1
|
El-Tokhy FS, Helal DO, Abdel Mageed SS, Mahmoud AMA, El-Gogary RI, El-Ghany EA, Abdel-Mottaleb MMA. Re-purposing of linagliptin for enhanced wound healing and skin rejuvenation via chitosan- modified PLGA nanoplatforms. Int J Pharm 2025; 677:125664. [PMID: 40324605 DOI: 10.1016/j.ijpharm.2025.125664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/29/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025]
Abstract
Dipeptidyl peptidase IV (DPP IV) is a multifunctional glycoprotein implicated in the exacerbation of various inflammatory skin conditions, including wounds. Therefore, topical delivery of Linagliptin (LNG)-a DPP IV inhibitor- augmented with Lavender Oil (LO) could offer an excellent repurposed tool for the treatment of inflammatory skin diseases. LNG/ LO loaded chitosan (Cs) -modified Poly (Lactide co-Glycolic Acid) (PLGA) nanoparticles (LNG/LO-Cs/PLGA NPs) were prepared by solvent emulsification-evaporation technique. D-optimal design explored the impact of independent factors namely; ratio of LO: PLGA, percentage of surfactant, and type of PLGA on; particle size, zeta potential, and entrapment efficiency of NPs. The optimized formulation displayed positively charged, homogeneous small-sized particles (159.34 nm), with high entrapment efficiency (89.30 %w/w). The in vitro release profile of the optimized NPs showed an initial burst release (16.6 %) after one hour, followed by an extended-release pattern for three days. Transmission electron microscopy showed spherical matrix particles with a slightly denser coat. An ex-vivo skin permeation study revealed notable LNG deposition in rat skin (51 % w/w after 24 h). Confocal laser scanning microscopy confirmed the time-dependent enhanced penetration of nanocarriers into the skin. In-vivo study done on induced-wound model revealed accelerated wound healing in NPs-treated group with 86.49 % wound contraction. Biochemical analysis of the impacted skin showed lower oxidative stress, with a 2.5-fold rise in reduced glutathione, a 3.2-fold boost in total antioxidant capacity, a 3.3-fold drop in malondialdehyde, and a 4.5-fold decrease in TNF-α levels versus the positive control. Therefore,This nanosystem could stand as a novel gateway and repurposed tool for accelerated wound healing and tissue regeneration.
Collapse
Affiliation(s)
- Fatma Sa'eed El-Tokhy
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo 11829, Egypt
| | - Dina O Helal
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt; Leicester School of Pharmacy, Faculty of Health and Life Sciences, De Montfort University, Leicestershire, United Kingdom
| | - Sherif S Abdel Mageed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo 11829, Egypt
| | - Abdulla M A Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo 11829, Egypt
| | - Riham I El-Gogary
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Elsayed A El-Ghany
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo 11829, Egypt
| | - Mona M A Abdel-Mottaleb
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt; Université de Franche-Comté, EFS, INSERM, UMR 1098 RIGHT, F-25000 Besançon, France.
| |
Collapse
|
2
|
Nagy SG, Metiva JJ, Schoenfisch MH. Nitric Oxide-Releasing Liposomes for Treatment of Mycobacterium abscessus Infections. ACS APPLIED BIO MATERIALS 2025. [PMID: 40378264 DOI: 10.1021/acsabm.5c00218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Nontuberculosis mycobacteria (NTM) are ubiquitous, opportunistic pathogens that cause severe respiratory infection, primarily in elderly and immunocompromised populations. The second most prevalent NTM pathogen, Mycobacterium abscessus, is considered the most refractory due to its fast growth rate, intracellular survivability, and antibiotic resistance. Treatments are thus sparse and generally ineffective, promoting antibiotic resistance upon chronic use. Nitric oxide (NO) is an endogenously produced free radical that exerts antimicrobial effects against pathogens via several mechanisms of action, and as such, it is unlikely to elicit resistance. Methyl tris diazeniumdiolate (MD3) is a small-molecule NO-releasing prodrug that is capable of sustained NO release, making it an attractive candidate as an antimicrobial therapeutic; however, its triple negative charge makes cellular uptake unlikely. As liposomes enable cellular uptake, their use as an MD3 delivery system may further enhance the utility of NO release for treating intracellular NTM infections. Herein, liposomal formulations were evaluated as a function of pH and buffer composition and optimized for MD3 loading to enable the delivery of bactericidal levels of NO. Planktonic studies with two clinically relevant morphotypes of M. abscessus revealed that lower pKa liposomal systems employ a better antimicrobial efficacy. Prevention and eradication assays revealed that liposomal MD3 significantly improves biofilm inhibition compared to nonliposomal MD3 and was capable of eradicating biofilm bacteria at 4 mg mL-1. Liposomal MD3 and MD3 had similar reductions in intracellular bacterial load, achieving at least a three-log reduction at relevant concentrations. Fluorescence spectroscopy over 24 h demonstrated that liposomal encapsulation increased the intracellular concentration of a membrane-impermeable fluorophore by 3.4-fold. Confocal microscopy was used to visualize the increase in the number of cells containing intracellular NO and the sustained presence of NO within the cell, confirming that liposomal MD3 increases small-molecule internalization.
Collapse
Affiliation(s)
- Sarah G Nagy
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Joseph J Metiva
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Mark H Schoenfisch
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
3
|
Vicente-da-Silva J, Pereira JOSL, do Carmo FA, Patricio BFDC. Skin and Wound Healing: Conventional Dosage versus Nanobased Emulsions Forms. ACS OMEGA 2025; 10:12837-12855. [PMID: 40224422 PMCID: PMC11983225 DOI: 10.1021/acsomega.5c00455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/13/2025] [Accepted: 03/18/2025] [Indexed: 04/15/2025]
Abstract
The skin plays a crucial role in the body's homeostasis through its thermoregulation functions, metabolic activity, and, mainly, its barrier function. Once this system has its homeostasis disturbed, through the promotion of tissue discontinuity, an injury happens and a restoration process starts. Different products can be used to promote, accelerate, or stimulate the healing process, such as hydrogels, emulsions, and ointments (main conventional formulations). Despite the historical use and wide market and consumer acceptance, new systems emerged for wound management with the main challenge to overcome conventional form limitations, in which nanosystems are found, mainly nanobased emulsion forms (nano- and microemulsions, NE and ME). Here, we discuss the skin function and wound healing process, highlighting the cellular and molecular processes, the different wound classifications, and factors that affect physiological healing. We also investigated the recent patents (2012-2023) filed at the United States Patent and Trademark Office, where we found few patents for conventional forms (hydrogels = 5; emulsions = 4; ointments = 6) but a larger number of patents for nanobased emulsions filed in this time (NE = 638; ME = 4,072). Furthermore, we address the use of nanobased emulsions (NE and ME) and their particularities, differences, and application in wound treatment. This work also discusses the challenges, bottlenecks, and regulatory framework for nanosystems, industrial, academic, and government interest in nanotechnology, and future perspectives about this key factor for the nanosystems market and consumer acceptance.
Collapse
Affiliation(s)
- João
Vitor Vicente-da-Silva
- PostGraduate
Program in Molecular and Cellular Biology, Department of Physiological
Sciences − Pharmacology, Biomedical Institute, Federal University of the State of Rio de Janeiro, Rio de Janeiro 20211-040, Brazil
- Pharmaceutical
and Technological Innovation Laboratory, Department of Physiological
Sciences − Pharmacology, Biomedical Institute, Federal University of the State of Rio de Janeiro, Rio de Janeiro 20211-040, Brazil
| | - Juliana Oliveira
da Silva Lopes Pereira
- Pharmaceutical
and Technological Innovation Laboratory, Department of Physiological
Sciences − Pharmacology, Biomedical Institute, Federal University of the State of Rio de Janeiro, Rio de Janeiro 20211-040, Brazil
| | - Flávia Almada do Carmo
- Laboratory
of Pharmaceutical Industrial Technology, Department of Drugs and Pharmaceutics,
Faculty of Pharmacy, Federal University
of Rio de Janeiro, Rio de Janeiro 21941-971, Brazil
- PostGraduate
Program in Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro 21941-971, Brazil
| | - Beatriz Ferreira de Carvalho Patricio
- PostGraduate
Program in Molecular and Cellular Biology, Department of Physiological
Sciences − Pharmacology, Biomedical Institute, Federal University of the State of Rio de Janeiro, Rio de Janeiro 20211-040, Brazil
- Pharmaceutical
and Technological Innovation Laboratory, Department of Physiological
Sciences − Pharmacology, Biomedical Institute, Federal University of the State of Rio de Janeiro, Rio de Janeiro 20211-040, Brazil
| |
Collapse
|
4
|
Vanić Ž, Jøraholmen MW, Škalko-Basnet N. Challenges and considerations in liposomal hydrogels for the treatment of infection. Expert Opin Drug Deliv 2025; 22:255-276. [PMID: 39797393 DOI: 10.1080/17425247.2025.2451620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
INTRODUCTION Liposomal hydrogels are novel drug delivery systems that comprise preformed liposomes incorporated in hydrogels destined for mostly localized drug therapy, herewith antimicrobial therapy. The formulation benefits from versatility of liposomes as lipid-based nanocarriers that enable delivery of various antimicrobials of different lipophilicities, and secondary vehicle, hydrogel, that assures better retention time of formulation at the infection site. Especially in an era of alarming antimicrobial resistance, efficient localized antimicrobial therapy that avoids systemic exposure of antimicrobial and related side effects is crucial. AREAS COVERED We provide an overview of liposomal hydrogels that were developed for superior delivery of antimicrobials at different infections sites, with focus on skin and vaginal infections. The review summarizes the challenges of infection site and most common infection-causing pathogens and offers commentary on most relevant features the formulation needs to optimize to increase the therapy outcome. We discuss the impact of liposomal composition, size, and choice of polymer-forming hydrogel on antimicrobial outcome based on the literature overview and own experience in the field. EXPERT OPINION Liposomal hydrogels offer improved therapy outcome in localized antimicrobial therapy. By fine-tuning of liposomal as well as hydrogel properties, formulations with superior performance can be optimized targeting specific infection site.
