1
|
Frone AN, Panaitescu DM, Gabor AR, Nicolae CA, Ghiurea M, Bradu C. Poly(3-hydroxybutyrate) Modified with Thermoplastic Polyurethane and Microfibrillated Cellulose: Hydrolytic Degradation and Thermal and Mechanical Properties. Polymers (Basel) 2024; 16:3606. [PMID: 39771457 PMCID: PMC11678418 DOI: 10.3390/polym16243606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/19/2024] [Accepted: 12/22/2024] [Indexed: 01/11/2025] Open
Abstract
Blending poly(3-hydroxybutyrate) (PHB) with other polymers could be a rapid and accessible solution to overcome some of its drawbacks. In this work, PHB was modified with microfibrillated cellulose (MC) and a thermoplastic polyurethane containing biodegradable segments (PU) by two routes, using a masterbatch and by direct mixing. The PU and MC modifiers improved the thermal stability of PHB by up to 13 °C and slightly decreased its melt viscosity and crystallinity, thus improving the melt processability. The addition of PU in PHB composites led to a decrease in the storage modulus, which did not exceed 20% at room temperature. The hydrolytic degradation in an alkaline environment at 50 °C for 28 days decreased the thermal stability of the composites by 58-65 °C, while the lower mass loss and morphological features showed that the PU modifier delayed the degradation of the PHB composites. The improved thermal stability, melt processability, and lower cost, along with higher flexibility and the possibility of controlling the hydrolytic degradation by the PU content, make the PHB/PU/MC composites obtained by the masterbatch method promising materials for medical and engineering applications.
Collapse
Affiliation(s)
- Adriana Nicoleta Frone
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania; (A.N.F.); (A.R.G.); (C.-A.N.); (M.G.)
| | - Denis Mihaela Panaitescu
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania; (A.N.F.); (A.R.G.); (C.-A.N.); (M.G.)
| | - Augusta Raluca Gabor
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania; (A.N.F.); (A.R.G.); (C.-A.N.); (M.G.)
| | - Cristian-Andi Nicolae
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania; (A.N.F.); (A.R.G.); (C.-A.N.); (M.G.)
| | - Marius Ghiurea
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania; (A.N.F.); (A.R.G.); (C.-A.N.); (M.G.)
| | - Corina Bradu
- Faculty of Biology, University of Bucharest, 91–95 Splaiul Independentei, 050095 Bucharest, Romania;
| |
Collapse
|
2
|
Sugeno K, Saito H. Double Spherulite Formation via Two-Step Crystallization in PTT/PET Blends. Polymers (Basel) 2024; 16:3357. [PMID: 39684101 DOI: 10.3390/polym16233357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
We investigated the crystallization kinetics and morphology evolution of miscible crystalline/crystalline blends of poly(trimethylene terephthalate) (PTT) and poly(ethylene terephthalate) (PET) during isothermal melt crystallization. The integrated light-scattering intensity and the spherulite size increased gradually and then steeply as crystallization progressed in 70/30 PTT/PET at 215 °C, indicating the two-step crystallization behavior. The compact PET spherulite grew in the first step, and the dendritic PTT spherulite grew in the second step, forming the double spherulite consisting of a PET component in the inner region and a PTT one in the outer region. The spherulite size of PET increased nonlinearly with time, suggesting the exclusion of PTT from the crystal growth front. Atomic force microscopy (AFM) observation revealed that the PTT fibrils were interfiled within the PET spherulite in the inner region and continued outward to the outer region consisting of the PTT spherulite. These results suggest that the excluded PTT crystallizes into fibrils by interfiling crystallization within the inner PET spherulite, and then the interfiled PTT fibrils continue to grow outward to form the outer dendritic PTT spherulite after the spherulite growth of PET stops due to the excluded PTT at the growth front.
Collapse
Affiliation(s)
- Kousuke Sugeno
- Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo 184-8588, Japan
| | - Hiromu Saito
- Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo 184-8588, Japan
| |
Collapse
|
3
|
Sugeno K, Saito H. Change in Concentration of Amorphous Region Due to Crystallization in PTT/PET Miscible Blends. Polymers (Basel) 2024; 16:2332. [PMID: 39204552 PMCID: PMC11358948 DOI: 10.3390/polym16162332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
In a miscible crystalline/crystalline blend of poly(trimethylene terephthalate) (PTT) and poly(ethylene terephthalate) (PET), the PET spherulites grew at 240 °C when the PTT content was 30 wt% or less. The growth rate of PET spherulites decreased with time due to the exclusion of PTT from the growth front of PET spherulites into the amorphous region, resulting in a three-stage crystallization process. Due to the exclusion, the spherulite growth stopped before the volume filling of the PET spherulites, causing the formation of an excluded PTT amorphous region. When the temperature was lowered from 240 °C to 210 °C, the PTT spherulites grew in the excluded PTT amorphous region. The spherulite growth rate of PTT in the excluded PTT amorphous region was equivalent to that of a blend of 60-70 wt% PTT in 30/70 PTT/PET. These results suggest a significant change in the PTT concentration in the amorphous region, from the initial PTT content of 30 wt% to 60-70 wt%, due to the exclusion of PTT during the melt crystallization of PET at 240 °C.
