1
|
Huang C, Zhang X, Lyu X. Encounter between Gyroid and Lamellae in Janus Colloidal Particles Self-Assembled by a Rod-Coil Block Copolymer. Macromol Rapid Commun 2024; 45:e2300696. [PMID: 38160322 DOI: 10.1002/marc.202300696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Controlling the internal structure of block copolymer (BCP) particles has a significant influence on its functionalities. Here, a structure-controlling method is proposed to regulate the internal structure of BCP Janus colloidal particles using different surfactants. Different microphase separation processes take place in two connected halves of the Janus particles. An order-order transition between gyroid and lamellar phases is observed in polymeric colloids. The epitaxial growth during the structural transformation from gyroid to lamellar phase undergoes a two-layered rearrangement to accommodate the interdomain spacing mismatch between these two phases. This self-assembly behavior can be ascribed to the preferential wetting of BCP chains at the interface, which can change the chain conformation of different blocks. The Janus colloidal particles can further experience a reversible phase transition by restructuring the polymer particles under solvent vapor. It is anticipated that the new phase behavior found in Janus particles can not only enrich the self-assembly study of BCPs but also provide opportunities for various applications based on Janus particles with ordered structures.
Collapse
Affiliation(s)
- Chunzhi Huang
- Key Laboratory of Advanced Materials Technologies, International (HongKong Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Xinyue Zhang
- Key Laboratory of Advanced Materials Technologies, International (HongKong Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Xiaolin Lyu
- Key Laboratory of Advanced Materials Technologies, International (HongKong Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China
| |
Collapse
|
2
|
Tunable Thin Film Periodicities by Controlling the Orientation of Cylindrical Domains in Side Chain Liquid Crystalline Block Copolymers. INT J POLYM SCI 2022. [DOI: 10.1155/2022/8286518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A facile approach to block copolymer (BCP) domain orientation control in thin films has been demonstrated by employing a BCP with liquid crystalline semifluorinated side chains by tuning the composition of the copolymers of the bottom surface layer (BSL). 1H,1H,2H,2H-Perfluorodecanethiol was attached to a precursor polymer, polystyrene-block-poly(glycidyl methacrylate) (PS-b-PGMA), to obtain a novel BCP with a C8F17-containing liquid crystal (LC) side chain (PS-b-P8FMA). Anisotropic hexagonally packed cylinder domains in a bulk state were first characterized by transmission electron microscopy (TEM) and small angle X-ray scattering (SAXS). The observed morphology transition of BCPs with different fluorinated side chain lengths of –CF3, –C4F9, and –C6F13 suggested the decisive effects of LC side chain ordering on the anisotropic nanostructures. In the thin film study, poly(methyl methacrylate-random-2,2,2-trifluoroethyl methacrylate-random-methacrylic acid) (PMMA-ran-PTFEMA-ran-PMAA) solution was used as BSLs for tuning the desired periodicities. The surface free energy (SFE) of BSL was simply tailored by changing the composition of comonomers. In atomic force microscopy (AFM) characterization, long-range ordered perpendicularly oriented BCP domains in a hexagonally packed array or parallel oriented BCP domains as striation patterns were easily fabricated on non-preferential or preferential BSL, respectively. The study presents a novel approach to tunable thin film periodicities without changing or modifying BCPs, which is desired in next-generation BCP lithography.
Collapse
|
3
|
Dong L, Wylie K, Nabae Y, Hayakawa T. An experimental and theoretical investigation into the self-assembly of a chemically modified high- χ coil-rod diblock copolymer. RSC Adv 2022; 12:17950-17958. [PMID: 35765337 PMCID: PMC9204556 DOI: 10.1039/d2ra02536a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/02/2022] [Indexed: 11/23/2022] Open
Abstract
A precursor diblock copolymer with a silicon backbone, polystyrene-block-poly(methylvinylsiloxane), was synthesized, and 1H,1H,2H,2H-perfluorodecanethiol was quantitatively introduced into the backbone via a thiol-ene reaction to yield a novel coil-rod diblock copolymer, poly(styrene-block-poly(2-((3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl)thio)ethyl)methylsiloxane). The ultra-hydrophobicity of the introduced perfluoroalkyl side chain enhanced the segregation between counter-blocks and significantly increased the χ value, which is essential for minimizing the size of self-assembled domains for lithographic applications. Thus, self-assembled domains with a minimal spacing of approximately 10 nm were formed. A hexagonally packed array with significant anisotropy was observed in the self-assembled morphology by small-angle X-ray scattering and transmission electron microscopy. Such an array was precisely reproduced by modified self-consistent field theory (SCFT) calculation developed for the coil-rod structure. Furthermore, the phase diagram was estimated, and the morphological dependence on the relative scale of the rod unit was investigated by SCFT prediction.