Collapse
Affiliation(s)
- Željka Vanić
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - May Wenche Jøraholmen
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, University of Tromsø The Arctic University of Norway, Tromsø, Norway
| | - Nataša Škalko-Basnet
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, University of Tromsø The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
5
|
Zazuli Z, Hartati R, Rowa CR, Asyarie S, Satrialdi. The Potential Application of Nanocarriers in Delivering Topical Antioxidants. Pharmaceuticals (Basel) 2025; 18:56. [PMID: 39861119 PMCID: PMC11769529 DOI: 10.3390/ph18010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/28/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
The imbalance in the production of reactive oxygen species (ROS) with endogenous antioxidant capacity leads to oxidative stress, which drives many disorders, especially in the skin. In such conditions, supplementing exogenous antioxidants may help the body prevent the negative effect of ROS. However, the skin, as the outermost barrier of the body, provides a perfect barricade, making the antioxidant delivery complicated. Several strategies have been developed to enhance the penetration of antioxidants through the skin, one of which is nanotechnology. This review focuses on utilizing several nanocarrier systems, including nanoemulsions, liposomes, solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), and polymeric nanoparticles, for transporting antioxidants into the skin. We also reveal ROS formation in the skin and the role of antioxidant therapy, as well as the natural sources of antioxidants. Furthermore, we discuss the clinical application of topical antioxidant therapy concomitantly with the current status of using nanotechnology to deliver topical antioxidants. This review will accelerate the advancement of topical antioxidant therapy.
Collapse
Affiliation(s)
- Zulfan Zazuli
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, Institut Teknologi Bandung, Bandung 40132, Indonesia;
| | - Rika Hartati
- Department of Pharmaceutical Biology, School of Pharmacy, Institut Teknologi Bandung, Bandung 40132, Indonesia;
| | - Cornelia Rosasepti Rowa
- Department of Pharmaceutics, School of Pharmacy, Institut Teknologi Bandung, Bandung 40132, Indonesia; (C.R.R.); (S.A.)
| | - Sukmadjaja Asyarie
- Department of Pharmaceutics, School of Pharmacy, Institut Teknologi Bandung, Bandung 40132, Indonesia; (C.R.R.); (S.A.)
| | - Satrialdi
- Department of Pharmaceutics, School of Pharmacy, Institut Teknologi Bandung, Bandung 40132, Indonesia; (C.R.R.); (S.A.)
| |
Collapse
|
6
|
Guan J, Chen K, Lu F, He Y. Dissolving microneedle patch loaded with adipokines-enriched adipose extract relieves atopic dermatitis in mouse via modulating immune disorders, microbiota imbalance, and skin barrier defects. J Tissue Eng 2025; 16:20417314241312511. [PMID: 39917589 PMCID: PMC11800253 DOI: 10.1177/20417314241312511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/23/2024] [Indexed: 02/09/2025] Open
Abstract
Atopic dermatitis (AD) is a chronic relapsing dermatosis that demands new therapies. This research group previously developed a physically extracted adipose-derived extracellular matrix named adipose collagen fragments (ACF), which was determined containing massive adipose matrix-bound adipokines and medicable on AD through intradermal injection. However, problems concerning the control of drug release and inevitable pain caused by injection hinder the application of ACF in clinics. Microneedle (MN) is a rapid developing technique for precise and painless transdermal drug delivery. Therefore, a dissolving methacrylated gelatin/hyaluronic acid MN patch loaded with ACF was developed in this study. The morphological characteristics, mechanical properties, penetration ability, as well as biocompatibility and degradation efficiency of ACF-MN were evaluated, and its efficacy on ovalbumin-induced AD mice was also investigated. ACF-MN exhibited excellent penetration ability, biocompatibility, degradation efficiency, and satisfying efficacy on murine AD similar with fresh-made ACF. Furthermore, RNA-Seq combining bioinformatics were performed for mechanism exploration. ACF treatment showed a comprehensive efficacy on AD via restoring inflammatory dysregulation, microbiota imbalance, and skin barrier defects. This study offered a novel MN-based ACF-bound adipokines transdermal delivery system that may serve as a promising strategy for relieving AD.
Collapse
Affiliation(s)
| | | | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Yunfan He
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
7
|
Keser S, Maravić-Vlahoviček G, Lovrić J, Vanić Ž. Vesicular phospholipid gels: A new strategy to improve topical antimicrobial dermatotherapy. Int J Pharm 2024; 667:124931. [PMID: 39522836 DOI: 10.1016/j.ijpharm.2024.124931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/31/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Therapeutically effective and biocompatible dermal formulations that can ensure localization of a high level of antimicrobial drug at the site of action for an appropriate duration, while at the same time providing intrinsic reepithelization properties, are of particular importance for the treatment of infected and injured skin. The current research aimed to explore the potentials of using vesicular phospholipid gels (VPGs), semisolid formulations consisting of tightly packed liposomes (100-200 nm), as innovative local depot drug vehicles for advanced topical dermatotherapy. Ciprofloxacin hydrocholoride (CPX) was selected as a model hydrophilic antibacterial drug and was loaded into several VPGs, differing in their composition. Various CPX-loaded VPGs (CPX-VPGs) were evaluated in vitro for the rheological and physicochemical characteristics, drug release profile, stability under in vivo mimicked conditions and during storage, skin permeability, biocompatibility with the epidermal cells, antibacterial efficacy and wound healing assay, to determine the optimal CPX-VPG for topical dermatotherapy. Viscosity and bilayers fluidity of VPGs affected the release of CPX from CPX-VPGs and its skin localization, limiting CPX percutaneous absorption. All CPX-VPGs exhibited even a 2-fold increase in anti-biofilm activity against both Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus (MRSA) clinical isolate compared to the free drug, while showing no toxic effects on human keratinocytes in vitro. Based on the pronounced proliferative effects on keratinocytes, superior in vitro wound healing effect and drug localization on/inside the skin, CPX-VPGs containing chitosan and hydrogenated phospholipid proved to be the most promising for topical dermatotherapy. These findings, along with increased bioadhesiveness and the slow drug release, with CPX concentrations significantly above the minimum biofilm inhibitory concentrations for bacteria typical in infected wounds, would contribute not only to the improvement of the antimicrobial dermatotherapy, but also to reduction of the frequency of the drug administration.
Collapse
Affiliation(s)
- Sabina Keser
- University of Zagreb Faculty of Pharmacy and Biochemistry, Department of Pharmaceutical Technology, A. Kovačića 1, 10000 Zagreb, Croatia
| | - Gordana Maravić-Vlahoviček
- University of Zagreb Faculty of Pharmacy and Biochemistry, Department of Biochemistry and Molecular Biology, A. Kovačića 1, 10000 Zagreb, Croatia
| | - Jasmina Lovrić
- University of Zagreb Faculty of Pharmacy and Biochemistry, Department of Pharmaceutical Technology, A. Kovačića 1, 10000 Zagreb, Croatia
| | - Željka Vanić
- University of Zagreb Faculty of Pharmacy and Biochemistry, Department of Pharmaceutical Technology, A. Kovačića 1, 10000 Zagreb, Croatia.
| |
Collapse
|
8
|
Li M, Xu Y, Yu Y, Li W, Chen L, Zhao B, Gao Y, Gao J, Lin H. Transdermal delivery of natural products against atopic dermatitis. Chin J Nat Med 2024; 22:1076-1088. [PMID: 39725509 DOI: 10.1016/s1875-5364(24)60681-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Indexed: 12/28/2024]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin condition. Natural products have gained traction in AD treatment due to their accessibility, low toxicity, and favorable pharmacological properties. However, their application is primarily constrained by poor solubility, instability, and limited permeability. The transdermal drug delivery system (TDDS) offers potential solutions for transdermal delivery, enhanced penetration, improved efficacy, and reduced toxicity of natural drugs, aligning with the requirements of modern AD treatment. This review examines the application of hydrogels, microneedles (MNs), liposomes, nanoemulsions, and other TDDS-carrying natural products in AD treatment, with a primary focus on their effects on penetration and accumulation in the skin. The aim is to provide valuable insights into the treatment of AD and other dermatological conditions.
