1
|
Zhu C, Beauseroy H, Mougin J, Lages M, Nicolas J. In situ synthesis of degradable polymer prodrug nanoparticles. Chem Sci 2025; 16:2619-2633. [PMID: 39822905 PMCID: PMC11733764 DOI: 10.1039/d4sc07746f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/06/2025] [Indexed: 01/19/2025] Open
Abstract
The in situ synthesis of degradable polymer prodrug nanoparticles is still a challenge to be met, which would make it possible to remedy both the shortcomings of traditional formulation of preformed polymers (e.g., low nanoparticle concentrations) and those of the physical encapsulation of drugs (e.g., burst release and poor drug loadings). Herein, through the combination of radical ring-opening polymerization (rROP) and polymerization-induced self-assembly (PISA) under appropriate experimental conditions, we report the successful preparation of high-solid content, degradable polymer prodrug nanoparticles, exhibiting multiple drug moieties covalently linked to a degradable vinyl copolymer backbone. Such a rROPISA process relied on the chain extension of a biocompatible poly(ethylene glycol)-based solvophilic block with a mixture of lauryl methacrylate (LMA), cyclic ketene acetal (CKA) and drug-bearing methacrylic esters by reversible addition fragmentation chain transfer (RAFT) copolymerization at 20 wt% solid content. This novel approach was exemplified with two different CKA monomers and two different anticancer drugs, namely paclitaxel and gemcitabine, to demonstrate its versatility. After transferring to water, remarkably stable aqueous suspensions of core-degradable polymer prodrug nanoparticles, 56-225 nm in diameter, with tunable amounts of CKA units (7-26 mol%) and drug loadings of up to 33 wt% were obtained. The incorporation of ester groups in the copolymers was demonstrated by hydrolytic degradation of both the copolymers and the nanoparticles under accelerated conditions. The nanoparticles showed significant cytotoxicity against A549 cells, used as a lung cancer model. Fluorescence labeling of the solvophilic block also enabled effective monitoring of cell internalization by confocal microscopy, with potential for theranostic applications.
Collapse
Affiliation(s)
- Chen Zhu
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay 91400 Orsay France +33-180006081
| | - Hannah Beauseroy
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay 91400 Orsay France +33-180006081
| | - Julie Mougin
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay 91400 Orsay France +33-180006081
| | - Maëlle Lages
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay 91400 Orsay France +33-180006081
| | - Julien Nicolas
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay 91400 Orsay France +33-180006081
| |
Collapse
|
2
|
Tan X, Zhang L, Tan J. Exploiting Seeded RAFT Polymerization for the Preparation of Graft Copolymer Nanoparticles. Macromol Rapid Commun 2025; 46:e2400706. [PMID: 39601477 DOI: 10.1002/marc.202400706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/15/2024] [Indexed: 11/29/2024]
Abstract
Although seeded reversible addition-fragmentation chain transfer (RAFT) polymerization is explored as a unique method for the preparation of block copolymer nanoparticles with diverse structures, the preparation of nonlinear polymer nanoparticles by seeded RAFT polymerization is rarely reported. Herein, linear block copolymer nanoparticles are first prepared by RAFT dispersion copolymerization of benzyl methacrylate (BzMA) and 2-(2-(n-butyltrithiocarbonate)propionate)ethyl methacrylate (BTPEMA) with different [BzMA]/[BTPEMA] ratios, and employed as seeds for seeded RAFT polymerization of isobornyl acrylate (IBOA) to prepare graft copolymer nanoparticles with different numbers of PIBOA side chains. Comparing with linear triblock copolymers with the same chemical composition, the graft copolymers can promote the formation of higher-order morphologies (e.g., vesicles) under seeded RAFT polymerization conditions. Effects of reaction parameters on the morphology of graft copolymer nanoparticles are investigated in detail, and two morphological phase diagrams are constructed. It is expected that this study will not only expand the scope of seeded RAFT polymerization but also offer new opportunities for the preparation of unique polymer nanoparticles.
Collapse
Affiliation(s)
- Xuesheng Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Li Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou, 510006, China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou, 510006, China
| |
Collapse
|
3
|
Thanapongpibul C, Rifaie‐Graham O, Ojansivu M, Najer A, Kim H, Bakker SE, Chami M, Peeler DJ, Liu C, Yeow J, Stevens MM. Unlocking Intracellular Protein Delivery by Harnessing Polymersomes Synthesized at Microliter Volumes using Photo-PISA. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408000. [PMID: 39417762 PMCID: PMC11619233 DOI: 10.1002/adma.202408000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/06/2024] [Indexed: 10/19/2024]
Abstract
Efficient delivery of therapeutic proteins and vaccine antigens to intracellular targets is challenging due to generally poor cell membrane permeation and endolysosomal entrapment causing degradation. Herein, these challenges are addressed by developing an oxygen-tolerant photoinitiated polymerization-induced self-assembly (Photo-PISA) process, allowing for the microliter-scale (10 µL) synthesis of protein-loaded polymersomes directly in 1536-well plates. High-resolution techniques capable of analysis at a single particle level are employed to analyze protein encapsulation and release mechanisms. Using confocal microscopy and super-resolution stochastic optical reconstruction microscopy (STORM) imaging, their ability to deliver proteins into the cytosol following endosomal escape is subsequently visualized. Lastly, the adaptability of these polymersomes is exploited to encapsulate and deliver a prototype vaccine antigen, demonstrating its ability to activate antigen-presenting cells and support antigen cross-presentation for applications in subunit vaccines and cancer immunotherapy. This combination of ultralow volume synthesis and efficient intracellular delivery holds significant promise for unlocking the high throughput screening of a broad range of otherwise cost-prohibitive or early-stage therapeutic protein and vaccine antigen candidates that can be difficult to obtain in large quantities. The versatility of this platform for rapid screening of intracellular protein delivery can result in significant advancements across the fields of nanomedicine and biomedical engineering.
Collapse
Affiliation(s)
- Chalaisorn Thanapongpibul
- Department of Materials, Department of Bioengineering, and Institute of Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Omar Rifaie‐Graham
- Department of Materials, Department of Bioengineering, and Institute of Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Miina Ojansivu
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholm17177Sweden
| | - Adrian Najer
- Department of Materials, Department of Bioengineering, and Institute of Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Hyemin Kim
- Department of Materials, Department of Bioengineering, and Institute of Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Saskia E. Bakker
- Advanced Bioimaging Research Technology PlatformUniversity of WarwickGibbet Hill RoadCoventryCV4 7ALUK
| | - Mohamed Chami
- BioEM LabBiozentrumUniversity of BaselBasel4058Switzerland
| | - David J. Peeler
- Department of Materials, Department of Bioengineering, and Institute of Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Chenchen Liu
- Department of Materials, Department of Bioengineering, and Institute of Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
- Kavli Institute for Nanoscience DiscoveryDepartment of Physiology, Anatomy and GeneticsDepartment of Engineering ScienceUniversity of OxfordOxfordOX1 3QUUK
| | - Jonathan Yeow
- Department of Materials, Department of Bioengineering, and Institute of Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
- Graduate School of Biomedical EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | - Molly M. Stevens
- Department of Materials, Department of Bioengineering, and Institute of Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholm17177Sweden
- Kavli Institute for Nanoscience DiscoveryDepartment of Physiology, Anatomy and GeneticsDepartment of Engineering ScienceUniversity of OxfordOxfordOX1 3QUUK
| |
Collapse
|
4
|
Chung YH, Oh JK. Research Trends in the Development of Block Copolymer-Based Biosensing Platforms. BIOSENSORS 2024; 14:542. [PMID: 39590001 PMCID: PMC11591610 DOI: 10.3390/bios14110542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024]
Abstract
Biosensing technology, which aims to measure and control the signals of biological substances, has recently been developed rapidly due to increasing concerns about health and the environment. Top-down technologies have been used mainly with a focus on reducing the size of biomaterials to the nano-level. However, bottom-up technologies such as self-assembly can provide more opportunities to molecular-level arrangements such as directionality and the shape of biomaterials. In particular, block copolymers (BCPs) and their self-assembly have been significantly explored as an effective means of bottom-up technologies to achieve recent advances in molecular-level fine control and imaging technology. BCPs have been widely used in various biosensing research fields because they can artificially control highly complex nano-scale structures in a directionally controlled manner, and future application research based on interactions with biomolecules according to the development and synthesis of new BCP structures is greatly anticipated. Here, we comprehensively discuss the basic principles of BCPs technology, the current status of their applications in biosensing technology, and their limitations and future prospects. Rather than discussing a specific field in depth, this study comprehensively covers the overall content of BCPs as a biosensing platform, and through this, we hope to increase researchers' understanding of adjacent research fields and provide research inspiration, thereby bringing about great advances in the relevant research fields.
