2021.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
13
|
Hou C, Zhou C, Cheng J. One-shot synthesis of star gradient copolymers with controllable graft density. Polym Chem 2021. [DOI: 10.1039/d1py00313e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
One-shot synthesis of star gradient copolymers with controllable graft density via ring-opening metathesis polymerization.
Collapse
Affiliation(s)
- Cuiping Hou
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Chulu Zhou
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Jianhua Cheng
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| |
Collapse
|
14
|
Vidal F, McQuade J, Lalancette R, Jäkle F. ROMP-Boranes as Moisture-Tolerant and Recyclable Lewis Acid Organocatalysts. J Am Chem Soc 2020; 142:14427-14431. [PMID: 32787237 DOI: 10.1021/jacs.0c05454] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although widely used in catalysis, the multistep syntheses and high loadings typically employed are limiting broader implementation of highly active tailor-made arylborane Lewis acids and Lewis pairs. Attempts at developing recyclable systems have thus far met with limited success, as general and versatile platforms are yet to be developed. We demonstrate a novel approach that is based on the excellent control and functional group tolerance of ring-opening metathesis polymerization (ROMP). The ROMP of highly Lewis acidic borane-functionalized phenylnorbornenes afforded both a soluble linear copolymer and a cross-linked organogel. The polymers proved highly efficient as recyclable catalysts in the reductive N-alkylation of arylamines under mild conditions and at exceptionally low catalyst loadings. The modular design presented herein can be readily adapted to other finely tuned triarylboranes, enabling wide applications of ROMP-borane polymers as well-defined supported organocatalysts.
Collapse
Affiliation(s)
- Fernando Vidal
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, New Jersey 07102, United States
| | - James McQuade
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Roger Lalancette
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Frieder Jäkle
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
15
|
Self-assembled nanostructures from amphiphilic block copolymers prepared via ring-opening metathesis polymerization (ROMP). Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101278] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
16
|
Yasir M, Liu P, Markwart JC, Suraeva O, Wurm FR, Smart J, Lattuada M, Kilbinger AFM. One‐Step Ring Opening Metathesis Block‐Like Copolymers and their Compositional Analysis by a Novel Retardation Technique. Angew Chem Int Ed Engl 2020; 59:13597-13601. [DOI: 10.1002/anie.202005366] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Mohammad Yasir
- Department of Chemistry University of Fribourg Chemin du Musée 9 1700 Fribourg Switzerland
| | - Peng Liu
- Department of Chemistry University of Fribourg Chemin du Musée 9 1700 Fribourg Switzerland
| | - Jens C. Markwart
- Max-Planck-Institut für Polymerforschung Ackermannweg 10 55128 Mainz Germany
| | - Oksana Suraeva
- Max-Planck-Institut für Polymerforschung Ackermannweg 10 55128 Mainz Germany
| | - Frederik R. Wurm
- Max-Planck-Institut für Polymerforschung Ackermannweg 10 55128 Mainz Germany
| | - Jansie Smart
- Department of Chemistry University of Fribourg Chemin du Musée 9 1700 Fribourg Switzerland
| | - Marco Lattuada
- Department of Chemistry University of Fribourg Chemin du Musée 9 1700 Fribourg Switzerland
| | | |
Collapse
|
17
|
Yasir M, Liu P, Markwart JC, Suraeva O, Wurm FR, Smart J, Lattuada M, Kilbinger AFM. One‐Step Ring Opening Metathesis Block‐Like Copolymers and their Compositional Analysis by a Novel Retardation Technique. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mohammad Yasir
- Department of Chemistry University of Fribourg Chemin du Musée 9 1700 Fribourg Switzerland
| | - Peng Liu
- Department of Chemistry University of Fribourg Chemin du Musée 9 1700 Fribourg Switzerland
| | - Jens C. Markwart
- Max-Planck-Institut für Polymerforschung Ackermannweg 10 55128 Mainz Germany
| | - Oksana Suraeva
- Max-Planck-Institut für Polymerforschung Ackermannweg 10 55128 Mainz Germany
| | - Frederik R. Wurm
- Max-Planck-Institut für Polymerforschung Ackermannweg 10 55128 Mainz Germany
| | - Jansie Smart
- Department of Chemistry University of Fribourg Chemin du Musée 9 1700 Fribourg Switzerland
| | - Marco Lattuada
- Department of Chemistry University of Fribourg Chemin du Musée 9 1700 Fribourg Switzerland
| | | |
Collapse
|
18
|
Kahraman G, Wang DY, von Irmer J, Gallei M, Hey-Hawkins E, Eren T. Synthesis and Characterization of Phosphorus- and Carborane-Containing Polyoxanorbornene Block Copolymers. Polymers (Basel) 2019; 11:E613. [PMID: 30960597 PMCID: PMC6523416 DOI: 10.3390/polym11040613] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/24/2019] [Accepted: 03/26/2019] [Indexed: 12/28/2022] Open
