1
|
Zhong X, Cheng HT, Chueh CC, Takeuchi M, Aimi J. Stepwise Construction of Supramolecular A 2B 4-Type Miktoarm Star Copolymers with a Cobalt Phthalocyanine Core. Chemistry 2025; 31:e202403749. [PMID: 39562178 DOI: 10.1002/chem.202403749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 11/21/2024]
Abstract
Supramolecular interactions between polymers play a crucial role in the construction of three-dimensional polymer structures with unique physical and chemical properties. In this study, we have fabricated a novel supramolecular miktoarm star copolymer (μ-star) with a cobalt(II) phthalocyanine (CoPc) core using metal-ligand coordination. Axial coordination of the terminal pyridyl group of poly(methyl methacrylate) with the CoPc core of four-armed star-shaped polystyrene provided AB4- and A2B4-type μ-stars through stepwise complexation. The spin-coated polymer films from mixed solutions of CoPcPS4 and pyPMMA in 1 : 1 or 1 : 2 mass ratios exhibited phase-separated nanodomains with smooth surfaces. Supramolecular interactions in polymer systems provide a unique topology to polymers and affect their bulk morphology.
Collapse
Affiliation(s)
- Xinhao Zhong
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science: NIMS, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0032, Japan
- Department of Materials Science and Engineering, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Hsu-Tzu Cheng
- Department of Chemical Engineering, National Taiwan University
| | - Chu-Chen Chueh
- Department of Chemical Engineering, National Taiwan University
| | - Masayuki Takeuchi
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science: NIMS, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0032, Japan
- Department of Materials Science and Engineering, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
- Research Center for Autonomous Systems Materialogy (ASMat), Institute of Integrated Research (IIR), Institute of Science Tokyo (Science Tokyo), 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
- Institute of Mutidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai, 980-8577, Japan
| | - Junko Aimi
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science: NIMS, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0032, Japan
| |
Collapse
|
2
|
Haino T, Nitta N. Supramolecular Synthesis of Star Polymers. Chempluschem 2024; 89:e202400014. [PMID: 38407573 DOI: 10.1002/cplu.202400014] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 02/27/2024]
Abstract
Supramolecular polymers, in which monomers are assembled via intermolecular interactions, have been extensively studied. The fusion of supramolecular polymers with conventional polymers has attracted the attention of many researchers. In this review article, the recent progress in the construction of supramolecular star polymers, including regular star polymers and miktoarm star polymers, is discussed. The initial sections briefly provide an overview of the conventional classification and synthesis methods for star polymers. Coordination-driven self-assembly was investigated for the supramolecular synthesis of star polymers. Star polymers with multiple polymer chains radiating from metal-organic polyhedra (MOPs) have also been described. Particular focus has been placed on the synthesis of star polymers featuring supramolecular cores formed through hydrogen-bonding-directed self-assembly. After describing the synthesis of star polymers based on host-guest complexes, the construction of miktoarm star polymers based on the molecular recognition of coordination capsules is detailed.
Collapse
Affiliation(s)
- Takeharu Haino
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Higashi-Hiroshima, 739-8526, Japan
- International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM2), Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527, Japan
| | - Natsumi Nitta
- Pritzker School of Molecular Engineering, The University of Chicago, 5640 South Elise Avenue, Chicago, Illinois, 60637, United States
| |
Collapse
|
3
|
Zhong X, Nagai A, Takeuchi M, Aimi J. Preparation of Supramolecular Miktoarm Star Copolymers with a Zinc Phthalocyanine Core through ATRP and RAFT Polymerization. Macromol Rapid Commun 2023; 44:e2200666. [PMID: 36189886 DOI: 10.1002/marc.202200666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/20/2022] [Indexed: 11/09/2022]
Abstract
Topological polymers have attracted considerable attention owing to their unique chemical and physical properties. This study demonstrates the formation of novel supramolecular miktoarm star copolymers with a zinc phthalocyanine (ZnPc) core using metal-ligand coordination interactions. Various linear polymers with pyridyl end groups, poly(methyl methacrylate), poly(vinyl acetate) and poly(N-vinyl carbazole), are prepared via reversible addition-fragmentation chain transfer (RAFT) polymerization. This facilitates coordination to the ZnPc core of 4-armed star-shaped polystyrene prepared via atom-transfer radical polymerization (ATRP). Furthermore, the formation of a 1:1 complex of a ZnPc molecule and pyridyl group of the chain-transfer agent for RAFT is confirmed by absorption spectral studies and 1 H NMR spectroscopic analyses. The concept of supramolecular complexation can be extended to the preparation of AB4 -type supramolecular miktoarm star-shaped copolymers with functional cores.
