1
|
Zong Y, Cui J, Han Y. Composition Conversion-Induced Disassembly of Amphiphilic ABA Triblock Copolymer Vesicles: A Monte Carlo Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:3434-3443. [PMID: 39883422 DOI: 10.1021/acs.langmuir.4c04472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
The composition conversion in block copolymer induced by external stimuli such as light and pH is an effective strategy to trigger the disassembly of vesicles experimentally. Based on this strategy, the disassembly behavior of the A2B12A2 triblock copolymer vesicle induced by the composition conversion from B block to C block was studied using Monte Carlo simulation. In this study, a part of the B block in the A2B12A2 triblock copolymer was converted to the new block C with weaker hydrophobicity, forming the A2B12-nCnA2 tetrablock copolymer. The composition conversion makes the originally stable vesicle unstable, and after sufficiently long simulation time, the system reached a new equilibrium state. The aggregate morphology of the new equilibrium state was highly dependent on the converted chain length (n). A variety of micelles with novel Janus-type phase-separated microstructures in their hydrophobic parts have been observed in the systems with different n. It should be noticed that those Janus-type micelles cannot be obtained via traditional self-assembly processes from homogeneous states of A2B12-nCnA2 tetrablock copolymers under the same conditions. The simulation results further indicated that the morphological transformation from ABA vesicle to ABCA micelles induced by the composition conversion is reversible.
Collapse
Affiliation(s)
- Yanqi Zong
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, P. R. China
| | - Jie Cui
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, P. R. China
| | - Yuanyuan Han
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, P. R. China
| |
Collapse
|
2
|
Gillhuber S, Holloway JO, Mundsinger K, Kammerer JA, Harmer JR, Frisch H, Barner-Kowollik C, Roesky PW. Visible light photoflow synthesis of a Cu(ii) single-chain polymer nanoparticle catalyst. Chem Sci 2024:d4sc03079f. [PMID: 39246378 PMCID: PMC11376198 DOI: 10.1039/d4sc03079f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/14/2024] [Indexed: 09/10/2024] Open
Abstract
We herein pioneer the visible light (λ max = 410 nm) mediated flow synthesis of catalytically active single-chain nanoparticles (SCNPs). Our design approach is based on a copolymer of poly(ethylene glycol) methyl ether methacrylate and a photocleavable 2-((((2-nitrobenzyl)oxy)carbonyl)amino)ethyl methacrylate monomer which can liberate amine groups upon visible light irradiation, allowing for single-chain collapse via the complexation of Cu(ii) ions. We initially demonstrate the successful applicability of our design approach for the batch photochemical synthesis of Cu(ii) SCNPs and transfer the concept to photoflow conditions, enabling, for the first time, the continuous production of functional SCNPs. Critically, we explore their ability to function as a photocatalyst for the cleavage of carbon-carbon single and double bonds on the examples of xanthene-9-carboxylic acid and oleic acid, demonstrating the advantageous effect SCNPs can provide over analogous small molecule catalysts.
Collapse
Affiliation(s)
- Sebastian Gillhuber
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT) Engesserstraße 15 76131 Karlsruhe Germany
- School of Chemistry and Physics, Queensland University of Technology (QUT) 2 George Street 4000 Brisbane QLD Australia
- Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street 4000 Brisbane QLD Australia
| | - Joshua O Holloway
- School of Chemistry and Physics, Queensland University of Technology (QUT) 2 George Street 4000 Brisbane QLD Australia
- Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street 4000 Brisbane QLD Australia
| | - Kai Mundsinger
- School of Chemistry and Physics, Queensland University of Technology (QUT) 2 George Street 4000 Brisbane QLD Australia
- Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street 4000 Brisbane QLD Australia
| | - Jochen A Kammerer
- School of Chemistry and Physics, Queensland University of Technology (QUT) 2 George Street 4000 Brisbane QLD Australia
- Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street 4000 Brisbane QLD Australia
| | - Jeffrey R Harmer
- Centre for Advanced Imaging, The University of Queensland (UQ) Building 57 Research Road 4072 Brisbane QLD Australia
| | - Hendrik Frisch
- School of Chemistry and Physics, Queensland University of Technology (QUT) 2 George Street 4000 Brisbane QLD Australia
- Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street 4000 Brisbane QLD Australia
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Queensland University of Technology (QUT) 2 George Street 4000 Brisbane QLD Australia
- Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street 4000 Brisbane QLD Australia
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Peter W Roesky
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT) Engesserstraße 15 76131 Karlsruhe Germany
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
3
|
Yu X, Li J, Zhang J, Jin J, Pan Y, Ji X, Jiang W. Pathway-dependent Shape Transformation of Polymeric Vesicles under UV Light and the Assembly of UV-irradiated Polymer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:17630-17637. [PMID: 39105727 DOI: 10.1021/acs.langmuir.4c01995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Shape transformation of polymer particles is generally a nonequilibrium dynamics process. Controlling the shape transformation of polymers is increasingly attractive and challenging for scientists due to their extensive use in drug delivery and cancer therapy. Herein, we investigated the UV-triggered shape transformation pathway of polymeric vesicles assembled from Polystyrene-block-poly(4-vinylpyridine) and 4-hydroxyazobenzene (PS-b-P4VP(Azo-OH)) and the direct assembly pathway of UV-irradiated PS-b-P4VP(Azo-OH) homogeneous solution. In the shape transformation process, well-assembled vesicles can be transformed into toroid, cylindrical, rod-like, and spherical micelles. In the direct assembly pathway, rod-like and spherical micelles can be obtained. Interestingly, the toroid micelles can be obtained only from the UV-triggered shape transformation pathway. Contrasting the two pathways reveals the pathway dependence of PS-b-P4VP(Azo-OH) assembly, suggesting that the final assembly morphology is determined by the initial state and dynamic process. The speed of UV-triggered shape transformation and the final morphology of assemblies can be tuned easily by adjusting the UV illuminance, time, and content of Azo-OH addition. Moreover, the light-responsive polymeric vesicles can be used as drug carriers and have the potential to release drugs precisely.
Collapse
Affiliation(s)
- Xin Yu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jinlan Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jianing Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Key Laboratory of Textile Fiber and Products of Ministry of Education, College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Jing Jin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Key Laboratory of Textile Fiber and Products of Ministry of Education, College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Yanxiong Pan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xiangling Ji
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Wei Jiang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Key Laboratory of Textile Fiber and Products of Ministry of Education, College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| |
Collapse
|
4
|
Zhang K, Zhou Y, Moreno S, Schwarz S, Boye S, Voit B, Appelhans D. Reversible crowdedness of pH-responsive and host-guest active polymersomes: Mimicking µm-sized cell structures. J Colloid Interface Sci 2024; 654:1469-1482. [PMID: 37858368 DOI: 10.1016/j.jcis.2023.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/15/2023] [Accepted: 10/04/2023] [Indexed: 10/21/2023]
Abstract
The structure-function characteristics of isolated artificial organelles (AOs) in protocells are mainly known, but there are few reports on clustered or aggregated AOs. To imitate µm-sized complex and heterogeneous cell structures, approaches are needed that enable reversible changes in the aggregation state of colloidal structures in response to chemical, biological, and external stimuli. To construct adaptive organelle-like or cell-like reorganization characteristics, we present an advanced crosslinking strategy to fabricate clustered polymersomes as a platform based on host-guest interactions between azobenzene-containing polymersomes (Azo-Psomes) and a β-cyclodextrin-modified polymer (β-CD polymer) as a crosslinker. First, the reversible (dis)assembly of clustered Azo-Psomes is carried out by the alternating input of crosslinker and adamantane-PEG3000 as a decrosslinker. Moreover, cluster size dependence is demonstrated by environmental pH. These offer the controlled fabrication of various homogeneous and heterogeneous Azo-Psomes structures, including the size regulation and visualization of clustered AOs through a fluorescent enzymatic cascade reaction. Finally, a temperature-sensitive crosslinking agent with β-CD units can promote the coaggregation of Azo-Psomes mediated by temperature changes. Overall, these (co-)clustered Azo-Psomes and their successful transformation in AOs may provide new features for modelling biological systems for eukaryotic cells and systems biology.