Collapse
Affiliation(s)
- Lei Dong
- School of Materials Science and Engineering, Southeast University Nanjing 211189 China
| | - Kevin Wylie
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology S8-813, 2-12-1-S8-36, Ookayama, Meguro-ku Tokyo 152-8552 Japan
| | - Yuta Nabae
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology S8-813, 2-12-1-S8-36, Ookayama, Meguro-ku Tokyo 152-8552 Japan
| | - Teruaki Hayakawa
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology S8-813, 2-12-1-S8-36, Ookayama, Meguro-ku Tokyo 152-8552 Japan
| |
Collapse
|
4
|
Liu R, Huang H, Sun Z, Alexander-Katz A, Ross CA. Metallic Nanomeshes Fabricated by Multimechanism Directed Self-Assembly. ACS NANO 2021; 15:16266-16276. [PMID: 34647737 DOI: 10.1021/acsnano.1c05315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The directed self-assembly of block copolymers (BCPs) is a powerful motif for the continued scaling of feature sizes for nanoscale devices. A multimechanism directed self-assembly (MMDSA) method is described that generates orthogonal meshes from a polystyrene-b-poly-2-vinylpyridine BCP that is subsequently metallized with Pt. The MMDSA process takes advantage of three different mechanisms, trench wall guidance, edge nucleation, and underlayer guidance, to align the mesh with respect to substrate features. The mechanisms and their interactions are investigated via both experiments and dissipative particle dynamics simulations. MMDSA is applied to produce well-aligned conductive nanomeshes and then is extended to fabricate multicomponent metallic structures with 2D/3D hybrid morphologies.
Collapse
Affiliation(s)
- Runze Liu
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Hejin Huang
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Zehao Sun
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alfredo Alexander-Katz
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Caroline A Ross
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
5
|
Luo L, Tang Z, Yang W, Liu D, Shen Z, Fan XH. Thickness-Dependent Photo-Aligned Thin-Film Morphologies of a Block Copolymer Containing an Azobenzene-Based Liquid Crystalline Polymer and a Poly(ionic liquid). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9774-9784. [PMID: 34342997 DOI: 10.1021/acs.langmuir.1c01314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Photo-induced alignment of the thin-film morphologies of azobenzene-containing block copolymers (BCPs) is an effective method to obtain a uniaxial pattern of nanocylinders. Although film thickness is an important factor affecting the self-assembly of BCP thin films, the influence of film thickness on the photo-induced alignment of BCP thin-film morphology has never been systematically studied. Herein, we report the thickness-dependent photo-aligned film morphologies of the BCP containing an azobenzene-based liquid crystalline polymer and a poly(ionic liquid) (PIL), with a perfect uniaxial pattern of PIL nanocylinders. For films aligned with the unpolarized light (UPL), the out-of-plane PIL nanocylinders can be obtained in the film with a thickness of only 1L0 (∼30 nm, where L0 is the layer spacing of the hexagonally packed cylinder array), which is far lower than the thickness (more than 4L0) of the thermally annealed film needed to obtain the same morphology. This change is attributed to the orientation effect of UPL on azobenzene mesogens that suppresses the excluded volume effect. For the films aligned with linearly polarized light (LPL), to take advantage of the excluded volume effect to obtain the planar orientation of azobenzene mesogens, the thickness should be controlled to be no more than 3L0 to achieve an in-plane uniaxial alignment of PIL nanocylinders. The above relationship between the morphology and thickness of photo-aligned film eliminates the obstacles encountered in preparing films with well-ordered photo-aligned morphologies.