Collapse
Affiliation(s)
- Xinhao Zhong
- Research Center for Functional Materials, National Institute for Materials Science: NIMS, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan.,Department of Materials Science and Engineering, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Akira Nagai
- Research Center for Functional Materials, National Institute for Materials Science: NIMS, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan.,Department of Materials Science and Engineering, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Masayuki Takeuchi
- Research Center for Functional Materials, National Institute for Materials Science: NIMS, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan.,Department of Materials Science and Engineering, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Junko Aimi
- Research Center for Functional Materials, National Institute for Materials Science: NIMS, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan
| |
Collapse
|
4
|
Hirao T. Macromolecular architectures constructed by biscalix[5]arene–[60]fullerene host–guest interactions. Polym J 2022. [DOI: 10.1038/s41428-022-00732-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Abstract
We report a hydrogen-bonded supramolecular miktoarm star polymer containing three distinct helical arms. Our design involves two helical poly(methacrylamide) arms connected by a barbituric acid (Ba) at the center, prepared through the reversible addition-fragmentation chain-transfer polymerization with a bifunctional agent. Together with a telechelic helical poly(isocyanide) end-functionalized with a Hamilton Wedge (HW) that is complementary to Ba, the two components assemble into an AB2-type star copolymer. The assembly is driven by the hydrogen bonding between HW and Ba, which is quantified by 1H NMR titration and isothermal titration calorimetry. Gel-permeation chromatography provides evidence for the formation of the desired miktoarm star architecture. This strategy of site-specific functionalization on helical polymers provides a modular approach to preparing nonlinear supramolecular ensembles with topologically diverse building blocks.
Collapse
Affiliation(s)
- Ru Deng
- Department of Chemistry and Molecular Design Institute, New York University, New York, New York 10003, United States
| | - Chengyuan Wang
- Department of Chemistry and Molecular Design Institute, New York University, New York, New York 10003, United States
| | - Marcus Weck
- Department of Chemistry and Molecular Design Institute, New York University, New York, New York 10003, United States
| |
Collapse
|
6
|
Hirao T, Fukuta K, Haino T. Supramolecular Approach to Polymer-Shape Transformation via Calixarene–Fullerene Complexation. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00621] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Takehiro Hirao
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Kazushi Fukuta
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Takeharu Haino
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| |
Collapse
|
7
|
Jiang B, Guo H, Zhao L, Xu B, Wang C, Liu C, Fan H. Fabrication of a β-cyclodextrin-based self-assembly containing a redox-responsive ferrocene. SOFT MATTER 2020; 16:125-131. [PMID: 31763662 DOI: 10.1039/c9sm02049g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The current research involves fabrication of a redox-responsive self-assembly system based on a ferrocene (Fc)-containing β-cyclodextrin (β-CD) derivative (βCD-EG-Fc). βCD-EG-Fc was synthesized, and its redox-sensitive self-assembly behavior was investigated using various techniques. On the basis of the intermolecular host-guest recognition between the β-CD group and the Fc moiety, βCD-EG-Fc primarily formed network-like structures and then vesicles following aging for a specified time. The formation of these structures was primarily driven by hydrogen bonding. Conversely, the oxidized molecules (βCD-EG-Fc+) self-assembled into cationic vesicles with the absence of host-guest complexation. Upon controlling the oxidation and reduction of Fc/Fc+, reversible aggregate transformation was achieved. The current study resulted in a deeper understanding of β-CD/Fc redox-responsive self-assemblies and contributed to the development of a single-component host-guest inclusion model.
Collapse
Affiliation(s)
- Bing Jiang
- School of Light Industry Science and Technology, Beijing Technology and Business University, Beijing 100048, P. R. China.
| | - Huichuang Guo
- School of Light Industry Science and Technology, Beijing Technology and Business University, Beijing 100048, P. R. China.
| | - Li Zhao
- School of Light Industry Science and Technology, Beijing Technology and Business University, Beijing 100048, P. R. China.
| | - Baocai Xu
- School of Light Industry Science and Technology, Beijing Technology and Business University, Beijing 100048, P. R. China.
| | - Ce Wang
- School of Light Industry Science and Technology, Beijing Technology and Business University, Beijing 100048, P. R. China.
| | - Changyao Liu
- School of Light Industry Science and Technology, Beijing Technology and Business University, Beijing 100048, P. R. China.
| | - Haiming Fan
- College of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266555, P. R. China.
| |
Collapse
|
8
|
Hao X, Leng Z, Sun D, Peng F, Yasin A. Photo-regulated supramolecular star with a pillar[6]arene-coated metal–organic polyhedron (MOP) core. Chem Commun (Camb) 2020; 56:6676-6679. [DOI: 10.1039/d0cc00536c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We report a photo-regulated supramolecular star centered by a pillar[6]arene-coated metal–organic polyhedron (MOP) core.