Collapse
Affiliation(s)
- Yong-Ho Chung
- Department of Chemical Engineering, Hoseo University, Asan-si 31499, Republic of Korea
| | - Jung Kwon Oh
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QC H4B 1R6, Canada
| |
Collapse
|
5
|
Karchilakis G, Varlas S, Johnson EC, Norvilaite O, Farmer MAH, Sanderson G, Leggett GJ, Armes SP. Capturing Enzyme-Loaded Diblock Copolymer Vesicles Using an Aldehyde-Functionalized Hydrophilic Polymer Brush. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14086-14098. [PMID: 38934738 PMCID: PMC11238591 DOI: 10.1021/acs.langmuir.4c01561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
Compared to lipids, block copolymer vesicles are potentially robust nanocontainers for enzymes owing to their enhanced chemical stability, particularly in challenging environments. Herein we report that cis-diol-functional diblock copolymer vesicles can be chemically adsorbed onto a hydrophilic aldehyde-functional polymer brush via acetal bond formation under mild conditions (pH 5.5, 20 °C). Quartz crystal microbalance studies indicated an adsorbed amount, Γ, of 158 mg m-2 for vesicle adsorption onto such brushes, whereas negligible adsorption (Γ = 0.1 mg m-2) was observed for a control experiment conducted using a cis-diol-functionalized brush. Scanning electron microscopy and ellipsometry studies indicated a mean surface coverage of around 30% at the brush surface, which suggests reasonably efficient chemical adsorption. Importantly, such vesicles can be conveniently loaded with a model enzyme (horseradish peroxidase, HRP) using an aqueous polymerization-induced self-assembly formulation. Moreover, the immobilized vesicles remained permeable toward small molecules while retaining their enzyme payload. The enzymatic activity of such HRP-loaded vesicles was demonstrated using a well-established colorimetric assay. In principle, this efficient vesicle-on-brush strategy can be applied to a wide range of enzymes and functional proteins for the design of next-generation immobilized nanoreactors for enzyme-mediated catalysis.
Collapse
Affiliation(s)
- Georgios Karchilakis
- Dainton
Building, Department of Chemistry, The University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| | - Spyridon Varlas
- Dainton
Building, Department of Chemistry, The University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| | - Edwin C. Johnson
- Dainton
Building, Department of Chemistry, The University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| | - Oleta Norvilaite
- Dainton
Building, Department of Chemistry, The University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| | - Matthew A. H. Farmer
- Dainton
Building, Department of Chemistry, The University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| | - George Sanderson
- GEO
Specialty Chemicals, Hythe, Southampton, Hampshire SO45 3ZG, U.K.
| | - Graham J. Leggett
- Dainton
Building, Department of Chemistry, The University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| | - Steven P. Armes
- Dainton
Building, Department of Chemistry, The University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| |
Collapse
|
6
|
Serkhacheva NS, Prokopov NI, Lysenko EA, Kozhunova EY, Chernikova EV. Modern Trends in Polymerization-Induced Self-Assembly. Polymers (Basel) 2024; 16:1408. [PMID: 38794601 PMCID: PMC11125046 DOI: 10.3390/polym16101408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/01/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
Polymerization-induced self-assembly (PISA) is a powerful and versatile technique for producing colloidal dispersions of block copolymer particles with desired morphologies. Currently, PISA can be carried out in various media, over a wide range of temperatures, and using different mechanisms. This method enables the production of biodegradable objects and particles with various functionalities and stimuli sensitivity. Consequently, PISA offers a broad spectrum of potential commercial applications. The aim of this review is to provide an overview of the current state of rational synthesis of block copolymer particles with diverse morphologies using various PISA techniques and mechanisms. The discussion begins with an examination of the main thermodynamic, kinetic, and structural aspects of block copolymer micellization, followed by an exploration of the key principles of PISA in the formation of gradient and block copolymers. The review also delves into the main mechanisms of PISA implementation and the principles governing particle morphology. Finally, the potential future developments in PISA are considered.
Collapse
Affiliation(s)
- Natalia S. Serkhacheva
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, pr. Vernadskogo, 86, 119571 Moscow, Russia;
| | - Nickolay I. Prokopov
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, pr. Vernadskogo, 86, 119571 Moscow, Russia;
| | - Evgenii A. Lysenko
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, bld. 3, 119991 Moscow, Russia; (E.A.L.); (E.Y.K.)
| | - Elena Yu. Kozhunova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, bld. 3, 119991 Moscow, Russia; (E.A.L.); (E.Y.K.)
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1, bld. 2, 119991 Moscow, Russia
| | - Elena V. Chernikova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, bld. 3, 119991 Moscow, Russia; (E.A.L.); (E.Y.K.)
| |
Collapse
|
7
|
Zhou J, Huang Q, Zhang L, Tan J. Exploiting the Monomer-Feeding Mechanism of RAFT Emulsion Polymerization for Polymerization-Induced Self-Assembly of Asymmetric Divinyl Monomers. ACS Macro Lett 2023; 12:1457-1465. [PMID: 37844283 DOI: 10.1021/acsmacrolett.3c00547] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
We exploited the monomer-feeding mechanism of reversible addition-fragmentation chain transfer (RAFT) emulsion polymerization to achieve the successful polymerization-induced self-assembly (PISA) of asymmetric divinyl monomers. Colloidally stable cross-linked block copolymer nanoparticles with various morphologies, such as vesicles, were directly prepared at high solids. Morphologies of the cross-linked block copolymer nanoparticles could be controlled by varying the monomer concentration, degree of polymerization (DP) of the core-forming block, and length of the macro-RAFT agent. X-ray photoelectron spectroscopy (XPS) characterization confirmed the presence of unreacted vinyl groups within the obtained block copolymer nanoparticles, providing a landscape for further functionalization via thiol-ene chemistry. Finally, the obtained block copolymer nanoparticles were employed as additives to tune the mechanical properties of hydrogels. We expect that this study not only offers considerable opportunities for the preparation of well-defined cross-linked block copolymer nanoparticles, but also provides important insights into the controlled polymerization of multivinyl monomers.
Collapse
Affiliation(s)
- Jiaxi Zhou
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Qian Huang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Li Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| |
Collapse
|
8
|
Kayani A, Raza A, Si J, Dutta D, Zhou Q, Ge Z. Polymersome Membrane Engineering with Active Targeting or Controlled Permeability for Responsive Drug Delivery. Biomacromolecules 2023; 24:4622-4645. [PMID: 37870458 DOI: 10.1021/acs.biomac.3c00839] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Polymersomes have been extensively investigated for drug delivery as nanocarriers for two decades due to a series of advantages including high stability under physiological conditions, simultaneous encapsulation of hydrophilic and hydrophobic drugs inside inner cavities and membranes, respectively, and facile adjustment of membrane and surface properties, as well as controlled drug release through incorporation of stimuli-responsive components. Despite these features, polymersome nanocarriers frequently suffer from nontargeting delivery and poor membrane permeability. In recent years, polymersomes have been functionalized for more efficient drug delivery. The surface shells were explored to be modified with diverse active targeting groups to improve disease-targeting delivery. The membrane permeability of the polymersomes was adjusted by incorporation of the stimuli-responsive components for smart controlled transportation of the encapsulated drugs. Therefore, being the polymersome-biointerface, tailorable properties can be introduced by its carefully modulated engineering. This review elaborates on the role of polymersome membranes as a platform to incorporate versatile features. First, we discuss how surface functionalization facilitates the directional journey to the targeting sites toward specific diseases, cells, or intracellular organelles via active targeting. Moreover, recent advances in the past decade related to membrane permeability to control drug release are also summarized. We finally discuss future development to promote polymersomes as in vivo drug delivery nanocarriers.
Collapse
Affiliation(s)
- Anum Kayani
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Arsalan Raza
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Jiale Si
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Debabrata Dutta
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Qinghao Zhou
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Zhishen Ge
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| |
Collapse
|
9
|
Chen Y, Tan J, Shen L. Seeded RAFT Polymerization-Induced Self-assembly: Recent Advances and Future Opportunities. Macromol Rapid Commun 2023; 44:e2300334. [PMID: 37615609 DOI: 10.1002/marc.202300334] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/30/2023] [Indexed: 08/25/2023]
Abstract
Over the past decade, polymerization-induced self-assembly (PISA) has fully proved its versatility for scale-up production of block copolymer nanoparticles with tunable sizes and morphologies; yet, there are still some limitations. Recently, seeded PISA approaches combing PISA with heterogeneous seeded polymerizations have been greatly explored and are expected to overcome the limitations of traditional PISA. In this review, recent advances in seeded PISA that have expanded new horizons for PISA are highlighted including i) general considerations for seeded PISA (e.g., kinetics, the preparation of seeds, the selection of monomers), ii) morphological evolution induced by seeded PISA (e.g., from corona-shell-core nanoparticles to vesicles, vesicles-to-toroid, disassembly of vesicles into nanospheres), and iii) various well-defined nanoparticles with hierarchical and sophisticated morphologies (e.g., multicompartment micelles, porous vesicles, framboidal vesicles, AXn -type colloidal molecules). Finally, new insights into seeded PISA and future perspectives are proposed.