Collapse
Affiliation(s)
- Minghui Li
- Department of Pharmacy, Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo 315010, China
| | - Yihua Xu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanan Yu
- Department of Pharmacy, Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo 315010, China
| | - Wanshu Li
- Department of Pharmacy, Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo 315010, China
| | - Lixia Chen
- Department of Pharmacy, Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo 315010, China
| | - Bo Zhao
- Department of Pharmacy, Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo 315010, China
| | - Yuli Gao
- Department of Pharmacy, Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo 315010, China
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Hangjuan Lin
- Department of Pharmacy, Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo 315010, China.
| |
Collapse
|
9
|
Farasatkia A, Maeso L, Gharibi H, Dolatshahi-Pirouz A, Stojanovic GM, Edmundo Antezana P, Jeong JH, Federico Desimone M, Orive G, Kharaziha M. Design of nanosystems for melanoma treatment. Int J Pharm 2024; 665:124701. [PMID: 39278291 DOI: 10.1016/j.ijpharm.2024.124701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/24/2024] [Accepted: 09/10/2024] [Indexed: 09/18/2024]
Abstract
Melanoma is a prevalent and concerning form of skin cancer affecting millions of individuals worldwide. Unfortunately, traditional treatments can be invasive and painful, prompting the need for alternative therapies with improved efficacy and patient outcomes. Nanosystems offer a promising solution to these obstacles through the rational design of nanoparticles (NPs) which are structured into nanocomposite forms, offering efficient approaches to cancer treatment procedures. A range of NPs consisting of polymeric, metallic and metal oxide, carbon-based, and virus-like NPs have been studied for their potential in treating skin cancer. This review summarizes the latest developments in functional nanosystems aimed at enhancing melanoma treatment. The fundamentals of these nanosystems, including NPs and the creation of various functional nanosystem types, facilitating melanoma treatment are introduced. Then, the advances in the applications of functional nanosystems for melanoma treatment are summarized, outlining both their benefits and the challenges encountered in implementing nanosystem therapies.
Collapse
Affiliation(s)
- Asal Farasatkia
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Lidia Maeso
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Hamidreza Gharibi
- Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | | | - Goran M Stojanovic
- Department of Electronics, Faculty of Technical Sciences, University of Novi Sad, 21000, Novi Sad, Serbia
| | - Pablo Edmundo Antezana
- Universidad de Buenos Aires, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA, CONICET), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Jee-Heon Jeong
- Laboratory of Drug Delivery and Cell Therapy (LDDCT). Department of Precision Medicine. School of Medicine, Sungkyunkwan University. South Korea
| | - Martin Federico Desimone
- Universidad de Buenos Aires, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA, CONICET), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina; Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria 01007, Spain.
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| |
Collapse
|
10
|
Zhao H, Zhao H, Tang Y, Li M, Cai Y, Xiao X, He F, Huang H, Zhang Y, Li J. Skin-permeable gold nanoparticles with modifications azelamide monoethanolamine ameliorate inflammatory skin diseases. Biomark Res 2024; 12:118. [PMID: 39385245 PMCID: PMC11465885 DOI: 10.1186/s40364-024-00663-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 09/27/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Traditional topical drug delivery for treating inflammatory skin diseases suffers from poor skin penetration and long-term side effects. Metal nanoparticles show promising application in topical drug delivery for inflammatory skin diseases. METHODS Here, we synthesized a new type of nanoparticles, azelamide monoethanolamine-functionalized gold nanoparticles (Au-MEA NPs), based on citrate-capped gold nanoparticles (Au-CA NPs) via the ligand exchange method. The physical and chemical properties of Au-CA NPs and Au-MEA NPs were characterized. In vivo studies were performed using imiquimod-induced psoriasis and LL37-induced rosacea animal models, respectively. For in vitro studies, a model of cellular inflammation was established using HaCaT cells stimulated with TNF-α. In addition, proteomics, gelatin zymography, and other techniques were used to investigate the possible therapeutic mechanisms of the Au-MEA NPs. RESULTS We found that Au-MEA NPs exhibited better stability and permeation properties compared to conventional Au-CA NPs. Transcutaneously administered Au-MEA NPs exerted potent therapeutic efficacy against both rosacea-like and psoriasiform skin dermatitis in vivo without overt signs of toxicity. Mechanistically, Au-MEA NPs reduced the production of pro-inflammatory mediators in keratinocytes by promoting SOD activity and inhibiting the activity of MMP9. CONCLUSION Au-MEA NPs have the potential to be a topical nanomedicine for the effective and safe treatment of inflammatory skin diseases.
Collapse
Affiliation(s)
- He Zhao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Han Zhao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yan Tang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Mengfan Li
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Yisheng Cai
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Xin Xiao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Fanping He
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hongwen Huang
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China.
| | - Yiya Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
11
|
Mohammadi-Meyabadi R, Mallandrich M, Beirampour N, Garrós N, Espinoza LC, Sosa L, Suñer-Carbó J, Rodríguez-Lagunas MJ, Garduño-Ramírez ML, Calpena-Campmany AC. Lipid-Based Formulation of Baricitinib for the Topical Treatment of Psoriasis. Pharmaceutics 2024; 16:1287. [PMID: 39458616 PMCID: PMC11510483 DOI: 10.3390/pharmaceutics16101287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Baricitinib, commonly used for autoimmune diseases, is typically administered orally, which can lead to systemic adverse effects. A topical formulation could potentially offer localized therapeutic effects while minimizing these side effects. OBJECTIVES This study focuses on developing a lipid-based topical formulation of baricitinib (BCT-OS) for treating psoriasis. METHODS The optimized formulation was then assessed for physical, chemical, and biopharmaceutical characterization. Furthermore, the anti-inflammatory efficacy of the formulation was tested in a model of psoriasis induced by imiquimod in mice, and its tolerance was determined by the evaluation of biomechanical skin properties and an inflammation test model induced by xylol in mice. RESULTS BCT-OS presented appropriate characteristics for skin administration in terms of pH, rheology, extensibility, and stability. The formulation also demonstrated a notable reduction in skin inflammation in the mouse model, and high tolerability without affecting the skin integrity. CONCLUSIONS BCT-OS shows promise as an alternative treatment for psoriasis, offering localized therapeutic benefits with a potentially improved safety profile compared to systemic administration.
Collapse
Affiliation(s)
- Roya Mohammadi-Meyabadi
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (R.M.-M.); (N.B.); (J.S.-C.); (A.C.C.-C.)
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona (UB), Av. Diagonal 645, 08028 Barcelona, Spain
| | - Mireia Mallandrich
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (R.M.-M.); (N.B.); (J.S.-C.); (A.C.C.-C.)
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona (UB), Av. Diagonal 645, 08028 Barcelona, Spain
| | - Negar Beirampour
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (R.M.-M.); (N.B.); (J.S.-C.); (A.C.C.-C.)
| | - Núria Garrós
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (R.M.-M.); (N.B.); (J.S.-C.); (A.C.C.-C.)
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona (UB), Av. Diagonal 645, 08028 Barcelona, Spain
| | - Lupe Carolina Espinoza
- Departamento de Química y Ciencias Exactas, Universidad Técnica Particular de Loja, Loja 1101608, Ecuador
| | - Lilian Sosa
- Pharmaceutical Technology Research Group, Faculty of Chemical Sciences and Pharmacy, National Autonomous University of Honduras (UNAH), Tegucigalpa 11101, Honduras
- Instituto de Investigaciones en Microbiología (IIM), Universidad Nacional Autónoma de Hondura (UNAH), Tegucigalpa 11101, Honduras
| | - Joaquim Suñer-Carbó
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (R.M.-M.); (N.B.); (J.S.-C.); (A.C.C.-C.)
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona (UB), Av. Diagonal 645, 08028 Barcelona, Spain
| | - María José Rodríguez-Lagunas
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Av. Joan XXIII, 08028 Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - María Luisa Garduño-Ramírez
- Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca 62209, Mexico
| | - Ana C. Calpena-Campmany
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (R.M.-M.); (N.B.); (J.S.-C.); (A.C.C.-C.)