Collapse
Affiliation(s)
- Xiang Hao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design
- Beijing Key Laboratory of Lignocellulosic Chemistry
- Beijing Forestry University
- Beijing 100083
- China
| | - Zejian Leng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design
- Beijing Key Laboratory of Lignocellulosic Chemistry
- Beijing Forestry University
- Beijing 100083
- China
| | - Dan Sun
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design
- Beijing Key Laboratory of Lignocellulosic Chemistry
- Beijing Forestry University
- Beijing 100083
- China
| | - Feng Peng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design
- Beijing Key Laboratory of Lignocellulosic Chemistry
- Beijing Forestry University
- Beijing 100083
- China
| | - Akram Yasin
- Xinjiang Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Urumqi 830011
- China
| |
Collapse
|
9
|
Dzhardimalieva GI, Rabinskiy LN, Kydralieva KA, Uflyand IE. Recent advances in metallopolymer-based drug delivery systems. RSC Adv 2019; 9:37009-37051. [PMID: 35539076 PMCID: PMC9075603 DOI: 10.1039/c9ra06678k] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 11/06/2019] [Indexed: 12/12/2022] Open
Abstract
Metallopolymers (MPs) or metal-containing polymers have shown great potential as new drug delivery systems (DDSs) due to their unique properties, including universal architectures, composition, properties and surface chemistry. Over the past few decades, the exponential growth of many new classes of MPs that deal with these issues has been demonstrated. This review presents and assesses the recent advances and challenges associated with using MPs as DDSs. Among the most widely used MPs for these purposes, metal complexes based on synthetic and natural polymers, coordination polymers, metal-organic frameworks, and metallodendrimers are distinguished. Particular attention is paid to the stimulus- and multistimuli-responsive metallopolymer-based DDSs. Of considerable interest is the use of MPs for combination therapy and multimodal systems. Finally, the problems and future prospects of using metallopolymer-based DDSs are outlined. The bibliography includes articles published over the past five years.
Collapse
Affiliation(s)
- Gulzhian I Dzhardimalieva
- Laboratory of Metallopolymers, The Institute of Problems of Chemical Physics RAS Academician Semenov Avenue 1 Chernogolovka Moscow Region 142432 Russian Federation
- Moscow Aviation Institute (National Research University) Volokolamskoe Shosse, 4 Moscow 125993 Russia
| | - Lev N Rabinskiy
- Moscow Aviation Institute (National Research University) Volokolamskoe Shosse, 4 Moscow 125993 Russia
| | - Kamila A Kydralieva
- Moscow Aviation Institute (National Research University) Volokolamskoe Shosse, 4 Moscow 125993 Russia
| | - Igor E Uflyand
- Department of Chemistry, Southern Federal University B. Sadovaya Str. 105/42 Rostov-on-Don 344006 Russian Federation
| |
Collapse
|
10
|
Jin X, Zhu L, Xue B, Zhu X, Yan D. Supramolecular nanoscale drug-delivery system with ordered structure. Natl Sci Rev 2019; 6:1128-1137. [PMID: 34691991 PMCID: PMC8291525 DOI: 10.1093/nsr/nwz018] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 12/03/2018] [Accepted: 12/11/2018] [Indexed: 01/19/2023] Open
Abstract
Supramolecular chemistry provides a means to integrate multi-type molecules leading to a dynamic organization. The study of functional nanoscale drug-delivery systems based on supramolecular interactions is a recent trend. Much work has focused on the design of supramolecular building blocks and the engineering of supramolecular integration, with the goal of optimized delivery behavior and enhanced therapeutic effect. This review introduces recent advances in supramolecular designs of nanoscale drug delivery. Supramolecular affinity can act as a main driving force either in the self-assembly of carriers or in the loading of drugs. It is also possible to employ strong recognitions to achieve self-delivery of drugs. Due to dynamic controllable drug-release properties, the supramolecular nanoscale drug-delivery system provides a promising platform for precision medicine.