Collapse
Affiliation(s)
- Longfei Luo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhehao Tang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Weilu Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Dong Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhihao Shen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xing-He Fan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
6
|
Liu W, Zhang L, Chen R, Wu X, Yang S, Wei Y. The Phase Aggregation Behavior of the Blend Materials Block Copolymer Polystyrene‐
b
‐Polycarbonate (PS‐
b
‐PC) and Homopolymer Polystyrene (PS). MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202000432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Weichen Liu
- Integrated Circuit Advanced Process Center Institute of Microelectronics of Chinese Academy of Sciences (IMECAS) No. 3 Beitucheng West Road Beijing 100029 China
- University of Chinese Academy of Sciences No. 19(A), Yuquan Road Beijing 100049 China
| | - Libin Zhang
- Integrated Circuit Advanced Process Center Institute of Microelectronics of Chinese Academy of Sciences (IMECAS) No. 3 Beitucheng West Road Beijing 100029 China
| | - Rui Chen
- Integrated Circuit Advanced Process Center Institute of Microelectronics of Chinese Academy of Sciences (IMECAS) No. 3 Beitucheng West Road Beijing 100029 China
| | - Xin Wu
- Jiangsu HanTop Photo‐Materials Co., Ltd Floor 4‐5, Building No. 9, No. 1158 Zhongxin Rd Shanghai 201621 China
| | - Shang Yang
- Integrated Circuit Advanced Process Center Institute of Microelectronics of Chinese Academy of Sciences (IMECAS) No. 3 Beitucheng West Road Beijing 100029 China
| | - Yayi Wei
- Integrated Circuit Advanced Process Center Institute of Microelectronics of Chinese Academy of Sciences (IMECAS) No. 3 Beitucheng West Road Beijing 100029 China
- University of Chinese Academy of Sciences No. 19(A), Yuquan Road Beijing 100049 China
| |
Collapse
|
7
|
Shi LY, Lee S, Du Q, Zhou B, Weng L, Liu R, Ross CA. Bending Behavior and Directed Self-Assembly of Rod-Coil Block Copolymers. ACS APPLIED MATERIALS & INTERFACES 2021; 13:10437-10445. [PMID: 33606493 DOI: 10.1021/acsami.0c22177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The formation of zigzags, chevrons, Y-junctions, and line segments is demonstrated in thin films formed from cylindrical morphology silicon-containing conformationally asymmetric rod-coil diblock copolymers and triblock terpolymers under solvent annealing. Directed self-assembly of the block copolymers within trenches yields well-ordered cylindrical microdomains oriented either parallel or transverse to the sidewalls depending on the chemical functionalization of the sidewalls, and the location and structure of concentric bends in the cylinders is determined by the shape of the trenches. The innate etching contrast, the spontaneous sharp bends and junctions, and the range of demonstrated periodicity and line/space ratios make these conformationally asymmetric rod-coil polymers attractive for nanoscale pattern generation.
Collapse
Affiliation(s)
- Ling-Ying Shi
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Sangho Lee
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Qingyang Du
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Bo Zhou
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Lin Weng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Runze Liu
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Caroline A Ross
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
8
|
Shi LY, Yin C, Zhou B, Xia W, Weng L, Ross CA. Annealing Process Dependence of the Self-Assembly of Rod–Coil Block Copolymer Thin Films. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02712] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ling-Ying Shi
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Chengxiao Yin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Bo Zhou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Wei Xia
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Lin Weng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Caroline A. Ross
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
9
|
Alvarez S, Marcasuzaa P, Billon L. Bio-Inspired Silica Films Combining Block Copolymers Self-Assembly and Soft Chemistry: Paving the Way toward Artificial Exosqueleton of Seawater Diatoms. Macromol Rapid Commun 2020; 42:e2000582. [PMID: 33274818 DOI: 10.1002/marc.202000582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/06/2020] [Indexed: 11/09/2022]
Abstract
This review is in line with the principles of bio-inspiration and biomimicry in order to envisage a softer and more environmentally friendly chemistry. Here, the source of inspiration is a microalga from the oceans with the ability to build an exoskeleton of silica under ambient conditions. Following this model, this review is interested in different ways of creating porous silica films with a hierarchical porosity similar to diatoms. For this purpose, polymeric/hybrid/inorganic films structured in honeycomb using the breath figure method are reported. This versatile and easy to implement method based on the principle of rapid evaporation of a solvent in a humid atmosphere is widely used in the formation of structured films with micron-sized pores. In addition to this, the self-assembly of copolymer at the nanoscale can be addressed to obtain a hierarchically structured film. Following this structuration step, the degradation of a sacrificial block is then described from the most energy-intensive to soft process, allowing an added nanoporosity to the micron porosity of the BF method. Finally, hierarchical porous silica films are described using the sol-gel process, which is known as a soft chemistry process.