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona (UB), Av. Diagonal 645, 08028 Barcelona, Spain
| |
Collapse
|
12
|
Modarresi Chahardehi A, Ojaghi HR, Motedayyen H, Arefnezhad R. Nano-based formulations of thymoquinone are new approaches for psoriasis treatment: a literature review. Front Immunol 2024; 15:1416842. [PMID: 39188726 PMCID: PMC11345144 DOI: 10.3389/fimmu.2024.1416842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/22/2024] [Indexed: 08/28/2024] Open
Abstract
Psoriasis, a persistent immune-mediated inflammatory skin condition, affects approximately 2-3% of the global population. Current treatments for psoriasis are fraught with limitations, including adverse effects, high costs, and diminishing efficacy over time. Thymoquinone (TQ), derived from Nigella sativa seeds, exhibits promising anti-inflammatory, antioxidant, and immunomodulatory properties that could prove beneficial in managing psoriasis. However, TQ's hydrophobic nature and poor bioavailability have hindered its usefulness as a therapeutic agent. Recent research has strategically addressed these challenges by developing nano-thymoquinone (nano-TQ) formulations to enhance delivery and efficacy in treating psoriasis. Preclinical studies employing mouse models have demonstrated that nano-TQ effectively mitigates inflammation, erythema, scaling, epidermal thickness, and cytokine levels in psoriatic lesions. Various nano-TQ formulations, including nanoemulsions, lipid vesicles, nanostructured lipid carriers, and ethosomes, have been explored to improve solubility, facilitate skin penetration, ensure sustained release, and achieve site-specific targeting. Although clinical trials are currently scarce, the outcomes from in vitro and animal models are promising. The potential co-delivery of nano-TQ with other anti-psoriatic agents also presents avenues for further investigation.
Collapse
Affiliation(s)
| | - Hamid Reza Ojaghi
- Department of Dermatology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Motedayyen
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Reza Arefnezhad
- Coenzyme R Research Institute, Tehran, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
13
|
Ji Y, Li H, Li J, Yang G, Zhang W, Shen Y, Xu B, Liu J, Wen J, Song W. Hair Follicle-Targeted Delivery of Azelaic Acid Micro/Nanocrystals Promote the Treatment of Acne Vulgaris. Int J Nanomedicine 2024; 19:5173-5191. [PMID: 38855733 PMCID: PMC11162231 DOI: 10.2147/ijn.s459788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/28/2024] [Indexed: 06/11/2024] Open
Abstract
Purpose Acne vulgaris is a chronic inflammatory skin disorder centered on hair follicles, making hair follicle-targeted delivery of anti-acne drugs a promising option for acne treatment. However, current researches have only focused on the delivering to healthy hair follicles, which are intrinsically different from pathologically clogged hair follicles in acne vulgaris. Patients and Methods Azelaic acid (AZA) micro/nanocrystals with different particle sizes were prepared by wet media milling or high-pressure homogenization. An experiment on AZA micro/nanocrystals delivering to healthy hair follicles was carried out, with and without the use of physical enhancement techniques. More importantly, it innovatively designed an experiment, which could reveal the ability of AZA micro/nanocrystals to penetrate the constructed clogged hair follicles. The anti-inflammatory and antibacterial effects of AZA micro/nanocrystals were evaluated in vitro using a RAW264.7 cell model stimulated by lipopolysaccharide and a Cutibacterium acnes model. Finally, both the anti-acne effects and skin safety of AZA micro/nanocrystals and commercial products were compared in vivo. Results In comparison to commercial products, 200 nm and 500 nm AZA micro/nanocrystals exhibited an increased capacity to target hair follicles. In the combination group of AZA micro/nanocrystals and ultrasound, the ability to penetrate hair follicles was further remarkably enhanced (ER value up to 9.6). However, toward the clogged hair follicles, AZA micro/nanocrystals cannot easily penetrate into by themselves. Only with the help of 1% salicylic acid, AZA micro/nanocrystals had a great potential to penetrate clogged hair follicle. It was also shown that AZA micro/nanocrystals had anti-inflammatory and antibacterial effects by inhibiting pro-inflammatory factors and Cutibacterium acnes. Compared with commercial products, the combination of AZA micro/nanocrystals and ultrasound exhibited an obvious advantage in both skin safety and in vivo anti-acne therapeutic efficacy. Conclusion Hair follicle-targeted delivery of AZA micro/nanocrystals provided a satisfactory alternative in promoting the treatment of acne vulgaris.
Collapse
Affiliation(s)
- Yan Ji
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Haorong Li
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Jiguo Li
- Nanjing Miaobang Meiye Enterprise Management Co, LTD, Nanjing, People’s Republic of China
| | - Guangqiang Yang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Wenli Zhang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Yan Shen
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Bohui Xu
- School of Pharmacy, Nantong University, Nantong, 226001, People’s Republic of China
| | - Jianping Liu
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Jingyuan Wen
- School of Pharmacy, Faculty of Medical and Health Sciences, the University of Auckland, Auckland, New Zealand
| | - Wenting Song
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, People’s Republic of China
| |
Collapse
|
14
|
Jadav M, Solanki R, Patel S, Pooja D, Kulhari H. Development of thiolated xanthan gum-stearylamine conjugate based mucoadhesive system for the delivery of biochanin-A to melanoma cells. Int J Biol Macromol 2024; 257:128693. [PMID: 38092110 DOI: 10.1016/j.ijbiomac.2023.128693] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
Recently, instead of creating new active compounds, scientists have been working to increase the bioavailability and residence time of existing drugs by modifying the characteristics of the delivery systems. In the present study, a novel mucoadhesive bioconjugate (SN-XG-SH) was synthesized by functionalizing a polysaccharide xanthan gum (XG) with cysteamine hydrochloride (CYS) and a lipid stearylamine (SN). FTIR, CHNS and 1H NMR studies confirmed the successful synthesis of SN-XG-SH. Mucoadhesion of the thiolated XG was enhanced and evaluated by different methods. Disulfide bond formation between thiolated XG and skin mucus enhances mucoadhesive behavior. The mucoadhesive bioconjugate was used to prepare nanoparticles for the delivery of hydrophobic biochanin-A (Bio-A) for the treatment of melanoma. The thiolated xanthan gum nanoparticles also demonstrated high drug entrapment efficiency, sustained drug release, and high storage stability. The drug loaded nanoparticles (Bio-A@TXNPs) significantly improved the cytotoxicity of Bio-A against human epidermoid cancer cells (A431 cells) by inducing apoptosis and changing mitochondrial membrane potential. In conclusion, thiolation of XG improves its mucoadhesive properties and prolongs the release of Bio-A. Thus, thiolated XG conjugate has a high potential for use as a bioadhesive agent in controlled and localised delivery of drugs in different skin diseases including melanoma.
Collapse
Affiliation(s)
- Mahima Jadav
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, Gujarat 382030, India
| | - Raghu Solanki
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat 382030, India
| | - Sunita Patel
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat 382030, India
| | - Deep Pooja
- School of Pharmacy, National Forensic Science University, Gandhinagar, Gujarat 382007, India.
| | - Hitesh Kulhari
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, Gujarat 382030, India.
| |
Collapse
|
15
|
Bernasqué A, Cario M, Krisa S, Lecomte S, Faure C. Prediction of the penetration depth of multi-lamellar liposomes in artificial skin. Application to the vectorization of corticosteroid in human skin. Eur J Pharm Biopharm 2023; 191:303-314. [PMID: 37708944 DOI: 10.1016/j.ejpb.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/28/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Our previous work showed that the size, elasticity and charge of multi-lamellar liposomes (MLLs) could not be considered separately to predict the fate of MLLs in the skin [1]. Based on this study, we developed several MLLs formulations containing a corticosteroid, betamethasone 17-valerate (B17) to transport the drug into the stratum corneum, living epidermis, dermis or through the skin. MLLs encapsulation efficiency was found to exceed 74 ± 3 % in all cases. In addition, we showed that MLLs protected the corticosteroid from thermal degradation. Comparing the penetration depth of all MLLs within artificial skin measured by Raman imaging, we established an equation for its determination, given the MLLs elasticity and size. This equation was verified experimentally on human explants: quantification of B17 in each skin layer, as well as its transdermal passage by ultra-high performance liquid chromatography, confirmed that B17 was predominantly and significantly transported in the desired layer. Eventually, we showed the benefits in using B17-loaded MLLs instead of a B17-containing pharmaceutical cream in terms of B17 penetration and thermal degradation.