Collapse
Affiliation(s)
- Xin Jin
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lijuan Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bai Xue
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Deyue Yan
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
11
|
Bai Y, Liu CP, Chen D, Zhuo LH, Bu HT, Tian W. Morphology-tunable and pH-responsive supramolecular self-assemblies based on AB 2-type host-guest-conjugated amphiphilic molecules for controlled drug delivery. Beilstein J Org Chem 2019; 15:1925-1932. [PMID: 31501659 PMCID: PMC6720476 DOI: 10.3762/bjoc.15.188] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/30/2019] [Indexed: 11/23/2022] Open
Abstract
Although stimuli-responsive supramolecular self-assemblies have been constructed, the controlled drug delivery induced by morphology transitions of these supramolecular self-assemblies on the basis of host-guest-conjugated monomers (HGCMs) are few reported. In this paper, the self-assembly behaviors of AB2-type HGCMs, e.g., β-cyclodextrin-benzimidazole2 (β-CD-BM2), were investigated at neutral and acidic pH conditions, respectively. Specifically, β-CD-BM2 first self-assembled into fan-shaped supramolecular self-assemblies with a hydrodynamic diameter of 163 nm at neutral pH, whereas they were further dissociated into spherical supramolecular self-assemblies with a size of 52 nm under acidic conditions. This morphology transition process was utilized to conduct a two-stage DOX delivery under neutral and acidic pH. Basic cell experiments demonstrated that the drug-loaded β-CD-BM2-based supramolecular self-assemblies with varied morphology could inhibit cancer cell proliferation, indicating their potential application in the field of drug delivery.
Collapse
Affiliation(s)
- Yang Bai
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions and Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi’an, 710072, China
| | - Cai-ping Liu
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Di Chen
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
- Institute of Basic Medical Sciences, Xi’an Medical University, Xi’an 710021, China
| | - Long-hai Zhuo
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Huai-tian Bu
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Wei Tian
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions and Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi’an, 710072, China
| |
Collapse
|
12
|
Peng J, Zuo C, Xiao Q, Deng K, Meng C, Liu Y, Zhang M, Ma L, Pun SH, Wei H. Synthesis of stimuli-responsive nanosized ring-like colloids and cyclic polymers via a dual-template approach. Chem Sci 2019; 10:3943-3948. [PMID: 31049188 PMCID: PMC6471857 DOI: 10.1039/c9sc00450e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 03/04/2019] [Indexed: 01/10/2023] Open
Abstract
Ring-like particles have received considerable attention due to their unique interior cavity and properties. However, the preparation of stimuli-responsive nanosized rings with internal size smaller than 100 nm remains unexplored likely due to the challenges encountered in their synthesis. The successful fulfillment of this target will not only significantly enrich the family of ring-like nanoparticles but also build a connection that bridges ring-like nanoparticles and cyclic polymers. For this purpose, we report in this study a controlled synthesis of stimuli-responsive ring-like colloids and cyclic polymers using both star-shaped polymers and β-cyclodextrin (β-CD) as the dual templates. The first template comprising star-shaped polymers generated a ring-like structure and adoption of β-CD as the second template further restricted the ring thickness to the height of a β-CD, leading to the generation of stimuli-responsive nanosized ring-like colloids with ring thickness less than 1 nm, which shifted the ring-like structure to cyclic polymers with reversible cross-linked disulfide bridges. The reported "dual-template" approach is thus a valuable alternative to the current synthetic strategies toward stimuli-responsive ring-like colloids and cyclic polymers.
Collapse
Affiliation(s)
- Jinlei Peng
- State Key Laboratory of Applied Organic Chemistry , Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province , College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou , Gansu 730000 , China .
| | - Cai Zuo
- State Key Laboratory of Applied Organic Chemistry , Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province , College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou , Gansu 730000 , China .
| | - Qi Xiao
- State Key Laboratory of Applied Organic Chemistry , Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province , College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou , Gansu 730000 , China .
| | - Kaicheng Deng
- State Key Laboratory of Applied Organic Chemistry , Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province , College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou , Gansu 730000 , China .
| | - Chao Meng
- State Key Laboratory of Applied Organic Chemistry , Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province , College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou , Gansu 730000 , China .
| | - Yuping Liu
- State Key Laboratory of Applied Organic Chemistry , Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province , College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou , Gansu 730000 , China .
| | - Miao Zhang
- State Key Laboratory of Applied Organic Chemistry , Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province , College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou , Gansu 730000 , China .