Collapse
Affiliation(s)
- Kehu Zhang
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany; Chair of Organic Chemistry of Polymers, Technische Universität Dresden, Dresden 01062, Germany
| | - Yang Zhou
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany; Chair of Organic Chemistry of Polymers, Technische Universität Dresden, Dresden 01062, Germany
| | - Silvia Moreno
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany.
| | - Simona Schwarz
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany
| | - Susanne Boye
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany; Chair of Organic Chemistry of Polymers, Technische Universität Dresden, Dresden 01062, Germany
| | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany.
| |
Collapse
|
5
|
Kayani A, Raza A, Si J, Dutta D, Zhou Q, Ge Z. Polymersome Membrane Engineering with Active Targeting or Controlled Permeability for Responsive Drug Delivery. Biomacromolecules 2023; 24:4622-4645. [PMID: 37870458 DOI: 10.1021/acs.biomac.3c00839] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Polymersomes have been extensively investigated for drug delivery as nanocarriers for two decades due to a series of advantages including high stability under physiological conditions, simultaneous encapsulation of hydrophilic and hydrophobic drugs inside inner cavities and membranes, respectively, and facile adjustment of membrane and surface properties, as well as controlled drug release through incorporation of stimuli-responsive components. Despite these features, polymersome nanocarriers frequently suffer from nontargeting delivery and poor membrane permeability. In recent years, polymersomes have been functionalized for more efficient drug delivery. The surface shells were explored to be modified with diverse active targeting groups to improve disease-targeting delivery. The membrane permeability of the polymersomes was adjusted by incorporation of the stimuli-responsive components for smart controlled transportation of the encapsulated drugs. Therefore, being the polymersome-biointerface, tailorable properties can be introduced by its carefully modulated engineering. This review elaborates on the role of polymersome membranes as a platform to incorporate versatile features. First, we discuss how surface functionalization facilitates the directional journey to the targeting sites toward specific diseases, cells, or intracellular organelles via active targeting. Moreover, recent advances in the past decade related to membrane permeability to control drug release are also summarized. We finally discuss future development to promote polymersomes as in vivo drug delivery nanocarriers.
Collapse
Affiliation(s)
- Anum Kayani
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Arsalan Raza
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Jiale Si
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Debabrata Dutta
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Qinghao Zhou
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Zhishen Ge
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| |
Collapse
|
6
|
Zhu Y, Cao S, Huo M, van Hest JCM, Che H. Recent advances in permeable polymersomes: fabrication, responsiveness, and applications. Chem Sci 2023; 14:7411-7437. [PMID: 37449076 PMCID: PMC10337762 DOI: 10.1039/d3sc01707a] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023] Open
Abstract
Polymersomes are vesicular nanostructures enclosed by a bilayer-membrane self-assembled from amphiphilic block copolymers, which exhibit higher stability compared with their biological analogues (e.g. liposomes). Due to their versatility, polymersomes have found various applications in different research fields such as drug delivery, nanomedicine, biological nanoreactors, and artificial cells. However, polymersomes prepared with high molecular weight components typically display low permeability to molecules and ions. It hence remains a major challenge to balance the opposing features of robustness and permeability of polymersomes. In this review, we focus on the design and strategies for fabricating permeable polymersomes, including polymersomes with intrinsic permeability, the formation of nanopores in the membrane bilayers by protein insertion, and the construction of stimuli-responsive polymersomes. Then, we highlight the applications of permeable polymersomes in the fields of biomimetic nanoreactors, artificial cells and organelles, and nanomedicine, to underline the challenges in the development of polymersomes as soft matter with biomedical utilities.
Collapse
Affiliation(s)
- Yanyan Zhu
- Department of Chemical Engineering, School of Environmental and Chemical Engineerin, Shanghai University Shanghai 200444 China
| | - Shoupeng Cao
- Max Planck Institute for Polymer Research Mainz 55128 Germany
| | - Meng Huo
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang, Zhejiang Sci-Tech University Hangzhou 310018 China
| | - Jan C M van Hest
- Department of Chemical Engineering and Chemistry, Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology Eindhoven 5600 MB The Netherlands
| | - Hailong Che
- Department of Chemical Engineering, School of Environmental and Chemical Engineerin, Shanghai University Shanghai 200444 China
| |
Collapse
|
7
|
Liu S, Li X, Han L. Recent developments in stimuli‐responsive hydrogels for biomedical applications. BIOSURFACE AND BIOTRIBOLOGY 2022. [DOI: 10.1049/bsb2.12050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Shuyun Liu
- School of Medicine and Pharmaceutics Laboratory for Marine Drugs and Bioproducts Pilot National Laboratory for Marine Science and Technology Ocean University of China Qingdao Shandong China
| | - Xiaozhuang Li
- School of Medicine and Pharmaceutics Laboratory for Marine Drugs and Bioproducts Pilot National Laboratory for Marine Science and Technology Ocean University of China Qingdao Shandong China
| | - Lu Han
- School of Medicine and Pharmaceutics Laboratory for Marine Drugs and Bioproducts Pilot National Laboratory for Marine Science and Technology Ocean University of China Qingdao Shandong China
| |
Collapse
|
8
|
Hernández Becerra E, Quinchia J, Castro C, Orozco J. Light-Triggered Polymersome-Based Anticancer Therapeutics Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:836. [PMID: 35269324 PMCID: PMC8912464 DOI: 10.3390/nano12050836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 01/25/2023]
Abstract
Polymersomes are biomimetic cell membrane-like model structures that are self-assembled stepwise from amphiphilic copolymers. These polymeric (nano)carriers have gained the scientific community's attention due to their biocompatibility, versatility, and higher stability than liposomes. Their tunable properties, such as composition, size, shape, and surface functional groups, extend encapsulation possibilities to either hydrophilic or hydrophobic cargoes (or both) and their site-specific delivery. Besides, polymersomes can disassemble in response to different stimuli, including light, for controlling the "on-demand" release of cargo that may also respond to light as photosensitizers and plasmonic nanostructures. Thus, polymersomes can be spatiotemporally stimulated by light of a wide wavelength range, whose exogenous response may activate light-stimulable moieties, enhance the drug efficacy, decrease side effects, and, thus, be broadly employed in photoinduced therapy. This review describes current light-responsive polymersomes evaluated for anticancer therapy. It includes light-activable moieties' features and polymersomes' composition and release behavior, focusing on recent advances and applications in cancer therapy, current trends, and photosensitive polymersomes' perspectives.
Collapse
Affiliation(s)
- Elisa Hernández Becerra
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 No. 52-20, Medellín 050010, Colombia; (E.H.B.); (J.Q.)
| | - Jennifer Quinchia
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 No. 52-20, Medellín 050010, Colombia; (E.H.B.); (J.Q.)
| | - Cristina Castro
- Engineering School, Pontificia Bolivariana University, Bloque 11, Cq. 1 No. 70-01, Medellín 050004, Colombia;
| | - Jahir Orozco
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 No. 52-20, Medellín 050010, Colombia; (E.H.B.); (J.Q.)
| |
Collapse
|
9
|
Tan J, Deng Z, Song C, Xu J, Zhang Y, Yu Y, Hu J, Liu S. Coordinating External and Built-In Triggers for Tunable Degradation of Polymeric Nanoparticles via Cycle Amplification. J Am Chem Soc 2021; 143:13738-13748. [PMID: 34411484 DOI: 10.1021/jacs.1c05617] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The selective activation of nanovectors in pathological tissues is of crucial importance to achieve optimized therapeutic outcomes. However, conventional stimuli-responsive nanovectors lack sufficient sensitivity because of the slight difference between pathological and normal tissues. To this end, the development of nanovectors capable of responding to weak pathological stimuli is of increasing interest. Herein, we report the fabrication of amphiphilic polyurethane nanoparticles containing both external and built-in triggers. The activation of external triggers leads to the liberation of highly reactive primary amines, which subsequently activates the built-in triggers with the release of more primary amines in a positive feedback manner, thereby triggering the degradation of micellar nanoparticles in a cycle amplification model. The generality and versatility of the cycle amplification concept have been successfully verified using three different triggers including reductive milieu, light irradiation, and esterase. We demonstrate that these stimuli-responsive nanoparticles show self-propagating degradation performance even in the presence of trace amounts of external stimuli. Moreover, we confirm that the esterase-responsive nanoparticles can discriminate cancer cells from normal ones by amplifying the esterase stimulus that is overexpressed in cancer cells, thereby enabling the selective release of encapsulated payloads and killing cancer cells. This work presents a robust strategy to fabricate stimuli-responsive nanocarriers with highly sensitive property toward external stimuli, showing promising applications in cancer therapy with minimized side effects.