Collapse
Affiliation(s)
| | - Hiromu Saito
- Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo 184-8588, Japan;
| |
Collapse
|
4
|
Ahmadi M, Ehrmann K, Koch T, Liska R, Stampfl J. From Unregulated Networks to Designed Microstructures: Introducing Heterogeneity at Different Length Scales in Photopolymers for Additive Manufacturing. Chem Rev 2024; 124:3978-4020. [PMID: 38546847 PMCID: PMC11009961 DOI: 10.1021/acs.chemrev.3c00570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/10/2024] [Accepted: 01/23/2024] [Indexed: 04/11/2024]
Abstract
Photopolymers have been optimized as protective and decorative coating materials for decades. However, with the rise of additive manufacturing technologies, vat photopolymerization has unlocked the use of photopolymers for three-dimensional objects with new material requirements. Thus, the originally highly cross-linked, amorphous architecture of photopolymers cannot match the expectations for modern materials anymore, revealing the largely unanswered question of how diverse properties can be achieved in photopolymers. Herein, we review how microstructural features in soft matter materials should be designed and implemented to obtain high performance materials. We then translate these findings into chemical design suggestions for enhanced printable photopolymers. Based on this analysis, we have found microstructural heterogenization to be the most powerful tool to tune photopolymer performance. By combining the chemical toolbox for photopolymerization and the analytical toolbox for microstructural characterization, we examine current strategies for physical heterogenization (fillers, inkjet printing) and chemical heterogenization (semicrystalline polymers, block copolymers, interpenetrating networks, photopolymerization induced phase separation) of photopolymers and put them into a material scientific context to develop a roadmap for improving and diversifying photopolymers' performance.
Collapse
Affiliation(s)
- Mojtaba Ahmadi
- Institute
of Materials Science and Technology, Technische
Universität Wien, Getreidemarkt 9BE, 1060 Vienna, Austria
| | - Katharina Ehrmann
- Institute
of Applied Synthetic Chemistry, Technische
Universität Wien, Getreidemarkt 9/163, 1060 Vienna, Austria
| | - Thomas Koch
- Institute
of Materials Science and Technology, Technische
Universität Wien, Getreidemarkt 9BE, 1060 Vienna, Austria
| | - Robert Liska
- Institute
of Applied Synthetic Chemistry, Technische
Universität Wien, Getreidemarkt 9/163, 1060 Vienna, Austria
| | - Jürgen Stampfl
- Institute
of Materials Science and Technology, Technische
Universität Wien, Getreidemarkt 9BE, 1060 Vienna, Austria
| |
Collapse
|
5
|
Zhang B, Liu S, Yin L, Tian M, Ning N, Zhang L, Wang W. Nanoscale analysis of the interface of dip layer/rubber in fiber/rubber composites. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Morphology and crystallization behaviour of polyhydroxyalkanoates-based blends and composites: A review. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Relationship between Localization of PBSU in Interlamellar/Interfibrillar Regimes and Double Peaks in DSC/SAXS in its Blend with PVDF. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2718-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
8
|
Perret E, Braun O, Sharma K, Tritsch S, Muff R, Hufenus R. High-resolution 2D Raman mapping of mono- and bicomponent filament cross-sections. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Liao YH, Nagarajan S, Woo EM, Chuang WT, Tsai YW. Synchrotron X-Ray Analysis and Morphology Evidence for Stereo-Assemblies of Periodic Aggregates in Poly(3-hydroxybutyrate) with Unusual Photonic Iridescence. Macromol Rapid Commun 2021; 42:e2100281. [PMID: 34145924 DOI: 10.1002/marc.202100281] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/03/2021] [Indexed: 11/06/2022]
Abstract
3D morphology of poly(3-hydroxybutyrate) (PHB), crystallized in the presence of diluents of poly(1,3-trimethylene adipate) and poly(ethylene oxide), is probed using a novel approach coupled with selective etching. For interpreting the mechanisms of crystal periodic aggregation, various microscopic techniques and synchrotron microbeam X-ray analysis are used to observe the top surface in connection with the 3D crystal assemblies. Periodic grating architectures, with the cross-bar pitch exactly matching with the optical band spacing, are proved in banded PHB. The crystals under the ridge branch out to spawn finer crystals orienting/bending horizontally underneath the valley band, repeating till species drainage or impingement. The grating structure in the banded PHB resembles many nature's iridescence crystals and is further proved by photonic reflection results as a critical breakthrough novel finding.