| | - Liwei Ma
- State Key Laboratory of Applied Organic Chemistry , Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province , College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou , Gansu 730000 , China .
| | - Suzie H Pun
- Department of Bioengineering , Molecular Engineering and Sciences Institute , University of Washington , Seattle , Washington 98195 , USA
| | - Hua Wei
- State Key Laboratory of Applied Organic Chemistry , Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province , College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou , Gansu 730000 , China .
| |
Collapse
|
13
|
Supramolecular redox-responsive substrate carrier activity of a ferrocenyl Janus device. J Inorg Biochem 2019; 193:31-41. [DOI: 10.1016/j.jinorgbio.2018.12.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/28/2018] [Accepted: 12/30/2018] [Indexed: 12/15/2022]
|
14
|
Yuan Z, Wang J, Wang Y, Zhong Y, Zhang X, Li L, Wang J, Lincoln SF, Guo X. Redox-Controlled Voltage Responsive Micelles Assembled by Noncovalently Grafted Polymers for Controlled Drug Release. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02641] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Zhenyu Yuan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, P. R. China
| | - Jie Wang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, P. R. China
| | - Yiming Wang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, P. R. China
| | - Yujie Zhong
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, P. R. China
| | - Xinsheng Zhang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, P. R. China
| | - Li Li
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, P. R. China
| | - Junyou Wang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, P. R. China
| | - Stephen F. Lincoln
- School of Chemistry and Physics, University of Adelaide, Adelaide, SA 5005, Australia
| | - Xuhong Guo
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, P. R. China
- Engineering Research Center of Materials Chemical Engineering of Xinjiang Bingtuan, Shihezi University, 832000 Shihezi, Xinjiang, P. R. China
| |
Collapse
|
15
|
Al Nakeeb N, Kochovski Z, Li T, Zhang Y, Lu Y, Schmidt BVKJ. Poly(ethylene glycol) brush-b-poly(N-vinylpyrrolidone)-based double hydrophilic block copolymer particles crosslinked via crystalline α-cyclodextrin domains. RSC Adv 2019; 9:4993-5001. [PMID: 35514641 PMCID: PMC9060675 DOI: 10.1039/c8ra10672j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 01/31/2019] [Indexed: 11/22/2022] Open
Abstract
Self-assembly of block copolymers is a significant area of polymer science. The self-assembly of completely water-soluble block copolymers is of particular interest, albeit a challenging task. In the present work the self-assembly of a linear-brush architecture block copolymer, namely poly(N-vinylpyrrolidone)-b-poly(oligoethylene glycol methacrylate) (PVP-b-POEGMA), in water is studied. Moreover, the assembled structures are crosslinked via α-CD host/guest complexation in a supramolecular way. The crosslinking shifts the equilibrium toward aggregate formation without switching off the dynamic equilibrium of double hydrophilic block copolymer (DHBC). As a consequence, the self-assembly efficiency is improved without extinguishing the unique DHBC self-assembly behavior. In addition, decrosslinking could be induced without a change in concentration by adding a competing complexation agent for α-CD. The self-assembly behavior was followed by DLS measurement, while the presence of the particles could be observed via cryo-TEM before and after crosslinking. Self-assembly of the double hydrophilic block copolymer poly(N-vinylpyrrolidone)-b-poly(oligoethylene glycol methacrylate) and supramolecular crosslinking via α-cyclodextrin in water is presented.![]()
Collapse
Affiliation(s)
- Noah Al Nakeeb
- Max-Planck Institute of Colloids and Interfaces
- Department of Colloid Chemistry
- 14476 Potsdam
- Germany
| | - Zdravko Kochovski
- Soft Matter and Functional Materials
- Helmholtz-Zentrum Berlin für Materialien und Energie
- 14109 Berlin
- Germany
| | - Tingting Li
- Max-Planck Institute of Colloids and Interfaces
- Department of Colloid Chemistry
- 14476 Potsdam
- Germany
- State Key Laboratory of Fine Chemicals
| | - Youjia Zhang
- Max-Planck Institute of Colloids and Interfaces
- Department of Colloid Chemistry
- 14476 Potsdam
- Germany
| | - Yan Lu
- Soft Matter and Functional Materials
- Helmholtz-Zentrum Berlin für Materialien und Energie
- 14109 Berlin
- Germany
- Institute of Chemistry
| | | |
Collapse
|
16
|
Nie WC, Song F, Xiao Q, Liu JJ, Wang XH, Zhou JL, Chen SC, Wang XL, Wang YZ. Orthogonal construction of dual dynamic covalent linkages toward an “AND” logic-gate acid-/salt-responsive block copolymer. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Nitta N, Takatsuka M, Kihara SI, Sekiya R, Haino T. Facile Synthesis of an Eight-Armed Star-Shaped Polymer via Coordination-Driven Self-Assembly of a Four-Armed Cavitand. ACS Macro Lett 2018; 7:1308-1311. [PMID: 35651252 DOI: 10.1021/acsmacrolett.8b00669] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The polystyrene chains were installed at the lower rim of a resorcinarene-based cavitand via reversible addition-fragmentation (RAFT) polymerization to form a four-armed star-shaped polymer. A star-shaped polystyrene-functionalized supramolecular capsule was prepared through the coordination-driven self-assembly of the four-armed start-shaped polymer with silver ions. The eight-armed start-shaped supramolecular capsule encapsulated 4,4'-diacetoxybiphenyl as did a cavitand-based self-assembled capsule. A DOSY measurement indicated that the eight-armed star-shaped polymer was twice as large as the four-armed star-shaped polymer. The solution behaviors of these compounds resulted in a difference in their zero-shear viscosities.
