1
|
Köster Y, Kimmig J, Zechel S, Schubert US. Protocol for creating representations of molecular structures using a polymer-specific decoder. STAR Protoc 2024; 5:103055. [PMID: 38700976 PMCID: PMC11078690 DOI: 10.1016/j.xpro.2024.103055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/19/2024] [Accepted: 04/18/2024] [Indexed: 05/05/2024] Open
Abstract
To supply chemical structures of polymers for machine learning applications, decoding is necessary. Here, we present a protocol for generating polymer fingerprints (PFPs), which are representations of molecular structures, using a polymer-specific decoder. We outline steps for downloading, installing, and basic application of the software. Moreover, we present procedures for processing and analyzing polymer structure data and the preparation for integration into machine learning methods. On this basis, we explain how artificial neural networks can be utilized to predict polymer properties. For complete details on the use and execution of this protocol, please refer to Köster et al.1.
Collapse
Affiliation(s)
- Yannik Köster
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldstr. 10, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany.
| | - Julian Kimmig
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldstr. 10, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Stefan Zechel
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldstr. 10, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldstr. 10, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany.
| |
Collapse
|
2
|
Farias-Mancilla B, Balestri A, Zhang J, Frielinghaus H, Berti D, Montis C, Destarac M, Schubert US, Guerrero-Sanchez C, Harrisson S, Lonetti B. Morphology and thermal transitions of self-assembled NIPAM-DMA copolymers in aqueous media depend on copolymer composition profile. J Colloid Interface Sci 2024; 662:99-108. [PMID: 38340518 DOI: 10.1016/j.jcis.2024.02.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/18/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
HYPOTHESIS There is a lack of understanding of the interplay between the copolymer composition profile and thermal transition observed in aqueous solutions of N-isopropyl acrylamide (NIPAM) copolymers, as well as the correlation between this transition and the formation and structure of copolymer self-assemblies. EXPERIMENTS For this purpose, we investigated the response of five copolymers with the same molar mass and chemical composition, but with different composition profile in aqueous solution against temperature. Using complementary analytical techniques, we probed structural properties at different length scales, from the molecular scale with Nuclear Magnetic Resonance (NMR) to the colloidal scale with Dynamic Light Scattering (DLS) and Small Angle Neutron Scattering (SANS). FINDINGS NMR and SANS investigations strengthen each other and allow a clear picture of the change of copolymer solubility and related copolymer self-assembly as a function of temperature. At the molecular scale, dehydrating NIPAM units drag N,N-dimethyl acrylamide (DMA) moieties with them in a gradual collapse of the copolymer chain; this induces a morphological transition of the self-assemblies from star-like nanostructures to crew-cut micelles. Interestingly, the transition spans a temperature range which depends on the monomer distribution profile in the copolymer chain, with the asymmetric triblock copolymer specimen revealing the broadest one. We show that the broad morphological transitions associated with gradient copolymers can be mimicked and even surpassed by the use of stepwise gradient (asymmetric) copolymers, which can be more easily and reproducibly synthesized than linear gradient copolymers.
Collapse
Affiliation(s)
- Barbara Farias-Mancilla
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, France
| | - Arianna Balestri
- Department of Chemistry "Ugo Schiff", University of Florence and CSGI, Florence, Italy
| | - Junliang Zhang
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Jena, Germany
| | - Henrich Frielinghaus
- Forschungszentrum Jülich GmbH, Jülich Center for Neutron Science at Heinz Maier-Leibnitz Zentrum, Lichtenbergstrasse 1, 85747 Garching, Germany
| | - Debora Berti
- Department of Chemistry "Ugo Schiff", University of Florence and CSGI, Florence, Italy
| | - Costanza Montis
- Department of Chemistry "Ugo Schiff", University of Florence and CSGI, Florence, Italy
| | - Mathias Destarac
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, France
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Jena, Germany
| | - Carlos Guerrero-Sanchez
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Jena, Germany.
| | - Simon Harrisson
- LCPO, CNRS/Bordeaux-INP/Université de Bordeaux, Pessac, France.
| | - Barbara Lonetti
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, France.
