1
|
Ferrarese Lupi F, Rosero-Realpe M, Ocarino A, Frascella F, Milano G, Angelini A. Neuromorphic Light-Responsive Organic Matter for in Materia Reservoir Computing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2501813. [PMID: 40357767 DOI: 10.1002/adma.202501813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/29/2025] [Indexed: 05/15/2025]
Abstract
Materials able to sense and respond to external stimuli by adapting their internal state to process and store information, represent promising candidates for implementing neuromorphic functionalities and brain-inspired computing paradigms. In this context, neuromorphic systems based on light-responsive materials enable the use of light as information carrier, allowing to emulate basic functions of the human retina. In this work it is demonstrated that optically-induced molecular dynamics in azopolymers can be exploited for neuromorphic-type of data processing in the analog domain and for computing at the matter level (i.e., in materia). Besides showing that azopolymers can be exploited for data storage, it is demonstrated that the adaptiveness of these materials enables the implementation of synaptic functionalities including short-term memory, long-term memory, and visual memory. Results show that azopolymers allow event detection and motion perception, enabling physical implementation of information processing schemes requiring real-time analysis of spatio-temporal inputs. Furthermore, it is shown that light-induced dynamics can be exploited for the in materia implementation of the unconventional computing paradigm denoted as reservoir computing. This work underscores the potential of azopolymers as promising materials for developing adaptive, intelligent photo-responsive systems that mimic some of the complex processing abilities of biological systems.
Collapse
Affiliation(s)
- Federico Ferrarese Lupi
- Advanced Materials Metrology and Life Science Division, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce 91, Torino, 10135, Italy
| | - Mateo Rosero-Realpe
- Advanced Materials Metrology and Life Science Division, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce 91, Torino, 10135, Italy
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, C.so Duca degli Abruzzi 24, Torino, 10129, Italy
| | - Antonio Ocarino
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, C.so Duca degli Abruzzi 24, Torino, 10129, Italy
| | - Francesca Frascella
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, C.so Duca degli Abruzzi 24, Torino, 10129, Italy
| | - Gianluca Milano
- Advanced Materials Metrology and Life Science Division, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce 91, Torino, 10135, Italy
| | - Angelo Angelini
- Advanced Materials Metrology and Life Science Division, Istituto Nazionale di Ricerca Metrologica (INRiM), Strada delle Cacce 91, Torino, 10135, Italy
| |
Collapse
|
2
|
Li X, Zhao W, Jin Y, Huang J, Chen D. Phase Behaviors and Photoresponsive Thin Films of Syndiotactic Side-Chain Liquid Crystalline Polymers with High Densely Substituted Azobenzene Mesogens. Chemphyschem 2024; 25:e202400421. [PMID: 38825850 DOI: 10.1002/cphc.202400421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/04/2024]
Abstract
Azobenzene-containing polymers (azopolymers) are a kind of fascinating stimuli-responsive materials with broad and versatile applications. In this work, a series of syndiotactic C1 type azopolymers of Pm-Azo-Cn with side-chain azobenzene mesogens of varied length alkoxy tails (n=1, 4, 8, 10) and different length alkyl spacers (m=6, 10) have been prepared via Rh-catalyzed carbene polymerization. The thermal properties and ordered assembly structures of thus synthesized side chain liquid crystalline polymers (SCLCPs) have been systematically investigated with differential scanning calorimetry (DSC), polarized optical microscopy (POM) and variable-temperature small/wide-angle X-ray scattering (SAXS/WAXS) analyses. P10-Azo-C1 and P10-Azo-C4 with shorter alkoxy tails exhibited hierarchical structures SmB/Colob and transformed into SmA/Colob at a higher temperature, while P10-Azo-C8 and P10-Azo-C10 with longer alkoxy tails only displayed side group dominated layered SmB phase and transformed into SmA phase at higher temperatures. For P6-Azo-C4 with a shorter spacer only showed a less ordered SmA phase owing to interference by partly coupling between the side chain azobenzene mesogens and the helical backbone. More importantly, the series high densely substituted syndiotactic C1 azopolymer thin films, exhibited evidently and smoothly reversible photoresponsive properties, which demonstrated promising photoresponsive device applications.
Collapse
Affiliation(s)
- Xiao Li
- Key Laboratory of High Performance Polymer Materials and Technology (Ministry of Education), Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
- School of Information Technology, Suzhou Institute of Trade & Commerce, 215009, Suzhou, China
| | - Weiguang Zhao
- Key Laboratory of High Performance Polymer Materials and Technology (Ministry of Education), Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Ye Jin
- Key Laboratory of High Performance Polymer Materials and Technology (Ministry of Education), Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Jianjia Huang
- Key Laboratory of High Performance Polymer Materials and Technology (Ministry of Education), Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Dongzhong Chen
- Key Laboratory of High Performance Polymer Materials and Technology (Ministry of Education), Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| |
Collapse
|
3
|
Thai LD, Kammerer JA, Théato P, Mutlu H, Barner-Kowollik C. Access to Main-Chain Photoswitching Polymers via Hydroxyl-yne Click Polymerization. ACS Macro Lett 2024; 13:681-687. [PMID: 38755739 DOI: 10.1021/acsmacrolett.4c00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Main-chain stimuli-responsive polymers synthesized via polymerization techniques that do not rely on metal-based catalysis are highly desirable for economic reasons and to avoid metal-polymer interactions. Herein, we introduce a metal-free head-to-tail organobase-catalyzed hydroxyl-yne click polymerization of an AB-type monomer to realize photoswitchable polymers featuring α-bismines as main-chain repeating units. The prepared main-chain α-bisimine-based polymers show excellent photoswitching in solution. We further post-functionalize the obtained polymers with various thiol compounds via thiol-Michael reactions to significantly lower the glass transition temperature (Tg), likely to be beneficial for the photoswitching process in the solid state. Thus, the herein introduced polymerization technique not only provides metal-free access to main-chain stimuli-responsive polymers, but also allows for the flexible post-modification of the obtained polymers to generate advanced macromolecular architectures with tunable properties.
Collapse
Affiliation(s)
- Linh Duy Thai
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Jochen A Kammerer
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Patrick Théato
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesser Str. 18, D-76131 Karlsruhe, Germany
- Soft Matter Synthesis Laboratory, Institute for Biological Interfaces III, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Hatice Mutlu
- Institut de Science des Matériaux de Mulhouse, UMR 7361 CNRS/Université de Haute Alsace, 15 rue Jean Starcky, Mulhouse Cedex, 68057 France
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
4
|
Mauro F, Natale CF, Panzetta V, Netti PA. Development of an Azobenzene-Based Cell Culture Photoresponsive Platform for In Situ Modulation of Surface Topography in Wet Environments. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29823-29833. [PMID: 38829198 DOI: 10.1021/acsami.4c04186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Azopolymers are light-responsive materials that hold promise to transform in vitro cell culture systems. Through precise light illumination, they facilitate substrate pattern formation and erasure, allowing for the dynamic control and creation of active interfaces between cells and materials. However, these materials exhibit a tendency to locally detach from the supporting glass in the presence of aqueous solutions, such as cell culture media, due to the formation of blisters, which are liquid-filled cavities generated at the azopolymer film-glass interface. These blisters impede precise structurization of the surface of the azomaterial, limiting their usage for surface photoactivation in the presence of cells. In this study, we present a cost-effective and easily implementable method to improve the azopolymer-glass interface stability through silane functionalization of the glass substrate. This method proved to be efficient in preventing blister formation, thereby enabling the dynamic modulation of the azopolymer surface in situ for live-cell experiments. Furthermore, we proved that the light-illumination conditions used to induce azopolymer surface variations do not induce phototoxic effects. Consequently, this approach facilitates the development of a photoswitchable azopolymer cell culture platform for studying the impact of multiple in situ inscription and erasure cycles on cell functions while maintaining a physiological wet microenvironment.
