1
|
Wu Y, Zhang L, Dodd SW, Schöneich C. Metal-induced oxidation of polysorbate 80 in the presence of hydrogen peroxide: mechanistic studies. J Pharm Sci 2025:103799. [PMID: 40258401 DOI: 10.1016/j.xphs.2025.103799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Accepted: 04/16/2025] [Indexed: 04/23/2025]
Abstract
Polysorbate 80 (PS80) is a commonly used surfactant in protein formulations and is highly susceptible to oxidative degradation. Here, we present mechanistic studies on metal-induced PS80 oxidation in the presence of hydrogen peroxide in acetate buffer. A total of 12 pharmaceutically relevant metal ions were tested, including Mn(II), Cu(II), Cu(I), Mg(II), Zn(II), Ca(II), Al(III), Pb(II), Sn(II), Co(II), Fe(III), Ni(II) and W(IV). The overall PS80 degradation was monitored by a fluorescence micelle assay (FMA) and the oxidation products were characterized by mass spectrometry (MS). Three metal ions, Cu(II), Co(II), and Fe(III), induced significant PS80 degradation and solutions containing these ions were subjected to further mechanistic studies. The extent of oxidation was dependent on both metal and peroxide concentrations. PS80 degradation catalyzed by Cu(II) and Co(II) was completely prevented by 250 µM and 500 µM ethylenediaminetetraacetic acid (EDTA), but only partially inhibited when catalyzed by Fe(III). The role for superoxide radical anion in the initiation of PS80 oxidation was examined by addition of Cu,Zn superoxide dismutase (SOD). The potential of the metal ions to generate free radicals was monitored with the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO), followed by LC-MS analysis. Degradation mechanisms, particularly the initiation of the oxidation chain reactions, are discussed for each metal.
Collapse
Affiliation(s)
- Yaqi Wu
- Department of Pharmaceutical Chemistry, The University of Kansas, 2093 Constant Avenue, Lawrence, KS 66047, USA
| | - Lin Zhang
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - Steve W Dodd
- Bioproduct Research & Development, Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - Christian Schöneich
- Department of Pharmaceutical Chemistry, The University of Kansas, 2093 Constant Avenue, Lawrence, KS 66047, USA.
| |
Collapse
|
2
|
Richards DS, Wu Y, Schöneich C. Mechanistic characterization of iron-catalyzed oxidation of polysorbate 80: The role of ferrous iron, hydrogen peroxide, and superoxide. J Pharm Sci 2025; 114:923-933. [PMID: 39536989 DOI: 10.1016/j.xphs.2024.10.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/04/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
We investigated the role of individual radical species during Fe-catalyzed oxidation of PS80. Solutions containing 1 gL-1 PS80 (0.1 % w/v) in 10 mM acetate buffer (pH 6) were exposed to various amounts of either Fe(II) or Fe(III), hydrogen peroxide (H2O2), and various enzymes or antioxidants. PS80 oxidation was measured using a fluorescence micelle assay (FMA) alongside LC-MS. Hydrogen peroxide inhibited PS80 oxidation in the presence of Fe(II) but promoted oxidation in the presence of Fe(III). Furthermore, Ferrostatin-1 (Fer-1), an antioxidant which is known to preferentially react with alkoxy radicals, inhibited PS80 oxidation in the presence of Fe(II). Superoxide dismutase (SOD) partially inhibited PS80 oxidation in the presence of either Fe(II) or Fe(III), suggesting that superoxide plays a role in both cases. Ferryl species (FeIV=O) or hydroxyl radicals (HO•), produced by the Fenton reaction, do not play a major role in the oxidation of PS80. Rather, oxidation was initiated by the reaction of both Fe(II) and Fe(III) with pre-existing lipid hydroperoxides on PS80, as well as via superoxide.