| |
Collapse
|
3
|
Kennedy MA, Zhang Y, Bhatia SR. In situsaxs characterization of thermoresponsive behavior of a poly(ethylene glycol)-graft-(poly(vinyl caprolactam)-co-poly(vinyl acetate)) amphiphilic graft copolymer. NANOTECHNOLOGY 2023; 34:125602. [PMID: 36595237 DOI: 10.1088/1361-6528/acab6d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
We report the thermoresponsive assembly and rheology of an amphiphilic thermosensitive graft copolymer, poly(ethylene glycol)-graft-(poly(vinyl caprolactam)-co-poly(vinyl acetate)) (commercial name Soluplus®), which has been investigated for potential biomedical applications. It has received attention due to is ability to solubilize hydrophobic drugs and for its thickening behavior close to body temperature. Through use of the synchrotron at Brookhaven National Lab, and collaboration with the department of energy, the nanoscale structure and properties can be probed in greater detail. Soluplus®undergoes two structural changes as temperature is increased; the first, a concentration independent change where samples become turbid at 32 °C. Increasing the temperature further causes the formation of physically associated hydrogels. This sol-gel transition is concentration dependent and occurs at 32 °C for 40 wt% samples, and increases to 42 °C for 10 wt% samples. From variable temperature SAXS characterization micelles of 20-25 nm in radius can be seen and maintain their size and packing below 32 °C. A gradual increase in the aggregation of micelles corresponding to a thickening of the material is also observed. Close to and above the gelation temperature, micelles collapse and form a physically associated 3D network. A model is proposed to explain these physical effects, where the poly(vinyl caprolactam) group transitions from the hydrophilic corona at room temperature to the hydrophobic core as temperature is increased.
Collapse
Affiliation(s)
- Mitchell A Kennedy
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, United States of America
| | - Yugang Zhang
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, United States of America
| | - Surita R Bhatia
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, United States of America
| |
Collapse
|
4
|
Poly (N-Vinyl caprolactam), a thermal responsive support with tunable phase transition temperature for catalyst. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Bowser BH, Ho CH, Craig SL. High Mechanophore Content, Stress-Relieving Copolymers Synthesized via RAFT Polymerization. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01792] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Brandon H. Bowser
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Ching-Hsien Ho
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Stephen L. Craig
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
6
|
Niu S, Williams GR, Wu J, Wu J, Zhang X, Chen X, Li S, Jiao J, Zhu LM. A chitosan-based cascade-responsive drug delivery system for triple-negative breast cancer therapy. J Nanobiotechnology 2019; 17:95. [PMID: 31506085 PMCID: PMC6737697 DOI: 10.1186/s12951-019-0529-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/31/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND It is extremely difficult to develop targeted treatments for triple-negative breast (TNB) cancer, because these cells do not express any of the key biomarkers usually exploited for this goal. RESULTS In this work, we develop a solution in the form of a cascade responsive nanoplatform based on thermo-sensitive poly(N-vinylcaprolactam) (PNVCL)-chitosan (CS) nanoparticles (NPs). These are further modified with the cell penetrating peptide (CPP) and loaded with the chemotherapeutic drug doxorubicin (DOX). The base copolymer was optimized to undergo a phase change at the elevated temperatures of the tumor microenvironment. The acid-responsive properties of CS provide a second trigger for drug release, and the inclusion of CPP should ensure the formulations accumulate in cancerous tissue. The resultant CPP-CS-co-PNVCL NPs could self-assemble in aqueous media into spherical NPs of size < 200 nm and with low polydispersity. They are able to accommodate a high DOX loading (14.8% w/w). The NPs are found to be selectively taken up by cancerous cells both in vitro and in vivo, and result in less off-target cytotoxicity than treatment with DOX alone. In vivo experiments employing a TNB xenograft mouse model demonstrated a significant reduction in tumor volume and prolonging of life span, with no obvious systemic toxicity. CONCLUSIONS The system developed in this work has the potential to provide new therapies for hard-to-treat cancers.