Collapse
Affiliation(s)
- Yifei Chen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Liangliang Shen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, China
| |
Collapse
|
10
|
In situ encapsulation of biologically active ingredients into polymer particles by polymerization in dispersed media. Prog Polym Sci 2023. [DOI: 10.1016/j.progpolymsci.2022.101637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
Gouveia MG, Wesseler JP, Ramaekers J, Weder C, Scholten PBV, Bruns N. Polymersome-based protein drug delivery - quo vadis? Chem Soc Rev 2023; 52:728-778. [PMID: 36537575 PMCID: PMC9890519 DOI: 10.1039/d2cs00106c] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Indexed: 12/24/2022]
Abstract
Protein-based therapeutics are an attractive alternative to established therapeutic approaches and represent one of the fastest growing families of drugs. While many of these proteins can be delivered using established formulations, the intrinsic sensitivity of proteins to denaturation sometimes calls for a protective carrier to allow administration. Historically, lipid-based self-assembled structures, notably liposomes, have performed this function. After the discovery of polymersome-based targeted drug-delivery systems, which offer manifold advantages over lipid-based structures, the scientific community expected that such systems would take the therapeutic world by storm. However, no polymersome formulations have been commercialised. In this review article, we discuss key obstacles for the sluggish translation of polymersome-based protein nanocarriers into approved pharmaceuticals, which include limitations imparted by the use of non-degradable polymers, the intricacies of polymersome production methods, and the complexity of the in vivo journey of polymersomes across various biological barriers. Considering this complex subject from a polymer chemist's point of view, we highlight key areas that are worthy to explore in order to advance polymersomes to a level at which clinical trials become worthwhile and translation into pharmaceutical and nanomedical applications is realistic.
Collapse
Affiliation(s)
- Micael G Gouveia
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, UK
| | - Justus P Wesseler
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, UK
| | - Jobbe Ramaekers
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, UK
| | - Christoph Weder
- Adolphe Merkle Institute, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
| | - Philip B V Scholten
- Adolphe Merkle Institute, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
| | - Nico Bruns
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, UK
- Department of Chemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany.
| |
Collapse
|
12
|
Ikkene D, Six JL, Ferji K. Progress in Aqueous Dispersion RAFT PISA. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
13
|
Kim H, Yeow J, Najer A, Kit‐Anan W, Wang R, Rifaie‐Graham O, Thanapongpibul C, Stevens MM. Microliter Scale Synthesis of Luciferase-Encapsulated Polymersomes as Artificial Organelles for Optogenetic Modulation of Cardiomyocyte Beating. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200239. [PMID: 35901502 PMCID: PMC9507352 DOI: 10.1002/advs.202200239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Constructing artificial systems that effectively replace or supplement natural biological machinery within cells is one of the fundamental challenges underpinning bioengineering. At the sub-cellular scale, artificial organelles (AOs) have significant potential as long-acting biomedical implants, mimicking native organelles by conducting intracellularly compartmentalized enzymatic actions. The potency of these AOs can be heightened when judiciously combined with genetic engineering, producing highly tailorable biohybrid cellular systems. Here, the authors present a cost-effective, microliter scale (10 µL) polymersome (PSome) synthesis based on polymerization-induced self-assembly for the in situ encapsulation of Gaussia luciferase (GLuc), as a model luminescent enzyme. These GLuc-loaded PSomes present ideal features of AOs including enhanced enzymatic resistance to thermal, proteolytic, and intracellular stresses. To demonstrate their biomodulation potential, the intracellular luminescence of GLuc-loaded PSomes is coupled to optogenetically engineered cardiomyocytes, allowing modulation of cardiac beating frequency through treatment with coelenterazine (CTZ) as the substrate for GLuc. The long-term intracellular stability of the luminescent AOs allows this cardiostimulatory phenomenon to be reinitiated with fresh CTZ even after 7 days in culture. This synergistic combination of organelle-mimicking synthetic materials with genetic engineering is therefore envisioned as a highly universal strategy for the generation of new biohybrid cellular systems displaying unique triggerable properties.
Collapse
Affiliation(s)
- Hyemin Kim
- Department of MaterialsDepartment of Bioengineeringand Institute of Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Jonathan Yeow
- Department of MaterialsDepartment of Bioengineeringand Institute of Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Adrian Najer
- Department of MaterialsDepartment of Bioengineeringand Institute of Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Worrapong Kit‐Anan
- Department of MaterialsDepartment of Bioengineeringand Institute of Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Richard Wang
- Department of MaterialsDepartment of Bioengineeringand Institute of Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Omar Rifaie‐Graham
- Department of MaterialsDepartment of Bioengineeringand Institute of Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Chalaisorn Thanapongpibul
- Department of MaterialsDepartment of Bioengineeringand Institute of Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Molly M. Stevens
- Department of MaterialsDepartment of Bioengineeringand Institute of Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
| |
Collapse
|
14
|
Zhu C, Nicolas J. (Bio)degradable and Biocompatible Nano-Objects from Polymerization-Induced and Crystallization-Driven Self-Assembly. Biomacromolecules 2022; 23:3043-3080. [PMID: 35707964 DOI: 10.1021/acs.biomac.2c00230] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Polymerization-induced self-assembly (PISA) and crystallization-driven self-assembly (CDSA) techniques have emerged as powerful approaches to produce a broad range of advanced synthetic nano-objects with high potential in biomedical applications. PISA produces nano-objects of different morphologies (e.g., spheres, vesicles and worms), with high solids content (∼10-50 wt %) and without additional surfactant. CDSA can finely control the self-assembly of block copolymers and readily forms nonspherical crystalline nano-objects and more complex, hierarchical assemblies, with spatial and dimensional control over particle length or surface area, which is typically difficult to achieve by PISA. Considering the importance of these two assembly techniques in the current scientific landscape of block copolymer self-assembly and the craze for their use in the biomedical field, this review will focus on the advances in PISA and CDSA to produce nano-objects suitable for biomedical applications in terms of (bio)degradability and biocompatibility. This review will therefore discuss these two aspects in order to guide the future design of block copolymer nanoparticles for future translation toward clinical applications.
Collapse
Affiliation(s)
- Chen Zhu
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Julien Nicolas
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry, France
| |
Collapse
|
15
|
Strategies for preparing hybrid nanomaterials via Polymerization-Induced Self-Assembly. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Wan J, Fan B, Thang SH. RAFT-mediated polymerization-induced self-assembly (RAFT-PISA): current status and future directions. Chem Sci 2022; 13:4192-4224. [PMID: 35509470 PMCID: PMC9006902 DOI: 10.1039/d2sc00762b] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/17/2022] [Indexed: 12/13/2022] Open
Abstract
Polymerization-induced self-assembly (PISA) combines polymerization and self-assembly in a single step with distinct efficiency that has set it apart from the conventional solution self-assembly processes. PISA holds great promise for large-scale production, not only because of its efficient process for producing nano/micro-particles with high solid content, but also thanks to the facile control over the particle size and morphology. Since its invention, many research groups around the world have developed new and creative approaches to broaden the scope of PISA initiations, morphologies and applications, etc. The growing interest in PISA is certainly reflected in the increasing number of publications over the past few years, and in this review, we aim to summarize these recent advances in the emerging aspects of RAFT-mediated PISA. These include (1) non-thermal initiation processes, such as photo-, enzyme-, redox- and ultrasound-initiation; the achievements of (2) high-order structures, (3) hybrid materials and (4) stimuli-responsive nano-objects by design and adopting new monomers and new processes; (5) the efforts in the realization of upscale production by utilization of high throughput technologies, and finally the (6) applications of current PISA nano-objects in different fields and (7) its future directions.