Collapse
Affiliation(s)
- Antoine Bernasqué
- CBMN, Université de Bordeaux, CNRS, Bordeaux INP, UMR 5248, F-33600 Pessac, France; U1312-BRIC, Inserm, Université de Bordeaux, National Reference Center for Rare Skin Diseases, Bordeaux, France
| | - Muriel Cario
- U1312-BRIC, Inserm, Université de Bordeaux, National Reference Center for Rare Skin Diseases, Bordeaux, France
| | - Stéphanie Krisa
- INRAE, Bordeaux INP, UR œnologie, EA 4577, USC 1366, ISVV, Université de Bordeaux, 33140 Villenave d'Ornon, France
| | - Sophie Lecomte
- CBMN, Université de Bordeaux, CNRS, Bordeaux INP, UMR 5248, F-33600 Pessac, France
| | - Chrystel Faure
- CBMN, Université de Bordeaux, CNRS, Bordeaux INP, UMR 5248, F-33600 Pessac, France.
| |
Collapse
|
16
|
Ait-Touchente Z, Zine N, Jaffrezic-Renault N, Errachid A, Lebaz N, Fessi H, Elaissari A. Exploring the Versatility of Microemulsions in Cutaneous Drug Delivery: Opportunities and Challenges. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101688. [PMID: 37242104 DOI: 10.3390/nano13101688] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
Microemulsions are novel drug delivery systems that have garnered significant attention in the pharmaceutical research field. These systems possess several desirable characteristics, such as transparency and thermodynamic stability, which make them suitable for delivering both hydrophilic and hydrophobic drugs. In this comprehensive review, we aim to explore different aspects related to the formulation, characterization, and applications of microemulsions, with a particular emphasis on their potential for cutaneous drug delivery. Microemulsions have shown great promise in overcoming bioavailability concerns and enabling sustained drug delivery. Thus, it is crucial to have a thorough understanding of their formulation and characterization in order to optimize their effectiveness and safety. This review will delve into the different types of microemulsions, their composition, and the factors that affect their stability. Furthermore, the potential of microemulsions as drug delivery systems for skin applications will be discussed. Overall, this review will provide valuable insights into the advantages of microemulsions as drug delivery systems and their potential for improving cutaneous drug delivery.
Collapse
Affiliation(s)
- Zouhair Ait-Touchente
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, 69100 Villeurbanne, France
| | - Nadia Zine
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, 69100 Villeurbanne, France
| | | | - Abdelhamid Errachid
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, 69100 Villeurbanne, France
| | - Noureddine Lebaz
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, LAGEPP UMR 5007, 69100 Villeurbanne, France
| | - Hatem Fessi
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, LAGEPP UMR 5007, 69100 Villeurbanne, France
| | - Abdelhamid Elaissari
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, 69100 Villeurbanne, France
| |
Collapse
|
17
|
Karnam S, Jindal AB, Agnihotri C, Singh BP, Paul AT. Topical Nanotherapeutics for Treating MRSA-Associated Skin and Soft Tissue Infection (SSTIs). AAPS PharmSciTech 2023; 24:108. [PMID: 37100956 DOI: 10.1208/s12249-023-02563-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 04/02/2023] [Indexed: 04/28/2023] Open
Abstract
The emergence of methicillin-resistant Staphylococcus aureus (MRSA) imposes a major challenge for the treatment of infectious diseases with existing antibiotics. MRSA associated with superficial skin and soft tissue infections (SSTIs) is one of them, affecting the skin's superficial layers, and it includes impetigo, folliculitis, cellulitis, furuncles, abscesses, surgical site infections, etc. The efficient care of superficial SSTIs caused by MRSA necessitates local administration of antibiotics, because oral antibiotics does not produce the required concentration at the local site. The topical administration of nanocarriers has been emerging in the area of drug delivery due to its advantages over conventional topical formulation. It enhances the solubility and permeation of the antibiotics into deeper layer of the skin. Apart from this, antibiotic resistance is something that needs to be combated on multiple fronts, and antibiotics encapsulated in nanocarriers help to do so by increasing the therapeutic efficacy in a number of different ways. The current review provides an overview of the resistance mechanism in S. aureus as well as various nanocarriers reported for the effective management of MRSA-associated superficial SSTIs.
Collapse
Affiliation(s)
- Sriravali Karnam
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani (BITS-Pilani), Pilani Campus, Vidyavihar, Pilani, 333031, Rajasthan, India
| | - Anil B Jindal
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani (BITS-Pilani), Pilani Campus, Vidyavihar, Pilani, 333031, Rajasthan, India
| | - Charu Agnihotri
- Department of Agriculture & Environmental Sciences (AES), Technology Entrepreneurship & Management (NIFTEM), National Institute of Food, Sonipat, 131028, Haryana, India
| | - Bhim Pratap Singh
- Department of Agriculture & Environmental Sciences (AES), Technology Entrepreneurship & Management (NIFTEM), National Institute of Food, Sonipat, 131028, Haryana, India.
| | - Atish T Paul
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani (BITS-Pilani), Pilani Campus, Vidyavihar, Pilani, 333031, Rajasthan, India.
| |
Collapse
|
18
|
Chang YT, Huang TH, Alalaiwe A, Hwang E, Fang JY. Small interfering RNA-based nanotherapeutics for treating skin-related diseases. Expert Opin Drug Deliv 2023:1-16. [PMID: 37088710 DOI: 10.1080/17425247.2023.2206646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
INTRODUCTION RNA interference (RNAi) has demonstrated great potential in treating skin-related diseases, as small interfering RNA (siRNA) can efficiently silence specific genes. The design of skin delivery systems for siRNA is important to protect the nucleic acid while facilitating both skin targeting and cellular ingestion. Entrapment of siRNA into nanocarriers can accomplish these aims, contributing to improved targeting, controlled release, and increased transfection. AREAS COVERED The siRNA-based nanotherapeutics for treating skin disorders are summarized. First, the mechanisms of RNAi are presented, followed by the introduction of challenges for skin therapy. Then, the different nanoparticle types used for siRNA skin delivery are described. Subsequently, we introduce the mechanisms of how nanoparticles enhance siRNA skin penetration. Finally, the current investigations associated with nanoparticulate siRNA application in skin disease management are reviewed. EXPERT OPINION The potential application of nanotherapeutic RNAi allows for a novel skin application strategy. Further clinical studies are required to confirm the findings in the cell-based or animal experiments. The capability of large-scale production and reproducibility of nanoparticle products are also critical for translation to commercialization. siRNA delivery by nanocarriers should be optimized to attain cutaneous targeting without the risk of toxicity.
Collapse
Affiliation(s)
- Yen-Tzu Chang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Tse-Hung Huang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Linkou and Keelung, Taiwan
- School of Traditional Chinese Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
- Department of Chemical Engineering and Graduate Institute of Biochemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Ahmed Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Erica Hwang
- Department of Dermatology, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan
| |
Collapse
|
19
|
Vieira J, Castelo J, Martins M, Saraiva N, Rosado C, Pereira-Leite C. Mixed Edge Activators in Ibuprofen-Loaded Transfersomes: An Innovative Optimization Strategy Using Box-Behnken Factorial Design. Pharmaceutics 2023; 15:pharmaceutics15041209. [PMID: 37111694 PMCID: PMC10143365 DOI: 10.3390/pharmaceutics15041209] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Transfersomes have been highlighted as an interesting nanotechnology-based approach to facilitate the skin delivery of bioactive compounds. Nevertheless, the properties of these nanosystems still need to be improved to enable knowledge transfer to the pharmaceutical industry and the development of more efficacious topical medicines. Quality-by-design strategies, such as Box-Behnken factorial design (BBD), are in line with the current need to use sustainable processes to develop new formulations. Thus, this work aimed at optimizing the physicochemical properties of transfersomes for cutaneous applications, by applying a BBD strategy to incorporate mixed edge activators with opposing hydrophilic-lipophilic balance (HLB). Tween® 80 and Span® 80 were used as edge activators and ibuprofen sodium salt (IBU) was selected as the model drug. After the initial screening of the IBU solubility in aqueous media, a BBD protocol was implemented, and the optimized formulation displayed appropriate physicochemical properties for skin delivery. By comparing the optimized transfersomes to equivalent liposomes, the incorporation of mixed edge activators was found to be beneficial to upgrade the storage stability of the nanosystems. Furthermore, their cytocompatibility was shown by cell viability studies using 3D HaCaT cultures. Altogether, the data herein bode well for future advances in the use of mixed edge activators in transfersomes for the management of skin conditions.