Collapse
Affiliation(s)
- Francesca Mauro
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, 80125 Naples, Italy
- Istituto Italiano di Tecnologia, IIT@CRIB, 80126 Naples, Italy
| | - Carlo F Natale
- Istituto Italiano di Tecnologia, IIT@CRIB, 80126 Naples, Italy
| | - Valeria Panzetta
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, 80125 Naples, Italy
- Istituto Italiano di Tecnologia, IIT@CRIB, 80126 Naples, Italy
- Centro di Ricerca Interdipartimentale sui Biomateriali, University of Naples Federico II, 80125 Naples, Italy
| | - Paolo A Netti
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, 80125 Naples, Italy
- Istituto Italiano di Tecnologia, IIT@CRIB, 80126 Naples, Italy
- Centro di Ricerca Interdipartimentale sui Biomateriali, University of Naples Federico II, 80125 Naples, Italy
| |
Collapse
|
5
|
Chen YF, Huang MR, Hsu YS, Chang MH, Lo TY, Gautam B, Hsu HH, Chen JT. Photo-Healable Fabrics: Achieving Structural Control via Photochemical Solid-Liquid Transitions of Polystyrene/Azobenzene-Containing Polymer Blends. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29153-29161. [PMID: 38770559 PMCID: PMC11163394 DOI: 10.1021/acsami.4c02578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/22/2024]
Abstract
While polymer fabrics are integral to a wide range of applications, their vulnerability to mechanical damage limits their sustainability and practicality. Addressing this challenge, our study introduces a versatile strategy to develop photohealable fabrics, utilizing a composite of polystyrene (PS) and an azobenzene-containing polymer (PAzo). This combination leverages the structural stability of PS to compensate for the mechanical weaknesses of PAzo, forming the fiber structures. Key to our approach is the reversible trans-cis photoisomerization of azobenzene groups within the PAzo under UV light exposure, enabling controlled morphological alterations in the PS/PAzo blend fibers. The transition of PAzo sections from a solid to a liquid state at a low glass transition temperature (Tg ∼ 13.7 °C) is followed by solidification under visible light, thus stabilizing the altered fiber structures. In this study, we explore various PS/PAzo blend ratios to optimize surface roughness and mechanical properties. Additionally, we demonstrate the capability of these fibers for photoinduced self-healing. When damaged fabrics are clamped and subjected to UV irradiation for 20 min and pressed for 24 h, the mobility of the cis-form PAzo sections facilitates healing while retaining the overall fabric structure. This innovative approach not only addresses the critical issue of durability in polymer fabrics but also offers a sustainable and practical solution, paving the way for its application in smart clothing and advanced fabric-based materials.
Collapse
Affiliation(s)
- Yi-Fan Chen
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, Hsinchu 300093, Taiwan
| | - Meng-Ru Huang
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, Hsinchu 300093, Taiwan
| | - Yen-Shen Hsu
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, Hsinchu 300093, Taiwan
| | - Ming-Hsuan Chang
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, Hsinchu 300093, Taiwan
| | - Tse-Yu Lo
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, Hsinchu 300093, Taiwan
| | - Bhaskarchand Gautam
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, Hsinchu 300093, Taiwan
| | - Hsun-Hao Hsu
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, Hsinchu 300093, Taiwan
| | - Jiun-Tai Chen
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, Hsinchu 300093, Taiwan
- Center
for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| |
Collapse
|
6
|
Tang Q, Zhu F, Li Y, Yin S, Xu Y, Yan H, Kang M, Chang G. Demonstration of π-π Stacking at Interfaces: Synthesis of an Indole-Modified Monodisperse Silica Microsphere SiO 2@IN. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8685-8693. [PMID: 38595052 DOI: 10.1021/acs.langmuir.4c00504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
In the present study, a novel silane coupling agent, designated INSi, was synthesized via a facile synthetic route, incorporating indole-functional moieties. This agent was further employed for the surface modification of homemade silica nanomicrospheres (SMPs). The ensuing nanomicrosphere composite, denoted as SiO2@IN, exemplified pronounced interfacial π-π interactions. Optimization of the reaction conditions was conducted using the response surface optimization technique. Subsequent validation of interfacial π-π interactions was accomplished through a synergistic approach, integrating theoretical calculations and comprehensive analyses of spectral and morphological attributes exhibited by the SiO2@IN.
Collapse
Affiliation(s)
- Qiaolin Tang
- State Key Laboratory of Environment-friendly Energy Materials & School of Material Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, PR China
| | - Feng Zhu
- State Key Laboratory of Environment-friendly Energy Materials & School of Material Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, PR China
| | - Yanqi Li
- State Key Laboratory of Environment-friendly Energy Materials & School of Material Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, PR China
| | - Sijie Yin
- State Key Laboratory of Environment-friendly Energy Materials & School of Material Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, PR China
| | - Yunbo Xu
- Sichuan Shutai Chemical Technology Co., Ltd, Suining 629399, PR China
| | - Huicheng Yan
- Sichuan Shutai Chemical Technology Co., Ltd, Suining 629399, PR China
| | - Ming Kang
- State Key Laboratory of Environment-friendly Energy Materials & School of Material Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, PR China
| | - Guanjun Chang
- State Key Laboratory of Environment-friendly Energy Materials & School of Material Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, PR China
| |
Collapse
|
7
|
Thai LD, Fanelli J, Munaweera R, O'Mara ML, Barner-Kowollik C, Mutlu H. Main-chain Macromolecular Hydrazone Photoswitches. Angew Chem Int Ed Engl 2024; 63:e202315887. [PMID: 37988197 DOI: 10.1002/anie.202315887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023]
Abstract
Hydrazones-consisting of a dynamic imine bond and an acidic NH proton-have recently emerged as versatile photoswitches underpinned by their ability to form thermally bistable isomers, (Z) and (E), respectively. Herein, we introduce two photoresponsive homopolymers containing structurally different hydrazones as main-chain repeating units, synthesized via head-to-tail Acyclic Diene METathesis (ADMET) polymerization. Their key difference lies in the hydrazone design, specifically the location of the aliphatic arm connecting the rotor of the hydrazone photoswitch to the aliphatic polymer backbone. Critically, we demonstrate that their main photoresponsive property, i.e., their hydrodynamic volume, changes in opposite directions upon photoisomerization (λ=410 nm) in dilute solution. Further, the polymers-independent of the design of the individual hydrazone monomer-feature a photoswitchable glass transition temperature (Tg ) by close to 10 °C. The herein established design strategy allows to photochemically manipulate macromolecular properties by simple structural changes.
Collapse
Affiliation(s)
- Linh Duy Thai
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, 4000, Brisbane, QLD, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, 4000, Brisbane, QLD, Australia
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Julian Fanelli
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, 4000, Brisbane, QLD, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, 4000, Brisbane, QLD, Australia
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Soft Matter Synthesis Laboratory, Institute for Biological Interfaces 3, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Rangika Munaweera
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland (UQ), 4067, St Lucia, QLD, Australia
| | - Megan L O'Mara
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland (UQ), 4067, St Lucia, QLD, Australia
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, 4000, Brisbane, QLD, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, 4000, Brisbane, QLD, Australia
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Hatice Mutlu
- Institut de Science des Matériaux de Mulhouse (IS2M), UMR 7361 CNRS/, Université de Haute Alsace (UHA), 15 rue Jean Starcky, 68057, Mulhouse Cedex, France
| |
Collapse
|
8
|
Thai LD, Guimaraes TR, Chambers LC, Kammerer JA, Golberg D, Mutlu H, Barner-Kowollik C. Molecular Photoswitching of Main-Chain α-Bisimines in Solid-State Polymers. J Am Chem Soc 2023. [PMID: 37379099 DOI: 10.1021/jacs.3c03242] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Photoisomerization of chromophores usually shows significantly less efficiency in solid polymers than in solution as strong intermolecular interactions lock their conformation. Herein, we establish the impact of macromolecular architecture on the isomerization efficiency of main-chain-incorporated chromophores (i.e., α-bisimine) in both solution and the solid state. We demonstrate that branched architectures deliver the highest isomerization efficiency for the main-chain chromophore in the solid state─remarkably as high as 70% compared to solution. The macromolecular design principles established herein for efficient solid-state photoisomerization can serve as a blueprint for enhancing the solid-state isomerization efficiency for other polymer systems, such as those based on azobenzenes.
Collapse
Affiliation(s)
- Linh Duy Thai
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Thiago R Guimaraes
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Lewis C Chambers
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Jochen A Kammerer
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Dmitri Golberg
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Hatice Mutlu
- Institut de Science des Matériaux de Mulhouse, UMR 7361 CNRS/Université de Haute Alsace, 15 Rue Jean Starcky, Mulhouse Cedex 68057, France
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
9
|
Li N, Gu ZG, Zhang J. Erasable Photopatterning of Stilbene-Based Metal-Organic Framework Films. SMALL METHODS 2023; 7:e2201231. [PMID: 36938901 DOI: 10.1002/smtd.202201231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/20/2023] [Indexed: 06/09/2023]
Abstract
The development of photosensitive materials for erasable photopatterning is of significant interest in anti-counterfeiting and information storage applications. Herein two kinds of stilbene-based metal-organic framework (MOF) films with layer by layer method for studying photopatterning is reported. The resulting 2D Zn2 (sdc)2 MOF film (sdc = 4,4'-stilbenedicarboxylate) exhibits excellent photosensitive features with a very short photoconversion time (<35 s) while the 3D MOF Zn4 O(sdc)6 film does not have the property due to the fact that only parallel and short distance arrangement of olefin groups in the adjacent MOF layers can trigger [2+2] photocycloaddition. Furthermore, the Zn2 (sdc)2 film indicates obvious reversible fluorescent photoswitch behavior between yellow and blue fluorescence emission, which can achieve high-efficient, erasable photopatterning with various sizes (ca. 20 microns to decimeter). This study not only develops a new kind of photosensitive crystalline network film but also provides erasable photopatterning from macroscopic to microscopic in optical applications.