Collapse
Affiliation(s)
- David S Richards
- Department of Pharmaceutical Chemistry, University of Kansas, 2093 Constant Avenue, Lawrence, KS 66047, USA
| | - Yaqi Wu
- Department of Pharmaceutical Chemistry, University of Kansas, 2093 Constant Avenue, Lawrence, KS 66047, USA
| | - Christian Schöneich
- Department of Pharmaceutical Chemistry, University of Kansas, 2093 Constant Avenue, Lawrence, KS 66047, USA.
| |
Collapse
|
3
|
Espinoza Ballesteros M, Schöneich C. Near UV and Visible Light Photodegradation in Solid Formulations: Generation of Carbon Dioxide Radical Anions from Citrate Buffer and Fe(III). Mol Pharm 2024; 21:4618-4633. [PMID: 39110953 DOI: 10.1021/acs.molpharmaceut.4c00513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2024]
Abstract
Near UV and visible light photodegradation can target therapeutic proteins during manufacturing and storage. While the underlying photodegradation pathways are frequently not well-understood, one important aspect of consideration is the formulation, specifically the formulation buffer. Citrate is a common buffer for biopharmaceutical formulations, which can complex with transition metals, such as Fe(III). In an aqueous solution, the exposure of such complexes to light leads to the formation of the carbon dioxide radical anion (•CO2-), a powerful reductant. However, few studies have characterized such processes in solid formulations. Here, we show that solid citrate formulations containing Fe(III) lead to the photochemical formation of •CO2-, identified through DMPO spin trapping and HPLC-MS/MS analysis. Factors such as buffers, the availability of oxygen, excipients, and manufacturing processes of solid formulations were evaluated for their effect on the formation of •CO2- and other radicals such as •OH.
Collapse
Affiliation(s)
| | - Christian Schöneich
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| |
Collapse
|
4
|
Zhang Y, Richards DS, Schöneich C. Near UV Light Photo-Degradation of Lactate and Related α-Hydroxycarboxylates in the Presence of Fe(III): Formation of Carbon Dioxide Radical Anion. J Pharm Sci 2024; 113:2683-2687. [PMID: 39002725 DOI: 10.1016/j.xphs.2024.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/15/2024]
Abstract
In recent studies we have reported on the near-UV light-induced degradation of iron complexes of various pharmaceutical excipients, such as Fe(III)-citrate and Fe(III)-amino acid complexes. Mechanistic studies revealed a common photo-degradation pattern, i.e. the formation of carbon dioxide radical anion, a potent reducing agent, via an alkoxyl/amino radical intermediate generated by light-induced ligand-to-metal charge transfer (LMCT) involving α-hydroxycarboxylates or amino acids. Herein, we confirm the proposed general photo-degradation pathways through the study of the iron complexes of other α-hydroxycarboxylates that may be present in protein formulations, such as lactate and glycolate. The results indicate that lactate generates even higher yields of •CO2- as compared to citrate, suggesting a significant potential of lactate for the promotion of photo-degradation in pharmaceutical formulations.
Collapse
Affiliation(s)
- Yilue Zhang
- Department of Pharmaceutical Chemistry, University of Kansas, 2093 Constant Avenue, Lawrence, KS 66047, USA
| | - David S Richards
- Department of Pharmaceutical Chemistry, University of Kansas, 2093 Constant Avenue, Lawrence, KS 66047, USA
| | - Christian Schöneich
- Department of Pharmaceutical Chemistry, University of Kansas, 2093 Constant Avenue, Lawrence, KS 66047, USA.
| |
Collapse
|
5
|
Wu Y, Gardner R, Schöneich C. Near UV and Visible Light-Induced Degradation of Bovine Serum Albumin and a Monoclonal Antibody Mediated by Citrate Buffer and Fe(III): Reduction vs Oxidation Pathways. Mol Pharm 2024; 21:4060-4073. [PMID: 39013609 DOI: 10.1021/acs.molpharmaceut.4c00445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Light exposure during manufacturing, storage, and administration can lead to the photodegradation of therapeutic proteins. This photodegradation can be promoted by pharmaceutical buffers or impurities. Our laboratory has previously demonstrated that citrate-Fe(III) complexes generate the •CO2- radical anion when photoirradiated under near UV (λ = 320-400 nm) and visible light (λ = 400-800 nm) [Subelzu, N.; Schöneich, C. Mol. Pharmaceutics 2020, 17 (11), 4163-4179; Zhang, Y. Mol. Pharmaceutics 2022, 19 (11), 4026-4042]. Here, we evaluated the impact of citrate-Fe(III) on the photostability and degradation mechanisms of disulfide-containing proteins (bovine serum albumin (BSA) and NISTmAb) under pharmaceutically relevant conditions. We monitored and localized competitive disulfide reduction and protein oxidation by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) analysis depending on the reaction conditions. These competitive pathways were affected by multiple factors, including light dose, Fe(III) concentration, protein concentration, the presence of oxygen, and light intensity.