Collapse
Affiliation(s)
- Sandra Alvarez
- Universite de Pau et Pays de l'Adour, E2S UPPA, CNRS, Institut des Sciences Analytiques & de PhysicoChimie pour l'Environnement & les Matériaux, UMR5254, 2 avenue du Président Angot, Pau, F-64053, France.,Bio-Inspired Materials Group: Functionalities and Self-Assembly, E2S UPPA, IPREM UMR 5254, 2 avenue du Président Angot, Pau, F-64053, France
| | - Pierre Marcasuzaa
- Universite de Pau et Pays de l'Adour, E2S UPPA, CNRS, Institut des Sciences Analytiques & de PhysicoChimie pour l'Environnement & les Matériaux, UMR5254, 2 avenue du Président Angot, Pau, F-64053, France.,Bio-Inspired Materials Group: Functionalities and Self-Assembly, E2S UPPA, IPREM UMR 5254, 2 avenue du Président Angot, Pau, F-64053, France
| | - Laurent Billon
- Universite de Pau et Pays de l'Adour, E2S UPPA, CNRS, Institut des Sciences Analytiques & de PhysicoChimie pour l'Environnement & les Matériaux, UMR5254, 2 avenue du Président Angot, Pau, F-64053, France.,Bio-Inspired Materials Group: Functionalities and Self-Assembly, E2S UPPA, IPREM UMR 5254, 2 avenue du Président Angot, Pau, F-64053, France
| |
Collapse
|
10
|
EL-Mahdy AFM, Yu TC, Mohamed MG, Kuo SW. Secondary Structures of Polypeptide-Based Diblock Copolymers Influence the Microphase Separation of Templates for the Fabrication of Microporous Carbons. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01748] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ahmed F. M. EL-Mahdy
- Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Tzu Ching Yu
- Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Mohamed Gamal Mohamed
- Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Shiao-Wei Kuo
- Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
11
|
Luo L, Lyu X, Tang Z, Shen Z, Fan XH. Thin-Film Self-Assembly of Block Copolymers Containing an Azobenzene-Based Liquid Crystalline Polymer and a Poly(ionic liquid). Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Longfei Luo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiaolin Lyu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhehao Tang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhihao Shen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xing-He Fan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
12
|
Cao H, Dai L, Liu Y, Li X, Yang Z, Deng H. Methacrylic Block Copolymers Containing Liquid Crystalline and Fluorinated Side Chains Capable of Fast Formation of 4 nm Domains. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00777] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hui Cao
- School of Microelectronics and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Le Dai
- School of Microelectronics and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Yuyun Liu
- School of Microelectronics and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Xuemiao Li
- School of Microelectronics and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Zhenyu Yang
- School of Microelectronics and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Hai Deng
- School of Microelectronics and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| |
Collapse
|
13
|
Yang W, Zhang W, Luo L, Lyu X, Xiao A, Shen Z, Fan XH. Ordered structures and sub-5 nm line patterns from rod-coil hybrids containing oligo(dimethylsiloxane). Chem Commun (Camb) 2020; 56:10341-10344. [PMID: 32760981 DOI: 10.1039/d0cc04377j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sub-5 nm ordered nanostructures including lamellar, double gyroid, and columnar phases are formed by a series of oligo(dimethylsiloxane) (ODMS)-based rod-coil liquid crystals with accurate molecular weights. Films with well-oriented line patterns can be obtained by substrate-induced directed self-assembly, which may be further used as lithographic templates.