Collapse
Affiliation(s)
- Na Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Zhi-Gang Gu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
10
|
Tang Y, Zhang Y, Chen X, Xie X, Zhou N, Dai Z, Xiong Y. Up/Down Tuning of Poly(ionic liquid)s in Aqueous Two-Phase Systems. Angew Chem Int Ed Engl 2023; 62:e202215722. [PMID: 36456527 DOI: 10.1002/anie.202215722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/05/2022]
Abstract
Thermally induced reversible up/down migration of poly(ionic liquid)s (PILs) in aqueous two-phase systems (ATPSs) was achieved for the first time in this study. Novel ATPSs were fabricated using azobenzene (Azo)- and benzyl (Bn)-modified PILs, and their upper and lower phases could be easily tuned using the grafting degree (GD) of the Azo and Bn groups. Bn-PIL with higher GDBn could go up into the upper phase and Azo-PIL come down to the lower phase when the temperature increased (>65 °C); this behavior was reversed at lower temperatures. Moreover, a reversible two-phase/single-phase transition was realized under UV irradiation. Experimental and simulation results revealed that the difference in the hydration capacity between Bn-PIL and Azo-PIL accounted for their unique phase-separation behavior. A versatile platform for fabricating ATPSs with tunable stimuli-responsive behavior can be realized based on our findings, which can broaden their applications in the fields of smart separation systems and functional material development.
Collapse
Affiliation(s)
- Yuntao Tang
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Yige Zhang
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Xi Chen
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Xiaowen Xie
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Ning Zhou
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Zhifeng Dai
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Yubing Xiong
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| |
Collapse
|
11
|
Mondal A, Mukhopadhyay S, Banerjee S, Ahmmed E, Hansda S, Chattopadhyay P. Combined Experimental and Theoretical Studies on the Rubbing-Induced Fluorescence Behavior of a Luminophore in the Solid State. ACS OMEGA 2023; 8:373-379. [PMID: 36643439 PMCID: PMC9835653 DOI: 10.1021/acsomega.2c04803] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
It is intricate to break and make chemical bonds in solid states compared to their solution states, so it is imperative to ascertain green proficient approaches by regulating the solid-state structures and their related material properties. Here, the rubbing-induced photoluminescence behavior of a luminophore (RIL) of the benzimidazole family in the solid state has been accomplished. Interestingly, upon gentle rubbing or mere scratching, solid-state fluorescence from the nonemissive pristine RIL was observed due to the aggregation-induced emission (AIE) phenomenon in the solid state, for which the phenolic moiety is present in the molecule and is accountable. The structure-property relationship of RIL and the mechanism responsible for this solid-state fluorescence characteristics have been explained with the help of experimental (using the single-crystal structure, powder X-ray diffraction (PXRD), scanning electron microscopy (SEM) images, etc.) and theoretical (by DFT and TDDFT) studies. The crystal arrangements with different stacking interactions and the SEM images after being rubbed revealed that the mechanical force- or pressure-induced slight deformation in the crystal arrangement notably facilitated the strong emission in the solid state. This rubbing-induced solid-state fluorescence in a new luminophore (RIL) through stacking of layers restricting the molecular motion has been developed here for the first time, and it can be explicitly employed in steganography techniques for data security. This present study will open up a new insight into the use of this RIL as a solid-state smart material for data security in coding devices in the future, and this developed approach may be helpful to ameliorate the design of new-generation smart materials by modifying the structure to attain other characteristics.
Collapse
Affiliation(s)
- Asit Mondal
- Department
of Chemistry, The University of Burdwan, Golapbag, Burdwan 713104, India
| | - Sujay Mukhopadhyay
- Department
of Chemistry, The University of Burdwan, Golapbag, Burdwan 713104, India
| | - Snehasis Banerjee
- Government
College of Engineering and Leather Technology, Salt Lake Sector-III, Kolkata 700098, India
| | - Ejaj Ahmmed
- Department
of Chemistry, The University of Burdwan, Golapbag, Burdwan 713104, India
| | - Samaresh Hansda
- Department
of Chemistry, The University of Burdwan, Golapbag, Burdwan 713104, India
| | | |
Collapse
|
12
|
Chen YF, Hsieh CL, Lee LR, Liu YC, Lee MJ, Chen JT. Photoswitchable and Solvent-Controlled Directional Actuators: Supramolecular Assembly and Crosslinked Polymers. Macromol Rapid Commun 2023; 44:e2200547. [PMID: 36208074 DOI: 10.1002/marc.202200547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/30/2022] [Indexed: 01/26/2023]
Abstract
Untethered small actuators have drawn tremendous interest owing to their reversibility, flexibility, and widespread applications in various fields. For polymer actuators, however, it is still challenging to achieve programmable structural changes under different stimuli caused by the intractability and single-stimulus responses of most polymer materials. Herein, multi-stimuli-responsive polymer actuators that can respond to light and solvent via structural changes are developed. The actuators are based on bilayer films of polydimethylsiloxane (PDMS) and azobenzene chromophore (AAZO)-crosslinked poly(diallyldimethylammonium chloride) (PDAC). Upon UV light irradiation, the AAZO undergoes trans-cis-trans photoisomerization, causing the bending of the bilayer films. When the UV light is off, a shape recovery toward an opposite direction occurs spontaneously. The reversible deformation can be repeated at least 20 cycles. Upon solvent vapor annealing, one of the bilayer films can be selectively swollen, causing the bending of the bilayer films with the directions controlled by the solvent vapors. The effects of different parameters, such as the weight ratios of AAZO and film thicknesses, on the bending angles and curvatures of the polymer films are also analyzed. The results demonstrate that multi-stimuli-responsive actuators with fast responses and high reproducibility can be fulfilled.
Collapse
Affiliation(s)
- Yi-Fan Chen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Chia-Ling Hsieh
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Lin-Ruei Lee
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Yu-Chun Liu
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Min-Jie Lee
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Jiun-Tai Chen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan.,Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| |
Collapse
|
13
|
Zhou H, Kuenstler AS, Xu W, Hu M, Hayward RC. A Semicrystalline Poly(azobenzene) Exhibiting Room Temperature Light-Induced Melting, Crystallization, and Alignment. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Hantao Zhou
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Alexa S. Kuenstler
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Wenwen Xu
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Mingqiu Hu
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Ryan C. Hayward
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
14
|
Xu X, Wang G. Molecular Solar Thermal Systems towards Phase Change and Visible Light Photon Energy Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107473. [PMID: 35132792 DOI: 10.1002/smll.202107473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Molecular solar thermal (MOST) systems have attracted tremendous attention for solar energy conversion and storage, which can generate high-energy metastable isomers upon capturing photon energy, and release the stored energy as heat on demand during back conversion. However, the pristine molecular photoswitches are limited by low storage energy density and UV light photon energy storage. Recently, numerous pioneering works have been focused on the development of MOST systems towards phase change (PC) and visible light photon energy storage to increase their properties. On the one hand, the strategy of simultaneously capturing isomerization enthalpy and PC energy between solid and liquid can not only offer high latent heat, but also promote the development of sustainable energy systems. On the other hand, the efficient photon energy storage in the visible light range opens a tremendously fascinating avenue to fabricate MOST systems powered under natural sunlight. Here, the recent advances of MOST systems towards PC and visible light photon energy storage are systematically summarized, the most promising advantages and current challenges are analyzed, and emerging strategies and future research directions are proposed.
Collapse
Affiliation(s)
- Xingtang Xu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Guojie Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
15
|
Du Z, Zhang T, Gai H, Sheng L, Guan Y, Wang X, Qin T, Li M, Wang S, Zhang Y, Nie H, Zhang SX. Multi-Component Collaborative Step-by-Step Coloring Strategy to Achieve High-Performance Light-Responsive Color-Switching. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103309. [PMID: 34802199 PMCID: PMC8805571 DOI: 10.1002/advs.202103309] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/21/2021] [Indexed: 05/27/2023]
Abstract
Light-responsive color-switching materials (LCMs) are long-lasting hot fields. However, non-ideal comprehensive performance (such as color contrast and retention time cannot be combined, unsatisfactory repeatability, and non-automated coloring mode) significantly hinder their development toward high-end products. Herein, the development of LCMs that exhibit long retention time, good color contrast, repeatability, and the property of automatic coloring is reported. The realization of this goal stems from the adoption of a bio-inspired multi-component collaborative step-by-step coloring strategy. Under this strategy, a conventional one-step photochromic process is divided into a "light+heat" controlled multi-step process for the fabrication of the desired LCMs. The obtained LCMs can effectively resist the long-troubled ambient-light interference and avoid its inherent yellow background, thereby achieving the longest retention time and good repeatability. Multiple colors are generated and ultra-fast imaging compatible with the laser-printing technology is also realized. The application potential of the materials in short-term reusable identity cards, absorptive readers, billboards, and shelf labels is demonstrated. The results reported herein can potentially help in developing and designing various high-performance, switchable materials that can be used for the production of high-end products.