Collapse
Affiliation(s)
- Jing Wan
- School of Chemistry, Monash University Clayton VIC 3800 Australia
| | - Bo Fan
- School of Chemistry, Monash University Clayton VIC 3800 Australia
| | - San H Thang
- School of Chemistry, Monash University Clayton VIC 3800 Australia
| |
Collapse
|
17
|
Varlas S, Neal TJ, Armes SP. Polymerization-induced self-assembly and disassembly during the synthesis of thermoresponsive ABC triblock copolymer nano-objects in aqueous solution. Chem Sci 2022; 13:7295-7303. [PMID: 35799807 PMCID: PMC9214878 DOI: 10.1039/d2sc01611g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/31/2022] [Indexed: 12/22/2022] Open
Abstract
Polymerization-induced self-assembly (PISA) has been widely utilized as a powerful methodology for the preparation of various self-assembled AB diblock copolymer nano-objects in aqueous media. Moreover, it is well-documented that chain extension of AB diblock copolymer vesicles using a range of hydrophobic monomers via seeded RAFT aqueous emulsion polymerization produces framboidal ABC triblock copolymer vesicles with adjustable surface roughness owing to microphase separation between the two enthalpically incompatible hydrophobic blocks located within their membranes. However, the utilization of hydrophilic monomers for the chain extension of linear diblock copolymer vesicles has yet to be thoroughly explored; this omission is addressed for aqueous PISA formulations in the present study. Herein poly(glycerol monomethacrylate)-poly(2-hydroxypropyl methacrylate) (G-H) vesicles were used as seeds for the RAFT aqueous dispersion polymerization of oligo(ethylene glycol) methyl ether methacrylate (OEGMA). Interestingly, this led to polymerization-induced disassembly (PIDA), with the initial precursor vesicles being converted into lower-order worms or spheres depending on the target mean degree of polymerization (DP) for the corona-forming POEGMA block. Moreover, construction of a pseudo-phase diagram revealed an unexpected copolymer concentration dependence for this PIDA formulation. Previously, we reported that PHPMA-based diblock copolymer nano-objects only exhibit thermoresponsive behavior over a relatively narrow range of compositions and DPs (see Warren et al., Macromolecules, 2018, 51, 8357–8371). However, introduction of the POEGMA coronal block produced thermoresponsive ABC triblock nano-objects even when the precursor G-H diblock copolymer vesicles proved to be thermally unresponsive. Thus, this new approach is expected to enable the rational design of new nano-objects with tunable composition, copolymer architectures and stimulus-responsive behavior. Chain extension of linear AB diblock copolymer vesicles by seeded RAFT aqueous dispersion polymerization using a hydrophilic monomer C leads to polymerization-induced disassembly to form lower-order thermoresponsive ABC triblock copolymer nano-objects.![]()
Collapse
Affiliation(s)
- Spyridon Varlas
- Department of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield S3 7HF, UK
| | - Thomas J. Neal
- Department of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield S3 7HF, UK
| | - Steven P. Armes
- Department of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield S3 7HF, UK
| |
Collapse
|
18
|
Jia S, Zhang L, Chen Y, Tan J. Polymers with multiple functions: α,ω-macromolecular photoinitiators/chain transfer agents used in aqueous photoinitiated polymerization-induced self-assembly. Polym Chem 2022. [DOI: 10.1039/d2py00606e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of α,ω-functionalized polymers with a photoinitiator end group and a RAFT end group were synthesized and employed as macromolecular photoinitiators/chain transfer agents in aqueous photoinitiated polymerization-induced self-assembly.
Collapse
Affiliation(s)
- Shuai Jia
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Li Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| |
Collapse
|
19
|
Cao J, Tan Y, Chen Y, Zhang L, Tan J. Expanding the Scope of Polymerization-Induced Self-Assembly: Recent Advances and New Horizons. Macromol Rapid Commun 2021; 42:e2100498. [PMID: 34418199 DOI: 10.1002/marc.202100498] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/18/2021] [Indexed: 12/26/2022]
Abstract
Over the past decade or so, polymerization-induced self-assembly (PISA) has become a versatile method for rational preparation of concentrated block copolymer nanoparticles with a diverse set of morphologies. Much of the PISA literature has focused on the preparation of well-defined linear block copolymers by using linear macromolecular chain transfer agents (macro-CTAs) with high chain transfer constants. In this review, a recent process is highlighted from an unusual angle that has expanded the scope of PISA including i) synthesis of block copolymers with nonlinear architectures (e.g., star block copolymer, branched block copolymer) by PISA, ii) in situ synthesis of blends of polymers by PISA, and iii) utilization of macro-CTAs with low chain transfer constants in PISA. By highlighting these important examples, new insights into the research of PISA and future impact these methods will have on polymer and colloid synthesis are provided.
Collapse
Affiliation(s)
- Junpeng Cao
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yingxin Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou, 510006, China
| | - Li Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China.,Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou, 510006, China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China.,Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou, 510006, China
| |
Collapse
|
20
|
Shim J, Zhou C, Gong T, Iserlis DA, Linjawi HA, Wong M, Pan T, Tan C. Building protein networks in synthetic systems from the bottom-up. Biotechnol Adv 2021; 49:107753. [PMID: 33857631 PMCID: PMC9558565 DOI: 10.1016/j.biotechadv.2021.107753] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/18/2021] [Accepted: 04/06/2021] [Indexed: 01/01/2023]
Abstract
The recent development of synthetic biology has expanded the capability to design and construct protein networks outside of living cells from the bottom-up. The new capability has enabled us to assemble protein networks for the basic study of cellular pathways, expression of proteins outside cells, and building tissue materials. Furthermore, the integration of natural and synthetic protein networks has enabled new functions of synthetic or artificial cells. Here, we review the underlying technologies for assembling protein networks in liposomes, water-in-oil droplets, and biomaterials from the bottom-up. We cover the recent applications of protein networks in biological transduction pathways, energy self-supplying systems, cellular environmental sensors, and cell-free protein scaffolds. We also review new technologies for assembling protein networks, including multiprotein purification methods, high-throughput assay screen platforms, and controllable fusion of liposomes. Finally, we present existing challenges towards building protein networks that rival the complexity and dynamic response akin to natural systems. This review addresses the gap in our understanding of synthetic and natural protein networks. It presents a vision towards developing smart and resilient protein networks for various biomedical applications.
Collapse
Affiliation(s)
- Jiyoung Shim
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, United States of America
| | - Chuqing Zhou
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, United States of America
| | - Ting Gong
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, United States of America
| | - Dasha Aleksandra Iserlis
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, United States of America
| | - Hamad Abdullah Linjawi
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, United States of America
| | - Matthew Wong
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, United States of America
| | - Tingrui Pan
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, United States of America; Suzhou Institute for Advanced Research, University of Science and Technology, Suzhou, China.
| | - Cheemeng Tan
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, United States of America.
| |
Collapse
|
21
|
Jiang R, Wu X, Xiao Y, Kong D, Li Y, Wang H. Tween 20 regulate the function and structure of transmembrane proteins of Bacillus cereus: Promoting transmembrane transport of fluoranthene. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123707. [PMID: 33264891 DOI: 10.1016/j.jhazmat.2020.123707] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/24/2020] [Accepted: 08/10/2020] [Indexed: 05/08/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are degraded by the highly efficient degrading bacterium Bacillus cereus. Transmembrane transport is highly important in PAH degradation by bacteria. Surfactants are the key substances that promote PAH adsorption, uptake and transmembrane transport by Bacillus cereus. In this study, the isobaric tags for relative and absolute quantitation (iTRAQ) approach was used for high-throughput screening of key functional proteins during transmembrane fluoranthene transport by Bacillus cereus treated with Tween 20. In addition, SWISS-MODEL was used to simulate the tertiary structures of key transmembrane proteins and analyze how Tween 20 promotes transmembrane transport. Transmembrane fluoranthene transport into Bacillus cereus requires transmembrane proteins and energy. Tween 20 was observed to improve bacterial motility and transmembrane protein expression. The interior of representative transmembrane proteins is mostly composed of hydrophobic β-sheets while amphipathic α-helices are primarily distributed at their periphery. The primary reason for this configuration may be α-helices promote the aggregation of surfactants and the phospholipid bilayer and the β-sheets promote surfactant insertion into the phospholipid bilayer to enhance PAH transport into Bacillus cereus. Investigating the effect of Tween 20 on Bacillus cereus transmembrane proteins during transmembrane fluoranthene transport is important for understanding the mechanism of PAH degradation by microorganisms.