Collapse
Affiliation(s)
- Jiajia Tan
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Zhengyu Deng
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Chengzhou Song
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Jie Xu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Yuben Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Yong Yu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Jinming Hu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Shiyong Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| |
Collapse
|
10
|
Gao Y, Zhang L, Jia R, Huang Z, Xie Y, Xuan S, Zhou N, Zhang Z, Zhu X. 2,5-Dimethylfuran/Acrylonitrile as Latent Monomer for Sequence-Controlled Copolymer and Sequence-Dependent Thermo-Responsivity. Macromol Rapid Commun 2021; 42:e2000724. [PMID: 33496041 DOI: 10.1002/marc.202000724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/31/2020] [Indexed: 11/10/2022]
Abstract
Sequence control has attracted increasing attention for its ability of regulating polymer property and performance. Herein, the sequence-controlled polymer containing acrylonitrile (AN) is achieved by using 2,5-dimethylfuran/acrylonitrile adduct as a latent monomer. The temperature-dependent retro Diels-Alder reaction is engaged in controlling the release of AN during RAFT polymerization, that is, regulating the instant AN concentration via a non-invasive and in situ manner. Such control over the instant AN concentration and particularly the molar ratio of comonomer pair leads to the simultaneous change of monomer units in "living" polymeric chain, thus resulting in the sequence-controlled polymeric structures. By delicately manipulating the polymerization temperature, diverse sequence-on-demand structures of AN-containing copolymers, such as poly(AN/methyl methacrylate), poly(AN/styrene), poly(AN/butyl acrylate), poly(AN/N,N-dimethylacrylamide), and poly(AN/N-isopropylacrylamide) are created. Meanwhile, this study presents an initial attempt in tuning the thermal responsivity of poly(AN/N-isopropylacrylamide), which is closely correlated to the sequence of polymer structure. More importantly, the polymer with averagely distributed AN units results in the higher thermal sensitivity. Therefore, the synthetic strategy proposed in this work offers a promising platform for accessing the sequence-controlled copolymers containing AN structures, thus expanding the investigation on the relationship between the polymer structures and correlated properties.
Collapse
Affiliation(s)
- Yang Gao
- State and Local Joint Engineering Laboratory for Novel Functional, Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Liuqiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional, Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Rui Jia
- State and Local Joint Engineering Laboratory for Novel Functional, Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhihao Huang
- State and Local Joint Engineering Laboratory for Novel Functional, Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yujie Xie
- State and Local Joint Engineering Laboratory for Novel Functional, Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Sunting Xuan
- State and Local Joint Engineering Laboratory for Novel Functional, Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Nianchen Zhou
- State and Local Joint Engineering Laboratory for Novel Functional, Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional, Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.,State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Xiulin Zhu
- State and Local Joint Engineering Laboratory for Novel Functional, Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.,Global Institute of Software Technology, Suzhou National Hi-Tech District, Suzhou, 215163, China
| |
Collapse
|
11
|
Ku KH. Responsive Nanostructured Polymer Particles. Polymers (Basel) 2021; 13:273. [PMID: 33467649 PMCID: PMC7829942 DOI: 10.3390/polym13020273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 11/16/2022] Open
Abstract
Responsive polymer particles with switchable properties are of great importance for designing smart materials in various applications. Recently, the self-assembly of block copolymers (BCPs) and polymer blends within evaporative emulsions has led to advances in the shape-controlled synthesis of polymer particles. Despite extensive recent progress on BCP particles, the responsive shape tuning of BCP particles and their applications have received little attention. This review provides a brief overview of recent approaches to developing non-spherical polymer particles from soft evaporative emulsions based on the physical principles affecting both particle shape and inner structure. Special attention is paid to the stimuli-responsive, shape-changing nanostructured polymer particles, i.e., design of polymers and surfactant pairs, detailed experimental results, and their applications, including the state-of-the-art progress in this field. Finally, the perspectives on current challenges and future directions in this research field are presented, including the development of surfactants with higher reversibility to multiple stimuli and polymers with unique structural functionality, and diversification of polymer architectures.
Collapse
Affiliation(s)
- Kang Hee Ku
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
12
|
|
13
|
Tajmoradi Z, Roghani-Mamaqani H, Salami-Kalajahi M. Stimuli-transition of hydrophobicity/hydrophilicity in o-nitrobenzyl ester-containing multi-responsive copolymers: Application in patterning and droplet stabilization in heterogeneous media. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122859] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
14
|
Regulating vesicle bilayer permeability and selectivity via stimuli-triggered polymersome-to-PICsome transition. Nat Commun 2020; 11:1524. [PMID: 32251282 PMCID: PMC7090076 DOI: 10.1038/s41467-020-15304-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 02/28/2020] [Indexed: 12/26/2022] Open
Abstract
Compared to liposomes, polymersomes of block copolymers (BCPs) possess enhanced stability, along with compromised bilayer permeability. Though polyion complex vesicles (PICsomes) from oppositely charged block polyelectrolytes possess semipermeable bilayers, they are unstable towards physiologically relevant ionic strength and temperature; moreover, permselectivity tuning of PICsomes has remained a challenge. Starting from a single component diblock or triblock precursor, we solve this dilemma by stimuli-triggered chemical reactions within pre-organized BCP vesicles, actuating in situ polymersome-to-PICsome transition and achieving molecular size-selective cargo release at tunable rates. UV light and reductive milieu were utilized to trigger carboxyl decaging and generate ion pairs within hydrophobic polymersome bilayers containing tertiary amines. Contrary to conventional PICsomes, in situ generated ones are highly stable towards extreme pH range (pH 2-12), ionic strength (~3 M NaCl), and elevated temperature (70 °C) due to multivalent ion-pair interactions at high local concentration and cooperative hydrogen bonding interactions of pre-organized carbamate linkages.
Collapse
|
15
|
Yao C, Li Y, Wang Z, Song C, Hu X, Liu S. Cytosolic NQO1 Enzyme-Activated Near-Infrared Fluorescence Imaging and Photodynamic Therapy with Polymeric Vesicles. ACS NANO 2020; 14:1919-1935. [PMID: 31935063 DOI: 10.1021/acsnano.9b08285] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The utilization of enzymes as a triggering module could endow responsive polymeric nanostructures with selectivity in a site-specific manner. On the basis of the fact that endogenous NAD(P)H:quinone oxidoreductase isozyme 1 (NQO1) is overexpressed in many types of tumors, we report on the fabrication of photosensitizer-conjugated polymeric vesicles, exhibiting synergistic NQO1-triggered turn-on of both near-infrared (NIR) fluorescence emission and a photodynamic therapy (PDT) module. For vesicles self-assembled from amphiphilic block copolymers containing quinone trimethyl lock-capped self-immolative side linkages and quinone-bridged photosensitizers (coumarin and Nile blue) in the hydrophobic block, both fluorescence emission and PDT potency are initially in the "off" state due to "double quenching" effects, that is, dye-aggregation-caused quenching and quinone-rendered PET (photoinduced electron transfer) quenching. After internalization into NQO1-positive vesicles, the cytosolic NQO1 enzyme triggers self-immolative cleavage of quinone linkages and fluorogenic release of conjugated photosensitizers, leading to NIR fluorescence emission turn-on and activated PDT. This process is accompanied by the transformation of vesicles into cross-linked micelles with hydrophilic cores and smaller sizes and triggered dual drug release, which could be directly monitored by enhanced magnetic resonance (MR) imaging for vesicles conjugated with a DOTA(Gd) complex in the hydrophobic bilayer. We further demonstrate that the above strategy could be successfully applied for activated NIR fluorescence imaging and tissue-specific PDT under both cellular and in vivo conditions.