Collapse
Affiliation(s)
- Weilu Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, and College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | | | | | | | | | | | | |
Collapse
|
14
|
Dai L, Cao H, Deng H. Highly Ordered Methacrylate Block Copolymers Containing Liquid Crystal Side Chains. J PHOTOPOLYM SCI TEC 2020. [DOI: 10.2494/photopolymer.33.541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Le Dai
- School of Microelectronics and State Key Laboratory of Molecular Engineering of Polymers, Fudan University
| | - Hui Cao
- School of Microelectronics and State Key Laboratory of Molecular Engineering of Polymers, Fudan University
| | - Hai Deng
- School of Microelectronics and State Key Laboratory of Molecular Engineering of Polymers, Fudan University
| |
Collapse
|
15
|
Wang L, Tang Z, Li D, Lin J, Guan Z. Adsorption and ordering of amphiphilic rod-coil block copolymers on a substrate: conditions for well-aligned stripe nanopatterns. NANOSCALE 2020; 12:13119-13128. [PMID: 32584339 DOI: 10.1039/d0nr01244k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Controlling the ordering of self-assembled nanostructures is vital in block copolymer nanotechnology but still presents a challenge. Here we demonstrated that the adsorption and ordering of amphiphilic rod-coil block copolymers on a substrate can generate well-aligned stripe nanopatterns by dissipative particle dynamics simulations. The effects of the copolymer concentration and the surface affinity on the formation of stripe nanopatterns were examined. The simulation results revealed that the well-aligned stripe nanopatterns with controllable thickness and stripe width can be obtained in the systems with higher copolymer concentration and surface affinity. An immersion coating experiment was designed to verify the simulation results, and an agreement is shown. The present work provides a strategy for constructing well-aligned stripe nanopatterns in a controllable way.
Collapse
Affiliation(s)
- Liquan Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | | | | | | | | |
Collapse
|
16
|
Krishnasamy V, Qu W, Chen C, Huo H, Ramanagul K, Gothandapani V, Mehl GH, Zhang Q, Liu F. Self-Assembly and Temperature-Driven Chirality Inversion of Cholesteryl-Based Block Copolymers. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02264] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Velmurugan Krishnasamy
- State Key Laboratory for Mechanical Behaviour of Materials, Shaanxi International Research Center for Soft Matter, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Wentao Qu
- State Key Laboratory for Mechanical Behaviour of Materials, Shaanxi International Research Center for Soft Matter, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Changlong Chen
- State Key Laboratory for Mechanical Behaviour of Materials, Shaanxi International Research Center for Soft Matter, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Haohui Huo
- State Key Laboratory for Mechanical Behaviour of Materials, Shaanxi International Research Center for Soft Matter, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | | | | | - Georg H. Mehl
- State Key Laboratory for Mechanical Behaviour of Materials, Shaanxi International Research Center for Soft Matter, Xi’an Jiaotong University, Xi’an 710049, P. R. China
- Department of Chemistry, University of Hull, Hull HU6 7RX, U.K
| | - Qilu Zhang
- State Key Laboratory for Mechanical Behaviour of Materials, Shaanxi International Research Center for Soft Matter, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Feng Liu
- State Key Laboratory for Mechanical Behaviour of Materials, Shaanxi International Research Center for Soft Matter, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| |
Collapse
|
17
|
Shi LY, Lan J, Lee S, Cheng LC, Yager KG, Ross CA. Vertical Lamellae Formed by Two-Step Annealing of a Rod-Coil Liquid Crystalline Block Copolymer Thin Film. ACS NANO 2020; 14:4289-4297. [PMID: 32182037 PMCID: PMC7309319 DOI: 10.1021/acsnano.9b09702] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/17/2020] [Indexed: 05/05/2023]
Abstract
Silicon-containing block copolymer thin films with high interaction parameter and etch contrast are ideal candidates to generate robust nanotemplates for advanced nanofabrication, but they typically form in-plane oriented microdomains as a result of the dissimilar surface energies of the blocks. Here, we describe a two-step annealing method to produce vertically aligned lamellar structures in thin film of a silicon-containing rod-coil thermotropic liquid crystalline block copolymer. The rod-coil block copolymer with the volume fraction of the Si-containing block of 0.22 presents an asymmetrical lamellar structure in which the rod block forms a hexatic columnar nematic liquid crystalline phase. A solvent vapor annealing step first produces well-ordered in-plane cylinders of the Si-containing block, then a subsequent thermal annealing promotes the phase transition from in-plane cylinders to vertical lamellae. The pathways of the order-order transition were examined by microscopy and in situ using grazing incidence small-angle X-ray scattering and wide-angle X-ray scattering.