Collapse
Affiliation(s)
- Ruhan Jiang
- College of Water Sciences, Beijing Normal University, 100875, Beijing, China
| | - Xiaoxiong Wu
- College of Water Sciences, Beijing Normal University, 100875, Beijing, China
| | - Yaqian Xiao
- College of Water Sciences, Beijing Normal University, 100875, Beijing, China
| | - Dekang Kong
- College of Water Sciences, Beijing Normal University, 100875, Beijing, China
| | - Yi Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China, Guangxi Normal University, 541004, Guilin, Guangxi, China; College of Environment and Resources, Guangxi Normal University, 541004, Guilin, Guangxi, China.
| | - Hongqi Wang
- College of Water Sciences, Beijing Normal University, 100875, Beijing, China.
| |
Collapse
|
22
|
Huang J, Liu D, Chen Y, Zhang L, Tan J. Preparation of Block Copolymer Nano-Objects with Embedded β-Ketoester Functional Groups by Photoinitiated RAFT Dispersion Polymerization. Macromol Rapid Commun 2021; 42:e2000720. [PMID: 33538048 DOI: 10.1002/marc.202000720] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/21/2021] [Indexed: 01/27/2023]
Abstract
Herein, a photoinitiated reversible addition-fragmentation chain transfer (RAFT) dispersion polymerization of 2-(acetoacetoxy)ethyl methacrylate (AEMA) in ethanol/water at room temperature for in situ preparation of β-ketoester-functionalized block copolymer nano-objects is reported. AEMA is also copolymerized with isobornyl methacrylate (IBOMA) to improve the colloidal stability of PIBOMA-based block copolymer nano-objects prepared by photoinitiated RAFT dispersion polymerization at low temperatures. A series of P(IBOMA-stat-AEMA)-based block copolymer nano-objects are prepared by changing reaction parameters. Finally, lanthanide-doped block copolymer nano-objects with luminescent and magnetic properties are also prepared based on the complexation of various lanthanide ions with the β-ketoester group. It is expected that the current study will provide a facile platform for the in situ preparation of β-ketoester-functionalized block copolymer nano-objects with different morphologies for specific applications.
Collapse
Affiliation(s)
- Jiayuan Huang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Dongdong Liu
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou, 510006, China
| | - Li Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China.,Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou, 510006, China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China.,Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou, 510006, China
| |
Collapse
|
23
|
Miller A, Pearce AK, Foster JC, O’Reilly RK. Probing and Tuning the Permeability of Polymersomes. ACS CENTRAL SCIENCE 2021; 7:30-38. [PMID: 33532567 PMCID: PMC7844851 DOI: 10.1021/acscentsci.0c01196] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Indexed: 05/19/2023]
Abstract
Polymersomes are a class of synthetic vesicles composed of a polymer membrane surrounding an aqueous inner cavity. In addition to their overall size, the thickness and composition of polymersome membranes determine the range of potential applications in which they can be employed. While synthetic polymer chemists have made great strides in controlling polymersome membrane parameters, measurement of their permeability to various analytes including gases, ions, organic molecules, and macromolecules remains a significant challenge. In this Outlook, we compare the general methods that have been developed to quantify polymersome membrane permeability, focusing in particular on their capability to accurately measure analyte flux. In addition, we briefly highlight strategies to control membrane permeability. Based on these learnings, we propose a set of criteria for designing future methods of quantifying membrane permeability such that the passage of a variety of molecules into and out of their lumens can be better understood.
Collapse
|
24
|
Werber JR, Peterson C, Van Zee NJ, Hillmyer MA. Functionalized Polymersomes from a Polyisoprene-Activated Polyacrylamide Precursor. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:490-498. [PMID: 33369411 DOI: 10.1021/acs.langmuir.0c03157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Self-assembled polymer nanoparticles have tremendous potential in biomedical and environmental applications. For all applications, tailored polymer chemistries are critical. In this study, we demonstrate a precursor approach in which an activated, organic solvent-soluble block polymer precursor is modified through mild postpolymerization modifications to access new polymer structures. We synthesized and characterized poly(isoprene)-block-poly(di-Boc acrylamide) diblock polymers. This activated-acrylamide-based polymer was then reacted with amines or reductants in the absence of catalysts to yield the hydrophilic blocks polyacrylamide, poly(hydroxypropylene), and poly(N-ethyl acrylamide). The resulting amphiphilic block polymers self-assembled in water to form polymersomes, as confirmed by cryo-electron microscopy and confocal microscopy. The approach also enables simple functionalization with specialized ligands, which we demonstrated by tagging polymers with an amino-fluorophore and imaging by confocal microscopy. We expect that the methodologies established in this study will open doors to new and useful solution nanostructures with surface chemistries that can be optimized for various applications.
Collapse
Affiliation(s)
- Jay R Werber
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Colin Peterson
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Nicholas J Van Zee
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Marc A Hillmyer
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
25
|
Abstract
This review summarizes the recent non-thermal initiation methods in RAFT mediated polymerization-induced self-assembly (PISA), including photo-, redox/oscillatory reaction-, enzyme- and ultrasound wave-initiation.
Collapse
Affiliation(s)
- Nankai An
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education
- Department of Chemistry
- Tsinghua University
- 100084 Beijing
- China
| | - Xi Chen
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education
- Department of Chemistry
- Tsinghua University
- 100084 Beijing
- China
| | - Jinying Yuan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education
- Department of Chemistry
- Tsinghua University
- 100084 Beijing
- China
| |
Collapse
|
26
|
Beattie DL, Mykhaylyk OO, Armes SP. Enthalpic incompatibility between two steric stabilizer blocks provides control over the vesicle size distribution during polymerization-induced self-assembly in aqueous media. Chem Sci 2020; 11:10821-10834. [PMID: 33209249 PMCID: PMC7654191 DOI: 10.1039/d0sc01320j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/19/2020] [Indexed: 01/05/2023] Open
Abstract
Over the past two decades, block copolymer vesicles have been widely used by many research groups to encapsulate small molecule drugs, genetic material, nanoparticles or enzymes. They have also been used to design examples of autonomous self-propelled nanoparticles. Traditionally, such vesicles are prepared via post-polymerization processing using a water-miscible co-solvent such as DMF or THF. However, such protocols are invariably conducted in dilute solution, which is a significant disadvantage. In addition, the vesicle size distribution is often quite broad, whereas aqueous dispersions of relatively small vesicles with narrow size distributions are highly desirable for potential biomedical applications. Alternatively, concentrated dispersions of block copolymer vesicles can be directly prepared via polymerization-induced self-assembly (PISA). Moreover, using a binary mixture of a relatively long and a relatively short steric stabilizer block enables the convenient PISA synthesis of relatively small vesicles with reasonably narrow size distributions in alcoholic media (C. Gonzato et al., JACS, 2014, 136, 11100-11106). Unfortunately, this approach has not yet been demonstrated for aqueous media, which would be much more attractive for commercial applications. Herein we show that this important technical objective can be achieved by judicious use of two chemically distinct, enthalpically incompatible steric stabilizer blocks, which ensures the desired microphase separation across the vesicle membrane. This leads to the formation of well-defined vesicles of around 200 nm diameter (size polydispersity = 13-16%) in aqueous media at 10% w/w solids as judged by transmission electron microscopy, dynamic light scattering and small-angle X-ray scattering.
Collapse
Affiliation(s)
- Deborah L Beattie
- Department of Chemistry , University of Sheffield , Dainton Building, Brook Hill , Sheffield , South Yorkshire, S3 7HF , UK . ;
| | - Oleksandr O Mykhaylyk
- Department of Chemistry , University of Sheffield , Dainton Building, Brook Hill , Sheffield , South Yorkshire, S3 7HF , UK . ;
| | - Steven P Armes
- Department of Chemistry , University of Sheffield , Dainton Building, Brook Hill , Sheffield , South Yorkshire, S3 7HF , UK . ;
| |
Collapse
|
27
|
Zhang Q, Zeng R, Zhang Y, Chen Y, Zhang L, Tan J. Two Polymersome Evolution Pathways in One Polymerization-Induced Self-Assembly (PISA) System. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01624] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Qichao Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Ruiming Zeng
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuxuan Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Li Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| |
Collapse
|
28
|
Self-assembled nanostructures from amphiphilic block copolymers prepared via ring-opening metathesis polymerization (ROMP). Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101278] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
29
|
Dinu MV, Dinu IA, Saxer SS, Meier W, Pieles U, Bruns N. Stabilizing Enzymes within Polymersomes by Coencapsulation of Trehalose. Biomacromolecules 2020; 22:134-145. [PMID: 32567847 DOI: 10.1021/acs.biomac.0c00824] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Enzymes are essential biocatalysts and very attractive as therapeutics. However, their functionality is strictly related to their stability, which is significantly affected by the environmental changes occurring during their usage or long-term storage. Therefore, maintaining the activity of enzymes is essential when they are exposed to high temperature during usage or when they are stored for extended periods of time. Here, we stabilize and protect enzymes by coencapsulating them with trehalose into polymersomes. The anhydrobiotic disaccharide preserved up to about 81% of the enzyme's original activity when laccase/trehalose-loaded nanoreactors were kept desiccated for 2 months at room temperature and 75% of its activity when heated at 50 °C for 3 weeks. Moreover, the applicability of laccase/trehalose-loaded nanoreactors as catalysts for bleaching of the textile dyes orange G, toluidine blue O, and indigo was proven. Our results demonstrate the advantages of coencapsulating trehalose within polymersomes to stabilize enzymes in dehydrated state for extended periods of time, preserving their activity even when heated to elevated temperature.