Collapse
Affiliation(s)
- Yu-Hsuan Liao
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Selvaraj Nagarajan
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Eamor M Woo
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Wei-Tsung Chuang
- National Synchrotron Radiation Research Center (NSRRC), 101 Hsin-Ann Road, Hsinchu, 30076, Taiwan
| | - Yi-Wei Tsai
- National Synchrotron Radiation Research Center (NSRRC), 101 Hsin-Ann Road, Hsinchu, 30076, Taiwan
| |
Collapse
|
10
|
Liparoti S, Franco P, Pantani R, De Marco I. Polycaprolactone/polyethylene-glycol capsules made by injection molding: A drug release modeling. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:112036. [PMID: 33812648 DOI: 10.1016/j.msec.2021.112036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 10/21/2022]
Abstract
Polycaprolactone (PCL)/Polyethylene-glycol (PEG) capsules are prepared by injection molding with the aim of producing Colon-specific Drug Delivery Systems (CDDS). PCL, being a gastroresistant polymer, is suitable for this kind of delivery; however, the release from PCL devices is too slow. For this reason, in this paper, different percentages of PEG (10, 20 and 30 w/w %) have been added to obtain blends able to modulate the release from PCL-based capsules. The drug release rate from PCL/PEG capsules increases with the PEG percentage; using PCL/PEG 70/30 w/w capsules, the drug release is suitable for CDDS. The experimental data have been modelled, accounting for three steps: the penetration of the release medium into the capsule, the drug dissolution in the release medium, and the drug migration from the capsule to the medium. The model accurately describes the data, showing a mass transfer coefficient strongly dependent on the PEG percentage.
Collapse
Affiliation(s)
- Sara Liparoti
- Department of Industrial Engineering (DIIn), University of Salerno, via Giovanni Paolo II, 132, Fisciano, SA 84084, Italy
| | - Paola Franco
- Department of Industrial Engineering (DIIn), University of Salerno, via Giovanni Paolo II, 132, Fisciano, SA 84084, Italy
| | - Roberto Pantani
- Department of Industrial Engineering (DIIn), University of Salerno, via Giovanni Paolo II, 132, Fisciano, SA 84084, Italy
| | - Iolanda De Marco
- Department of Industrial Engineering (DIIn), University of Salerno, via Giovanni Paolo II, 132, Fisciano, SA 84084, Italy.
| |
Collapse
|
11
|
Biocomposite foams based on polyhydroxyalkanoate and nanocellulose: Morphological and thermo-mechanical characterization. Int J Biol Macromol 2020; 164:1867-1878. [PMID: 32758612 DOI: 10.1016/j.ijbiomac.2020.07.273] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/15/2020] [Accepted: 07/19/2020] [Indexed: 01/01/2023]
Abstract
The application of bio-based and biodegradable poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is restricted by its high cost and brittleness. In the present work, these deficiencies were overcome by the manufacture of PHBV foams using thermally expandable microspheres (TES). Nanocellulose (Nc) and a crosslinking agent were added to PHBV-TES to control the foam structure and to improve the mechanical properties. Foams with almost perfect pores, well embedded in the polymer matrix, were obtained by a simple melt molding process. The closed-cell foams have a density 2.5-2.7 times lower than that of PHBV. The addition of Nc increased the expansion ratio, cell density and porosity and also led to a more uniform cell size distribution. The incorporation of the crosslinking agent, together with Nc and TES, increased the glass transition temperature with about 7 °C and strengthened the PHBV-Nc interactions. PHBV foams showed a 1.7-3 times higher deformation compared to PHBV and absorbed up to 15 times more energy. The fully biodegradable PHBV-Nc foams obtained in this work exhibit an advantageous porosity, good specific mechanical properties and high energy absorption, being promising alternatives for insulation, packaging or biomedical application.