Collapse
Affiliation(s)
- Zhen Du
- State Key Lab of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012China
| | - Ting Zhang
- School of Materials Science and EngineeringDongguan University of TechnologyGuangdong523710China
| | - Hanqi Gai
- State Key Lab of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012China
| | - Lan Sheng
- State Key Lab of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012China
| | - Yu Guan
- State Key Lab of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012China
| | - Xiaojun Wang
- State Key Lab of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012China
| | - Tianyou Qin
- College of Basic MedicineJilin UniversityChangchun130012China
| | - Minjie Li
- State Key Lab of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012China
| | - Shuo Wang
- State Key Lab of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012China
| | - Yu‐Mo Zhang
- State Key Lab of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012China
| | - Hui Nie
- College of ChemistryHuazhong University of Science and TechnologyWuhan430074China
| | - Sean Xiao‐An Zhang
- State Key Lab of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012China
| |
Collapse
|
16
|
Wei X, Luo T. Effect of Side-Chain π-π Stacking on the Thermal Conductivity Switching in Azobenzene Polymers: A Molecular Dynamics Simulation Study. Phys Chem Chem Phys 2022; 24:10272-10279. [DOI: 10.1039/d2cp01325h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The light switchable thermal conductivity displayed by some polymers makes them promising for applications like data storage, temperature regulation and light switchable devices. In this study, the mechanism of thermal...
Collapse
|
17
|
Wang H, Bisoyi H, Zhang X, Hassan F, Li Q. Visible Light-Driven Molecular Switches and Motors: Recent Developments and Applications. Chemistry 2021; 28:e202103906. [PMID: 34964995 DOI: 10.1002/chem.202103906] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Indexed: 11/09/2022]
Abstract
Inspired by human vision, a diverse range of light-driven molecular switches and motors has been developed for fundamental understanding and application in material science and biology. Recently, the design and synthesis of visible light-driven molecular switches and motors have been actively pursued. This emerging trend is partly motivated to avoid the harmful effects of ultraviolet light, which was necessary to drive the classical molecular switches and motors at least in one direction, impeding their employment in biomedical and photopharmacology applications. Moreover, visible light-driven molecular switches and motors are demonstrated to enable benign optical materials for advanced photonic devices. Therefore, during the past several years, visible light-driven molecular switches based on azobenzene derivatives, diarylethenes, 1,2-dicyanodithienylethenes, hemithioindigo derivatives, iminothioindoxyls, donor-acceptor Stenhouse adducts, and overcrowded alkene based molecular motors have been judiciously designed, synthesized, and used in the development of functional materials and systems for a wide range of applications. In this Review, we present the recent developments toward the design of visible light-driven molecular switches and motors, with their applications in the fabrication of functional materials and systems in material science, bioscience, pharmacology, etc . The visible light-driven molecular switches and motors realized so far undoubtedly widen the scope of these interesting compounds for technological and biological applications. We hope this Review article could provide additional impetus and inspire further research interests for future exploration of visible light-driven advanced materials, systems, and devices.
Collapse
Affiliation(s)
- Hao Wang
- Kent State University, Advanced Materials and Liquid Crystal Institute, UNITED STATES
| | - Hari Bisoyi
- Kent State University, Advanced Materials and Liquid Crystal Institute, UNITED STATES
| | - Xinfang Zhang
- Kent State University, Advanced Materials and Liquid Crystal Institue, UNITED STATES
| | - Fathy Hassan
- Kent State University, Advanced Materials and Liquid Crystal Institute, UNITED STATES
| | - Quan Li
- Kent State University, Liquid Crystal Institute and Chemical Physics Interdiscinplary Program, 3273 Crown Pointe Drive, 44224, Stow, UNITED STATES
| |
Collapse
|
18
|
Tang S, An J, Song F, Lv M, Han K, Peng X. Extending the Legible Time of Light-Responsive Rewritable Papers with a Tunable Photochromic Diarylethene Molecule. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51414-51425. [PMID: 34689563 DOI: 10.1021/acsami.1c11841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Inkless printing based on rewritable papers has recently made great progress because it can improve the utilization rate of papers, which is of great significance for saving resources and protecting the environment. Among them, light-responsive rewritable papers (LRPs) are a hot research topic because light is clean, easily available, wavelength and intensity adjustable, and noncontacting. However, the photochromic material, as the imaging substance of LRPs, is easily affected by environmental conditions, resulting in insufficient time to read the information. In view of this, we designed and constructed an acid/base tunable diarylethene molecular system that can effectively adjust the photochromic properties by reversibly changing the electron density of the diarylethene photoreaction center through protonation and demonstrated its potential as an imaging material with a longer legible time. What makes us more satisfied is that the acidification can not only extend the legible time of carrying information but also bring a clear and stable absorption/fluorescence imaging dual mode, which can better reflect details and improve contrast. Therefore, we believe that this tunable photochromic diarylethene molecule is a potential imaging material for the development of new LRPs.
Collapse
Affiliation(s)
- Shanliang Tang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Jing An
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Fengling Song
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | - Meiheng Lv
- College of Applied Chemistry, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Keli Han
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
19
|
Bizzarri BM, Fanelli A, Botta L, Zippilli C, Cesarini S, Saladino R. Dendrimeric Structures in the Synthesis of Fine Chemicals. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5318. [PMID: 34576547 PMCID: PMC8471025 DOI: 10.3390/ma14185318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/30/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022]
Abstract
Dendrimers are highly branched structures with a defined shape, dimension, and molecular weight. They consist of three major components: the central core, branches, and terminal groups. In recent years, dendrimers have received great attention in medicinal chemistry, diagnostic field, science of materials, electrochemistry, and catalysis. In addition, they are largely applied for the functionalization of biocompatible semiconductors, in gene transfection processes, as well as in the preparation of nano-devices, including heterogeneous catalysts. Here, we describe recent advances in the design and application of dendrimers in catalytic organic and inorganic processes, sustainable and low environmental impact, photosensitive materials, nano-delivery systems, and antiviral agents' dendrimers.
Collapse
Affiliation(s)
- Bruno Mattia Bizzarri
- Biological and Ecological Sciences Department (DEB), University of Tuscia, 01100 Viterbo, Italy; (A.F.); (L.B.); (C.Z.); (S.C.)
| | | | | | | | | | - Raffaele Saladino
- Biological and Ecological Sciences Department (DEB), University of Tuscia, 01100 Viterbo, Italy; (A.F.); (L.B.); (C.Z.); (S.C.)
| |
Collapse
|
20
|
Lee DC, Guye KN, Paranji RK, Lachowski K, Pozzo LD, Ginger DS, Pun SH. Dual-Stimuli Responsive Single-Chain Polymer Folding via Intrachain Complexation of Tetramethoxyazobenzene and β-Cyclodextrin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10126-10134. [PMID: 34369796 DOI: 10.1021/acs.langmuir.1c01442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We synthesize and characterize a triblock polymer with asymmetric tetramethoxyazobenzene (TMAB) and β-cyclodextrin functionalization, taking advantage of the well-characterized azobenzene derivative-cyclodextrin inclusion complex to promote photoresponsive, self-contained folding of the polymer in an aqueous system. We use 1H NMR to show the reversibility of (E)-to-(Z) and (Z)-to-(E) TMAB photoisomerization, and evaluate the thermal stability of (Z)-TMAB and the comparatively rapid acid-catalyzed thermal (Z)-to-(E) isomerization. Important for its potential use as a functional material, we show the photoisomerization cyclability of the polymeric TMAB chromophore and calculate isomerization quantum yields by extinction spectroscopy. To verify self-inclusion of the polymeric TMAB and cyclodextrin, we use two-dimensional 1H NOESY NMR data to show proximity of TMAB and cyclodextrin in the (E)-state only; however, (Z)-TMAB is not locally correlated with cyclodextrin. Finally, the observed decrease in photoisomerization quantum yield for the dual-functionalized polymer compared to the isolated chromophore in an aqueous solution confirms TMAB and β-cyclodextrin not only are in proximity to one another, but also form the inclusion complex.
Collapse
Affiliation(s)
- Daniel C Lee
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, Washington 98195, United States
| | - Kathryn N Guye
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Rajan K Paranji
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Kacper Lachowski
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Lilo D Pozzo
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - David S Ginger
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Suzie H Pun
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, Washington 98195, United States
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
21
|
Cheng HB, Zhang S, Qi J, Liang XJ, Yoon J. Advances in Application of Azobenzene as a Trigger in Biomedicine: Molecular Design and Spontaneous Assembly. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007290. [PMID: 34028901 DOI: 10.1002/adma.202007290] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/10/2020] [Indexed: 06/12/2023]
Abstract
Azobenzene is a well-known derivative of stimulus-responsive molecular switches and has shown superior performance as a functional material in biomedical applications. The results of multiple studies have led to the development of light/hypoxia-responsive azobenzene for biomedical use. In recent years, long-wavelength-responsive azobenzene has been developed. Matching the longer wavelength absorption and hypoxia-response characteristics of the azobenzene switch unit to the bio-optical window results in a large and effective stimulus response. In addition, azobenzene has been used as a hypoxia-sensitive connector via biological cleavage under appropriate stimulus conditions. This has resulted in on/off state switching of properties such as pharmacology and fluorescence activity. Herein, recent advances in the design and fabrication of azobenzene as a trigger in biomedicine are summarized.