Collapse
Affiliation(s)
- Shiwei Niu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, People's Republic of China
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Jianrong Wu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, People's Republic of China
| | - Junzi Wu
- School of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, 650500, People's Republic of China
| | - Xuejing Zhang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, People's Republic of China
| | - Xia Chen
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, People's Republic of China
| | - Shude Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Kunming Medical University, Kunming, 650500, People's Republic of China
| | - Jianlin Jiao
- Technology Transfer Center, Kunming Medical University, Kunming, 650031, China.
| | - Li-Min Zhu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, People's Republic of China.
| |
Collapse
|
7
|
De Rybel N, Van Steenberge PHM, Reyniers MF, D’hooge DR, Marin GB. Interplay of Head, Tail, and Mid-Chain Radicals in Bulk Free-Radical and Reversible Degenerative Addition Fragmentation Chain-Transfer Polymerizations of Vinyl Acetate. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00762] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nils De Rybel
- Laboratory for Chemical Technology (LCT), Ghent University, Technologiepark 125, B-9052 Ghent, Belgium
- Centre for Textiles, Science and Engineering, Ghent University, Technologiepark 70A, B-9052 Ghent, Belgium
| | - Paul H. M. Van Steenberge
- Laboratory for Chemical Technology (LCT), Ghent University, Technologiepark 125, B-9052 Ghent, Belgium
| | - Marie-Françoise Reyniers
- Laboratory for Chemical Technology (LCT), Ghent University, Technologiepark 125, B-9052 Ghent, Belgium
| | - Dagmar R. D’hooge
- Laboratory for Chemical Technology (LCT), Ghent University, Technologiepark 125, B-9052 Ghent, Belgium
- Centre for Textiles, Science and Engineering, Ghent University, Technologiepark 70A, B-9052 Ghent, Belgium
| | - Guy B. Marin
- Laboratory for Chemical Technology (LCT), Ghent University, Technologiepark 125, B-9052 Ghent, Belgium
| |
Collapse
|
8
|
Siirilä J, Häkkinen S, Tenhu H. The emulsion polymerization induced self-assembly of a thermoresponsive polymer poly(N-vinylcaprolactam). Polym Chem 2019. [DOI: 10.1039/c8py01421c] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A thermoresponsive polymer, poly(N-vinylcaprolactam) (PNVCL), was synthesized in an emulsion above its thermal transition temperature to produce particles via polymerization induced self-assembly (PISA).
Collapse
|
9
|
Petrizza L, Le Bechec M, Decompte E, El Hadri H, Lacombe S, Save M. Tuning photosensitized singlet oxygen production from microgels synthesized by polymerization in aqueous dispersed media. Polym Chem 2019. [DOI: 10.1039/c9py00157c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Miniemulsion copolymerization of vinyl acetate, N-vinylcaprolactam, vinyl benzyl Rose Bengal and divinyl adipate to synthesize switchable photosensitizer-grafted polymer colloids for interfacial photooxygenation reactions.
Collapse
Affiliation(s)
- Luca Petrizza
- CNRS/Univ. Pau & Pays Adour/E2S UPPA
- IPREM
- Institut des sciences analytiques et de Physicochimie pour l'environnement et les Matériaux
- PAU cedex 9
- France
| | - Mickael Le Bechec
- CNRS/Univ. Pau & Pays Adour/E2S UPPA
- IPREM
- Institut des sciences analytiques et de Physicochimie pour l'environnement et les Matériaux
- PAU cedex 9
- France
| | - Emile Decompte
- CNRS/Univ. Pau & Pays Adour/E2S UPPA
- IPREM
- Institut des sciences analytiques et de Physicochimie pour l'environnement et les Matériaux
- PAU cedex 9
- France
| | - Hind El Hadri
- CNRS/Univ. Pau & Pays Adour/E2S UPPA
- IPREM
- Institut des sciences analytiques et de Physicochimie pour l'environnement et les Matériaux
- PAU cedex 9
- France
| | - Sylvie Lacombe
- CNRS/Univ. Pau & Pays Adour/E2S UPPA
- IPREM
- Institut des sciences analytiques et de Physicochimie pour l'environnement et les Matériaux
- PAU cedex 9
- France
| | - Maud Save
- CNRS/Univ. Pau & Pays Adour/E2S UPPA
- IPREM
- Institut des sciences analytiques et de Physicochimie pour l'environnement et les Matériaux
- PAU cedex 9
- France
| |
Collapse
|
10
|
Cortez-Lemus NA, Licea-Claverie A. Preparation of a Mini-Library of Thermo-Responsive Star (NVCL/NVP-VAc) Polymers with Tailored Properties Using a Hexafunctional Xanthate RAFT Agent. Polymers (Basel) 2017; 10:E20. [PMID: 30966057 PMCID: PMC6414999 DOI: 10.3390/polym10010020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 12/16/2017] [Accepted: 12/20/2017] [Indexed: 01/02/2023] Open