Collapse
|
12
|
Li X, Dong X, Zhou J, Bao J, Chen S, Lu W, Zhang X, Chen W. Confined crystallization and melting behaviors of poly(ethylene glycol) end‐functionalized by hydrogen bonding groups: Effect of contents for functional units. POLYMER CRYSTALLIZATION 2020. [DOI: 10.1002/pcr2.10158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Xiang Li
- School of Materials Science and Engineering Zhejiang Sci‐Tech University Hangzhou China
| | - Xiaolei Dong
- School of Materials Science and Engineering Zhejiang Sci‐Tech University Hangzhou China
| | - Jiale Zhou
- School of Materials Science and Engineering Zhejiang Sci‐Tech University Hangzhou China
| | - Jianna Bao
- School of Materials Science and Engineering Zhejiang Sci‐Tech University Hangzhou China
| | - Shichang Chen
- School of Materials Science and Engineering Zhejiang Sci‐Tech University Hangzhou China
| | - Wangyang Lu
- School of Materials Science and Engineering Zhejiang Sci‐Tech University Hangzhou China
| | - Xianming Zhang
- School of Materials Science and Engineering Zhejiang Sci‐Tech University Hangzhou China
| | - Wenxing Chen
- School of Materials Science and Engineering Zhejiang Sci‐Tech University Hangzhou China
| |
Collapse
|
13
|
Nguyen-Tri P, Carrière P, Duong A, Nanda S. Graphene Oxide-Induced Interfacial Transcrystallization of Single-Fiber Milkweed/Polycaprolactone/Polyvinylchloride Composites. ACS OMEGA 2020; 5:22430-22439. [PMID: 32923801 PMCID: PMC7482230 DOI: 10.1021/acsomega.0c02913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
Understanding the interfacial crystallization is crucial for semi-crystalline polymer/natural fiber composites because it links to the final properties. This work reports, for the first time, the interfacial crystallization of a miscible blend between polycaprolactone (PCL) and polyvinylchloride (PVC) with milkweed fibers. We have first described the morphology of the fibers and the chemical composition of waxes covered on its surface. Our findings show that the transcrystallization (TC) layer of PCL/PVC could appear at the interface by simply coating with a layer of graphene oxide (GO) on the milkweed fiber. In our study, atomic force microscopy-infrared spectroscopy analysis shows that the crystallinity of the blends is higher at the vicinity of the interface compared to that in the bulk. The kinetic of the interfacial crystallization in terms of spherulite morphology and crystal growth rates at the nanoscale is examined. X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy were used to analyze the prepared GO and evaluate its relationship with the interfacial crystallization behavior of the blends.
Collapse
Affiliation(s)
- Phuong Nguyen-Tri
- Department
of Chemistry, Biochemistry and Physics, University du Québec à Trois-Rivières, Trois-Rivieres G9A 5H7, Québec, Canada
| | - Pascal Carrière
- Laboratoire
des Matériaux, Polymères, Interfaces et Environnement
Marin (MAPIEM), Université de Toulon, La Garde 83130 France
| | - Adam Duong
- Department
of Chemistry, Biochemistry and Physics, University du Québec à Trois-Rivières, Trois-Rivieres G9A 5H7, Québec, Canada
| | - Sonil Nanda
- Department
of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon S7N 5A9, Saskatchewan, Canada
| |
Collapse
|
14
|
Morsch S, Lyon S, Edmondson S, Gibbon S. Reflectance in AFM-IR: Implications for Interpretation and Remote Analysis of the Buried Interface. Anal Chem 2020; 92:8117-8124. [PMID: 32412736 PMCID: PMC7467426 DOI: 10.1021/acs.analchem.9b05793] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AFM-IR combines the chemical sensitivity of infrared spectroscopy with the lateral resolution of scanning probe microscopy, allowing nanoscale chemical analysis of almost any organic material under ambient conditions. As a result, this versatile technique is rapidly gaining popularity among materials scientists. Here, we report a previously overlooked source of data and artifacts in AFM-IR analysis; reflection from the buried interface. Periodic arrays of gold on glass are used to show that the overall signal in AFM-IR is affected by the wavelength-dependent reflectivity and thermal response of the underlying substrate. Excitingly, this demonstrates that remote analysis of heterogeneities at the buried interface is possible alongside that of an overlying organic film. On the other hand, AFM-IR users should carefully consider the composition and topography of underlying substrates when interpreting nanoscale infrared data. The common practice of generating ratio images, or indeed the normalization of AFM-IR spectra, should be approached with caution in the presence of substrate heterogeneity or variable sample thickness.