Collapse
Affiliation(s)
- Hong-Bo Cheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Shuchun Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Ji Qi
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Korea
| |
Collapse
|
22
|
Xu X, Wu B, Zhang P, Xing Y, Shi K, Fang W, Yu H, Wang G. Arylazopyrazole-Based Dendrimer Solar Thermal Fuels: Stable Visible Light Storage and Controllable Heat Release. ACS APPLIED MATERIALS & INTERFACES 2021; 13:22655-22663. [PMID: 33970599 DOI: 10.1021/acsami.1c05163] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Solar thermal fuels offer a closed cycle and a renewable energy storage strategy by harvesting photon energy within the chemical conformations of molecules and retrieving energy by an induced release of heat. However, the majority of reports are limited to the ultraviolet light storage, which potentially interferes with the surrounding environment and reduces the material lifetime. Here, we present a novel arylazopyrazole (AAP)-containing dendrimer that not only addresses the hindrance of visible light storage for solar thermal fuels but also exhibits outstanding performances of abundant energy conversion and stable storage, which are attributed to the substantial absorbance in visible wavelengths of para-thiomethyl-substituted AAP groups and the stability of cis isomers, respectively. The energy density of the dendrimer fuel after efficiently harvesting blue light (405 nm) is as high as 0.14 MJ kg-1 (67 kJ mol-1), and the storage half-life of the fabricated dendrimer film can reach up to 12.9 days. Moreover, the heat release of the dendrimer film can be triggered by different stimuli (light and heat). The dendrimer film displays a 6.5 °C temperature difference between trans isomers and cis isomers during green light irradiation. Our work provides a fascinating avenue to fabricate visible light storage solar thermal fuels and unlocks the possibility of developing natural sunlight storage in the future.
Collapse
Affiliation(s)
- Xingtang Xu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Bo Wu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Peng Zhang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Youmei Xing
- Hangzhou Greenda Electronic Materials Co., Ltd., Hangzhou 310051, China
| | - Ke Shi
- Hangzhou Greenda Electronic Materials Co., Ltd., Hangzhou 310051, China
| | - Weihua Fang
- Hangzhou Greenda Electronic Materials Co., Ltd., Hangzhou 310051, China
| | - Haifeng Yu
- Department of Materials Science and Engineering, College of Engineering and Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, China
| | - Guojie Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
23
|
Wang Y, Zhang YM, Zhang SXA. Stimuli-Induced Reversible Proton Transfer for Stimuli-Responsive Materials and Devices. Acc Chem Res 2021; 54:2216-2226. [PMID: 33881840 DOI: 10.1021/acs.accounts.1c00061] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
ConspectusStimuli-responsive materials have a great potential in various novel photoelectric devices, such as self-adaptive adjustment devices, intelligent detection, molecular computers with information storage capability, camouflage and anticounterfeiting display, various energy-saving displays, and others. However, progress in related areas has been relatively slow because of the lack of high-performance smart materials and the limitations of available reaction mechanisms currently. To address these problems fundamentally, new mechanisms need to be designed and developed, and learning from nature is an effective and intelligent method to achieve this long-awaited target, such as mimicking of proton transfer processes in nature at the molecular/supramolecular level. The stimuli-induced reversible proton transfer system is composed of materials that release or capture protons in response to stimuli and switch molecules that control color and/or fluorescence modulation by protons, and it is applied in stimuli-responsive materials and devices, including bistable electronic/electrochromic devices, electrofluorochromic devices, water-jet rewritable paper, visible-light-responsive rewritable paper, and mechanochromic materials.To help researchers gain deep insight into stimuli-induced reversible proton transfer, we attempted to summarize its reaction mechanism and design principle, and discuss strategies to design and prepare various related stimuli-responsive materials and devices. This Account discusses the different systems in which a color/fluorescence change is induced by the proton transfer process under various stimuli, including electric field, water, light, heat, and stress. Relative very promising applications as well as their performance especially for energy-saving and environmentally friendly devices are then summarized, such as energy-saving bistable electrochromic devices, water-jet rewritable paper, and visible-light-responsive rewritable paper. Meanwhile, we focus on the key influence factors and useful additives for improving the device's performance. At last, challenges and bottlenecks faced by stimuli-responsive materials and devices based on the mechanism of reversible proton transfer are proposed. Moreover, we put forward some suggestions on solving these limitations.These exciting results reveal that smart materials based on the mechanism of proton transfer are extremely attractive and possess great potential in the next generation of energy and resource saving and environmental protection display. We hope that this Account further prospers the field of intelligent stimuli-responsive discoloration materials and next-generation green displays.
Collapse
Affiliation(s)
- Yuyang Wang
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yu-Mo Zhang
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Sean Xiao-An Zhang
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
24
|
Gao Z, Shi L, Ling X, Chen Z, Mei Q, Wang F. Near-infrared photon-excited energy transfer in platinum(II)-based supramolecular polymers assisted by upconverting nanoparticles. Chem Commun (Camb) 2021; 57:1927-1930. [PMID: 33496708 DOI: 10.1039/d0cc07445d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A novel hybrid supramolecular system with near-infrared photon-excited energy transfer has been successfully constructed, relying on the assistance of upconversion nanoparticles in platinum(ii)-based supramolecular polymers. The resulting hybrid system is capable of displaying intriguing photo-switchable and sequential energy transfer features.
Collapse
Affiliation(s)
- Zhao Gao
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China.
| | - Lulu Shi
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China.
| | - Xiao Ling
- Hefei University of Technology, Tunxi road 193, Hefei 230009, P. R. China.
| | - Ze Chen
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Qingsong Mei
- Hefei University of Technology, Tunxi road 193, Hefei 230009, P. R. China.
| | - Feng Wang
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| |
Collapse
|
25
|
Li Z, Wang Y, Baryshnikov G, Shen S, Zhang M, Zou Q, Ågren H, Zhu L. Lighting up solid states using a rubber. Nat Commun 2021; 12:908. [PMID: 33568677 PMCID: PMC7876014 DOI: 10.1038/s41467-021-21253-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/13/2021] [Indexed: 11/10/2022] Open
Abstract
It is crucial and desirable to develop green and high-efficient strategies to regulate solid-state structures and their related material properties. However, relative to solution, it is more difficult to break and generate chemical bonds in solid states. In this work, a rubbing-induced photoluminescence on the solid states of ortho-pyridinil phenol family was achieved. This rubbing response relied on an accurately designed topochemical tautomerism, where a negative charge, exactly provided by the triboelectric effect of a rubber, can induce a proton transfer in a double H-bonded dimeric structure. This process instantaneously led to a bright-form tautomer that can be stabilized in the solid-state settings, leading to an up to over 450-fold increase of the fluorescent quantum yield of the materials. The property can be repeatedly used due to the reversibility of the tautomerism, enabling encrypted applications. Moreover, a further modification to the structure can be accomplished to achieve different properties, opening up more possibilities for the design of new-generation smart materials. Changes in molecular properties due to stimuli response are critically important for the development of new materials. However, most processes are slow or inefficient in the solid state. Here the authors demonstrate property switching in the solid state using a rubbing-induced tautomerism in multiple hydrogen-bonded donor-acceptor couples.
Collapse
Affiliation(s)
- Zhongyu Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China
| | - Yanjie Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China
| | - Gleb Baryshnikov
- Division of Theoretical Chemistry and Biology School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden.,Tomsk State University, Tomsk, Russia
| | - Shen Shen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China
| | - Man Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China
| | - Qi Zou
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai, China
| | - Hans Ågren
- Tomsk State University, Tomsk, Russia.,Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
| | - Liangliang Zhu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China.
| |
Collapse
|
26
|
Tian J, Liu Z, Wu C, Jiang W, Chen L, Shi D, Zhang X, Zhang G, Zhang D. Simultaneous Incorporation of Two Types of Azo-Groups in the Side Chains of a Conjugated D-A Polymer for Logic Control of the Semiconducting Performance by Light Irradiation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005613. [PMID: 33448055 DOI: 10.1002/adma.202005613] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/12/2020] [Indexed: 06/12/2023]
Abstract
A new design strategy for photoresponsive semiconducting polymer with tri-stable semiconducting states is reported by simultaneous incorporation of tetra-ortho-methoxy-substituted azobenzene (mAzo) and arylazopyrazole (pAzo) in the side chains. The trans-to-cis transformations for mAzo and pAzo groups can sequentially occur within the polymer thin film after sequential 560 and 365 nm light irradiation. Remarkably, the trans-cis isomerization of mAzo and pAzo groups can modulate the thin film crystallinity. Accordingly, the performances of the resulting field-effect transistors (FETs) can be reversibly modulated, leading to tri-stable semiconducting states after sequential 560, 365, and 470 nm light irradiation. Therefore, the device performance can be logically controlled by light irradiation at three different wavelengths. In addition, with light irradiation and device current as the input and output signals, the three-value logic gate by using single FET device can be successfully mimicked.