Collapse
Affiliation(s)
- Yaqi Wu
- Department of Pharmaceutical Chemistry, The University of Kansas, 2093 Constant Avenue, Lawrence, Kansas 66047, United States
| | - Reece Gardner
- Summer Undergraduate Research Program, Department of Pharmaceutical Chemistry, The University of Kansas, 2093 Constant Avenue, Lawrence, Kansas 66047, United States
| | - Christian Schöneich
- Department of Pharmaceutical Chemistry, The University of Kansas, 2093 Constant Avenue, Lawrence, Kansas 66047, United States
| |
Collapse
|
6
|
Bramham JE, Wang Y, Moore SA, Golovanov AP. Assessing Photostability of mAb Formulations In Situ Using Light-Coupled NMR Spectroscopy. Anal Chem 2024; 96:9935-9943. [PMID: 38847283 PMCID: PMC11190875 DOI: 10.1021/acs.analchem.4c01164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/29/2024] [Accepted: 05/29/2024] [Indexed: 06/19/2024]
Abstract
Biopharmaceuticals, such as monoclonal antibodies (mAbs), need to maintain their chemical and physical stability in formulations throughout their lifecycle. It is known that exposure of mAbs to light, particularly UV, triggers chemical and physical degradation, which can be exacerbated by trace amounts of photosensitizers in the formulation. Although routine assessments of degradation following defined UV dosages are performed, there is a fundamental lack of understanding regarding the intermediates, transient reactive species, and radicals formed during illumination, as well as their lifetimes and immediate impact post-illumination. In this study, we used light-coupled NMR spectroscopy to monitor in situ live spectral changes in sealed samples during and after UV-A illumination of different formulations of four mAbs without added photosensitizers. We observed a complex evolution of spectra, reflecting the appearance within minutes of transient radicals during illumination and persisting for minutes to tens of minutes after the light was switched off. Both mAb and excipient signals were strongly affected by illumination, with some exhibiting fast irreversible photodegradation and others exhibiting partial recovery in the dark. These effects varied depending on the mAb and the presence of excipients, such as polysorbate 80 (PS80) and methionine. Complementary ex situ high-performance size-exclusion chromatography analysis of the same formulations post-UV exposure in the chamber revealed significant loss of purity, confirming formulation-dependent degradation. Both approaches suggested the presence of degradation processes initiated by light but continuing in the dark. Further studies on photoreaction intermediates and transient reactive species may help mitigate the impact of light on biopharmaceutical degradation.
Collapse
Affiliation(s)
- Jack E. Bramham
- Department
of Chemistry, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester M1 7DN, U.K.
| | - Yujing Wang
- Dosage
Form Design & Development, BioPharmaceutical
Development, R&D, AstraZeneca, Cambridge CB2 0AA, U.K.
| | - Stephanie A. Moore
- Dosage
Form Design & Development, BioPharmaceutical
Development, R&D, AstraZeneca, Cambridge CB2 0AA, U.K.
| | - Alexander P. Golovanov
- Department
of Chemistry, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester M1 7DN, U.K.
| |
Collapse
|
7
|
Cui D, He H, Xie W, Yang S, Guo Z, Liao Z, Liu F, Lai C, Ren X, Huang B, Pan X. Occurrence and cycle of dissolved iron mediated by humic acids resulting in continuous natural photodegradation of 17α-ethinylestradiol. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133155. [PMID: 38091802 DOI: 10.1016/j.jhazmat.2023.133155] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/16/2023] [Accepted: 11/29/2023] [Indexed: 02/08/2024]
Abstract
17α-ethinylestradiol (EE2), a synthetic endocrine-disrupting chemical, can degrade in natural waters where humic acids (HA) and dissolved iron (DFe) are present. The iron is mostly bound in Fe(III)-HA complexes, the formation process of Fe(III)-HA complexes and their effect on EE2 degradation were explored in laboratory experiments. The mechanism of ferrihydrite facilitated by HA was explored with results indicating that HA facilitated the dissolution of ferrihydrite and the generation of Fe(III)-HA complexes with the stable chemical bonds such as C-O, CO in neutral, alkaline media with a suitable Fe/C ratio. 1O2, •OH, and 3HA* were all found to be important in the photodegradation of EE2 mediated by Fe(III)-HA complexes. Fe(III)-HA complexes could produce Fe(II) and hydrogen peroxide (H2O2) to create conditions suitable for photo-Fenton reactions at neutral pH. HA helped to maintain higher dissolved iron concentrations and alter the Fe(III)/Fe(II) cycling. The natural EE2 photodegradation pathway elucidated here provides a theoretical foundation for investigating the natural transformation of other trace organic contaminants in aquatic environments.