Collapse
Affiliation(s)
- Suzanne Morsch
- School of Materials, The University of Manchester, The Mill, Sackville St, Manchester M13 9PL, United Kingdom
| | - Stuart Lyon
- School of Materials, The University of Manchester, The Mill, Sackville St, Manchester M13 9PL, United Kingdom
| | - Steve Edmondson
- School of Materials, The University of Manchester, The Mill, Sackville St, Manchester M13 9PL, United Kingdom
| | - Simon Gibbon
- AkzoNobel, Stoneygate Lane, Felling, Gateshead, Tyne and Wear NE10 0JY, United Kingdom
| |
Collapse
|
15
|
Kurouski D, Dazzi A, Zenobi R, Centrone A. Infrared and Raman chemical imaging and spectroscopy at the nanoscale. Chem Soc Rev 2020; 49:3315-3347. [PMID: 32424384 PMCID: PMC7675782 DOI: 10.1039/c8cs00916c] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The advent of nanotechnology, and the need to understand the chemical composition at the nanoscale, has stimulated the convergence of IR and Raman spectroscopy with scanning probe methods, resulting in new nanospectroscopy paradigms. Here we review two such methods, namely photothermal induced resonance (PTIR), also known as AFM-IR and tip-enhanced Raman spectroscopy (TERS). AFM-IR and TERS fundamentals will be reviewed in detail together with their recent crucial advances. The most recent applications, now spanning across materials science, nanotechnology, biology, medicine, geology, optics, catalysis, art conservation and other fields are also discussed. Even though AFM-IR and TERS have developed independently and have initially targeted different applications, rapid innovation in the last 5 years has pushed the performance of these, in principle spectroscopically complimentary, techniques well beyond initial expectations, thus opening new opportunities for their convergence. Therefore, subtle differences and complementarity will be highlighted together with emerging trends and opportunities.
Collapse
Affiliation(s)
- Dmitry Kurouski
- Department Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843, USA.
| | | | | | | |
Collapse
|
16
|
Nguyen-Tri P, Ghassemi P, Carriere P, Nanda S, Assadi AA, Nguyen DD. Recent Applications of Advanced Atomic Force Microscopy in Polymer Science: A Review. Polymers (Basel) 2020; 12:E1142. [PMID: 32429499 PMCID: PMC7284686 DOI: 10.3390/polym12051142] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/26/2022] Open
Abstract
Atomic force microscopy (AFM) has been extensively used for the nanoscale characterization of polymeric materials. The coupling of AFM with infrared spectroscope (AFM-IR) provides another advantage to the chemical analyses and thus helps to shed light upon the study of polymers. This paper reviews some recent progress in the application of AFM and AFM-IR in polymer science. We describe the principle of AFM-IR and the recent improvements to enhance its resolution. We also discuss the latest progress in the use of AFM-IR as a super-resolution correlated scanned-probe infrared spectroscopy for the chemical characterization of polymer materials dealing with polymer composites, polymer blends, multilayers, and biopolymers. To highlight the advantages of AFM-IR, we report several results in studying the crystallization of both miscible and immiscible blends as well as polymer aging. Finally, we demonstrate how this novel technique can be used to determine phase separation, spherulitic structure, and crystallization mechanisms at nanoscales, which has never been achieved before. The review also discusses future trends in the use of AFM-IR in polymer materials, especially in polymer thin film investigation.
Collapse
Affiliation(s)
- Phuong Nguyen-Tri
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- Département de Chimie, Biochimie et Physique, Université du Québec à Trois-Rivières (UQTR), Trois-Rivières, QC G8Z 4M3, Canada;
| | - Payman Ghassemi
- Département de Chimie, Biochimie et Physique, Université du Québec à Trois-Rivières (UQTR), Trois-Rivières, QC G8Z 4M3, Canada;
| | - Pascal Carriere
- Laboratoire MAPIEM (EA 4323), Matériaux Polymères Interfaces Environnement Marin, Université de Toulon, CEDEX 9, 83041 Toulon, France;
| | - Sonil Nanda
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada;
| | - Aymen Amine Assadi
- ENSCR—Institut des Sciences Chimiques de Rennes (ISCR)—UMR CNRS 6226, Univ Rennes, 35700 Rennes, France;
| | - Dinh Duc Nguyen
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam;
- Department of Environmental Energy Engineering, Kyonggi University, Suwon 16227, Korea
| |
Collapse
|
17
|
Maimaitiming A, Wu G, Tan H, Wang M, Zhang M, Hu J, Xing Z. Rheology, polymorphic crystal transformation, thermal, and mechanical properties of long‐chain branched isotactic poly(1‐butene). J Appl Polym Sci 2020. [DOI: 10.1002/app.48411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Aizezi Maimaitiming
- Shanghai Institute of Applied PhysicsChinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Guozhong Wu
- Shanghai Institute of Applied PhysicsChinese Academy of Sciences Shanghai 201800 China
| | - Hairong Tan
- Shanghai Institute of Applied PhysicsChinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Minglei Wang