Collapse
Affiliation(s)
- Natsumi Nitta
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526 Japan
| | - Mei Takatsuka
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526 Japan
| | - Shin-ichi Kihara
- Department of Chemical Engineering, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527 Japan
| | - Ryo Sekiya
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526 Japan
| | - Takeharu Haino
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526 Japan
| |
Collapse
|
18
|
Zhang L, Qiu G, Liu F, Liu X, Mu S, Long Y, Zhao Q, Liu Y, Gu H. Controlled ROMP synthesis of side-chain ferrocene and adamantane-containing diblock copolymer for the construction of redox-responsive micellar carriers. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
19
|
Gallei M, Rüttiger C. Recent Trends in Metallopolymer Design: Redox-Controlled Surfaces, Porous Membranes, and Switchable Optical Materials Using Ferrocene-Containing Polymers. Chemistry 2018; 24:10006-10021. [PMID: 29532972 DOI: 10.1002/chem.201800412] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/06/2018] [Indexed: 01/24/2023]
Abstract
Metallopolymers with metal functionalities are a unique class of functional materials. Their redox-mediated optoelectronic and catalytic switching capabilities, their outstanding structure formation and separation capabilities have been reported recently. Within this Minireview, the scope and limitations of intriguing ferrocene-containing systems will be discussed. In the first section recent advances in metallopolymer design will be given leading to a plethora of novel metallopolymer architectures. Discussed synthetic pathways comprise controlled and living polymerization protocols as well as surface immobilization strategies. In the following sections, we focus on recent advances and new applications for side-chain and main-chain ferrocene-containing polymers as (i) remote-switchable materials, (ii) smart surfaces, (iii) redox-responsive membranes, and some recent trends in (iv) photonic structures and (v) other optical applications.
Collapse
Affiliation(s)
- Markus Gallei
- Ernst-Berl Institut für Technische und Makromolekulare Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| | - Christian Rüttiger
- Ernst-Berl Institut für Technische und Makromolekulare Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| |
Collapse
|
20
|
Li T, Kumru B, Al Nakeeb N, Willersinn J, Schmidt BVKJ. Thermoadaptive Supramolecular α-Cyclodextrin Crystallization-Based Hydrogels via Double Hydrophilic Block Copolymer Templating. Polymers (Basel) 2018; 10:E576. [PMID: 30966610 PMCID: PMC6404023 DOI: 10.3390/polym10060576] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/16/2018] [Accepted: 05/21/2018] [Indexed: 12/14/2022] Open
Abstract
Supramolecular hydrogels play a prominent role in contemporary research of hydrophilic polymers. Especially, hydrogels based on α-cyclodextrin/poly(ethylene glycol) (α-CD/PEG) complexation and crystal formation are studied frequently. Here, the effect of double hydrophilic block copolymers (DHBCs) on α-CD/PEG hydrogel properties is investigated. Therefore, a novel DHBC, namely poly(N-vinylpyrrolidone)-b-poly(oligo ethylene glycol methacrylate) (PVP-b-POEGMA), was synthesized via a combination of reversible deactivation radical polymerization and modular conjugation methods. In the next step, hydrogel formation was studied after α-CD addition. Interestingly, DHBC-based hydrogels showed a significant response to thermal history. Heating of the gels to different temperatures led to different mechanical properties after cooling to ambient temperature, i.e., gels with mechanical properties similar to the initial gels or weak flowing gels were obtained. Thus, the hydrogels showed thermoadaptive behavior, which might be an interesting property for future applications in sensing.