Collapse
Affiliation(s)
- Ling-Ying Shi
- College
of Polymer Science and Engineering, State Key Laboratory of Polymer
Materials Engineering, Sichuan University, Chengdu 610065, China
- Department
of Materials Science and Engineering, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Ji Lan
- College
of Polymer Science and Engineering, State Key Laboratory of Polymer
Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Sangho Lee
- Department
of Materials Science and Engineering, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Li-Chen Cheng
- Department
of Materials Science and Engineering, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Kevin G. Yager
- Center
for Functional Nanomaterials, Brookhaven
National Laboratory, Upton, New York 11973, United States
| | - Caroline A. Ross
- Department
of Materials Science and Engineering, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
18
|
Qu T, Guan S, Zheng X, Chen A. Perpendicularly aligned nanodomains on versatile substrates via rapid thermal annealing assisted by liquid crystalline ordering in block copolymer films. NANOSCALE ADVANCES 2020; 2:1523-1530. [PMID: 36132323 PMCID: PMC9418532 DOI: 10.1039/d0na00057d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/03/2020] [Indexed: 06/15/2023]
Abstract
The highly ordered perpendicularly aligned cylindrical and lamellar microdomains within block copolymer (BCP) films have important applications in diverse fields. However, the fast normal orientation of self-assembled nanostructures on arbitrary substrates without tedious pre- and postprocessing has been a challenging issue in manufacturing miniaturized devices. Here, we outline the potential for extending the hierarchical self-assembly within azobenzene-containing PS-b-PMA(Az) films to inherently assist in the formation of normally aligned domains using a rapid thermal annealing process (140 °C for 5 min). Liquid crystalline (LC) mesogens in PS-b-PMA(Az) films self-assemble to form a parallelly aligned sematic phase after thermal annealing, as confirmed by grazing-incidence small-angle X-ray scattering (GISAXS), wide-angle X-ray diffraction (WAXD) and ultraviolet-visible (UV-vis) spectra. This sub-phase contributes to broadening of the PS-cylinder-phase window (0.083 ≤ f PS < 0.49) and ∼12 nm PS cylinder structures. Perpendicular cylinders or lamellae are observed on various substrates, such as silicon wafers, flexible polyethylene terephthalate (PET) sheets and conductive aluminum foils. Additionally, the good reactive ion etching (RIE) rate difference between the two blocks makes these BCPs more attractive for advancing the field of BCP lithographic applications for fabricating flexible microelectronic devices.
Collapse
Affiliation(s)
- Ting Qu
- School of Materials Science and Engineering, Beihang University Beijing 100191 P. R. China
| | - Song Guan
- School of Materials Science and Engineering, Beihang University Beijing 100191 P. R. China
| | - Xiaoxiong Zheng
- School of Materials Science and Engineering, Beihang University Beijing 100191 P. R. China
| | - Aihua Chen
- School of Materials Science and Engineering, Beihang University Beijing 100191 P. R. China
| |
Collapse
|
19
|
Ndaya D, Bosire R, Vaidya S, Kasi RM. Molecular engineering of stimuli-responsive, functional, side-chain liquid crystalline copolymers: synthesis, properties and applications. Polym Chem 2020. [DOI: 10.1039/d0py00749h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review describes recent progress made in designing stimuli-responsive, functional, side-chain, end-on mesogen attached liquid crystalline polymers (LCPs).