Collapse
Affiliation(s)
- Maria Valentina Dinu
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland.,Department of Functional Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41 A, 700487 Iasi, Romania
| | - Ionel Adrian Dinu
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland.,Department of Functional Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41 A, 700487 Iasi, Romania
| | - Sina S Saxer
- Institute for Chemistry and Bioanalytics, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, 4132 Muttenz, Switzerland
| | - Wolfgang Meier
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Uwe Pieles
- Institute for Chemistry and Bioanalytics, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, 4132 Muttenz, Switzerland
| | - Nico Bruns
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.,Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, U.K
| |
Collapse
|
30
|
Zheng Y, Weng C, Cheng C, Zhao J, Yang R, Zhang Q, Ding M, Tan H, Fu Q. Multiblock Copolymers toward Segmentation-Driven Morphological Transition. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00374] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Yi Zheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Chuang Weng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Cheng Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jinling Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Rui Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Qin Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Mingming Ding
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Hong Tan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Qiang Fu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
31
|
Liu Q, Wang X, Ma L, Yu K, Xiong W, Lu X, Cai Y. Polymerization-Induced Hierarchical Electrostatic Self-Assembly: Scalable Synthesis of Multicompartment Polyion Complex Micelles and Their Monolayer Colloidal Nanosheets and Nanocages. ACS Macro Lett 2020; 9:454-458. [PMID: 35648501 DOI: 10.1021/acsmacrolett.0c00090] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Scalable synthesis of multicompartment polyion complex (PIC) systems has been achieved via visible light-initiated RAFT polymerization of cationic monomer in the presence of anionic diblock copolymer micelles in water at 25 °C. This polymerization-induced hierarchical electrostatic self-assembly (hierarchical PIESA) implements structural hierarchy via programmable self-assembly to form multicompartment PIC micelles and their monolayer colloidal nanosheets and nanocages. The anionic micelles play decisive roles in such a hierarchical PIESA to access biologically relevant yet otherwise inaccessible multicompartment PIC systems.
Collapse
Affiliation(s)
- Qizhou Liu
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiyu Wang
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Lei Ma
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Kaiwen Yu
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Weixing Xiong
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xinhua Lu
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yuanli Cai
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
32
|
He J, Cao J, Chen Y, Zhang L, Tan J. Thermoresponsive Block Copolymer Vesicles by Visible Light-Initiated Seeded Polymerization-Induced Self-Assembly for Temperature-Regulated Enzymatic Nanoreactors. ACS Macro Lett 2020; 9:533-539. [PMID: 35648508 DOI: 10.1021/acsmacrolett.0c00151] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Block copolymer vesicles loaded with active compounds have been employed as decent candidates to mimic complex biological systems that attract considerable interest in different research communities. We herein report a visible light-initiated seeded reversible addition-fragmentation chain transfer (RAFT)-mediated polymerization-induced self-assembly (PISA) for in situ preparation of enzyme-loaded cross-linked block copolymer vesicles without compromising the bioactivity. Permeability of the vesicular membrane can be regulated through changing the solution temperature, allowing further control over the enzymatic reaction rate of enzyme-loaded vesicles. Finally, non-cross-linked thermoresponsive block copolymer vesicles that can transform into worm-like micelles at low temperature are also prepared by this method, allowing the release of bimacromolecules from the vesicles under mild conditions.
Collapse
Affiliation(s)
- Jun He
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Junpeng Cao
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Li Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| |
Collapse
|
33
|
Jia L, Wang R, Fan Y. Encapsulation and release of drug nanoparticles in functional polymeric vesicles. SOFT MATTER 2020; 16:3088-3095. [PMID: 32149316 DOI: 10.1039/d0sm00069h] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We investigated the co-assembly of amphiphilic diblock copolymers in solutions containing drugs and functional nanoparticles using the dissipative particle dynamics (DPD) method. By controlling the size and the concentration of the functional nanoparticles, the length of the hydrophobic blocks, and the interaction parameters between the hydrophobic block/solvent and the functional nanoparticles, we obtained the desired aggregates to load drugs. The aggregates loaded with drugs can be disk-like micelles, sphere-like micelles and vesicles with functional nanoparticles on the surface. When the solvent environment changes, the drugs loaded in the functional vesicles can release into the solvent. The release content is critically dependent on the repulsive interaction between the drugs and the solvent. The dynamic curve of drug release is obtained. The result is in agreement with the experiments about drug release. Our studies showed that we can precisely control the formation of functional vesicles to load and release drugs. Loading drugs in the process of self-assembly and controlling the release have broad potential in the field of clinical medicine and adding functional nanoparticles can be of great help in drug delivery and medical diagnosis.
Collapse
Affiliation(s)
- Lei Jia
- Department of Polymer Science and Engineering, State Key Laboratory of Coordination Chemistry and Collaborative Innovation Center of Chemistry for Life Sciences, Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | | | | |
Collapse
|
34
|
D'Agosto F, Rieger J, Lansalot M. RAFT‐vermittelte polymerisationsinduzierte Selbstorganisation (PISA). Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201911758] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Franck D'Agosto
- Univ Lyon Université Claude Bernard Lyon 1 CPE Lyon CNRS UMR 5265 Chemistry, Catalysis, Polymers and Processes (C2P2) 43 Bd du 11 Novembre 1918 69616 Villeurbanne Frankreich
| | - Jutta Rieger
- Sorbonne Université and CNRS UMR 8232 Institut Parisien de Chimie Moléculaire (IPCM), Polymer Chemistry Team (ECP) 4 Place Jussieu 75005 Paris Frankreich
| | - Muriel Lansalot
- Univ Lyon Université Claude Bernard Lyon 1 CPE Lyon CNRS UMR 5265 Chemistry, Catalysis, Polymers and Processes (C2P2) 43 Bd du 11 Novembre 1918 69616 Villeurbanne Frankreich
| |
Collapse
|
35
|
D'Agosto F, Rieger J, Lansalot M. RAFT‐Mediated Polymerization‐Induced Self‐Assembly. Angew Chem Int Ed Engl 2020; 59:8368-8392. [DOI: 10.1002/anie.201911758] [Citation(s) in RCA: 250] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Franck D'Agosto
- Univ Lyon Université Claude Bernard Lyon 1 CPE Lyon CNRS UMR 5265 Chemistry, Catalysis, Polymers and Processes (C2P2) 43 Bd du 11 Novembre 1918 69616 Villeurbanne France
| | - Jutta Rieger
- Sorbonne Université and CNRS UMR 8232 Institut Parisien de Chimie Moléculaire (IPCM) Polymer Chemistry Team (ECP) 4 Place Jussieu 75005 Paris France
| | - Muriel Lansalot
- Univ Lyon Université Claude Bernard Lyon 1 CPE Lyon CNRS UMR 5265 Chemistry, Catalysis, Polymers and Processes (C2P2) 43 Bd du 11 Novembre 1918 69616 Villeurbanne France
| |
Collapse
|
36
|
Cao L, Zhao Q, Liu Q, Ma L, Li C, Wang X, Cai Y. Electrostatic Manipulation of Triblock Terpolymer Nanofilm Compartmentalization during Aqueous Photoinitiated Polymerization-Induced Self-Assembly. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Lei Cao
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Qingqing Zhao
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Qizhou Liu
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Lei Ma
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Chao Li
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiyu Wang
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yuanli Cai
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
37
|
Blackman LD, Oo ZY, Qu Y, Gunatillake PA, Cass P, Locock KES. Antimicrobial Honey-Inspired Glucose-Responsive Nanoreactors by Polymerization-Induced Self-Assembly. ACS APPLIED MATERIALS & INTERFACES 2020; 12:11353-11362. [PMID: 32043858 DOI: 10.1021/acsami.9b22386] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The rise of antimicrobial resistance is at the forefront of global healthcare challenges, with antimicrobial infections on track to overtake cancer as a leading cause of death by 2050. The high effectiveness of antimicrobial enzymes used in combination with the protective, inert nature of polymer materials represents a highly novel approach toward tackling microbial infections. Herein, we have developed biohybrid glucose oxidase-loaded semipermeable polymersome nanoreactors, formed using polymerization-induced self-assembly, and demonstrate for the first time their ability to "switch on" their antimicrobial activity in response to glucose, a ubiquitous environmental stimulus. Using colony-counting assays, it was demonstrated that the nanoreactors facilitate up to a seven-log reduction in bacterial growth at high glucose concentrations against a range of Gram-negative and Gram-positive bacterial pathogens, including a methicillin-resistant Staphylococcus aureus clinical isolate. After demonstrating the antimicrobial properties of these materials, their toxicity against human fibroblasts was assessed and the dosage of the nanoreactors further optimized for use as nontoxic agents against Gram-positive bacteria under physiological blood glucose concentrations. It is envisaged that such biohybrid nanomaterials will become an important new class of antimicrobial biomaterials for the treatment of bacterial infections.