Collapse
Affiliation(s)
- Chenzhi Yao
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at the Microscale , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Yamin Li
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at the Microscale , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Zhixiong Wang
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics , South China Normal University , Guangzhou 510631 , China
| | - Chengzhou Song
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at the Microscale , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Xianglong Hu
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics , South China Normal University , Guangzhou 510631 , China
| | - Shiyong Liu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at the Microscale , University of Science and Technology of China , Hefei , Anhui 230026 , China
| |
Collapse
|
16
|
Hörenz C, Bertula K, Tiainen T, Hietala S, Hynninen V, Ikkala O. UV-Triggered On-Demand Temperature-Responsive Reversible and Irreversible Gelation of Cellulose Nanocrystals. Biomacromolecules 2020; 21:830-838. [PMID: 31940433 PMCID: PMC7735667 DOI: 10.1021/acs.biomac.9b01519] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/15/2020] [Indexed: 11/29/2022]
Abstract
We show ionically cross-linked, temperature-responsive reversible or irreversible hydrogels of anionic cellulose nanocrystals (CNCs) and methacrylate terpolymers by mixing them homogeneously in the initially charge-neutral state of the polymer, which was subsequently switched to be cationic by cleaving side groups by UV irradiation. The polymer is a random terpolymer poly(di(ethylene glycol) methyl ether methacrylate)-rnd-poly(oligo(ethylene glycol) methyl ether methacrylate)-rnd-poly(2-((2-nitrobenzyl)oxycarbonyl)aminoethyl methacrylate), that is, PDEGMA-rnd-POEGMA-rnd-PNBOCAEMA. The PDEGMA and POEGMA repeating units lead to a lower critical solution temperature (LCST) behavior. Initially, homogeneous aqueous mixtures are obtained with CNCs, and no gelation is observed even upon heating to 60 °C. However, upon UV irradiation, the NBOCAEMAs are transformed to cationic 2-aminoethyl methacrylate (AEMA) groups, as 2-nitrobenzaldehyde moieties are cleaved. The resulting mixtures of anionic CNC and cationic PDEGMA-rnd-POEGMA-rnd-PAEMA show gelation for sufficiently high polymer fractions upon heating to 60 °C due to the interplay of ionic interactions and LCST. For short heating times, the gelation is thermoreversible, whereas for long enough heating times, irreversible gels can be obtained, indicating importance of kinetic aspects. The ionic nature of the cross-linking is directly shown by adding NaCl, which leads to gel melting. In conclusion, the optical triggering of the polymer ionic interactions in combination with its LCST phase behavior allows a new way for ionic nanocellulose hydrogel assemblies.
Collapse
Affiliation(s)
- Christoph Hörenz
- Department
of Applied Physics, Aalto University School
of Science, P. O. Box 15100, Espoo FI-00076, Finland
| | - Kia Bertula
- Department
of Applied Physics, Aalto University School
of Science, P. O. Box 15100, Espoo FI-00076, Finland
| | - Tony Tiainen
- Department
of Chemistry, University of Helsinki, P. O. Box 55, Helsinki FI-00014 HU, Finland
| | - Sami Hietala
- Department
of Chemistry, University of Helsinki, P. O. Box 55, Helsinki FI-00014 HU, Finland
| | - Ville Hynninen
- Department
of Applied Physics, Aalto University School
of Science, P. O. Box 15100, Espoo FI-00076, Finland
| | - Olli Ikkala
- Department
of Applied Physics, Aalto University School
of Science, P. O. Box 15100, Espoo FI-00076, Finland
| |
Collapse
|
17
|
Li SS, Lv XH, Sun XL, Wan WM, Bao H. Well-controlled polymerization of tri-vinyl dynamic covalent boroxine monomer: one dynamic covalent boroxine moiety toward a tunable penta-responsive polymer. Polym Chem 2020. [DOI: 10.1039/d0py00401d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Attributed to dynamic characteristics of dynamic covalent boroxine, well-controlled polymerization of tri-vinyl monomer and molecular design of penta-responsive polymer with only one functional moiety are achieved.
Collapse
Affiliation(s)
- Shun-Shun Li
- State Key Laboratory of Structural Chemistry
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology
- Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
| | - Xin-Hu Lv
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China)
- Qingdao 266580
- P. R. of China
| | - Xiao-Li Sun
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China)
- Qingdao 266580
- P. R. of China
| | - Wen-Ming Wan
- State Key Laboratory of Structural Chemistry
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology
- Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
| | - Hongli Bao
- State Key Laboratory of Structural Chemistry
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology
- Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
| |
Collapse
|
18
|
Fu X, Li Z, Lin M, Sun J, Li Z. Biomimetic polypeptoids with para-oligo(ethylene glycol) benzyl side-chains synthesized from α-Amino acids. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.07.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Lee J, Ku KH, Kim J, Lee YJ, Jang SG, Kim BJ. Light-Responsive, Shape-Switchable Block Copolymer Particles. J Am Chem Soc 2019; 141:15348-15355. [DOI: 10.1021/jacs.9b07755] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Junhyuk Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Kang Hee Ku
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Department of Chemistry, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, United States
| | - Jinwoo Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Young Jun Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Se Gyu Jang
- Functional Composite Materials Research Center, Korea Institute of Science and Technology (KIST), Jeonbuk 55324, Republic of Korea
| | - Bumjoon J. Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
20
|
Lim CJ, Lim CK, Ee GCL, Basri M. Formation of liquid crystal/gel emulsions to nano-emulsions constructed by polyalkoxylated fatty alcohol (PAFA)-based mixed surfactant systems. J DISPER SCI TECHNOL 2019. [DOI: 10.1080/01932691.2018.1491859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Chaw Jiang Lim
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia , Serdang , Selangor , Malaysia
| | - Chan Kiang Lim
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman , Kampar , Perak , Malaysia
| | - Gwendoline Cheng Lian Ee
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia , Serdang , Selangor , Malaysia
| | - Mahiran Basri
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia , Serdang , Selangor , Malaysia
| |
Collapse
|
21
|
Lin S, Huang X, Guo R, Chen S, Lan J, Theato P. UV‐triggered CO
2
‐responsive behavior of nanofibers and their controlled drug release properties. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/pola.29422] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shaojian Lin
- College of Light Industry, Textile and Food EngineeringSichuan University No. 24 South Section 1, Yihuan Road, 610065 Chengdu China
| | - Xia Huang
- Soft Matter Synthesis Laboratory, Institute for Biological Interfaces IIIKarlsruhe Institute of Technology (KIT) Herrmann‐von‐Helmholtz‐Platz 1, D‐76344 Eggenstein‐Leopoldshafen Germany
- Institute for Chemical Technology and Polymer ChemistryKarlsruhe Institute of Technology (KIT) Engesser Street 18, D‐76131 Karlsruhe Germany
| | - Ronghui Guo
- College of Light Industry, Textile and Food EngineeringSichuan University No. 24 South Section 1, Yihuan Road, 610065 Chengdu China
| | - Sheng Chen
- College of Light Industry, Textile and Food EngineeringSichuan University No. 24 South Section 1, Yihuan Road, 610065 Chengdu China
| | - Jianwu Lan
- College of Light Industry, Textile and Food EngineeringSichuan University No. 24 South Section 1, Yihuan Road, 610065 Chengdu China
| | - Patrick Theato
- Soft Matter Synthesis Laboratory, Institute for Biological Interfaces IIIKarlsruhe Institute of Technology (KIT) Herrmann‐von‐Helmholtz‐Platz 1, D‐76344 Eggenstein‐Leopoldshafen Germany
- Institute for Chemical Technology and Polymer ChemistryKarlsruhe Institute of Technology (KIT) Engesser Street 18, D‐76131 Karlsruhe Germany
| |
Collapse
|
22
|
Zhang Y, Gal N, Itel F, Westensee IN, Brodszkij E, Mayer D, Stenger S, Castellote-Borrell M, Boesen T, Tabaei SR, Höök F, Städler B. Hybrid vesicles as intracellular reactive oxygen species and nitric oxide generators. NANOSCALE 2019; 11:11530-11541. [PMID: 31150038 DOI: 10.1039/c9nr02584g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Artificial organelles are envisioned as nanosized assemblies with intracellular biocatalytic activity to provide the host cells with non-native or missing/lost function. Hybrid vesicles loaded with glucose oxidase (NRGOx) or β-galactosidase (NRβ-Gal) and equipped with lysosomal escape ability are assembled using phospholipids and the block copolymer poly(cholesteryl methacrylate)-block-poly(2-(dimethylamino)ethyl methacrylate). The co-localization of the building blocks and the catalytic activity of NRGOx and NRβ-Gal are illustrated. The intracellular activity of the nanoreactors in RAW 264.7 macrophages is confirmed by an enhanced reduction in viability for cells pre-incubated with NRGOx in the presence of glucose due to the generation of cytotoxic hydrogen peroxide compared to the controls. In addition, RAW 264.7 macrophages and primary human macrophages equipped with NRβ-Gal are able to intracellularly convert β-Gal-NONOate into nitric oxide. The successful use of these hybrid vesicles to equip host macrophages with additional catalytic activity diversifies the available toolbox of nanocarriers with envisioned application in cell mimicry.