Collapse
Affiliation(s)
- João Vieira
- CBIOS-Universidade Lusófona's Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
- Department of Biomedical Sciences, University of Alcalá, Ctra. Madrid-Barcelona Km. 33.600, Alcalá de Henares, 28871 Madrid, Spain
| | - Jéssica Castelo
- School of Health Sciences and Technologies, Universidade Lusófona, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Marta Martins
- CBIOS-Universidade Lusófona's Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
- Department of Biomedical Sciences, University of Alcalá, Ctra. Madrid-Barcelona Km. 33.600, Alcalá de Henares, 28871 Madrid, Spain
| | - Nuno Saraiva
- CBIOS-Universidade Lusófona's Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Catarina Rosado
- CBIOS-Universidade Lusófona's Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Catarina Pereira-Leite
- CBIOS-Universidade Lusófona's Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
20
|
Magdziarz S, Boguń M, Frączyk J. Coating Methods of Carbon Nonwovens with Cross-Linked Hyaluronic Acid and Its Conjugates with BMP Fragments. Polymers (Basel) 2023; 15:polym15061551. [PMID: 36987331 PMCID: PMC10054264 DOI: 10.3390/polym15061551] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/07/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
The cross-linking of polysaccharides is a universal approach to affect their structure and physical properties. Both physical and chemical methods are used for this purpose. Although chemical cross-linking provides good thermal and mechanical stability for the final products, the compounds used as stabilizers can affect the integrity of the cross-linked substances or have toxic properties that limit the applicability of the final products. These risks might be mitigated by using physically cross-linked gels. In the present study, we attempted to obtain hybrid materials based on carbon nonwovens with a layer of cross-linked hyaluronan and peptides that are fragments of bone morphogenetic proteins (BMPs). A variety of cross-linking procedures and cross-linking agents (1,4-butanediamine, citric acid, and BDDE) were tested to find the most optimal method to coat the hydrophobic carbon nonwovens with a hydrophilic hyaluronic acid (HA) layer. Both the use of hyaluronic acid chemically modified with BMP fragments and a physical modification approach (layer-by-layer method) were proposed. The obtained hybrid materials were tested with the spectrometric (MALDI-TOF MS) and spectroscopic methods (IR and 1H-NMR). It was found that the chemical cross-linking of polysaccharides is an effective method for the deposition of a polar active substance on the surface of a hydrophobic carbon nonwoven fabric and that the final material is highly biocompatible.
Collapse
Affiliation(s)
- Sylwia Magdziarz
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Maciej Boguń
- Łukasiewicz-Lodz Institute of Technology, Sklodowskiej-Curie 19/27, 90-570 Lodz, Poland
| | - Justyna Frączyk
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| |
Collapse
|
21
|
Liu L, Zhao W, Ma Q, Gao Y, Wang W, Zhang X, Dong Y, Zhang T, Liang Y, Han S, Cao J, Wang X, Sun W, Ma H, Sun Y. Functional nano-systems for transdermal drug delivery and skin therapy. NANOSCALE ADVANCES 2023; 5:1527-1558. [PMID: 36926556 PMCID: PMC10012846 DOI: 10.1039/d2na00530a] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/27/2022] [Indexed: 06/18/2023]
Abstract
Transdermal drug delivery is one of the least intrusive and patient-friendly ways for therapeutic agent administration. Recently, functional nano-systems have been demonstrated as one of the most promising strategies to treat skin diseases by improving drug penetration across the skin barrier and achieving therapeutically effective drug concentrations in the target cutaneous tissues. Here, a brief review of functional nano-systems for promoting transdermal drug delivery is presented. The fundamentals of transdermal delivery, including skin biology and penetration routes, are introduced. The characteristics of functional nano-systems for facilitating transdermal drug delivery are elucidated. Moreover, the fabrication of various types of functional transdermal nano-systems is systematically presented. Multiple techniques for evaluating the transdermal capacities of nano-systems are illustrated. Finally, the advances in the applications of functional transdermal nano-systems for treating different skin diseases are summarized.
Collapse
Affiliation(s)
- Lijun Liu
- School of Pharmacy, Qingdao University Qingdao 266071 China
- The Shandong Consortium in the Yellow River Basin for Prevention, Treatment and Drug Development for Primary Diseases Related to Alcoholism, Qingdao University Qingdao 266021 China
| | - Wenbin Zhao
- School of Pharmacy, Qingdao University Qingdao 266071 China
- The Shandong Consortium in the Yellow River Basin for Prevention, Treatment and Drug Development for Primary Diseases Related to Alcoholism, Qingdao University Qingdao 266021 China
| | - Qingming Ma
- School of Pharmacy, Qingdao University Qingdao 266071 China
- The Shandong Consortium in the Yellow River Basin for Prevention, Treatment and Drug Development for Primary Diseases Related to Alcoholism, Qingdao University Qingdao 266021 China
| | - Yang Gao
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Weijiang Wang
- School of Pharmacy, Qingdao University Qingdao 266071 China
- The Shandong Consortium in the Yellow River Basin for Prevention, Treatment and Drug Development for Primary Diseases Related to Alcoholism, Qingdao University Qingdao 266021 China
| | - Xuan Zhang
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Yunxia Dong
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Tingting Zhang
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Yan Liang
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Shangcong Han
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Jie Cao
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Xinyu Wang
- Institute of Thermal Science and Technology, Shandong University Jinan 250061 China
| | - Wentao Sun
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences Qingdao 266113 China
| | - Haifeng Ma
- Department of Geriatrics, Zibo Municipal Hospital Zibo 255400 China
| | - Yong Sun
- School of Pharmacy, Qingdao University Qingdao 266071 China
| |
Collapse
|
22
|
Hemmingsen LM, Giordani B, Paulsen MH, Vanić Ž, Flaten GE, Vitali B, Basnet P, Bayer A, Strøm MB, Škalko-Basnet N. Tailored anti-biofilm activity - Liposomal delivery for mimic of small antimicrobial peptide. BIOMATERIALS ADVANCES 2023; 145:213238. [PMID: 36527962 DOI: 10.1016/j.bioadv.2022.213238] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/18/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
The eradication of bacteria embedded in biofilms is among the most challenging obstacles in the management of chronic wounds. These biofilms are found in most chronic wounds; moreover, the biofilm-embedded bacteria are considerably less susceptible to conventional antimicrobial treatment than the planktonic bacteria. Antimicrobial peptides and their mimics are considered attractive candidates in the pursuit of novel therapeutic options for the treatment of chronic wounds and general bacterial eradication. However, some limitations linked to these membrane-active antimicrobials are making their clinical use challenging. Novel innovative delivery systems addressing these limitations represent a smart solution. We hypothesized that incorporation of a novel synthetic mimic of an antimicrobial peptide in liposomes could improve its anti-biofilm effect as well as the anti-inflammatory activity. The small synthetic mimic of an antimicrobial peptide, 7e-SMAMP, was incorporated into liposomes (~280 nm) tailored for skin wounds and evaluated for its potential activity against both biofilm formation and eradication of pre-formed biofilms. The 7e-SMAMP-liposomes significantly lowered inflammatory response in murine macrophages (~30 % reduction) without affecting the viability of macrophages or keratinocytes. Importantly, the 7e-SMAMP-liposomes completely eradicated biofilms produced by Staphylococcus aureus and Escherichia coli above concentrations of 6.25 μg/mL, whereas in Pseudomonas aeruginosa the eradication reached 75 % at the same concentration. Incorporation of 7e-SMAMP in liposomes improved both the inhibition of biofilm formation as well as biofilm eradication in vitro, as compared to non-formulated antimicrobial, therefore confirming its potential as a novel therapeutic option for bacteria-infected chronic wounds.
Collapse
Affiliation(s)
- Lisa Myrseth Hemmingsen
- Drug Transport and Delivery Research Group, Department of Pharmacy, University of Tromsø The Arctic University of Norway, Universitetsvegen 57, N-9037 Tromsø, Norway
| | - Barbara Giordani
- Beneficial Microbes Research Group, Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy
| | - Marianne H Paulsen
- Department of Chemistry, University of Tromsø The Arctic University of Norway, Universitetsvegen 57, N-9037 Tromsø, Norway; Natural Products and Medicinal Chemistry Research Group, Department of Pharmacy, University of Tromsø The Arctic University of Norway, Universitetsvegen 57, N-9037 Tromsø, Norway
| | - Željka Vanić
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10 000 Zagreb, Croatia
| | - Gøril Eide Flaten
- Drug Transport and Delivery Research Group, Department of Pharmacy, University of Tromsø The Arctic University of Norway, Universitetsvegen 57, N-9037 Tromsø, Norway
| | - Beatrice Vitali
- Beneficial Microbes Research Group, Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy
| | - Purusotam Basnet
- Women's Health and Perinatology Research Group, Department of Clinical Medicine, University of Tromsø The Arctic University of Norway, Universitetsveien 57, N-9037 Tromsø, Norway
| | - Annette Bayer
- Department of Chemistry, University of Tromsø The Arctic University of Norway, Universitetsvegen 57, N-9037 Tromsø, Norway
| | - Morten B Strøm
- Natural Products and Medicinal Chemistry Research Group, Department of Pharmacy, University of Tromsø The Arctic University of Norway, Universitetsvegen 57, N-9037 Tromsø, Norway
| | - Nataša Škalko-Basnet
- Drug Transport and Delivery Research Group, Department of Pharmacy, University of Tromsø The Arctic University of Norway, Universitetsvegen 57, N-9037 Tromsø, Norway.