Collapse
Affiliation(s)
- Tingting Li
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany.
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Baris Kumru
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany.
| | - Noah Al Nakeeb
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany.
| | - Jochen Willersinn
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany.
| | | |
Collapse
|
21
|
Du Z, Ke K, Chang X, Dong R, Ren B. Controlled Self-Assembly of Multiple-Responsive Superamphiphilc Polymers Based on Host-Guest Inclusions of a Modified PEG with β-Cyclodextrin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:5606-5614. [PMID: 29681154 DOI: 10.1021/acs.langmuir.8b00470] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Superamphiphilic polymers (SAPs) constructed by host-guest inclusion can self-assemble into various nanostructures in solution, which can find applications in many fields such as nanodevices, drug delivery, and template synthesis. Herein, we report the controlled self-assembly of multiple-responsive SAP based on a selective host-guest inclusion of β-cyclodextrin (β-CD) with a modified poly(ethylene glycol) (PEG) (FcC11AzoPEG) consisting of a ferrocene (Fc) end group, a C11 alkyl chain, an azobenzene (Azo) block, and a poly(ethylene glycol)methyl ether (PEG) chain. These SAPs can self-assemble into interesting nanostructures in water upon exposure to different stimuli because β-CD can be selectively included with different guests, such as Fc, Azo, and C11 alkyl chain, under different stimuli. The inclusion complex of Fc with β-CD (Fc@β-CD SAP) can form nanowire micelles in aqueous solution. The nanowire micelles can be transformed into spindle micelles with the addition of oxidant because the majority of β-CDs dissociated from the complex Fc@β-CD SAP due to a conversion of Fc to Fc+ and will preferentially include with Azo group to form another dominant inclusion complex (Azo@β-CD SAP). After UV irradiation, the spindle micelles can be further transformed into spherical micelles because most of β-CDs are excluded from the complex Azo@β-CD SAP due to a trans- to cis-Azo conversion and then form a dominant inclusion complex with C11 alkyl chains (C11@β-CD SAP). This work not only demonstrates the selective host-guest inclusion of stimuli-responsive groups modified PEG with β-CD but also provides a useful approach for construction of diverse morphologies.
Collapse
Affiliation(s)
- Zhukang Du
- School of Materials Science and Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Kang Ke
- School of Materials Science and Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Xueyi Chang
- School of Materials Science and Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Renfeng Dong
- School of Chemistry and Environment , South China Normal University , Guangzhou 510006 , China
| | - Biye Ren
- School of Materials Science and Engineering , South China University of Technology , Guangzhou 510640 , China
| |
Collapse
|
22
|
Weng G, Thanneeru S, He J. Dynamic Coordination of Eu-Iminodiacetate to Control Fluorochromic Response of Polymer Hydrogels to Multistimuli. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30. [PMID: 29334152 DOI: 10.1002/adma.201706526] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 11/29/2017] [Indexed: 05/07/2023]
Abstract
New fluorochromic materials that reversibly change their emission properties in response to their environment are of interest for the development of sensors and light-emitting materials. A new design of Eu-containing polymer hydrogels showing fast self-healing and tunable fluorochromic properties in response to five different stimuli, including pH, temperature, metal ions, sonication, and force, is reported. The polymer hydrogels are fabricated using Eu-iminodiacetate (IDA) coordination in a hydrophilic poly(N,N-dimethylacrylamide) matrix. Dynamic metal-ligand coordination allows reversible formation and disruption of hydrogel networks under various stimuli which makes hydrogels self-healable and injectable. Such hydrogels show interesting switchable ON/OFF luminescence along with the sol-gel transition through the reversible formation and dissociation of Eu-IDA complexes upon various stimuli. It is demonstrated that Eu-containing hydrogels display fast and reversible mechanochromic response as well in hydrogels having interpenetrating polymer network. Those multistimuli responsive fluorochromic hydrogels illustrate a new pathway to make smart optical materials, particularly for biological sensors where multistimuli response is required.