Collapse
Affiliation(s)
- Yan Zhang
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ji S, Xu L, Fu X, Sun J, Li Z. Light- and Metal Ion-Induced Self-Assembly and Reassembly Based on Block Copolymers Containing a Photoresponsive Polypeptide Segment. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00475] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Sifan Ji
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department; School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Lili Xu
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department; School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiaohui Fu
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department; School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jing Sun
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department; School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhibo Li
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department; School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
24
|
Ren H, Qiu XP, Shi Y, Yang P, Winnik FM. pH-Dependent Morphology and Photoresponse of Azopyridine-Terminated Poly( N-isopropylacrylamide) Nanoparticles in Water. Macromolecules 2019; 52:2939-2948. [PMID: 31496545 PMCID: PMC6727601 DOI: 10.1021/acs.macromol.9b00193] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/17/2019] [Indexed: 01/01/2023]
Abstract
![]()
A series of azopyridine-terminated
poly(N-isopropylacrylamide)s
(PNIPAM) (C12-PN-AzPy) (∼5000 < Mw < 20 000 g mol–1, polydispersity index
1.25 or less) were prepared by reversible addition–fragmentation
chain-transfer polymerization of NIPAM in the presence of a chain-transfer
agent that contains an AzPy group and an n-dodecyl
chain. In cold water, the polymers form nanoparticles (5.9 nm < Rh < 10.9 nm) that were characterized by light
scattering (LS), 1H NMR diffusion experiments, and high-resolution
transmission electron microscopy. We monitored the pH-dependent photoisomerization
of C12-PN-AzPy nanoparticles by steady-state and time-resolved UV–vis
absorption spectroscopy. Azopyridine is known to undergo a very fast
cis-to-trans thermal relaxation when the azopyridine nitrogen is quaternized
or bound to a hydrogen bond donor. The cis-to-trans thermal relaxation
of the AzPy chromophore in an acidic nanoparticle suspension is very
fast with a half-life τ = 2.3 ms at pH 3.0. It slows down slightly
for nanoparticles in neutral water (τ = 0.96 s, pH 7.0), and
it is very slow for AzPy-PNIPAM particles in alkaline medium (τ
> 3600 s, pH 10). The pH-dependent dynamics of the cis-to-trans
dark
relaxation, supported by Fourier transform infrared spectroscopy, 1H NMR spectroscopy, and LS analysis, suggest that in acidic
medium, the nanoparticles consist of a core of assembled C12 chains
surrounded by a shell of hydrated PNIPAM chains with the AzPy+ end groups preferentially located near the particle/water
interface. In neutral medium, the shell surrounding the core contains
AzPy groups H-bonded to the amide hydrogen of the PNIPAM chain repeat
units. At pH 10.0, the amide hydrogen binds preferentially to the
hydroxide anions. The AzPy groups reside preferentially in the vicinity
of the C12 core of the nanoparticles. The morphology of the nanoparticles
results from the competition between the segregation of the hydrophobic
and hydrophilic components and weak attractive interactions, such
as H-bonds between the AzPy groups and the amide hydrogen of the PNIPAM
repeat units.
Collapse
Affiliation(s)
- Hao Ren
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Xing-Ping Qiu
- Department of Chemistry, University of Montreal, CP 6128 Succursale Centre Ville, Montreal, Quebec H3C 3J7, Canada
| | - Yan Shi
- School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Peng Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Françoise M Winnik
- Laboratory of Polymer Chemistry, Department of Chemistry, University of Helsinki, PB 55, Helsinki FI00140 Finland.,International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| |
Collapse
|
25
|
Li C, Rasheed T, Tian H, Huang P, Mai Y, Huang W, Zhou Y. Solution Self-Assembly of an Alternating Copolymer toward Hollow Carbon Nanospheres with Uniform Micropores. ACS Macro Lett 2019; 8:331-336. [PMID: 35650838 DOI: 10.1021/acsmacrolett.9b00009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Controllable preparation of porous hollow carbon spheres (HCSs) has attracted considerable attention due to their potential applications, e.g., in energy conversion and storage. We report for the first time the synthesis of narrowly size-distributed HCSs with uniform micropores in the wall, through a simple template-free approach, which employs the solution self-assembly of an alternating copolymer (poly(9,9'-bis(4-glycidyloxyphenyl)fluorene-alt-2,3-dihydroxy-butylene dithioether) (P(BGF-a-DHBDT))). This alternating copolymer first self-assembled into previously undocumented hollow polymeric spheres (HPSs) in an N,N-dimethylformamide (DMF)/H2O solvent mixture. After the cross-linking of the BGF segments in the spheres, the stabilized HPSs (CL-HPSs) were carbonized at 800 °C under N2 atmosphere, yielding porous HCSs with uniform micropores of very narrow size distribution (0.4-0.8 nm) in the wall, benefiting from the uniform DHBDT block length in the alternating copolymer. Through KOH activation, which made the internal pores fully interconnected, uniform micropores (0.5-1.0 nm) of a narrow size distribution were retained within the activated HCSs (A-HCSs), while their specific surface areas (SSAs) were much increased to 2580 m2 g-1. As a proof of concept, the A-HCSs were applied as electrode materials of supercapacitors. They exhibited superior electrochemical performance with a high specific capacitance (292 F g-1 at 0.2 A g-1), good rate capability, and outstanding cycling stability with no apparent capacitance loss after 10 000 cycles.
Collapse
Affiliation(s)
- Chuanlong Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Tahir Rasheed
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Hao Tian
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ping Huang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wei Huang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yongfeng Zhou
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
26
|
Khomein P, Dutta K, Gnanasekaran K, Gianneschi NC, Thayumanavan S. Spatiotemporal control over the host–guest characteristics of a stimulus-triggerable trifunctional polymer assembly. Polym Chem 2019. [DOI: 10.1039/c8py01788c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The positional effect of stimuli-responsive units in tri-component copolymer vesicles is studied to explore variations in the host–guest properties of the assembly.
Collapse
Affiliation(s)
| | - Kingshuk Dutta
- Department of Chemistry
- University of Massachusetts
- Amherst
- USA
| | | | | | - S. Thayumanavan
- Department of Chemistry
- University of Massachusetts
- Amherst
- USA
| |
Collapse
|
27
|
Tian J, Huang B, Xiao C, Vana P. Intelligent CO2- and photo-dual-responsive polymer vesicles with tunable wall thickness. Polym Chem 2019. [DOI: 10.1039/c8py01743c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CO2- and photo-dual-responsive polymer vesicles with tunable wall thickness were explored and used as a potential “smart” platform for drug release.
Collapse
Affiliation(s)
- Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Baoxuan Huang
- Shanghai Key Laboratory of Functional Materials Chemistry
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Chao Xiao
- Shanghai Key Laboratory of Functional Materials Chemistry
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Philipp Vana
- Institute of Physical Chemistry
- Georg-August-University Göttingen
- D-37077 Göttingen
- Germany
| |
Collapse
|
28
|
Abdollahi A, Roghani-Mamaqani H, Razavi B, Salami-Kalajahi M. The light-controlling of temperature-responsivity in stimuli-responsive polymers. Polym Chem 2019. [DOI: 10.1039/c9py00890j] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Light-controlling of phase separation in temperature-responsive polymer solutions by using light-responsive materials for reversible controlling physical and chemical properties of the media with an out-of-system stimulus with tunable intensity.