Abstract
Grubbs-catalyzed ring-opening metathesis polymerization (ROMP) of carborane- and phosphonate-containing monomers has been used for the generation of hybrid block copolymers. Molecular weights with Mn of 50,000 g/mol were readily obtained with polydispersity index values, Đ, between 1.03⁻1.08. Reaction of the phospha ester and carborane substituted oxanorbornene block copolymer with trimethylsilyl bromide led to a new polymer with phosphonic acid functionalities. In application studies, the phospha-carborane functionalized block polymer was tested as heat resistance material. Thermal stability was investigated by thermal gravimetric analysis (TGA) and microscale combustion calorimetry (MCC) analysis. Thermal treatment and ceramic yield under air were directly correlated to the carborane content of the block copolymer. However, phosphorus content in the polymer was more crucial for the char residues when heated under nitrogen atmosphere. The peak heat release rate (PHRR) increased as the number of phosphonate functionalities increased. However, corresponding phosphonic acid derivatives featured a lower heat release rate and total heat release. Moreover, the phosphonic acid functionalities of the block copolymer offer efficient chelating capabilities for iron nanoparticles, which is of interest for applications in biomedicine in the future. The complexation with iron oxide nanoparticles was studied by transmission electron microscopy (TEM) and inductively coupled plasma mass spectrometry (ICP⁻MS).
Collapse
Affiliation(s)
- Gizem Kahraman
- Chemistry Department, Yildiz Technical University, 34220 Istanbul, Turkey.
| | - De-Yi Wang
- IMDEA Materials Institute, C/Eric Kandel, 2, Getafe, 28906 Madrid, Spain.
| | - Jonas von Irmer
- Macromolecular Chemistry Department, Technische Universität Darmstadt, 64287 Darmstadt, Germany.
| | - Markus Gallei
- Macromolecular Chemistry Department, Technische Universität Darmstadt, 64287 Darmstadt, Germany.
- Organic Macromolecular Chemistry, Saarland University, Campus Saarbrücken C4 2, 66123 Saarbrücken, Germany.
| | | | - Tarik Eren
- Chemistry Department, Yildiz Technical University, 34220 Istanbul, Turkey.
| |
Collapse
|
19
|
Vidal F, Jäkle F. Functional Polymeric Materials Based on Main‐Group Elements. Angew Chem Int Ed Engl 2019; 58:5846-5870. [DOI: 10.1002/anie.201810611] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Fernando Vidal
- Department of Chemistry Rutgers University—Newark 73 Warren Street Newark NJ 07102 USA
| | - Frieder Jäkle
- Department of Chemistry Rutgers University—Newark 73 Warren Street Newark NJ 07102 USA
| |
Collapse
|
20
|
Vidal F, Jäkle F. Funktionelle polymere Materialien auf der Basis von Hauptgruppen‐Elementen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201810611] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Fernando Vidal
- Department of Chemistry Rutgers University—Newark 73 Warren Street Newark NJ 07102 USA
| | - Frieder Jäkle
- Department of Chemistry Rutgers University—Newark 73 Warren Street Newark NJ 07102 USA
| |
Collapse
|
21
|
Wu Y, Tan H, Yang Y, Li Y, Xu J, Zhang L, Zhu J. Regulating Block Copolymer Assembly Structures in Emulsion Droplets through Metal Ion Coordination. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:11495-11502. [PMID: 30149715 DOI: 10.1021/acs.langmuir.8b02135] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this report, we demonstrate the metal ion coordination-induced morphological transition of block copolymer assemblies under three-dimensional (3D) confinement. Polystyrene- block-poly(4-vinyl pyridine) (PS- b-P4VP) aggregates with various morphologies can be obtained by emulsion-solvent evaporation in the presence of metal ions (e.g., Pb(II) or Fe(III) ions) in the aqueous phase. Due to the coordination interaction between 4VP units and metal ions, the overall shape, internal structure, and surface composition of the particles can be tailored by varying the type and concentration of the metal ions. For example, when Pb(II) ions were employed, morphological transition of the assemblies occurred due to the formation of P4VP-Pb(II) complexes. More interestingly, when Fe(III) ions were added, hydrolysis of Fe(III) caused the reduction of the pH value of the aqueous phase, leading to the protonation of 4VP units. As a result, interfacial instability took place to trigger the splitting of emulsion droplets and then formation of nanosized micelles. Therefore, metal ion coordination is a facile strategy to tune the structure of assemblies under 3D confinement and offers an alternative approach for the design of organic-inorganic hybrid assemblies with well-tunable structures.