Collapse
Affiliation(s)
| | - Zay Y Oo
- CSIRO Manufacturing, Research Way, Clayton, VIC 3168, Australia
- Swinburne University of Technology, John Street, Hawthorn, VIC 3122, Australia
| | - Yue Qu
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | | | - Peter Cass
- CSIRO Manufacturing, Research Way, Clayton, VIC 3168, Australia
| | | |
Collapse
|
38
|
Gurnani P, Perrier S. Controlled radical polymerization in dispersed systems for biological applications. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101209] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
39
|
Zeng R, Chen Y, Zhang L, Tan J. R-RAFT or Z-RAFT? Well-Defined Star Block Copolymer Nano-Objects Prepared by RAFT-Mediated Polymerization-Induced Self-Assembly. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00123] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ruiming Zeng
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Li Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| |
Collapse
|
40
|
Zhao Q, Liu Q, Li C, Cao L, Ma L, Wang X, Cai Y. Noncovalent structural locking of thermoresponsive polyion complex micelles, nanowires, and vesicles via polymerization-induced electrostatic self-assembly using an arginine-like monomer. Chem Commun (Camb) 2020; 56:4954-4957. [DOI: 10.1039/d0cc00427h] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The noncovalent locking of nanostructured thermoresponsive polyion complexes can be achieved via polymerization-induced electrostatic self-assembly (PIESA) using an arginine-like cationic monomer.
Collapse
Affiliation(s)
- Qingqing Zhao
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Qizhou Liu
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Chao Li
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Lei Cao
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Lei Ma
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Xiyu Wang
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Yuanli Cai
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| |
Collapse
|
41
|
Abstract
Mother Nature produces a perfectly defined architecture that inspires researchers to make polymeric macromolecules for an array of functions. The present article describes recent development in the PISA to synthesize polymeric nano-objects.
Collapse
Affiliation(s)
- Shivshankar R. Mane
- Polymer Science and Engineering Division
- CSIR – National Chemical Laboratory
- Pune 411008
- India
| |
Collapse
|
42
|
Zeng M, Cao X, Xu H, Gan W, Smith BD, Gao H, Yuan J. Synthesis and direct assembly of linear–dendritic copolymers via CuAAC click polymerization-induced self-assembly (CPISA). Polym Chem 2020. [DOI: 10.1039/c9py01636h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A one-pot method was developed for in situ preparation of linear–dendritic copolymer assemblies via click polymerization-induced self-assembly (CPISA).
Collapse
Affiliation(s)
- Min Zeng
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education
- Department of Chemistry
- Tsinghua University
- Beijing
- China
| | - Xiaosong Cao
- Department of Chemistry and Biochemistry
- University of Notre Dame
- Notre Dame
- USA
| | - Hui Xu
- Department of Chemistry and Biochemistry
- University of Notre Dame
- Notre Dame
- USA
| | - Weiping Gan
- Department of Chemistry and Biochemistry
- University of Notre Dame
- Notre Dame
- USA
| | - Bradley D. Smith
- Department of Chemistry and Biochemistry
- University of Notre Dame
- Notre Dame
- USA
| | - Haifeng Gao
- Department of Chemistry and Biochemistry
- University of Notre Dame
- Notre Dame
- USA
| | - Jinying Yuan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education
- Department of Chemistry
- Tsinghua University
- Beijing
- China
| |
Collapse
|
43
|
Varlas S, Keogh R, Xie Y, Horswell SL, Foster JC, O’Reilly RK. Polymerization-Induced Polymersome Fusion. J Am Chem Soc 2019; 141:20234-20248. [PMID: 31782652 PMCID: PMC6935865 DOI: 10.1021/jacs.9b10152] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Indexed: 02/06/2023]
Abstract
The dynamic interactions of membranes, particularly their fusion and fission, are critical for the transmission of chemical information between cells. Fusion is primarily driven by membrane tension built up through membrane deformation. For artificial polymersomes, fusion is commonly induced via the external application of a force field. Herein, fusion-promoted development of anisotropic tubular polymersomes (tubesomes) was achieved in the absence of an external force by exploiting the unique features of aqueous ring-opening metathesis polymerization-induced self-assembly (ROMPISA). The out-of-equilibrium tubesome morphology was found to arise spontaneously during polymerization, and the composition of each tubesome sample (purity and length distribution) could be manipulated simply by targeting different core-block degrees of polymerization (DPs). The evolution of tubesomes was shown to occur via fusion of "monomeric" spherical polymersomes, evidenced most notably by a step-growth-like relationship between the fraction of tubular to spherical nano-objects and the average number of fused particles per tubesome (analogous to monomer conversion and DP, respectively). Fusion was also confirmed by Förster resonance energy transfer (FRET) studies to show membrane blending and confocal microscopy imaging to show mixing of the polymersome lumens. We term this unique phenomenon polymerization-induced polymersome fusion, which operates via the buildup of membrane tension exerted by the growing polymer chains. Given the growing body of evidence demonstrating the importance of nanoparticle shape on biological activity, our methodology provides a facile route to reproducibly obtain samples containing mixtures of spherical and tubular polymersomes, or pure samples of tubesomes, of programmed length. Moreover, the capability to mix the interior aqueous compartments of polymersomes during polymerization-induced fusion also presents opportunities for its application in catalysis, small molecule trafficking, and drug delivery.
Collapse
Affiliation(s)
- Spyridon Varlas
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Robert Keogh
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Yujie Xie
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Sarah L. Horswell
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Jeffrey C. Foster
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Rachel K. O’Reilly
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
44
|
Hou L, Dueñas-Díez M, Srivastava R, Pérez-Mercader J. Flow chemistry controls self-assembly and cargo in Belousov-Zhabotinsky driven polymerization-induced self-assembly. Commun Chem 2019. [DOI: 10.1038/s42004-019-0241-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
AbstractAmphiphilic block-copolymer vesicles are increasingly used for medical and chemical applications, and a novel method for their transient self-assembly orchestrated by periodically generated radicals during the oscillatory Belousov-Zhabotinsky (BZ) reaction was recently developed. Here we report how combining this one pot polymerization-induced self-assembly (PISA) method with a continuously stirred tank reactor (CSTR) strategy allows for continuous and reproducible control of both the PISA process and the chemical features (e.g. the radical generation and oscillation) of the entrapped cargo. By appropriately tuning the residence time (τ), target degree of polymerization (DP) and the BZ reactants, intermediate self-assembly structures are also obtained (micelles, worms and nano-sized vesicles). Simultaneously, the chemical properties of the cargo at encapsulation are known and tunable, a key advantage over batch operation. Finally, we also show that BZ-driven polymerization in CSTR additionally supports more non-periodic dynamics such as bursting.
Collapse
|
45
|
Sun H, Choi W, Zang N, Battistella C, Thompson MP, Cao W, Zhou X, Forman C, Gianneschi NC. Bioactive Peptide Brush Polymers via Photoinduced Reversible-Deactivation Radical Polymerization. Angew Chem Int Ed Engl 2019; 58:17359-17364. [PMID: 31595626 PMCID: PMC7299178 DOI: 10.1002/anie.201908634] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Indexed: 11/09/2022]
Abstract
Harnessing metal-free photoinduced reversible-deactivation radical polymerization (photo-RDRP) in organic and aqueous phases, we report a synthetic approach to enzyme-responsive and pro-apoptotic peptide brush polymers. Thermolysin-responsive peptide-based polymeric amphiphiles assembled into spherical micellar nanoparticles that undergo a morphology transition to worm-like micelles upon enzyme-triggered cleavage of coronal peptide sidechains. Moreover, pro-apoptotic polypeptide brushes show enhanced cell uptake over individual peptide chains of the same sequence, resulting in a significant increase in cytotoxicity to cancer cells. Critically, increased grafting density of pro-apoptotic peptides on brush polymers correlates with increased uptake efficiency and concurrently, cytotoxicity. The mild synthetic conditions afforded by photo-RDRP, make it possible to access well-defined peptide-based polymer bioconjugate structures with tunable bioactivity.