Abstract
A mini-library of star-shaped thermoresponsive polymers having six arms was prepared using a hexafunctional xanthate by reversible addition⁻fragmentation chain transfer (RAFT) polymerization. Star polymers with homopolymeric arms of poly(N-vinylcaprolactam) (PNVCL), copolymeric arms of poly(N-vinylcaprolactam-co-N-vinylpyrrolidone) (PNVCL-co-PNVP) and also arms of block copolymers of PNVCL-b-PVAc, (PNVCL-co-PNVP)-b-PVAc, and combinations of them changing the order of the block was achieved exploiting the R-RAFT synthetic methodology (or R-group approach), wherein the thiocarbonyl group is transferred to the polymeric chain end. Taking advantage of the RAFT benefits, the molecular weight of the star polymers was controlled (Mn = 11,880⁻153,400 g/mol) to yield star polymers of different sizes and lower critical solution temperature (LCST) values. Removing the xanthate group of the star polymers allowed for the introduction of specific functional groups at the ends of the star arms and resulted in an increase of the LCST values. Star PNVCL-b-PVAc diblock copolymers with PVAc contents of 5⁻26 mol % were prepared; the hydrophobic segment (PVAc) is located at the end of the star arms. Interestingly, when the PVAc content was 5⁻7 mol %, the hydrodynamic diameter (Dh) value of the aggregates formed in water was almost the same sa the Dh of the corresponding PNVCL star homopolymers. It is proposed that these star block copolymers self-assemble into single flowerlike micelles, showing great stability in aqueous solution. Star block copolymers with the PVAc hydrophobic block in the core of the star, such as PVAc-b-(PNVCL-co-PNVP), form micellar aggregates in aqueous solution with Dh values in the range from ~115 to 245 nm while maintaining a thermoresponsive behavior. Micellar aggregates of selected star polymers were used to encapsulate methotrexate (MTX) showing their potential in the temperature controlled release of this antineoplasic drug. The importance of the order in which each block constituent is introduced in the arms of the star polymers for their solution/aggregation behavior is demonstrated.
Collapse
Affiliation(s)
- Norma Aidé Cortez-Lemus
- Centro de Graduados e Investigación en Química, Instituto Tecnológico de Tijuana, A. P. 1166, Tijuana 22000, B. C., Mexico.
| | - Angel Licea-Claverie
- Centro de Graduados e Investigación en Química, Instituto Tecnológico de Tijuana, A. P. 1166, Tijuana 22000, B. C., Mexico.
| |
Collapse
|
11
|
Zhu Z, Zhang Y, Jiang W, Sun L, Dai L, Zhang G, Tang J. Effect of monomer sequence distribution on the CO2-philicity of a well-defined ternary copolymer: Poly(vinyl acetate-co-vinyl butyrate-co-vinyl butyl ether). POLYMER 2017. [DOI: 10.1016/j.polymer.2017.09.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
12
|
Yañez-Macias R, Kulai I, Ulbrich J, Yildirim T, Sungur P, Hoeppener S, Guerrero-Santos R, Schubert US, Destarac M, Guerrero-Sanchez C, Harrisson S. Thermosensitive spontaneous gradient copolymers with block- and gradient-like features. Polym Chem 2017. [DOI: 10.1039/c7py00495h] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Amphiphilic gradient copolymers with thermoresponsive properties were synthesized in one pot via RAFT copolymerization.
Collapse
|
13
|
Etchenausia L, Khoukh A, Deniau Lejeune E, Save M. RAFT/MADIX emulsion copolymerization of vinyl acetate and N-vinylcaprolactam: towards waterborne physically crosslinked thermoresponsive particles. Polym Chem 2017. [DOI: 10.1039/c7py00221a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Controlled radical emulsion polymerization as a tool to synthesize thermoresponsive PVCL-based amphiphilic copolymer particles crosslinked by supramolecular hydrophobic interactions.
Collapse
Affiliation(s)
- Laura Etchenausia
- CNRS
- Univ Pau & Pays Adour
- Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux
- IPREM
- UMR5254
| | - Abdel Khoukh
- CNRS
- Univ Pau & Pays Adour
- Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux
- IPREM
- UMR5254
| | - Elise Deniau Lejeune
- CNRS
- Univ Pau & Pays Adour
- Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux
- IPREM
- UMR5254
| | - Maud Save
- CNRS
- Univ Pau & Pays Adour
- Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux
- IPREM
- UMR5254
| |
Collapse
|