| |
Collapse
|
23
|
Frézard F, Aguiar MMG, Ferreira LAM, Ramos GS, Santos TT, Borges GSM, Vallejos VMR, De Morais HLO. Liposomal Amphotericin B for Treatment of Leishmaniasis: From the Identification of Critical Physicochemical Attributes to the Design of Effective Topical and Oral Formulations. Pharmaceutics 2022; 15:pharmaceutics15010099. [PMID: 36678729 PMCID: PMC9864876 DOI: 10.3390/pharmaceutics15010099] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
The liposomal amphotericin B (AmB) formulation, AmBisome®, still represents the best therapeutic option for cutaneous and visceral leishmaniasis. However, its clinical efficacy depends on the patient's immunological status, the clinical manifestation and the endemic region. Moreover, the need for parenteral administration, its side effects and high cost significantly limit its use in developing countries. This review reports the progress achieved thus far toward the understanding of the mechanism responsible for the reduced toxicity of liposomal AmB formulations and the factors that influence their efficacy against leishmaniasis. It also presents the recent advances in the development of more effective liposomal AmB formulations, including topical and oral liposome formulations. The critical role of the AmB aggregation state and release rate in the reduction of drug toxicity and in the drug efficacy by non-invasive routes is emphasized. This paper is expected to guide future research and development of innovative liposomal formulations of AmB.
Collapse
Affiliation(s)
- Frédéric Frézard
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
- Correspondence: ; Tel.: +55-31-34092940
| | - Marta M. G. Aguiar
- Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Lucas A. M. Ferreira
- Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Guilherme S. Ramos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Thais T. Santos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Gabriel S. M. Borges
- Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Virgínia M. R. Vallejos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Helane L. O. De Morais
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| |
Collapse
|
24
|
Hemmingsen LM, Panchai P, Julin K, Basnet P, Nystad M, Johannessen M, Škalko-Basnet N. Chitosan-based delivery system enhances antimicrobial activity of chlorhexidine. Front Microbiol 2022; 13:1023083. [PMID: 36246245 PMCID: PMC9557914 DOI: 10.3389/fmicb.2022.1023083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
Infected chronic skin wounds and other skin infections are increasingly putting pressure on the health care providers and patients. The pressure is especially concerning due to the rise of antimicrobial resistance and biofilm-producing bacteria that further impair treatment success. Therefore, innovative strategies for wound healing and bacterial eradication are urgently needed; utilization of materials with inherent biological properties could offer a potential solution. Chitosan is one of the most frequently used polymers in delivery systems. This bioactive polymer is often regarded as an attractive constituent in delivery systems due to its inherent antimicrobial, anti-inflammatory, anti-oxidative, and wound healing properties. However, lipid-based vesicles and liposomes are generally considered more suitable as delivery systems for skin due to their ability to interact with the skin structure and provide prolonged release, protect the antimicrobial compound, and allow high local concentrations at the infected site. To take advantage of the beneficial attributes of the lipid-based vesicles and chitosan, these components can be combined into chitosan-containing liposomes or chitosomes and chitosan-coated liposomes. These systems have previously been investigated for use in wound therapy; however, their potential in infected wounds is not fully investigated. In this study, we aimed to investigate whether both the chitosan-containing and chitosan-coated liposomes tailored for infected wounds could improve the antimicrobial activity of the membrane-active antimicrobial chlorhexidine, while assuring both the anti-inflammatory activity and cell compatibility. Chlorhexidine was incorporated into three different vesicles, namely plain (chitosan-free), chitosan-containing and chitosan-coated liposomes that were optimized for skin wounds. Their release profile, antimicrobial activities, anti-inflammatory properties, and cell compatibility were assessed in vitro. The vesicles comprising chitosan demonstrated slower release rate of chlorhexidine and high cell compatibility. Additionally, the inflammatory responses in murine macrophages treated with these vesicles were reduced by about 60% compared to non-treated cells. Finally, liposomes containing both chitosan and chlorhexidine demonstrated the strongest antibacterial effect against Staphylococcus aureus. Both chitosan-containing and chitosan-coated liposomes comprising chlorhexidine could serve as excellent platforms for the delivery of membrane-active antimicrobials to infected wounds as confirmed by improved antimicrobial performance of chlorhexidine.
Collapse
Affiliation(s)
- Lisa Myrseth Hemmingsen
- Drug Transport and Delivery Research Group, Department of Pharmacy, University of Tromsø The Arctic University of Norway, Tromsø, Norway
| | - Pimmat Panchai
- Drug Transport and Delivery Research Group, Department of Pharmacy, University of Tromsø The Arctic University of Norway, Tromsø, Norway
| | - Kjersti Julin
- Research Group for Host-Microbe Interaction, Department of Medical Biology, University of Tromsø The Arctic University of Norway, Tromsø, Norway
| | - Purusotam Basnet
- Women’s Health and Perinatology Research Group, Department of Clinical Medicine, University of Tromsø The Arctic University of Norway, Tromsø, Norway
| | - Mona Nystad
- Women’s Health and Perinatology Research Group, Department of Clinical Medicine, University of Tromsø The Arctic University of Norway, Tromsø, Norway
- IVF Clinic, Women’s Clinic, University Hospital of North Norway, Tromsø, Norway
| | - Mona Johannessen
- Research Group for Host-Microbe Interaction, Department of Medical Biology, University of Tromsø The Arctic University of Norway, Tromsø, Norway
| | - Nataša Škalko-Basnet
- Drug Transport and Delivery Research Group, Department of Pharmacy, University of Tromsø The Arctic University of Norway, Tromsø, Norway
- *Correspondence: Nataša Škalko-Basnet,
| |
Collapse
|
25
|
Shan X, Gong X, Li J, Wen J, Li Y, Zhang Z. Current approaches of nanomedicines in the market and various stage of clinical translation. Acta Pharm Sin B 2022; 12:3028-3048. [PMID: 35865096 PMCID: PMC9293719 DOI: 10.1016/j.apsb.2022.02.025] [Citation(s) in RCA: 149] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/16/2021] [Accepted: 02/21/2022] [Indexed: 12/11/2022] Open
Abstract
Compared with traditional drug therapy, nanomedicines exhibit intriguing biological features to increase therapeutic efficiency, reduce toxicity and achieve targeting delivery. This review provides a snapshot of nanomedicines that have been currently launched or in the clinical trials, which manifests a diversified trend in carrier types, applied indications and mechanisms of action. From the perspective of indications, this article presents an overview of the applications of nanomedicines involving the prevention, diagnosis and treatment of various diseases, which include cancer, infections, blood disorders, cardiovascular diseases, immuno-associated diseases and nervous system diseases, etc. Moreover, the review provides some considerations and perspectives in the research and development of nanomedicines to facilitate their translations in clinic.
Collapse
Affiliation(s)
- Xiaoting Shan
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang Gong
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jie Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, China
| | - Jingyuan Wen
- School of Pharmacy, University of Auckland, Auckland 1142, New Zealand
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiwen Zhang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
26
|
Tuchin VV, Genina EA, Tuchina ES, Svetlakova AV, Svenskaya YI. Optical clearing of tissues: Issues of antimicrobial phototherapy and drug delivery. Adv Drug Deliv Rev 2022; 180:114037. [PMID: 34752842 DOI: 10.1016/j.addr.2021.114037] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/23/2021] [Accepted: 10/28/2021] [Indexed: 02/08/2023]
Abstract
This review presents principles and novelties in the field of tissue optical clearing (TOC) technology, as well as application for optical monitoring of drug delivery and effective antimicrobial phototherapy. TOC is based on altering the optical properties of tissue through the introduction of immersion optical cleaning agents (OCA), which impregnate the tissue of interest. We also analyze various methods and kinetics of delivery of photodynamic agents, nanoantibiotics and their mixtures with OCAs into the tissue depth in the context of antimicrobial and antifungal phototherapy. In vitro and in vivo studies of antimicrobial phototherapies, such as photodynamic, photothermal plasmonic and photocatalytic, are summarized, and the prospects of a new TOC technology for effective killing of pathogens are discussed.
Collapse
|
27
|
Hemmingsen LM, Škalko-Basnet N, Jøraholmen MW. The Expanded Role of Chitosan in Localized Antimicrobial Therapy. Mar Drugs 2021; 19:697. [PMID: 34940696 PMCID: PMC8704789 DOI: 10.3390/md19120697] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 12/19/2022] Open
Abstract
Chitosan is one of the most studied natural origin polymers for biomedical applications. This review focuses on the potential of chitosan in localized antimicrobial therapy to address the challenges of current rising antimicrobial resistance. Due to its mucoadhesiveness, chitosan offers the opportunity to prolong the formulation residence time at mucosal sites; its wound healing properties open possibilities to utilize chitosan as wound dressings with multitargeted activities and more. We provide an unbiased overview of the state-of-the-art chitosan-based delivery systems categorized by the administration site, addressing the site-related challenges and evaluating the representative formulations. Specifically, we offer an in-depth analysis of the current challenges of the chitosan-based novel delivery systems for skin and vaginal infections, including its formulations optimizations and limitations. A brief overview of chitosan's potential in treating ocular, buccal and dental, and nasal infections is included. We close the review with remarks on toxicity issues and remaining challenges and perspectives.