- Shanghai Institute of Applied PhysicsChinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Maojiang Zhang
- Shanghai Institute of Applied PhysicsChinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jiangtao Hu
- Shanghai Institute of Applied PhysicsChinese Academy of Sciences Shanghai 201800 China
| | - Zhe Xing
- Shanghai Institute of Applied PhysicsChinese Academy of Sciences Shanghai 201800 China
| |
Collapse
|
18
|
Schwartz JJ, Chuang HJ, Rosenberger MR, Sivaram SV, McCreary KM, Jonker BT, Centrone A. Chemical Identification of Interlayer Contaminants within van der Waals Heterostructures. ACS APPLIED MATERIALS & INTERFACES 2019; 11:25578-25585. [PMID: 31265230 PMCID: PMC6903401 DOI: 10.1021/acsami.9b06594] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
van der Waals heterostructures (vdWHs) leverage the characteristics of two-dimensional (2D) material building blocks to create a myriad of structures with unique and desirable properties. Several commonly employed fabrication strategies rely on polymeric stamps to assemble layers of 2D materials into vertical stacks. However, the properties of such heterostructures frequently are degraded by contaminants, typically of unknown composition, trapped between the constituent layers. Such contaminants, therefore, impede studies of the intrinsic properties of heterostructures and hinder their application. Here, we use the photothermal induced resonance (PTIR) technique to obtain infrared spectra and maps of the contaminants down to a few attomoles and with nanoscale resolution. Heterostructures comprised of WSe2, WS2, and hexagonal boron nitride layers were found to contain significant amounts of poly(dimethylsiloxane) (PDMS) and polycarbonate, corresponding to the stamp materials used in their construction. Additionally, we verify that an atomic force microscope-based "nanosqueegee" technique is an effective method for locally removing contaminants by comparing spectra within as-fabricated and cleaned regions. Having identified the source of the contaminants, we demonstrate that cleaning PDMS stamps with isopropyl alcohol or toluene prior to vdWH fabrication reduces PDMS contamination within the structures. The general applicability of the PTIR technique for identifying the sources corrupting vdWHs provides valuable guidance for devising mitigation strategies (e.g., stamp cleaning or pre-/post-treatments) and enhances capabilities for producing materials with precisely engineered properties.
Collapse
Affiliation(s)
- Jeffrey J. Schwartz
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, United States
- Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742, United States
| | - Hsun-Jen Chuang
- Materials Science & Technology Division, Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Matthew R. Rosenberger
- Materials Science & Technology Division, Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Saujan V. Sivaram
- Materials Science & Technology Division, Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Kathleen M. McCreary
- Materials Science & Technology Division, Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Berend T. Jonker
- Materials Science & Technology Division, Naval Research Laboratory, Washington, D.C. 20375, United States
- Corresponding Authors:,
| | - Andrea Centrone
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, United States
- Corresponding Authors:,
| |
Collapse
|
19
|
Antibacterial Activity of TiO2- and ZnO-Decorated with Silver Nanoparticles. JOURNAL OF COMPOSITES SCIENCE 2019. [DOI: 10.3390/jcs3020061] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This work emphasizes the use of the silver decorative method to enhance the antibacterial activity of TiO2 and ZnO nanoparticles. These silver-decorated nanoparticles (hybrid nanoparticles) were synthesized using sodium borohydride as a reducing agent, with the weight ratio of Ag precursors/oxide nanoparticles = 1:30. The morphology and optical properties of these hybrid nanoparticles were investigated using transmission electron microscopy (TEM), X-ray diffraction (XRD) patterns, and UV-Vis spectroscopy. The agar-well diffusion method was used to evaluate their antibacterial activity against both Staphylococcus aureus and Escherichia coli bacteria, with or without light irradiation. The TEM images indicated clearly that silver nanoparticles (AgNPs, 5–10 nm) were well deposited on the surface of nano-TiO2 particles (30–60 nm). In addition to this, bigger AgNPs (<20 nm) were dispersed on the surface of nano-ZnO particles (30–50 nm). XRD patterns confirmed the presence of AgNPs in both Ag-decorated TiO2 and Ag-decorated ZnO nanoparticles. UV-Vis spectra confirmed that the hybridization of Ag and oxide nanoparticles led to a shift in the absorption edge of oxide nanoparticles to the lower energy region (visible region). The antibacterial tests indicated that both oxide pure nanoparticles did not exhibit inhibitory effects against bacteria, with or without light irradiation. However, the presence of AgNPs in their hybrids, even at low content (<40 mg/mL), leads to a good antibacterial activity, and higher inhibition zones under light irradiation as compared to those in dark were observed.