Collapse
Affiliation(s)
- Gengsheng Weng
- School of Materials Science and Chemical Engineering, Ningbo Key Laboratory of Specialty Polymers, Ningbo University, Ningbo, 315211, China
- Department of Chemistry, University of Connecticut, Storrs, CT, 06269, USA
| | - Srinivas Thanneeru
- Department of Chemistry, University of Connecticut, Storrs, CT, 06269, USA
| | - Jie He
- Department of Chemistry, University of Connecticut, Storrs, CT, 06269, USA
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA
| |
Collapse
|
23
|
Fabrication of supramolecular star-shaped amphiphilic copolymers for ROS-triggered drug release. J Colloid Interface Sci 2018; 514:122-131. [DOI: 10.1016/j.jcis.2017.12.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/01/2017] [Accepted: 12/05/2017] [Indexed: 01/08/2023]
|
24
|
Prochowicz D, Kornowicz A, Lewiński J. Interactions of Native Cyclodextrins with Metal Ions and Inorganic Nanoparticles: Fertile Landscape for Chemistry and Materials Science. Chem Rev 2017; 117:13461-13501. [DOI: 10.1021/acs.chemrev.7b00231] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Daniel Prochowicz
- Institute of Physical
Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Arkadiusz Kornowicz
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Janusz Lewiński
- Institute of Physical
Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
25
|
Zhang K, Feng X, Ye C, Hempenius MA, Vancso GJ. Hydrogels with a Memory: Dual-Responsive, Organometallic Poly(ionic liquid)s with Hysteretic Volume-Phase Transition. J Am Chem Soc 2017; 139:10029-10035. [PMID: 28654756 PMCID: PMC5538755 DOI: 10.1021/jacs.7b04920] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Indexed: 11/28/2022]
Abstract
We report on the synthesis and structure-property relations of a novel, dual-responsive organometallic poly(ionic liquid) (PIL), consisting of a poly(ferrocenylsilane) backbone of alternating redox-active, silane-bridged ferrocene units and tetraalkylphosphonium sulfonate moieties in the side groups. This PIL is redox responsive due to the presence of ferrocene in the backbone and also exhibits a lower critical solution temperature (LCST)-type thermal responsive behavior. The LCST phase transition originates from the interaction between water molecules and the ionic substituents and shows a concentration-dependent, tunable transition temperature in aqueous solution. The PIL's LCST-type transition temperature can also be influenced by varying the redox state of ferrocene in the polymer main chain. As the polymer can be readily cross-linked and is easily converted into hydrogels, it represents a new dual-responsive materials platform. Interestingly, the as-formed hydrogels display an unusual, strongly hysteretic volume-phase transition indicating useful thermal memory properties. By employing the dispersing abilities of this cationic PIL, CNT-hydrogel composites were successfully prepared. These hybrid conductive composite hydrogels showed bi-stable states and tunable resistance in heating-cooling cycles.
Collapse
Affiliation(s)
| | | | - Chongnan Ye
- Materials Science and Technology
of Polymers, MESA+ Institute for Nanotechnology,
University of Twente, P.O. Box 217, 7500AE, Enschede, The Netherlands
| | - Mark A. Hempenius
- Materials Science and Technology
of Polymers, MESA+ Institute for Nanotechnology,
University of Twente, P.O. Box 217, 7500AE, Enschede, The Netherlands
| | - G. Julius Vancso
- Materials Science and Technology
of Polymers, MESA+ Institute for Nanotechnology,
University of Twente, P.O. Box 217, 7500AE, Enschede, The Netherlands
| |
Collapse
|
26
|
Nakagawa Y, Ohta S, Sugahara A, Okubo M, Yamada A, Ito T. In Vivo Redox-Responsive Sol–Gel/Gel–Sol Transition of Star Block Copolymer Solution Based on Ionic Cross-Linking. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Yoshiyuki Nakagawa
- Department
of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Seiichi Ohta
- Center
for Disease Biology and Integrative Medicine, The University of Tokyo, 7-3-1 Hongo,
Bunkyo-ku, Tokyo 113-8655, Japan
| | - Akira Sugahara
- Department
of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Masashi Okubo
- Department
of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Atsuo Yamada
- Department
of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Taichi Ito
- Department
of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Center
for Disease Biology and Integrative Medicine, The University of Tokyo, 7-3-1 Hongo,
Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
27
|
Kong T, Guo G, Zhang H, Gao L. Post-synthetic modification of polyvinyl alcohol with a series of N-alkyl-substituted carbamates towards thermo and CO2-responsive polymers. Polym Chem 2017. [DOI: 10.1039/c7py01136a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intensive efforts have been devoted to the synthesis of thermoresponsive polymers with terminal N-alkyl-substituted groups.
Collapse
Affiliation(s)
- Tengfei Kong
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- China
| | - Guoqiang Guo
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- China
| | - Huatang Zhang
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- China
| | - Liang Gao
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- China
| |
Collapse
|