Collapse
Affiliation(s)
- Lisa Myrseth Hemmingsen
- Drug Transport and Delivery Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway;
| | | | - May Wenche Jøraholmen
- Drug Transport and Delivery Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway;
| |
Collapse
|
28
|
de Oliveira RS, Fantaus SS, Guillot AJ, Melero A, Beck RCR. 3D-Printed Products for Topical Skin Applications: From Personalized Dressings to Drug Delivery. Pharmaceutics 2021; 13:1946. [PMID: 34834360 PMCID: PMC8625283 DOI: 10.3390/pharmaceutics13111946] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/13/2021] [Accepted: 11/14/2021] [Indexed: 01/05/2023] Open
Abstract
3D printing has been widely used for the personalization of therapies and on-demand production of complex pharmaceutical forms. Recently, 3D printing has been explored as a tool for the development of topical dosage forms and wound dressings. Thus, this review aims to present advances related to the use of 3D printing for the development of pharmaceutical and biomedical products for topical skin applications, covering plain dressing and products for the delivery of active ingredients to the skin. Based on the data acquired, the important growth in the number of publications over the last years confirms its interest. The semisolid extrusion technique has been the most reported one, probably because it allows the use of a broad range of polymers, creating the most diverse therapeutic approaches. 3D printing has been an excellent field for customizing dressings, according to individual needs. Studies discussed here imply the use of metals, nanoparticles, drugs, natural compounds and proteins and peptides for the treatment of wound healing, acne, pain relief, and anti-wrinkle, among others. The confluence of 3D printing and topical applications has undeniable advantages, and we would like to encourage the research groups to explore this field to improve the patient's life quality, adherence and treatment efficacy.
Collapse
Affiliation(s)
- Rafaela Santos de Oliveira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul. Avenida Ipiranga, 2752, Porto Alegre 90610-000, Brazil;
| | - Stephani Silva Fantaus
- Departamento de Produção e Controle de Medicamentos, Universidade Federal do Rio Grande do Sul. Avenida Ipiranga, 2752, Porto Alegre 90610-000, Brazil;
| | - Antonio José Guillot
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, School of Pharmacy, University of Valencia, Avenida Vicente Andres Estelles SN, 46100 Burjassot, Spain;
| | - Ana Melero
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, School of Pharmacy, University of Valencia, Avenida Vicente Andres Estelles SN, 46100 Burjassot, Spain;
| | - Ruy Carlos Ruver Beck
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul. Avenida Ipiranga, 2752, Porto Alegre 90610-000, Brazil;
- Departamento de Produção e Controle de Medicamentos, Universidade Federal do Rio Grande do Sul. Avenida Ipiranga, 2752, Porto Alegre 90610-000, Brazil;
| |
Collapse
|
29
|
Choi JW, Lee KT, Kim S, Lee YR, Kim HJ, Seo KJ, Lee MH, Yeon SK, Jang BK, Park SJ, Kim HJ, Park JH, Kim D, Lee DG, Cheong E, Lee JS, Bahn YS, Park KD. Optimization and Evaluation of Novel Antifungal Agents for the Treatment of Fungal Infection. J Med Chem 2021; 64:15912-15935. [PMID: 34662122 DOI: 10.1021/acs.jmedchem.1c01299] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Due to the increased morbidity and mortality by fungal infections and the emergence of severe antifungal resistance, there is an urgent need for new antifungal agents. Here, we screened for antifungal activity in our in-house library through the minimum inhibitory concentration test and derived two hit compounds with moderate antifungal activities. The hit compounds' antifungal activities and drug-like properties were optimized by substituting various aryl ring, alkyl chain, and methyl groups. Among the optimized compounds, 22h was the most promising candidate with good drug-like properties and exhibited potent fast-acting fungicidal antifungal effects against various fungal pathogens and synergistic antifungal activities with some known antifungal drugs. Additionally, 22h was further confirmed to disturb fungal cell wall integrity by activating multiple cell wall integrity pathways. Furthermore, 22h exerted significant antifungal efficacy in both the subcutaneous infection mouse model and ex vivo human nail infection model.
Collapse
Affiliation(s)
- Ji Won Choi
- Convergence Research Center for Diagnosis, Treatment & Care System of Dementia, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
| | - Kyung-Tae Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Siwon Kim
- Convergence Research Center for Diagnosis, Treatment & Care System of Dementia, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Med Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Ye Rim Lee
- Convergence Research Center for Diagnosis, Treatment & Care System of Dementia, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
| | - Hyeon Ji Kim
- Convergence Research Center for Diagnosis, Treatment & Care System of Dementia, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
| | - Kyung Jin Seo
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Myung Ha Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Seul Ki Yeon
- Convergence Research Center for Diagnosis, Treatment & Care System of Dementia, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
| | - Bo Ko Jang
- AmtixBio Co., Ltd., Hanam-si, Gyeonggi-do 12925, Republic of Korea
| | - Sun Jun Park
- Convergence Research Center for Diagnosis, Treatment & Care System of Dementia, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Med Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Hyeon Jeong Kim
- Convergence Research Center for Diagnosis, Treatment & Care System of Dementia, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Jong-Hyun Park
- Convergence Research Center for Diagnosis, Treatment & Care System of Dementia, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Med Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Dahee Kim
- AmtixBio Co., Ltd., Hanam-si, Gyeonggi-do 12925, Republic of Korea
| | - Dong-Gi Lee
- AmtixBio Co., Ltd., Hanam-si, Gyeonggi-do 12925, Republic of Korea
| | - Eunji Cheong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Jong-Seung Lee
- AmtixBio Co., Ltd., Hanam-si, Gyeonggi-do 12925, Republic of Korea
| | - Yong-Sun Bahn
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Ki Duk Park
- Convergence Research Center for Diagnosis, Treatment & Care System of Dementia, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Med Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| |
Collapse
|
30
|
Cui M, Wiraja C, Zheng M, Singh G, Yong K, Xu C. Recent Progress in Skin‐on‐a‐Chip Platforms. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mingyue Cui
- School of Chemical and Biomedical Engineering Nanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
- Continental‐NTU Corporate Lab Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
| | - Christian Wiraja
- School of Chemical and Biomedical Engineering Nanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
| | - Mengjia Zheng
- Department of Biomedical Engineering City University of Hong Kong 83 Tat Chee Avenue Kowloon Hong Kong SAR 00000 China
| | - Gurvinder Singh
- School of Biomedical Engineering The University of Sydney Sydney New South Wales 2006 Australia
- The University of Sydney Nano Institute The University of Sydney Sydney New South Wales 2006 Australia
- The Biophotonics and MechanoBioengineering Lab The University of Sydney Sydney New South Wales 2006 Australia
| | - Ken‐Tye Yong
- School of Biomedical Engineering The University of Sydney Sydney New South Wales 2006 Australia
- The University of Sydney Nano Institute The University of Sydney Sydney New South Wales 2006 Australia
- The Biophotonics and MechanoBioengineering Lab The University of Sydney Sydney New South Wales 2006 Australia
| | - Chenjie Xu
- Department of Biomedical Engineering City University of Hong Kong 83 Tat Chee Avenue Kowloon Hong Kong SAR 00000 China
| |
Collapse
|
31
|
Sahu T, Ratre YK, Chauhan S, Bhaskar L, Nair MP, Verma HK. Nanotechnology based drug delivery system: Current strategies and emerging therapeutic potential for medical science. J Drug Deliv Sci Technol 2021; 63:102487. [DOI: 10.1016/j.jddst.2021.102487] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
Abstract
Hydrogels, swellable hydrophilic polymer networks fabricated through chemical cross-linking or physical entanglement are increasingly utilized in various biomedical applications over the past few decades. Hydrogel-based microparticles, dressings and microneedle patches have been explored to achieve safe, sustained and on-demand therapeutic purposes toward numerous skin pathologies, through incorporation of stimuli-responsive moieties and therapeutic agents. More recently, these platforms are expanded to fulfill the diagnostic and monitoring role. Herein, the development of hydrogel technology to achieve diagnosis and monitoring of pathological skin conditions are highlighted, with proteins, nucleic acids, metabolites, and reactive species employed as target biomarkers, among others. The scope of this review includes the characteristics of hydrogel materials, its fabrication procedures, examples of diagnostic studies, as well as discussion pertaining clinical translation of hydrogel systems.
Collapse
|