Collapse
|
20
|
Butyl Rubber-Based Composite: Thermal Degradation and Prediction of Service Lifetime. JOURNAL OF COMPOSITES SCIENCE 2019. [DOI: 10.3390/jcs3020048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Butyl rubber-based composite (BRC) is one of the most popular materials for the fabrication of protective gloves against chemical and mechanical risks. However, in many workplaces, such as metal manufacturing or automotive mechanical services, its mechanical hazards usually appear together with metalworking fluids (MWFs). The presence of these contaminants, particularly at high temperatures, could modify its properties due to the scission, the plasticization and the crosslinking of the polymer network and thus lead to severe modification of the mechanical and physicochemical properties of material. This work aims to determine the effect of temperature and a metalworking fluid on the mechanical behavior of butyl rubber composite, dealing with crosslinking density, cohesion forces and the elastic constant of BRC, based on Mooney–Rivlin’s theory. The effect of temperature with and without MWFs on the thermo-dynamical properties and morphology of butyl membranes was also investigated. The prediction of service lifetime was then evaluated from the extrapolation of the Arrhenius plot at different temperatures.
Collapse
|
21
|
Biological Activity and Nanostructuration of Fe3O4-Ag/High Density Polyethylene Nanocomposites. JOURNAL OF COMPOSITES SCIENCE 2019. [DOI: 10.3390/jcs3020034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We report here the synthesis of uniform nanospheres-like silver nanoparticles (Ag NPs, 5–10 nm) and the dumbbell-like Fe3O4-Ag hybrid nanoparticles (FeAg NPs, 8–16 nm) by the use of a seeding growth method in the presence of oleic acid (OA)/oleylamine (OLA) as surfactants. The antibacterial activity of pure nanoparticles and nanocomposites by monitoring the bacterial lag–log growth has been investigated. The electron transfer from Ag NPs to Fe3O4 NPs which enhances the biological of silver nanoparticles has been proven by nanoscale Raman spectroscopy. The lamellae structure in the spherulite of FeAg NPs/High Density Polyethylene (HDPE) nanocomposites seems to play the key role in the antibacterial activity of nanocomposites, which has been proven by nanoscale AFM-IR. An atomic force microscopy coupled with nanoscale infrared microscopy (AFM-IR) is used to highlight the distribution of nanoparticles on the surface of nanocomposite at the nanoscale. The presence of FeAg NPs in PE nanocomposites has a better antibacterial activity than that reinforced by Ag NPs due to the faster Ag+ release rate from the Fe3O4-Ag hybrid nanoparticles and the ionization of Ag NPs in hybrid nanostructure.
Collapse
|
22
|
Nguyen-Tri P, Prud'homme RE. Nanoscale analysis of the photodegradation of polyester fibers by AFM-IR. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2018.11.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
23
|
Wieland K, Ramer G, Weiss VU, Allmaier G, Lendl B, Centrone A. Nanoscale Chemical Imaging of Individual, Chemotherapeutic Cytarabine-loaded Liposomal Nanocarriers. NANO RESEARCH 2019; 12:10.1007/s12274-018-2202-x. [PMID: 31275527 PMCID: PMC6604632 DOI: 10.1007/s12274-018-2202-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 05/30/2018] [Accepted: 09/12/2018] [Indexed: 05/05/2023]
Abstract
Dosage of chemotherapeutic drugs is a tradeoff between efficacy and side-effects. Liposomes are nanocarriers that increase therapy efficacy and minimize side-effects by delivering otherwise difficult to administer therapeutics with improved efficiency and selectivity. Still, variabilities in liposome preparation require assessing drug encapsulation efficiency at the single liposome level, an information that, for non-fluorescent therapeutic cargos, is inaccessible due to the minute drug load per liposome. Photothermal induced resonance (PTIR) provides nanoscale compositional specificity, up to now, by leveraging an atomic force microscope (AFM) tip contacting the sample to transduce the sample's photothermal expansion. However, on soft samples (e.g. liposomes) PTIR effectiveness is reduced due to the likelihood of tip-induced sample damage and inefficient AFM transduction. Here, individual liposomes loaded with the chemotherapeutic drug cytarabine are deposited intact from suspension via nES-GEMMA (nano-electrospray gas-phase electrophoretic mobility molecular analysis) collection and characterized at the nanoscale with the chemically-sensitive PTIR method. A new tapping-mode PTIR imaging paradigm based on heterodyne detection is shown to be better adapted to measure soft samples, yielding cytarabine distribution in individual liposomes and enabling classification of empty and drug-loaded liposomes. The measurements highlight PTIR capability to detect ≈ 103 cytarabine molecules (≈ 1.7 zmol) label-free and non-destructively.