Collapse
Affiliation(s)
- Jianwu Tian
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zitong Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Changchun Wu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Wenlin Jiang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liangliang Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Dandan Shi
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xisha Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Guanxin Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Deqing Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
27
|
Xiong C, Xue G, Mao L, Gu L, He C, Zheng Y, Wang D. Carbon Spacer Strategy: Control the Photoswitching Behavior of Donor-Acceptor Stenhouse Adducts. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:802-809. [PMID: 33406356 DOI: 10.1021/acs.langmuir.0c03133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Understanding the relationship between chemical structure and photoswitching property of donor-acceptor Stenhouse adducts (DASAs) is necessary for developments and applications of the novel photoresponsive molecule. In the current work, we demonstrated a close relationship between the length of carbon spacer and photoswitching property of DASAs. A series of DASAs with barbituric acid substituted electron-withdrawing part and N-methylaniline substituted electron-donating part were synthesized. With shortening the carbon spacer between the phenyl and amine groups in the electron-donating part, the efficiency and rate of the light-induced linear-to-cyclic isomerization are improved in all the test solvents. The molecular energy variation during the isomerization process was investigated by density functional theory calculation to further understand the mechanism. This work provides a reliable carbon spacer strategy to control the photoswitching behavior of DASAs using chemical methods.
Collapse
Affiliation(s)
- Chaoyue Xiong
- School of Optoelectronic Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Guodong Xue
- School of Optoelectronic Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Lijun Mao
- School of Optoelectronic Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Lianghong Gu
- School of Materials Science and Engineering, Xihua University, Chengdu 610039, China
| | - Chao He
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yonghao Zheng
- School of Optoelectronic Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Dongsheng Wang
- School of Optoelectronic Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
- Institute of Electronic and Information Engineering of UESTC in Guangdong, Dongguan 523808, China
| |
Collapse
|
28
|
Hou C, Zhou C, Cheng J. Norbornenyl-based amphiphilic ABA-triblock azobenzene copolymers: Synthesis, photoresponsive and self-assembly properties. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123310] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
29
|
Yue Y, Azumi R, Norikane Y. Fatigue‐Resistant Crosslinked Azopolymers with Inhibited H‐Aggregation for Efficient Photopatterning. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Youfeng Yue
- Research Institute for Advanced Electronics and Photonics National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Ibaraki 305-8565 Japan
| | - Reiko Azumi
- Research Institute for Advanced Electronics and Photonics National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Ibaraki 305-8565 Japan
| | - Yasuo Norikane
- Research Institute for Advanced Electronics and Photonics National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Ibaraki 305-8565 Japan
| |
Collapse
|
30
|
Xu X, Zhang P, Wu B, Xing Y, Shi K, Fang W, Yu H, Wang G. Photochromic Dendrimers for Photoswitched Solid-To-Liquid Transitions and Solar Thermal Fuels. ACS APPLIED MATERIALS & INTERFACES 2020; 12:50135-50142. [PMID: 33085470 DOI: 10.1021/acsami.0c14160] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Dendrimers are well-defined, highly branched macromolecules that have been widely applied in the fields of catalysis, sensing, and biomedicine. Here, we present a novel multifunctional photochromic dendrimer fabricated through grafting azobenzene units onto dendrimers, which not only enables controlled switching of adhesives and effective repair of coating scratches but also realizes high-performance solar energy storage and on-demand heat release. The switchable adhesives and healable coatings of azobenzene-containing dendrimers are attributed to the reversible solid-to-liquid transitions because trans-isomers and cis-isomers have different glass transition temperatures. The adhesion strengths increase significantly with the increase in dendrimer generations, wherein the adhesion strength of fifth-generation photochromic dendrimers (G5-Azo) can reach up to 1.62 MPa, five times higher than that of pristine azobenzenes. The solar energy storage and heat release of dendrimer solar thermal fuels, the isomers of which possess different chemical energies, can be also enhanced remarkably with the amplification of azobenzene groups on dendrimers. The storage energy density of G5-Azo can reach 59 W h kg-1, which is much higher than that of pristine azobenzenes (36 W h kg-1). The G5-Azo fuels exhibit a 5.2 °C temperature difference between cis-isomers and trans-isomers. These findings provide a new perspective and tremendously attractive avenue for the fabrication of photoswitchable adhesives and coatings and solar thermal fuels with dendrimer structures.
Collapse
Affiliation(s)
- Xingtang Xu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Peng Zhang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Bo Wu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Youmei Xing
- Hangzhou Greenda Electronic Materials Company Ltd., Hangzhou 310051, China
| | - Ke Shi
- Hangzhou Greenda Electronic Materials Company Ltd., Hangzhou 310051, China
| | - Weihua Fang
- Hangzhou Greenda Electronic Materials Company Ltd., Hangzhou 310051, China
| | - Haifeng Yu
- Department of Materials Science and Engineering, College of Engineering and Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, China
| | - Guojie Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
31
|
Wu K, Sun J, Ma Y, Wei D, Lee O, Luo H, Fan H. Spatiotemporal regulation of dynamic cell microenvironment signals based on an azobenzene photoswitch. J Mater Chem B 2020; 8:9212-9226. [PMID: 32929441 DOI: 10.1039/d0tb01737j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Dynamic biochemical and biophysical signals of cellular matrix define and regulate tissue-specific cell functions and fate. To recapitulate this complex environment in vitro, biomaterials based on structural- or degradation-tunable polymers have emerged as powerful platforms for regulating the "on-demand" cell-material dynamic interplay. As one of the most prevalent photoswitch molecules, the photoisomerization of azobenzene demonstrates a unique advantage in the construction of dynamic substrates. Moreover, the development of azobenzene-containing biomaterials is particularly helpful in elucidating cells that adapt to a dynamic microenvironment or integrate spatiotemporal variations of signals. Herein, this minireview, places emphasis on the research progress of azobenzene photoswitches in the dynamic regulation of matrix signals. Some techniques and material design methods have been discussed to provide some theoretical guidance for the rational and efficient design of azopolymer-based material platforms. In addition, considering that the UV-light response of traditional azobenzene photoswitches is not conducive to biological applications, we have summarized the recent approaches to red-shifting the light wavelength for azobenzene activation.
Collapse
Affiliation(s)
- Kai Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Jing Sun
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Yanzhe Ma
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Dan Wei
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Oscar Lee
- Institute of Clinical Medicine National Yang-Ming University, Taipei, Taiwan
| | - Hongrong Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China.
| |
Collapse
|
32
|
Usman M, Yu H, Wang L, Qian J, Li X, Khan A, Naveed KUR, Nazir A, Elshaarani T, Fahad S. Synthesis of poly(2-(methacryloyloxy) ethyl ferrocene carboxylate-co-methacrylic acid)s and their anti-migration and burning rate catalytic properties. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
33
|
Lin KT, Chen YJ, Huang MR, Karapala VK, Ho JH, Chen JT. Light-Induced Nanowetting: Erasable and Rewritable Polymer Nanoarrays via Solid-to-Liquid Transitions. NANO LETTERS 2020; 20:5853-5859. [PMID: 32697594 DOI: 10.1021/acs.nanolett.0c01764] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Template wetting methods have been widely applied in the preparation of one-dimensional (1D) polymer nanomaterials. The pattern control using the template wetting methods, however, still remains a great challenge, mainly due to the nonselectivity of the polymers toward the environmental triggering. In this work, we present a facile light-induced nanowetting (LIN) method to fabricate patterned nanoarrays using anodic aluminum oxide (AAO) templates. Photoresponsive azobenzene-containing polymers (azopolymers) that exhibit light-induced reversible solid-to-liquid transitions are used. Upon exposure to ultraviolet lights, the azopolymer chains can wet the nanopores of the AAO templates in a liquid state via capillary force. The azopolymer chains are then solidified by illuminating them with visible lights, resulting in the formation of azopolymer nanoarrays. Notably, using designed photomasks, the patterns of the nanoarrays can be ingeniously controlled with the characteristic of erasable and rewritable nanostructures.
Collapse
Affiliation(s)
- Kuan-Ting Lin
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan 30010
| | - Yu-Jia Chen
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan 30010
| | - Meng-Ru Huang
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan 30010
| | | | - Jhih-Hao Ho
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan 30010
| | - Jiun-Tai Chen
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan 30010
- Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu, Taiwan 30010
| |
Collapse
|
34
|
Yan H, Qiu Y, Wang J, Jiang Q, Wang H, Liao Y, Xie X. Wholly Visible-Light-Responsive Host-Guest Supramolecular Gels Based on Methoxy Azobenzene and β-Cyclodextrin Dimers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:7408-7417. [PMID: 32486643 DOI: 10.1021/acs.langmuir.0c00964] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Much attention has been paid to construct photoresponsive host-guest supramolecular gels; however, red-shifting the responsive wavelength remains a formidable challenge. Here, a wholly visible-light-responsive supramolecular gel was fabricated through the host-guest interaction between a β-cyclodextrin (β-CD) dimer and a tetra-ortho-methoxy-substituted azobenzene (mAzo) dimer (binary gelator) in DMSO/H2O (V/V = 8/2). The minimum gelation concentration of the low-molecular-weight binary gelator was 6 wt % measured via the tube inversion method. The substituted methoxy groups shifted the responsive wavelengths of trans-mAzo and cis-mAzo to the green and blue light regions, respectively. The host-guest interaction between mAzo and β-CD as the driving force for gelation was confirmed using the 1H-NMR and 2D 1H NOESY spectra. The supramolecular gel showed good self-supporting ability with a storage modulus higher than 104 Pa. The release of Rhodamine B loaded in the gel as a model drug could be controlled by green light irradiation. We envisioned the potential applications of the wholly visible-light-responsive supramolecular compounds ranging from biomedical materials to smart materials.