Collapse
Affiliation(s)
| | | | | | | | | | - Lixiong Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing Tech University , Nanjing 210009 , China
| | | |
Collapse
|
22
|
García‐Romero Á, Plajer AJ, Álvarez‐Miguel L, Bond AD, Wright DS, García‐Rodríguez R. Postfunctionalization of Tris(pyridyl) Aluminate Ligands: Chirality, Coordination, and Supramolecular Chemistry. Chemistry 2018; 24:17019-17026. [DOI: 10.1002/chem.201803342] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 08/08/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Álvaro García‐Romero
- GIR MIOMeT-IU Cinquima-Química Inorgánica Facultad de CienciasUniversidad de Valladolid, Campus Miguel Delibes 47011 Valladolid Spain
| | - Alex J. Plajer
- Department of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Lucía Álvarez‐Miguel
- GIR MIOMeT-IU Cinquima-Química Inorgánica Facultad de CienciasUniversidad de Valladolid, Campus Miguel Delibes 47011 Valladolid Spain
| | - Andrew D. Bond
- Department of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Dominic S. Wright
- Department of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Raúl García‐Rodríguez
- GIR MIOMeT-IU Cinquima-Química Inorgánica Facultad de CienciasUniversidad de Valladolid, Campus Miguel Delibes 47011 Valladolid Spain
| |
Collapse
|
23
|
Dzhardimalieva GI, Uflyand IE. Design Strategies of Metal Complexes Based on Chelating Polymer Ligands and Their Application in Nanomaterials Science. J Inorg Organomet Polym Mater 2018. [DOI: 10.1007/s10904-018-0841-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
24
|
Plajer AJ, Colebatch AL, Enders M, García-Romero Á, Bond AD, García-Rodríguez R, Wright DS. The coordination chemistry of the neutral tris-2-pyridyl silicon ligand [PhSi(6-Me-2-py)3]. Dalton Trans 2018; 47:7036-7043. [DOI: 10.1039/c8dt01332b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The first transition metal complexes of Si(iv) tris(2-pyridyl) ligands are reported.
Collapse
Affiliation(s)
- Alex J. Plajer
- Chemistry Department. Cambridge University
- Cambridge CB2 1EW
- UK
| | | | - Markus Enders
- Anorganisch-Chemisches Institut
- Heidelberg University
- 69120 Heidelberg
- Germany
| | - Álvaro García-Romero
- GIR MIOMeT-IU Cinquima-Química Inorgánica
- Facultad de Ciencias
- Campus Miguel
- Delibes
- Universidad de Valladolid
| | - Andrew D. Bond
- Chemistry Department. Cambridge University
- Cambridge CB2 1EW
- UK
| | - Raúl García-Rodríguez
- GIR MIOMeT-IU Cinquima-Química Inorgánica
- Facultad de Ciencias
- Campus Miguel
- Delibes
- Universidad de Valladolid
| | | |
Collapse
|
25
|
Novoa S, Gilroy JB. (Co)polymers containing boron difluoride 3-cyanoformazanate complexes: emission enhancement via random copolymerization. Polym Chem 2017. [DOI: 10.1039/c7py01120b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Synthesis and photophysical characterization of (co)polymers containing an asymmetrically substituted BF2complex of a 3-cyanoformazanate ligand are reported.