Collapse
Affiliation(s)
- Amin Abdollahi
- Faculty of Polymer Engineering
- Sahand University of Technology
- Tabriz
- Iran
| | - Hossein Roghani-Mamaqani
- Faculty of Polymer Engineering
- Sahand University of Technology
- Tabriz
- Iran
- Institute of Polymeric Materials
| | - Bahareh Razavi
- Faculty of Polymer Engineering
- Sahand University of Technology
- Tabriz
- Iran
| | - Mehdi Salami-Kalajahi
- Faculty of Polymer Engineering
- Sahand University of Technology
- Tabriz
- Iran
- Institute of Polymeric Materials
| |
Collapse
|
29
|
Wang X, Liu X, Wang L, Tang CY, Law WC, Zhang G, Liao Y, Liu C, Liu Z. Synthesis of Yolk–Shell Polymeric Nanocapsules Encapsulated with Monodispersed Upconversion Nanoparticle for Dual-Responsive Controlled Drug Release. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01770] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Xiaotao Wang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center for Green Light-weight Materials and Processing, School of Materials Science and Engineering, Hubei University of Technology, Wuhan, Hubei Province 430068, P. R. China
| | - Xiaoping Liu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center for Green Light-weight Materials and Processing, School of Materials Science and Engineering, Hubei University of Technology, Wuhan, Hubei Province 430068, P. R. China
| | - Li Wang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center for Green Light-weight Materials and Processing, School of Materials Science and Engineering, Hubei University of Technology, Wuhan, Hubei Province 430068, P. R. China
| | - Chak-Yin Tang
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, P. R. China
| | - Wing-Cheung Law
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, P. R. China
| | - Gaowen Zhang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center for Green Light-weight Materials and Processing, School of Materials Science and Engineering, Hubei University of Technology, Wuhan, Hubei Province 430068, P. R. China
| | - Yonggui Liao
- Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Chuang Liu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center for Green Light-weight Materials and Processing, School of Materials Science and Engineering, Hubei University of Technology, Wuhan, Hubei Province 430068, P. R. China
| | - Zuifang Liu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center for Green Light-weight Materials and Processing, School of Materials Science and Engineering, Hubei University of Technology, Wuhan, Hubei Province 430068, P. R. China
| |
Collapse
|
30
|
Zhu K, Liu G, Zhang G, Hu J, Liu S. Engineering Cross-Linkable Plasmonic Vesicles for Synergistic Chemo-Photothermal Therapy Using Orthogonal Light Irradiation. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01653] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Kangning Zhu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Guhuan Liu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Guoying Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jinming Hu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shiyong Liu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
31
|
Blackman L, Varlas S, Arno MC, Houston ZH, Fletcher NL, Thurecht KJ, Hasan M, Gibson MI, O’Reilly RK. Confinement of Therapeutic Enzymes in Selectively Permeable Polymer Vesicles by Polymerization-Induced Self-Assembly (PISA) Reduces Antibody Binding and Proteolytic Susceptibility. ACS CENTRAL SCIENCE 2018; 4:718-723. [PMID: 29974067 PMCID: PMC6026775 DOI: 10.1021/acscentsci.8b00168] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Indexed: 05/17/2023]
Abstract
Covalent PEGylation of biologics has been widely employed to reduce immunogenicity, while improving stability and half-life in vivo. This approach requires covalent protein modification, creating a new entity. An alternative approach is stabilization by encapsulation into polymersomes; however this typically requires multiple steps, and the segregation requires the vesicles to be permeable to retain function. Herein, we demonstrate the one-pot synthesis of therapeutic enzyme-loaded vesicles with size-selective permeability using polymerization-induced self-assembly (PISA) enabling the encapsulated enzyme to function from within a confined domain. This strategy increased the proteolytic stability and reduced antibody recognition compared to the free protein or a PEGylated conjugate, thereby reducing potential dose frequency and the risk of immune response. Finally, the efficacy of encapsulated l-asparaginase (clinically used for leukemia treatment) against a cancer line was demonstrated, and its biodistribution and circulation behavior in vivo was compared to the free enzyme, highlighting this methodology as an attractive alternative to the covalent PEGylation of enzymes.
Collapse
Affiliation(s)
- Lewis
D. Blackman
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL Coventry, United Kingdom
| | - Spyridon Varlas
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL Coventry, United Kingdom
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Maria C. Arno
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL Coventry, United Kingdom
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Zachary H. Houston
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
- Centre
for Advanced Imaging, The University of
Queensland, St. Lucia, Queensland 4072, Australia
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Nicholas L. Fletcher
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
- Centre
for Advanced Imaging, The University of
Queensland, St. Lucia, Queensland 4072, Australia
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Kristofer J. Thurecht
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
- Centre
for Advanced Imaging, The University of
Queensland, St. Lucia, Queensland 4072, Australia
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Muhammad Hasan
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL Coventry, United Kingdom
- Warwick Medical
School, University of Warwick, Gibbet Hill Road, CV4 7AL Coventry, United Kingdom
| | - Matthew I. Gibson
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL Coventry, United Kingdom
- Warwick Medical
School, University of Warwick, Gibbet Hill Road, CV4 7AL Coventry, United Kingdom
| | - Rachel K. O’Reilly
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL Coventry, United Kingdom
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
32
|
Wu M, Lin X, Tan X, Li J, Wei Z, Zhang D, Zheng Y, Zheng AX, Zhao B, Zeng Y, Liu X, Liu J. Photoresponsive Nanovehicle for Two Independent Wavelength Light-Triggered Sequential Release of P-gp shRNA and Doxorubicin To Optimize and Enhance Synergistic Therapy of Multidrug-Resistant Cancer. ACS APPLIED MATERIALS & INTERFACES 2018; 10:19416-19427. [PMID: 29771490 DOI: 10.1021/acsami.8b03823] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Prerelease of RNA molecules than chemotherapeutic drugs with a sufficient interval is a vital prerequisite for RNA/drug co-delivery strategy to overcome multidrug resistance (MDR) of cancer cells, but how to precisely control their release at different time points is still a grand challenge up to now. This study aims to on-demand remotely manipulate RNA and drug release in real time through single delivery system to sequentially play their respective roles for optimizing and enhancing their synergistic antitumor effects. To this end, a photoresponsive mesoporous silica nanoparticle (PMSN) is fabricated as a co-delivery vehicle of P-glycoprotein (P-gp) short-hairpin RNA (shRNA) and photocaged prodrug of doxorubicin (DOX), by which the orthogonal and sequential release of shRNA and DOX can be achieved using an external light. In our design, the cationic poly[2-( N, N-dimethylaminoethyl)methacrylate] is introduced onto the PMSN surface through a light-sensitive coumarin ester derivative linker to adsorb P-gp shRNA, whereas the photocleavable o-nitrobenzyl ester derivative-caged DOX is loaded into the inner pores of the PMSN. The PMSN is found to be effectively internalized by MDR cancer cells, and the release of the shRNA and DOX is demonstrated to be independently regulated by 405 and 365 nm light irradiations due to selectively cleaved coumarin and o-nitrobenzyl ester, resulting in enhanced drug retention, and finally bring out optimized and significantly improved chemotherapeutic effects both in vitro and in vivo for MDR cancer treatment, which might hold extensive application prospects in MDR cancer treatment in future.