Collapse
Affiliation(s)
- Hongchao Yan
- Key Laboratory of Material Chemistry for Energy Conversion and Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuan Qiu
- Key Laboratory of Material Chemistry for Energy Conversion and Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jing Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qian Jiang
- Key Laboratory of Material Chemistry for Energy Conversion and Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hong Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yonggui Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- State Key Laboratory of Material Processing and Die&Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaolin Xie
- Key Laboratory of Material Chemistry for Energy Conversion and Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- State Key Laboratory of Material Processing and Die&Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
35
|
Buten C, Kortekaas L, Ravoo BJ. Design of Active Interfaces Using Responsive Molecular Components. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1904957. [PMID: 31573115 DOI: 10.1002/adma.201904957] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/07/2019] [Indexed: 06/10/2023]
Abstract
Responsive interfaces are interfaces that show a defined and reversible change in physical properties in response to external stimuli. Typically, responsive interfaces result from the immobilization of responsive molecular components at the interface that translate a nanoscale signal into a macroscopic effect. Responsive interfaces can also be obtained if the topology of the interface can be reversibly changed using an external stimulus. As the surface of any material is its connection to the environment, responsive interfaces provide opportunities for interactive materials which are not only able to change properties upon demand, but also sense their environment and act autonomously. The application of responsive molecular components at interfaces, however, requires chemical and physical compatibility with the material surface of interest, posing a challenge not least in the retention of the responsive functionality. The state of the art in "active" interfaces which display responsive wettability, permeability, or adhesion is discussed, with a particular emphasis on microscale and nanoscale patterning since patterned interfaces can give rise to unique material properties. Finally, perspectives in the development of responsive interfaces, as well as promising approaches for bypassing the most prominent challenges are discussed.
Collapse
Affiliation(s)
- Christoph Buten
- Center for Soft Nanoscience and Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Busso-Peus-Straße 10, 48149, Münster, Germany
| | - Luuk Kortekaas
- Center for Soft Nanoscience and Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Busso-Peus-Straße 10, 48149, Münster, Germany
| | - Bart Jan Ravoo
- Center for Soft Nanoscience and Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Busso-Peus-Straße 10, 48149, Münster, Germany
| |
Collapse
|
36
|
Synthesis of Polyaniline/Graphene Oxide/Azobenzene Composite and Its Adjustable Photoelectric Properties. ADVANCES IN POLYMER TECHNOLOGY 2020. [DOI: 10.1155/2020/8730852] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Azobenzene derivatives have fast light response characteristics; in this paper, a new azobenzene derivative (Azo) was synthesized and to be made a composite (PANI/GO/Azo) with polyaniline/graphene oxide (PANI/GO). Both composites were carefully investigated by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and thermogravimetric analysis (TGA). Moreover, their electrochemical properties were characterized by the electrochemical workstation, including cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), cycling stability, and electrochemical impedance spectroscopy (EIS). The results demonstrated that the PANI/GO/Azo composite has a higher capacitance of 478.3 F g−1 than that of PANI/GO (359.9 F g−1) at a current density of 1 A g−1. PANI/GO/Azo composite showed excellent photosensitive electrochemical properties under UV irradiation, and its rate of capacitance change achieved about 52.57%. Additionally, the PANI/GO/Azo composite also displayed high reversibility, with specific capacitance retention of 92% after 500 cycles. Therefore, the PANI/GO/Azo electrode with a controllable electrochemical performance by UV irradiation had a great potential in the photoresponsive supercapacitor.
Collapse
|
37
|
Burk MH, Schröder S, Moormann W, Langbehn D, Strunskus T, Rehders S, Herges R, Faupel F. Fabrication of Diazocine-Based Photochromic Organic Thin Films via Initiated Chemical Vapor Deposition. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02443] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Maximilian H. Burk
- Institute for Materials Science, Christian-Albrechts-University, Kaiserstr. 2, 24143 Kiel, Germany
| | - Stefan Schröder
- Institute for Materials Science, Christian-Albrechts-University, Kaiserstr. 2, 24143 Kiel, Germany
| | - Widukind Moormann
- Otto-Diels-Institute for Organic Chemistry, Christian-Albrechts-University, Otto-Hahn-Platz 4, 24118 Kiel, Germany
| | - Daniel Langbehn
- Otto-Diels-Institute for Organic Chemistry, Christian-Albrechts-University, Otto-Hahn-Platz 4, 24118 Kiel, Germany
| | - Thomas Strunskus
- Institute for Materials Science, Christian-Albrechts-University, Kaiserstr. 2, 24143 Kiel, Germany
| | - Stefan Rehders
- Institute for Materials Science, Christian-Albrechts-University, Kaiserstr. 2, 24143 Kiel, Germany
| | - Rainer Herges
- Otto-Diels-Institute for Organic Chemistry, Christian-Albrechts-University, Otto-Hahn-Platz 4, 24118 Kiel, Germany
| | - Franz Faupel
- Institute for Materials Science, Christian-Albrechts-University, Kaiserstr. 2, 24143 Kiel, Germany
| |
Collapse
|
38
|
Xu G, Li S, Liu C, Wu S. Photoswitchable Adhesives Using Azobenzene‐Containing Materials. Chem Asian J 2020; 15:547-554. [DOI: 10.1002/asia.201901655] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Guofeng Xu
- CAS Key Laboratory of Soft Matter ChemistryHefei National Laboratory for Physical Sciences at the MicroscaleAnhui Key Laboratory of Optoelectronic Science and TechnologyDepartment of Polymer Science and EngineeringUniversity of Science and Technology of China Jinzhai Road 96 Hefei 230026 China
| | - Shuxiu Li
- CAS Key Laboratory of Soft Matter ChemistryHefei National Laboratory for Physical Sciences at the MicroscaleAnhui Key Laboratory of Optoelectronic Science and TechnologyDepartment of Polymer Science and EngineeringUniversity of Science and Technology of China Jinzhai Road 96 Hefei 230026 China
| | - Chengwei Liu
- CAS Key Laboratory of Soft Matter ChemistryHefei National Laboratory for Physical Sciences at the MicroscaleAnhui Key Laboratory of Optoelectronic Science and TechnologyDepartment of Polymer Science and EngineeringUniversity of Science and Technology of China Jinzhai Road 96 Hefei 230026 China
| | - Si Wu
- CAS Key Laboratory of Soft Matter ChemistryHefei National Laboratory for Physical Sciences at the MicroscaleAnhui Key Laboratory of Optoelectronic Science and TechnologyDepartment of Polymer Science and EngineeringUniversity of Science and Technology of China Jinzhai Road 96 Hefei 230026 China
| |
Collapse
|
39
|
Khan A, Yu H, Wang Y, Wang L, Ullah RS, Haq F, Elshaarani T, Usman M, Nazir A, Naveed KUR. Synthesis of P(FHEMA-co-MAZO-co-MAA)s copolymers and their redox and photo-responsive properties. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.120955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Wu S, Butt HJ. Solar-Thermal Energy Conversion and Storage Using Photoresponsive Azobenzene-Containing Polymers. Macromol Rapid Commun 2019; 41:e1900413. [PMID: 31737964 DOI: 10.1002/marc.201900413] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/28/2019] [Indexed: 12/31/2022]
Abstract
Photoswitchable compounds are promising materials for solar-thermal energy conversion and storage. In particular, photoresponsive azobenzene-containing compounds are proposed as materials for solar-thermal fuels. In this feature article, solar-thermal fuels based on azobenzene-containing polymers (azopolymers) are reviewed. The mechanism of azopolymer-based solar-thermal fuels is introduced, and computer simulations and experimental results on azopolymer-based solar-thermal fuels are highlighted. Different types of azopolymers such as linear azopolymers, 2D azopolymers, and conjugated azopolymers are addressed. The advantages and limitations of these azopolymers for solar-thermal energy conversion and storage, along with the remaining challenges of azopolymer-based solar-thermal fuels, are discussed.