Collapse
Affiliation(s)
- Samantha Novoa
- Department of Chemistry and the Centre for Advanced Materials and Biomaterials Research (CAMBR)
- The University of Western Ontario
- London
- Canada
| | - Joe B. Gilroy
- Department of Chemistry and the Centre for Advanced Materials and Biomaterials Research (CAMBR)
- The University of Western Ontario
- London
- Canada
| |
Collapse
|
26
|
The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2015. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Jeong SY, Lalancette RA, Lin H, Lupinska P, Shipman PO, John A, Sheridan JB, Jäkle F. “Third-Generation”-Type Functional Tris(2-pyridyl)borate Ligands and Their Transition-Metal Complexes. Inorg Chem 2016; 55:3605-15. [DOI: 10.1021/acs.inorgchem.6b00124] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- So Yi Jeong
- Department of Chemistry, Rutgers University—Newark, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Roger A. Lalancette
- Department of Chemistry, Rutgers University—Newark, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Huina Lin
- Department of Chemistry, Rutgers University—Newark, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Patrycja Lupinska
- Department of Chemistry, Rutgers University—Newark, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Patrick O. Shipman
- Department of Chemistry, Rutgers University—Newark, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Alexandra John
- Department of Chemistry, Rutgers University—Newark, 73 Warren Street, Newark, New Jersey 07102, United States
| | - John B. Sheridan
- Department of Chemistry, Rutgers University—Newark, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Frieder Jäkle
- Department of Chemistry, Rutgers University—Newark, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
28
|
Pawar GM, Sheridan JB, Jäkle F. Pyridylborates as a New Type of Robust Scorpionate Ligand: From Metal Complexes to Polymeric Materials. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201501373] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Gajanan M. Pawar
- Department of Chemistry; Rutgers University Newark; 73 Warren Street 07102 Newark New Jersey United States
| | - John B. Sheridan
- Department of Chemistry; Rutgers University Newark; 73 Warren Street 07102 Newark New Jersey United States
| | - Frieder Jäkle
- Department of Chemistry; Rutgers University Newark; 73 Warren Street 07102 Newark New Jersey United States
| |
Collapse
|
29
|
Zhang Z, Nguyen HTH, Miller SA, Ploskonka AM, DeCoste JB, Cohen SM. Polymer-Metal-Organic Frameworks (polyMOFs) as Water Tolerant Materials for Selective Carbon Dioxide Separations. J Am Chem Soc 2016; 138:920-5. [PMID: 26709448 DOI: 10.1021/jacs.5b11034] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Recently, polymer-metal-organic frameworks (polyMOFs) were reported as a new class of hybrid porous materials that combine advantages of both organic polymers and crystalline MOFs. Herein, we report a bridging coligand strategy to prepare new types of polyMOFs, demonstrating that polyMOFs are compatible with additional MOF architectures besides that of the earlier reported IRMOF-1 type polyMOF. Gas sorption studies revealed that these polyMOF materials exhibited relatively high CO2 sorption but very low N2 sorption, making them promising materials for CO2/N2 separations. Moreover, these polyMOFs demonstrated exceptional water stability attributed to the hydrophobicity of polymer ligands as well as the cross-linking of the polymer chains within the MOF.
Collapse
Affiliation(s)
- Zhenjie Zhang
- Department of Chemistry and Biochemistry, University of California, San Diego , La Jolla, California 92093, United States
| | - Ha Thi Hoang Nguyen
- The George and Josephine Butler Laboratory for Polymer Research, Department of Chemistry, University of Florida , Gainesville, Florida 32611, United States
| | - Stephen A Miller
- The George and Josephine Butler Laboratory for Polymer Research, Department of Chemistry, University of Florida , Gainesville, Florida 32611, United States
| | - Ann M Ploskonka
- Leidos, Inc., P.O. Box 68, Edgewood Chemical Biological Center , Aberdeen Proving Ground, Maryland 21010, United States
| | - Jared B DeCoste
- Leidos, Inc., P.O. Box 68, Edgewood Chemical Biological Center , Aberdeen Proving Ground, Maryland 21010, United States.,Edgewood Chemical Biological Center, U.S. Army Research, Development, and Engineering Command, 5183 Blackhawk Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Seth M Cohen
- Department of Chemistry and Biochemistry, University of California, San Diego , La Jolla, California 92093, United States
| |
Collapse
|