Collapse
Affiliation(s)
- Karin Wieland
- Institute of Chemical Technologies and Analytics. Research Division Environmental, Process Analytics and Sensors, TU Wien, Vienna 1060, Austria
| | - Georg Ramer
- Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
- Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742, USA
| | - Victor U Weiss
- Institute of Chemical Technologies and Analytics. Research Division Instrumental and Imaging Analytical Chemistry, TU Wien, Vienna 1060, Austria
| | - Guenter Allmaier
- Institute of Chemical Technologies and Analytics. Research Division Instrumental and Imaging Analytical Chemistry, TU Wien, Vienna 1060, Austria
| | - Bernhard Lendl
- Institute of Chemical Technologies and Analytics. Research Division Environmental, Process Analytics and Sensors, TU Wien, Vienna 1060, Austria
| | - Andrea Centrone
- Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| |
Collapse
|
24
|
Nguyen Tri P, Prud’homme RE. Crystallization and Segregation Behavior at the Submicrometer Scale of PCL/PEG Blends. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01503] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Phuong Nguyen Tri
- Department of Chemistry, University of Montreal, 5155 chemin de la rampe, Montréal, QC H3T 1J4, Canada
| | - Robert E. Prud’homme
- Department of Chemistry, University of Montreal, 5155 chemin de la rampe, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
25
|
Tuteja M, Kang M, Leal C, Centrone A. Nanoscale partitioning of paclitaxel in hybrid lipid-polymer membranes. Analyst 2018; 143:3808-3813. [PMID: 29878001 PMCID: PMC6215448 DOI: 10.1039/c8an00838h] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Paclitaxel is a powerful drug against restenosis and many forms of cancer. However, its clinical application hinges on the ability to achieve suitable stabilized drug concentrations in an aqueous suspension while hindering drug crystallization. To engineer such formulations, it is imperative to understand paclitaxel's partitioning and crystallization within the carrier matrix. Lipid-polymer hybrid films have been recently shown to accommodate large paclitaxel loads and suppress crystallization. Additionally, such hybrid materials promote synergistic drug release compared to the pure constituents. Here, we leverage the composition sensitive photo-thermal induced resonance (PTIR) technique to study paclitaxel partitioning within hybrid films at the nanoscale. PTIR data reveal that paclitaxel nano-crystals segregate from lipid-only films but are well dispersed in polymer-only films. Remarkably, lipid-polymer hybrid films show enhanced partitioning of paclitaxel at the lipid-polymer phase boundaries, but still stifle crystallization, thus paving the way towards compositional and microstructural engineering of small-drug delivery systems.
Collapse
Affiliation(s)
- Mohit Tuteja
- Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| | | | | | | |
Collapse
|
26
|
Ramer G, Ruggeri FS, Levin A, Knowles TPJ, Centrone A. Determination of Polypeptide Conformation with Nanoscale Resolution in Water. ACS NANO 2018; 12:6612-6619. [PMID: 29932670 PMCID: PMC11404133 DOI: 10.1021/acsnano.8b01425] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The folding and acquisition of proteins native structure is central to all biological processes of life. By contrast, protein misfolding can lead to toxic amyloid aggregates formation, linked to the onset of neurodegenerative disorders. To shed light on the molecular basis of protein function and malfunction, it is crucial to access structural information on single protein assemblies and aggregates under native conditions. Yet, current conformation-sensitive spectroscopic methods lack the spatial resolution and sensitivity necessary for characterizing heterogeneous protein aggregates in solution. To overcome this limitation, here we use photothermal-induced resonance to demonstrate that it is possible to acquire nanoscale infrared spectra in water with high signal-to-noise ratio (SNR). Using this approach, we probe supramolecular aggregates of diphenylalanine, the core recognition module of the Alzheimer's β-amyloid peptide, and its derivative Boc-diphenylalanine. We achieve nanoscale resolved IR spectra and maps in air and water with comparable SNR and lateral resolution, thus enabling accurate identification of the chemical and structural state of morphologically similar networks at the single aggregate ( i. e., fibril) level.
Collapse
Affiliation(s)
- Georg Ramer
- Center for Nanoscale Science and Technology , National Institute of Standards and Technology , Gaithersburg , Maryland 20899 , United States
- Institute for Research in Electronics and Applied Physics , University of Maryland , College Park , Maryland 20742 , United States
| | | | - Aviad Levin
- Department of Chemistry , University of Cambridge , Cambridge CB2 1EW , United Kingdom
| | - Tuomas P J Knowles
- Department of Chemistry , University of Cambridge , Cambridge CB2 1EW , United Kingdom
- Cavendish Laboratory, Department of Physics , University of Cambridge , J J Thomson Avenue , Cambridge CB3 0HE , United Kingdom
| | - Andrea Centrone
- Center for Nanoscale Science and Technology , National Institute of Standards and Technology , Gaithersburg , Maryland 20899 , United States
| |
Collapse
|