Collapse
Affiliation(s)
- Hao Sun
- Department of Chemistry, Materials Science & Engineering, Biomedical Engineering, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute and the Lurie Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Wonmin Choi
- Department of Chemistry, Materials Science & Engineering, Biomedical Engineering, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute and the Lurie Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Nanzhi Zang
- Department of Chemistry, Materials Science & Engineering, Biomedical Engineering, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute and the Lurie Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Claudia Battistella
- Department of Chemistry, Materials Science & Engineering, Biomedical Engineering, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute and the Lurie Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Matthew P Thompson
- Department of Chemistry, Materials Science & Engineering, Biomedical Engineering, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute and the Lurie Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Wei Cao
- Department of Chemistry, Materials Science & Engineering, Biomedical Engineering, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute and the Lurie Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Xuhao Zhou
- Department of Chemistry, Materials Science & Engineering, Biomedical Engineering, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute and the Lurie Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Christopher Forman
- Department of Chemistry, Materials Science & Engineering, Biomedical Engineering, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute and the Lurie Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Nathan C Gianneschi
- Department of Chemistry, Materials Science & Engineering, Biomedical Engineering, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute and the Lurie Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| |
Collapse
|
46
|
Molle E, Le D, Norizadeh Abbariki T, Akdemir MS, Takamiya M, Miceli E, Kassel O, Delaittre G. Access to Photoreactive Core‐Shell Nanomaterials by Photoinitiated Polymerization‐Induced Self‐Assembly. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900216] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Edgar Molle
- Institute of Toxicology and Genetics (ITG)Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76244 Eggenstein-Leopoldshafen Germany
- Institute for Chemical Technology and Polymer Chemistry (ITCP)Karlsruhe Institute of Technology (KIT) Engesserstrasse 18 76131 Karlsruhe Germany
| | - Dao Le
- Institute of Toxicology and Genetics (ITG)Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76244 Eggenstein-Leopoldshafen Germany
- Institute for Chemical Technology and Polymer Chemistry (ITCP)Karlsruhe Institute of Technology (KIT) Engesserstrasse 18 76131 Karlsruhe Germany
| | - Tannaz Norizadeh Abbariki
- Institute of Toxicology and Genetics (ITG)Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76244 Eggenstein-Leopoldshafen Germany
| | - Meryem S. Akdemir
- Institute of Toxicology and Genetics (ITG)Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76244 Eggenstein-Leopoldshafen Germany
- Institute for Chemical Technology and Polymer Chemistry (ITCP)Karlsruhe Institute of Technology (KIT) Engesserstrasse 18 76131 Karlsruhe Germany
| | - Masanari Takamiya
- Institute of Toxicology and Genetics (ITG)Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76244 Eggenstein-Leopoldshafen Germany
| | - Enrico Miceli
- Institute of Toxicology and Genetics (ITG)Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76244 Eggenstein-Leopoldshafen Germany
- Institute for Chemical Technology and Polymer Chemistry (ITCP)Karlsruhe Institute of Technology (KIT) Engesserstrasse 18 76131 Karlsruhe Germany
| | - Olivier Kassel
- Institute of Toxicology and Genetics (ITG)Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76244 Eggenstein-Leopoldshafen Germany
| | - Guillaume Delaittre
- Institute of Toxicology and Genetics (ITG)Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76244 Eggenstein-Leopoldshafen Germany
- Institute for Chemical Technology and Polymer Chemistry (ITCP)Karlsruhe Institute of Technology (KIT) Engesserstrasse 18 76131 Karlsruhe Germany
- Institute for Applied Polymer ChemistryUniversity of Applied Sciences Aachen Heinrich-Mussmann-Strasse 1 52428 Jülich Germany
- Deutsches Textilforschungszentrum Nord-West (DTNW) gGmbH Adlerstrasse 1 47798 Krefeld Germany
| |
Collapse
|
47
|
Sun H, Choi W, Zang N, Battistella C, Thompson MP, Cao W, Zhou X, Forman C, Gianneschi NC. Bioactive Peptide Brush Polymers via Photoinduced Reversible‐Deactivation Radical Polymerization. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Hao Sun
- Department of Chemistry Materials Science & Engineering, Biomedical Engineering International Institute for Nanotechnology Simpson Querrey Institute Chemistry of Life Processes Institute and the Lurie Cancer Center Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Wonmin Choi
- Department of Chemistry Materials Science & Engineering, Biomedical Engineering International Institute for Nanotechnology Simpson Querrey Institute Chemistry of Life Processes Institute and the Lurie Cancer Center Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Nanzhi Zang
- Department of Chemistry Materials Science & Engineering, Biomedical Engineering International Institute for Nanotechnology Simpson Querrey Institute Chemistry of Life Processes Institute and the Lurie Cancer Center Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Claudia Battistella
- Department of Chemistry Materials Science & Engineering, Biomedical Engineering International Institute for Nanotechnology Simpson Querrey Institute Chemistry of Life Processes Institute and the Lurie Cancer Center Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Matthew P. Thompson
- Department of Chemistry Materials Science & Engineering, Biomedical Engineering International Institute for Nanotechnology Simpson Querrey Institute Chemistry of Life Processes Institute and the Lurie Cancer Center Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Wei Cao
- Department of Chemistry Materials Science & Engineering, Biomedical Engineering International Institute for Nanotechnology Simpson Querrey Institute Chemistry of Life Processes Institute and the Lurie Cancer Center Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Xuhao Zhou
- Department of Chemistry Materials Science & Engineering, Biomedical Engineering International Institute for Nanotechnology Simpson Querrey Institute Chemistry of Life Processes Institute and the Lurie Cancer Center Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Christopher Forman
- Department of Chemistry Materials Science & Engineering, Biomedical Engineering International Institute for Nanotechnology Simpson Querrey Institute Chemistry of Life Processes Institute and the Lurie Cancer Center Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Nathan C. Gianneschi
- Department of Chemistry Materials Science & Engineering, Biomedical Engineering International Institute for Nanotechnology Simpson Querrey Institute Chemistry of Life Processes Institute and the Lurie Cancer Center Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| |
Collapse
|
48
|
Jiang J, Zhang X, Fan Z, Du J. Ring-Opening Polymerization of N-Carboxyanhydride-Induced Self-Assembly for Fabricating Biodegradable Polymer Vesicles. ACS Macro Lett 2019; 8:1216-1221. [PMID: 35651173 DOI: 10.1021/acsmacrolett.9b00606] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Polymerization-induced self-assembly (PISA) is regarded as one of the most important strategies in macromolecular nanotechnology, as it can create a wide range of nanoparticles at high concentrations and on a large scale. However, open-to-air PISA with biodegradable product is still a complicated challenge, as traditional PISA is usually carried out under oxygen-free conditions to afford nonbiodegradable polymers. To meet the above challenges, we propose a convenient one-pot open-to-air ring-opening polymerization (ROP) of N-carboxyanhydride (NCA)-induced self-assembly (NCA-PISA) at 10 °C, without the need for degassing, heating, catalysts, or chain transfer agents. The morphologies of nanoparticles depend on the ratio of the initiator to the monomer and the solid content. Polymer vesicles can be fabricated when the ratio and the solid content are 1:20 and 20%, respectively. Overall, this versatile one-pot NCA-PISA provides an insight into facilely fabricating biodegradable nanoparticles in air.
Collapse
Affiliation(s)
- Jinhui Jiang
- Department of Orthopedics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Xinyue Zhang
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Zhen Fan
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jianzhong Du
- Department of Orthopedics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| |
Collapse
|
49
|
Dai X, Yu L, Zhang Y, Zhang L, Tan J. Polymerization-Induced Self-Assembly via RAFT-Mediated Emulsion Polymerization of Methacrylic Monomers. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01689] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Xiaocong Dai
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Liangliang Yu
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuxuan Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Li Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| |
Collapse
|
50
|
Zhang Y, Yu L, Dai X, Zhang L, Tan J. Structural Difference in Macro-RAFT Agents Redirects Polymerization-Induced Self-Assembly. ACS Macro Lett 2019; 8:1102-1109. [PMID: 35619459 DOI: 10.1021/acsmacrolett.9b00509] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Polymerization-induced self-assembly (PISA) has served as a versatile platform for the large-scale preparation of well-defined block copolymer nano-objects. It appears to be "common sense" that block copolymers with narrow molecular weight distributions are inevitable. In this study, we have conducted the direct comparison of reversible addition-fragmentation transfer (RAFT)-mediated PISA of 2-hydroxypropyl methacrylate (HPMA) using polymethacrylate- and polyacrylate-based macro-RAFT agents. Taking advantage of the poor RAFT controllability of polyacrylate-based macro-RAFT agents with respect to HPMA, uniform submicron-sized polymeric microspheres were prepared by photoinitiated RAFT-mediated PISA of HPMA. The diameter of polymeric microspheres can be precisely controlled by further chain-extension of PHPMA. Finally, uniform epoxy-functionalized multicompartment block copolymer particles (MBCPs) were prepared by a two-step photoinitiated RAFT-mediated PISA with poly(glycidyl methacrylate) (PGlyMA) as the third block. The performance of MBCPs as Pickering emulsifiers was evaluated in detail. This study not only expands the scope of RAFT-mediated PISA for preparing well-defined polymer particles but also provides important insights into the mechanism of RAFT-mediated PISA.
Collapse
Affiliation(s)
- Yuxuan Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Liangliang Yu
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaocong Dai
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Li Zhang
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, Guangzhou 510006, China
| |
Collapse
|