Collapse
Affiliation(s)
- Si Wu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Jinzhai Road 96, Hefei, 230026, Anhui, China.,Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 , Mainz, Germany
| | - Hans-Jürgen Butt
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 , Mainz, Germany
| |
Collapse
|
41
|
Ding L, Zhang P, Fu C, Yin J, Mao Y, Liu N, Li S, Yang C, Zhao R, Deng K. Synthesis of Temperature and Light Sensitive Copolymers with Controlled Aggregation during Phase Transitions. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Lan Ding
- College of Chemistry & Environmental ScienceAffiliated HospitalHebei University Baoding 071002 China
| | - Pengfei Zhang
- College of Chemistry & Environmental ScienceAffiliated HospitalHebei University Baoding 071002 China
| | - Congcong Fu
- College of Chemistry & Environmental ScienceAffiliated HospitalHebei University Baoding 071002 China
| | - Jialin Yin
- College of Chemistry & Environmental ScienceAffiliated HospitalHebei University Baoding 071002 China
| | - Yongwang Mao
- College of Chemistry & Environmental ScienceAffiliated HospitalHebei University Baoding 071002 China
| | - Na Liu
- College of Chemistry & Environmental ScienceAffiliated HospitalHebei University Baoding 071002 China
| | - Shihua Li
- College of Chemistry & Environmental ScienceAffiliated HospitalHebei University Baoding 071002 China
| | - Chunying Yang
- College of Chemistry & Environmental ScienceAffiliated HospitalHebei University Baoding 071002 China
| | - Ronghui Zhao
- College of Chemistry & Environmental ScienceAffiliated HospitalHebei University Baoding 071002 China
| | - Kuilin Deng
- College of Chemistry & Environmental ScienceAffiliated HospitalHebei University Baoding 071002 China
| |
Collapse
|
42
|
Lee J, Park JM, Jang WD. Cyclodextrin-bearing telechelic poly(2-isopropyl-2-oxazoline): Extremely large shifts of phase transition temperature by photo-responsive guest inclusion. Carbohydr Polym 2019; 221:48-54. [DOI: 10.1016/j.carbpol.2019.05.068] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/23/2019] [Accepted: 05/23/2019] [Indexed: 01/29/2023]
|
43
|
Khan A, Yu H, Wang L, Zhizhko PA, Zarubin DN, Lemenovskiy DA, Haq F, Usman M, Nazir A, Naveed KUR. Synthesis of ferrocene and azobenzene-based copolymers P(FHEMA-co-MAZOHE)s and their redox and photo-responsive properties. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
44
|
Kim DY, Jeong KU. Light responsive liquid crystal soft matters: structures, properties, and applications. LIQUID CRYSTALS TODAY 2019. [DOI: 10.1080/1358314x.2019.1653588] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Dae-Yoon Kim
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kwang-Un Jeong
- Department of Polymer-Nano Science and Technology, Chonbuk National University, Jeonbuk, Korea
| |
Collapse
|
45
|
Ditter D, Braun LB, Zentel R. Influences of Ortho‐Fluoroazobenzenes on Liquid Crystalline Phase Stability and 2D (Planar) Actuation Properties of Liquid Crystalline Elastomers. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900265] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- David Ditter
- Institut für Organische Chemie Johannes Gutenberg‐Universität Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Lukas B. Braun
- Institut für Organische Chemie Johannes Gutenberg‐Universität Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Rudolf Zentel
- Institut für Organische Chemie Johannes Gutenberg‐Universität Mainz Duesbergweg 10–14 55128 Mainz Germany
| |
Collapse
|
46
|
Xu WC, Sun S, Wu S. Photoinduced Reversible Solid-to-Liquid Transitions for Photoswitchable Materials. Angew Chem Int Ed Engl 2019; 58:9712-9740. [PMID: 30737869 DOI: 10.1002/anie.201814441] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Indexed: 11/06/2022]
Abstract
Heating and cooling can induce reversible solid-to-liquid transitions of matter. In contrast, athermal photochemical processes can induce reversible solid-to-liquid transitions of some newly developed azobenzene compounds. Azobenzene is photoswitchable. UV light induces trans-to-cis isomerization; visible light or heat induces cis-to-trans isomerization. Trans and cis isomers usually have different melting points (Tm ) or glass transition temperatures (Tg ). If Tm or Tg of an azobenzene compound in trans and cis forms are above and below room temperature, respectively, light may induce reversible solid-to-liquid transitions. In this Review, we introduce azobenzene compounds that exhibit photoinduced reversible solid-to-liquid transitions, discuss the mechanisms and design principles, and show their potential applications in healable coatings, adhesives, transfer printing, lithography, actuators, fuels, and gas separation. Finally, we discuss remaining challenges in this field.
Collapse
Affiliation(s)
- Wen-Cong Xu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Jinzhai Road 96, Hefei, 230026, China
| | - Shaodong Sun
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Jinzhai Road 96, Hefei, 230026, China
| | - Si Wu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Jinzhai Road 96, Hefei, 230026, China
| |
Collapse
|
47
|
Xu W, Sun S, Wu S. Photoinduzierte, reversible Fest‐flüssig‐Übergänge unter Verwendung photoschaltbarer Materialien. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814441] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wen‐Cong Xu
- CAS Key Laboratory of Soft Matter ChemistryHefei National Laboratory for Physical Sciences at the MicroscaleAnhui Key Laboratory of Optoelectronic Science and TechnologyDepartment of Polymer Science and EngineeringUniversity of Science and Technology of China Jinzhai Road 96 Hefei 230026 China
| | - Shaodong Sun
- CAS Key Laboratory of Soft Matter ChemistryHefei National Laboratory for Physical Sciences at the MicroscaleAnhui Key Laboratory of Optoelectronic Science and TechnologyDepartment of Polymer Science and EngineeringUniversity of Science and Technology of China Jinzhai Road 96 Hefei 230026 China
| | - Si Wu
- CAS Key Laboratory of Soft Matter ChemistryHefei National Laboratory for Physical Sciences at the MicroscaleAnhui Key Laboratory of Optoelectronic Science and TechnologyDepartment of Polymer Science and EngineeringUniversity of Science and Technology of China Jinzhai Road 96 Hefei 230026 China
| |
Collapse
|
48
|
Fu L, Yang J, Dong L, Yu H, Yan Q, Zhao F, Zhai F, Xu Y, Dang Y, Hu W, Feng Y, Feng W. Solar Thermal Storage and Room-Temperature Fast Release Using a Uniform Flexible Azobenzene-Grafted Polynorborene Film Enhanced by Stretching. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00384] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Wei Feng
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China
| |
Collapse
|
49
|
Wang S, Li T, Zhang X, Ma L, Li C, Yao X, Cao D, Ma X. Stimuli‐Responsive Copolymer and Uniform Polymeric Nanoparticles with Photochromism and Switchable Emission. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sheng Wang
- School of Chemistry and Chemical Engineering Development Center for New Materials Engineering and Technology in Universities of GuangdongLingnan Normal University Zhanjiang 524048, China P. R. China
- School of Chemistry and Chemical Engineering State Key Laboratory of Luminescent Materials and DevicesSouth China University of Technology Guangzhou 510641 P. R. China
| | - Teng Li
- Key Laboratory for Advanced Materials and Institute of Fine ChemicalsEast China University of Science & Technology Shanghai 200237 P. R. China
| | - Xiaoduo Zhang
- School of Chemistry and Chemical Engineering Development Center for New Materials Engineering and Technology in Universities of GuangdongLingnan Normal University Zhanjiang 524048, China P. R. China
- School of Chemistry and Chemical Engineering State Key Laboratory of Luminescent Materials and DevicesSouth China University of Technology Guangzhou 510641 P. R. China
| | - Liangwei Ma
- Key Laboratory for Advanced Materials and Institute of Fine ChemicalsEast China University of Science & Technology Shanghai 200237 P. R. China
| | - Chenpeng Li
- School of Chemistry and Chemical Engineering Development Center for New Materials Engineering and Technology in Universities of GuangdongLingnan Normal University Zhanjiang 524048, China P. R. China
| | - Xuyang Yao
- Key Laboratory for Advanced Materials and Institute of Fine ChemicalsEast China University of Science & Technology Shanghai 200237 P. R. China
| | - Derong Cao
- School of Chemistry and Chemical Engineering State Key Laboratory of Luminescent Materials and DevicesSouth China University of Technology Guangzhou 510641 P. R. China
| | - Xiang Ma
- Key Laboratory for Advanced Materials and Institute of Fine ChemicalsEast China University of Science & Technology Shanghai 200237 P. R. China
| |
Collapse
|
50
|
Li X, Shi Y, Wang N, Peng T, Wang S. Photoisomerization of Pt II Complexes Containing Two Different Photochromic Chromophores: Boron Chromophore versus Dithienylethene Chromophore. Chemistry 2019; 25:5757-5767. [PMID: 30791171 DOI: 10.1002/chem.201900279] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Indexed: 11/10/2022]
Abstract
In order to examine competitive photoisomerization, a series of novel photochromic PtII molecules that contain both dithienylethene (DTE) and B(ppy)Mes2 units (ppy=2-phenylpyridine, Mes=mesityl) were successfully synthesized and fully structurally characterized. Their photochromic properties were examined by UV/Vis, emission and NMR spectroscopy. It was found that the DTE unit in all three compounds is the preferred photoisomerization site, exhibiting reversible photochromism with irradiation. The B(ppy)Mes2 unit does not undergo photoisomerization in these molecules, but likely enhances the photoisomerization quantum efficiency of the DTE moiety through the antenna effect. Extended irradiation with UV light leads to the rearrangement of the ring-closed isomers of DTE. TD-DFT computational studies indicate that the DTE photocyclization proceeds via a triplet pathway through an efficient energy transfer process.
Collapse
Affiliation(s)
- Xue Li
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic, Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China
| | - Yonggang Shi
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic, Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China
| | - Nan Wang
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic, Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China
| | - Tai Peng
- School of Materials Science & Engineering, Jiamusi University, Jiamusi, Heilongjiang, 154007, P. R. China
| | - Suning Wang
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic, Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China.,Department of Chemistry, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| |
Collapse
|