Collapse
Affiliation(s)
- Ming Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province , Mengchao Hepatobiliary Hospital of Fujian Medical University , Fuzhou 350025 , P. R. China
- The Liver Center of Fujian Province , Fujian Medical University , Fuzhou 350025 , P. R. China
| | - Xinyi Lin
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province , Mengchao Hepatobiliary Hospital of Fujian Medical University , Fuzhou 350025 , P. R. China
- The Liver Center of Fujian Province , Fujian Medical University , Fuzhou 350025 , P. R. China
| | - Xionghong Tan
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province , Mengchao Hepatobiliary Hospital of Fujian Medical University , Fuzhou 350025 , P. R. China
- The Liver Center of Fujian Province , Fujian Medical University , Fuzhou 350025 , P. R. China
- School of Life Sciences , Fujian Agriculture and Forestry University , Fuzhou 350002 , P. R. China
| | - Jiong Li
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province , Mengchao Hepatobiliary Hospital of Fujian Medical University , Fuzhou 350025 , P. R. China
- The Liver Center of Fujian Province , Fujian Medical University , Fuzhou 350025 , P. R. China
- School of Life Sciences , Fujian Agriculture and Forestry University , Fuzhou 350002 , P. R. China
| | - Zuwu Wei
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province , Mengchao Hepatobiliary Hospital of Fujian Medical University , Fuzhou 350025 , P. R. China
- The Liver Center of Fujian Province , Fujian Medical University , Fuzhou 350025 , P. R. China
| | - Da Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province , Mengchao Hepatobiliary Hospital of Fujian Medical University , Fuzhou 350025 , P. R. China
- The Liver Center of Fujian Province , Fujian Medical University , Fuzhou 350025 , P. R. China
| | - Youshi Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province , Mengchao Hepatobiliary Hospital of Fujian Medical University , Fuzhou 350025 , P. R. China
- The Liver Center of Fujian Province , Fujian Medical University , Fuzhou 350025 , P. R. China
| | - Ai-Xian Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province , Mengchao Hepatobiliary Hospital of Fujian Medical University , Fuzhou 350025 , P. R. China
- The Liver Center of Fujian Province , Fujian Medical University , Fuzhou 350025 , P. R. China
| | - Bixing Zhao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province , Mengchao Hepatobiliary Hospital of Fujian Medical University , Fuzhou 350025 , P. R. China
- The Liver Center of Fujian Province , Fujian Medical University , Fuzhou 350025 , P. R. China
| | - Yongyi Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province , Mengchao Hepatobiliary Hospital of Fujian Medical University , Fuzhou 350025 , P. R. China
- The Liver Center of Fujian Province , Fujian Medical University , Fuzhou 350025 , P. R. China
- Liver Disease Center , The First Affiliated Hospital of Fujian Medical University , Fuzhou 350005 , P. R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province , Mengchao Hepatobiliary Hospital of Fujian Medical University , Fuzhou 350025 , P. R. China
- The Liver Center of Fujian Province , Fujian Medical University , Fuzhou 350025 , P. R. China
| | - Jingfeng Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province , Mengchao Hepatobiliary Hospital of Fujian Medical University , Fuzhou 350025 , P. R. China
- The Liver Center of Fujian Province , Fujian Medical University , Fuzhou 350025 , P. R. China
- Liver Disease Center , The First Affiliated Hospital of Fujian Medical University , Fuzhou 350005 , P. R. China
| |
Collapse
|
33
|
Mukherjee I, Sinha SK, Datta S, De P. Recyclable Thermoresponsive Polymer−β-Glucosidase Conjugate with Intact Hydrolysis Activity. Biomacromolecules 2018; 19:2286-2293. [DOI: 10.1021/acs.biomac.8b00258] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
Sun Z, Liu G, Hu J, Liu S. Photo- and Reduction-Responsive Polymersomes for Programmed Release of Small and Macromolecular Payloads. Biomacromolecules 2018; 19:2071-2081. [DOI: 10.1021/acs.biomac.8b00253] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Ziqiang Sun
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Guhuan Liu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jinming Hu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shiyong Liu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
35
|
Godoy-Gallardo M, York-Duran MJ, Hosta-Rigau L. Recent Progress in Micro/Nanoreactors toward the Creation of Artificial Organelles. Adv Healthc Mater 2018; 7. [PMID: 29205928 DOI: 10.1002/adhm.201700917] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/11/2017] [Indexed: 12/25/2022]
Abstract
Artificial organelles created from a bottom up approach are a new type of engineered materials, which are not designed to be living but, instead, to mimic some specific functions inside cells. By doing so, artificial organelles are expected to become a powerful tool in biomedicine. They can act as nanoreactors to convert a prodrug into a drug inside the cells or as carriers encapsulating therapeutic enzymes to replace malfunctioning organelles in pathological conditions. For the design of artificial organelles, several requirements need to be fulfilled: a compartmentalized structure that can encapsulate the synthetic machinery to perform an enzymatic function, as well as a means to allow for communication between the interior of the artificial organelle and the external environment, so that substrates and products can diffuse in and out the carrier allowing for continuous enzymatic reactions. The most recent and exciting advances in architectures that fulfill the aforementioned requirements are featured in this review. Artificial organelles are classified depending on their constituting materials, being lipid and polymer-based systems the most prominent ones. Finally, special emphasis will be put on the intracellular response of these newly emerging systems.
Collapse
Affiliation(s)
- Maria Godoy-Gallardo
- Department of Micro- and Nanotechnology; Center for Nanomedicine and Theranostics; DTU; Nanotech; Technical University of Denmark; Building 423 2800 Lyngby Denmark
| | - Maria J. York-Duran
- Department of Micro- and Nanotechnology; Center for Nanomedicine and Theranostics; DTU; Nanotech; Technical University of Denmark; Building 423 2800 Lyngby Denmark
| | - Leticia Hosta-Rigau
- Department of Micro- and Nanotechnology; Center for Nanomedicine and Theranostics; DTU; Nanotech; Technical University of Denmark; Building 423 2800 Lyngby Denmark
| |
Collapse
|
36
|
Li Y, Ding J, Zhu J, Tian H, Chen X. Photothermal Effect-Triggered Drug Release from Hydrogen Bonding-Enhanced Polymeric Micelles. Biomacromolecules 2018; 19:1950-1958. [PMID: 29381337 DOI: 10.1021/acs.biomac.7b01702] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Yuce Li
- State Key Laboratory of Materials Processing and Mold Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jintao Zhu
- State Key Laboratory of Materials Processing and Mold Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Huayu Tian
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
37
|
Lü J, Liu B, Shi B, Lü C. Coordination-induced assemblies of quantum dots in amphiphilic thermo-responsive block copolymer micelles: morphologies, optical properties and applications. Polym Chem 2018. [DOI: 10.1039/c8py00510a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Thermo-responsive dual-emitting QD/BCP assemblies with QDs located in the core (CDMs), shell (SDMs) and the interface (IDMs) between the core and the shell of micelles were constructed via coordination-driven assemblies for the selective detection of TNP and Hg2+ ions.
Collapse
Affiliation(s)
- Jianhua Lü
- Institute of Chemistry
- Northeast Normal University
- Changchun 130024
- P. R. China
| | - Bingxin Liu
- School of Mechanical Engineering
- Qinghai University
- Xining 810016
- P. R. China
| | - Bingfeng Shi
- Institute of Chemistry
- Northeast Normal University
- Changchun 130024
- P. R. China
| | - Changli Lü
- Institute of Chemistry
- Northeast Normal University
- Changchun 130024
- P. R. China
| |
Collapse
|
38
|
Bai Y, Xie FY, Tian W. Controlled Self-assembly of Thermo-responsive Amphiphilic H-shaped Polymer for Adjustable Drug Release. CHINESE JOURNAL OF POLYMER SCIENCE 2017. [DOI: 10.1007/s10118-018-2086-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
39
|
Synthesis and characterisation of robust emulsion-templated silica microcapsules. J Colloid Interface Sci 2017; 505:664-672. [PMID: 28654882 DOI: 10.1016/j.jcis.2017.06.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/21/2017] [Accepted: 06/07/2017] [Indexed: 11/20/2022]
Abstract
Robust silica microcapsules were synthesised using an emulsion template via a seeded growth strategy. Multiple additions of the silica precursor tetraethyl orthosilicate (TEOS) were observed to result in a number of physical and property changes of the capsule shells as compared to a single coating. Scanning electron microscopy indicated a morphological transition from a smooth to a roughened surface. Improved cargo retention and consolidation of the pore structure of the silica shells were observed using dye release experiments and nitrogen porosimetry respectively. In comparison to a typical hollow silica shell synthesis procedure, this one-pot loading and synthesis allows the simple production of robust capsules that are capable of sustained release, using mild conditions and reagents.
Collapse
|
40
|
Blackman L, Varlas S, Arno MC, Fayter A, Gibson MI, O’Reilly RK. Permeable Protein-Loaded Polymersome Cascade Nanoreactors by Polymerization-Induced Self-Assembly. ACS Macro Lett 2017; 6:1263-1267. [PMID: 29226025 PMCID: PMC5718297 DOI: 10.1021/acsmacrolett.7b00725] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 09/29/2017] [Indexed: 12/22/2022]
Abstract
Enzyme loading of polymersomes requires permeability to enable them to interact with the external environment, typically requiring addition of complex functionality to enable porosity. Herein, we describe a synthetic route towards intrinsically permeable polymersomes loaded with functional proteins using initiator-free visible light-mediated polymerization-induced self-assembly (photo-PISA) under mild, aqueous conditions using a commercial monomer. Compartmentalization and retention of protein functionality was demonstrated using green fluorescent protein as a macro-molecular chromophore. Catalytic enzyme-loaded vesicles using horseradish peroxidase and glucose oxidase were also prepared and the permeability of the membrane towards their small molecule substrates was revealed for the first time. Finally, the interaction of the compartmentalized enzymes between separate vesicles was validated by means of an enzymatic cascade reaction. These findings have a broad scope as the methodology could be applied for the encapsulation of a large range of macromolecules for advancements in the fields of nanotechnology, biomimicry and nanomedicine.