Collapse
Affiliation(s)
- Dennis Ndaya
- Department of Chemistry
- University of Connecticut
- Storrs
- USA
| | - Reuben Bosire
- Department of Chemistry
- University of Connecticut
- Storrs
- USA
| | | | - Rajeswari M. Kasi
- Department of Chemistry
- University of Connecticut
- Storrs
- USA
- Polymer Program
| |
Collapse
|
20
|
Tang Z, Li D, Lin J, Zhang L, Cai C, Yao Y, Yang C, Tian X. Self-assembly of rod-coil block copolymers on a substrate into micrometer-scale ordered stripe nanopatterns. Polym Chem 2020. [DOI: 10.1039/d0py01404d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Micrometer-scale ordered stripe nanopatterns are readily constructed through an adsorption-assembly of rod-coil block copolymers on the substrate.
Collapse
Affiliation(s)
- Zhengmin Tang
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- School of Materials Science and Engineering
- East China University of Science and Technology
| | - Da Li
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- School of Materials Science and Engineering
- East China University of Science and Technology
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- School of Materials Science and Engineering
- East China University of Science and Technology
| | - Liangshun Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- School of Materials Science and Engineering
- East China University of Science and Technology
| | - Chunhua Cai
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- School of Materials Science and Engineering
- East China University of Science and Technology
| | - Yuan Yao
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- School of Materials Science and Engineering
- East China University of Science and Technology
| | - Chunming Yang
- Shanghai Synchrotron Radiation Facility
- Shanghai Advanced Research Institute
- Chinese Academy of Sciences
- Shanghai 201204
- China
| | - Xiaohui Tian
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- School of Materials Science and Engineering
- East China University of Science and Technology
| |
Collapse
|
21
|
Gao L, Ji Z, Zhao Y, Cai Y, Li X, Tu Y. Synthesis and Solution Self-Assembly Properties of Cyclic Rod-Coil Diblock Copolymers. ACS Macro Lett 2019; 8:1564-1569. [PMID: 35619391 DOI: 10.1021/acsmacrolett.9b00747] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Typical cyclic diblock polymers are synthesized from their linear precursors via the ring-closure strategy in dilute conditions. Here we demonstrate a pseudo-high-dilution condition strategy for the efficient synthesis of cyclic rod-coil diblock copolymer from its linear precursor in selective solvents. The critical association concentration (CAC) of linear precursor is used for the control of unimer concentration during cyclization, while high copolymer synthetic concentrations are achieved via the dynamic equilibrium between unimers and micelles. The effects of CAC and micelle concentration on cyclization yield are studied and pure cyclic rod-coil diblock copolymer was obtained after azide resin treatment. Property investigations show the cyclic rod-coil copolymer has a larger second virial coefficient than its linear counterpart and self-assembles in selective solvents to form larger but looser spherical micelles due to its constraint topological structure.
Collapse
Affiliation(s)
- Lingfeng Gao
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhichao Ji
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yiming Zhao
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yuanli Cai
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiaohong Li
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yingfeng Tu
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
22
|
Shi LY, Liao F, Cheng LC, Lee S, Ran R, Shen Z, Ross CA. Core-Shell and Zigzag Nanostructures from a Thin Film Silicon-Containing Conformationally Asymmetric Triblock Terpolymer. ACS Macro Lett 2019; 8:852-858. [PMID: 35619504 DOI: 10.1021/acsmacrolett.9b00283] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The self-assembly of multiblock copolymers generates diverse hierarchical nanostructures and greatly extends the range of microdomain geometries beyond those produced by diblock copolymers. We report the synthesis of a conformationally asymmetric ABC triblock terpolymer in which the end blocks are a mesogen-jacketed liquid crystalline polymer and poly(dimethylsiloxane), respectively, and its self-assembly under mixed solvent vapor annealing forms a range of sphere, cylinder, and perforated lamellar core-shell morphologies, as well as stacked multilevel structures. Sub-7 nm diameter SiOx nanopatterns were generated by selective plasma etching of the small volume fraction Si-containing core block giving a line/space ratio of ∼1:4. Moreover, the conformational asymmetry of this terpolymer leads to zigzag cylinders on a flat substrate and stable cylinder alignment transverse to template sidewalls within lithographically patterned trenches.
Collapse
Affiliation(s)
- Ling-Ying Shi
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Fen Liao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Li-Chen Cheng
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Sangho Lee
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Rong Ran
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zhihao Shen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Caroline A. Ross
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|