Collapse
Affiliation(s)
- Lewis
D. Blackman
- Department of Chemistry and Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
| | - Spyridon Varlas
- Department of Chemistry and Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
| | - Maria C. Arno
- Department of Chemistry and Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
| | - Alice Fayter
- Department of Chemistry and Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
| | - Matthew I. Gibson
- Department of Chemistry and Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
| | - Rachel K. O’Reilly
- Department of Chemistry and Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
41
|
Khoshnevisan K, Daneshpour M, Barkhi M, Gholami M, Samadian H, Maleki H. The promising potentials of capped gold nanoparticles for drug delivery systems. J Drug Target 2017; 26:525-532. [PMID: 28972797 DOI: 10.1080/1061186x.2017.1387790] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fabrication and characterisation of gold nanoparticles (GNPs) through reducing agents and different capped agents are one of their most attractive applications in biomedicine. GNPs are coated using various agents such as carbohydrate, amino acids, peptides and proteins. These capped gold nanoparticles (C-GNPs) are applied for wide different applications including drug delivery in the recent decade and potential treatment and diagnosis in drug delivery systems (DDS). Recent studies have shown that these novel compounds and conjugated-nanoparticles drugs play a key role for the promising cure of high-risk refractory diseases. In addition, it seems that these compounds have a capability for potential treatment of certain cancers. In this review, a well-defined description of C-GNPs and the application of these nanoparticles are discussed. Our study revealed that C-GNPs with anticancer drugs or new compounds could be potentially applied for biomedical usage especially in cancer therapy.
Collapse
Affiliation(s)
- Kamyar Khoshnevisan
- a Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute , Tehran University of Medical Sciences , Tehran , Iran.,b Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute , Tehran University of Medical Sciences , Tehran , Iran
| | - Maryam Daneshpour
- c Department of Biotechnology, School of Advanced Technologies in Medicine , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Mohammad Barkhi
- d University of Applied Science and Technology (UAST), Zar Center , Karaj , Iran
| | - Morteza Gholami
- b Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute , Tehran University of Medical Sciences , Tehran , Iran.,e Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute , Tehran University of Medical Sciences , Tehran , Iran
| | - Hadi Samadian
- f Department of Medical Nanotechnology, School of Advanced Technologies in Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Hassan Maleki
- f Department of Medical Nanotechnology, School of Advanced Technologies in Medicine , Tehran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
42
|
Grimm O, Wendler F, Schacher FH. Micellization of Photo-Responsive Block Copolymers. Polymers (Basel) 2017; 9:E396. [PMID: 30965699 PMCID: PMC6418654 DOI: 10.3390/polym9090396] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/10/2017] [Accepted: 08/22/2017] [Indexed: 11/16/2022] Open
Abstract
This review focuses on block copolymers featuring different photo-responsive building blocks and self-assembly of such materials in different selective solvents. We have subdivided the specific examples we selected: (1) according to the wavelength at which the irradiation has to be carried out to achieve photo-response; and (2) according to whether irradiation with light of a suitable wavelength leads to reversible or irreversible changes in material properties (e.g., solubility, charge, or polarity). Exemplarily, an irreversible change could be the photo-cleavage of a nitrobenzyl, pyrenyl or coumarinyl ester, whereas the photo-mediated transition between spiropyran and merocyanin form as well as the isomerization of azobenzenes would represent reversible response to light. The examples presented cover applications including drug delivery (controllable release rates), controlled aggregation/disaggregation, sensing, and the preparation of photochromic hybrid materials.
Collapse
Affiliation(s)
- Oliver Grimm
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Humboldtstraße 10, D-07743 Jena, Germany.
| | - Felix Wendler
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Humboldtstraße 10, D-07743 Jena, Germany.
| | - Felix H Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Humboldtstraße 10, D-07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, D-07743 Jena, Germany.
| |
Collapse
|
43
|
Mable C, Derry MJ, Thompson KL, Fielding LA, Mykhaylyk OO, Armes SP. Time-Resolved SAXS Studies of the Kinetics of Thermally Triggered Release of Encapsulated Silica Nanoparticles from Block Copolymer Vesicles. Macromolecules 2017; 50:4465-4473. [PMID: 28626247 PMCID: PMC5472368 DOI: 10.1021/acs.macromol.7b00475] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 05/17/2017] [Indexed: 02/07/2023]
Abstract
Silica-loaded poly(glycerol monomethacrylate)-poly(2-hydroxypropyl methacrylate) diblock copolymer vesicles are prepared in the form of concentrated aqueous dispersions via polymerization-induced self-assembly (PISA). As the concentration of silica nanoparticles present during the PISA synthesis is increased up to 35% w/w, higher degrees of encapsulation of this component within the vesicles can be achieved. After centrifugal purification to remove excess non-encapsulated silica nanoparticles, SAXS, DCP, and TGA analysis indicates encapsulation of up to hundreds of silica nanoparticles per vesicle. In the present study, the thermally triggered release of these encapsulated silica nanoparticles is examined by cooling to 0 °C for 30 min, which causes in situ vesicle dissociation. Transmission electron microscopy studies confirm the change in diblock copolymer morphology and also enable direct visualization of the released silica nanoparticles. Time-resolved small-angle X-ray scattering is used to quantify the extent of silica release over time. For an initial silica concentration of 5% w/w, cooling induces a vesicle-to-sphere transition with subsequent nanoparticle release. For higher silica concentrations (20 or 30% w/w) cooling only leads to perforation of the vesicle membranes, but silica nanoparticles are nevertheless released through the pores. For vesicles prepared in the presence of 30% w/w silica, the purified silica-loaded vesicles were cooled to 0 °C for 30 min, and SAXS patterns were collected every 15 s. A new SAXS model has been developed to determine both the mean volume fraction of encapsulated silica within the vesicles and the scattering length density. Satisfactory data fits to the experimental SAXS patterns were obtained using this model.
Collapse
Affiliation(s)
- Charlotte
J. Mable
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| | - Matthew J. Derry
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| | - Kate L. Thompson
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| | - Lee A. Fielding
- The
School of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | | | - Steven P. Armes
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| |
Collapse
|
44
|
Chen J, Yan B, Wang X, Huang Q, Thundat T, Zeng H. Core cross-linked double hydrophilic block copolymer micelles based on multiple hydrogen-bonding interactions. Polym Chem 2017. [DOI: 10.1039/c7py00210f] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Facile preparation and characterization of core cross-linked micelles via strong multiple hydrogen bonds using well-defined thermo-responsive double hydrophilic block copolymers.
Collapse
Affiliation(s)
- Jingsi Chen
- Department of Chemical and Materials Engineering
- University of Alberta
- Edmonton
- Canada
| | - Bin Yan
- Department of Chemical and Materials Engineering
- University of Alberta
- Edmonton
- Canada
- College of Light Industry
| | - Xiaogang Wang
- Material Science & Engineering Science College
- Taiyuan University of Science and Technology
- Taiyuan 030024
- China
| | - Qingxue Huang
- Material Science & Engineering Science College
- Taiyuan University of Science and Technology
- Taiyuan 030024
- China
| | - Thomas Thundat
- Department of Chemical and Materials Engineering
- University of Alberta
- Edmonton
- Canada
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering
- University of Alberta
- Edmonton
- Canada
| |
Collapse
|
45
|
Lin S, Shang J, Theato P. CO2-Triggered UCST transition of amphiphilic triblock copolymers and their self-assemblies. Polym Chem 2017. [DOI: 10.1039/c7py00186j] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Self-assembled vesicles presenting morphological transformations (vesicles–micelles–unimers) upon external stimuli due to their CO2 adjustable UCST behavior in aqueous solution.
Collapse
Affiliation(s)
- Shaojian Lin
- Institute for Technical and Macromolecular Chemistry
- University of Hamburg
- D-20146 Hamburg
- Germany
| | - Jiaojiao Shang
- Institute for Technical and Macromolecular Chemistry
- University of Hamburg
- D-20146 Hamburg
- Germany
| | - Patrick Theato
- Institute for Technical and Macromolecular Chemistry
- University of Hamburg
- D-20146 Hamburg
- Germany
| |
Collapse
|