Collapse
Affiliation(s)
- Danni Cui
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Huan He
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Wenxiao Xie
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Shanshan Yang
- School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| | - Ziwei Guo
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhicheng Liao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Southwest United Graduate School, Kunming 650092, China
| | - Feng Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Chaochao Lai
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiaomin Ren
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Bin Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Southwest United Graduate School, Kunming 650092, China
| |
Collapse
|
8
|
Zhang Y, Wu Y, Schöneich C. Near UV Photodegradation Mechanisms of Amino Acid Excipients: Formation of the Carbon Dioxide Radical Anion from Aspartate and Fe(III). Mol Pharm 2024; 21:1233-1245. [PMID: 38350108 DOI: 10.1021/acs.molpharmaceut.3c00893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Carbon dioxide radical anion (•CO2-) is a powerful reducing agent that can reduce protein disulfide bonds and convert molecular oxygen to superoxide. Therefore, the generation of •CO2- can be detrimental to pharmaceutical formulations. Iron is among the most prevalent impurities in formulations, where Fe(III) chelates of histidine (His) can produce •CO2- upon exposure to near-UV light (Zhang and Schöneich, Eur. J. Pharm. Biopharm. 2023, 190, 231-241). Here, we monitor by spin-trapping in combination with electron paramagnetic resonance spectroscopy and/or high-performance liquid chromatography-mass spectrometry analysis the photochemical formation of •CO2- for a series of common amino acid excipients, including arginine (Arg), methionine (Met), proline (Pro), glutamic acid (Glu), glycine (Gly), aspartic acid (Asp), and lysine (Lys). Our results indicate that in the presence of Fe(III), Asp, and Glu produce significant yields of •CO2- under photoirradiation with near-UV light. Notably, Asp demonstrates the highest efficiency of •CO2- generation compared with that of the other amino acid excipients. Stable isotope labeling indicates that •CO2- exclusively originates from the α-carboxyl group of Asp. Mechanistic studies reveal two possible pathways for •CO2- formation, which involve either a β-carboxyl radical or an amino radical cation intermediate.
Collapse
Affiliation(s)
- Yilue Zhang
- Department of Pharmaceutical Chemistry, University of Kansas, 2093 Constant Avenue, Lawrence, Kansas 66047, United States
| | - Yaqi Wu
- Department of Pharmaceutical Chemistry, University of Kansas, 2093 Constant Avenue, Lawrence, Kansas 66047, United States
| | - Christian Schöneich
- Department of Pharmaceutical Chemistry, University of Kansas, 2093 Constant Avenue, Lawrence, Kansas 66047, United States
| |
Collapse
|
9
|
Weber J, Buske J, Mäder K, Garidel P, Diederichs T. Oxidation of polysorbates - An underestimated degradation pathway? Int J Pharm X 2023; 6:100202. [PMID: 37680877 PMCID: PMC10480556 DOI: 10.1016/j.ijpx.2023.100202] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/03/2023] [Accepted: 07/24/2023] [Indexed: 09/09/2023] Open
Abstract
To ensure the stability of biologicals over their entire shelf-life, non-ionic surface-active compounds (surfactants) are added to protect biologics from denaturation and particle formation. In this context, polysorbate 20 and 80 are the most used detergents. Despite their benefits of low toxicity and high biocompatibility, specific factors are influencing the intrinsic stability of polysorbates, leading to degradation, loss in efficacy, or even particle formation. Polysorbate degradation can be categorized into chemical or enzymatic hydrolysis and oxidation. Under pharmaceutical relevant conditions, hydrolysis is commonly originated from host cell proteins, whereas oxidative degradation may be caused by multiple factors such as light, presence of residual metal traces, peroxides, or temperature, which can be introduced upon manufacturing or could be already present in the raw materials. In this review, we provide an overview of the current knowledge on polysorbates with a focus on oxidative degradation. Subsequently, degradation products and key characteristics of oxidative-mediated polysorbate degradation in respect of different types and grades are summarized, followed by an extensive comparison between polysorbate 20 and 80. A better understanding of the radical-induced oxidative PS degradation pathway could support specific mitigation strategies. Finally, buffer conditions, various stressors, as well as appropriate mitigation strategies, reagents, and alternative stabilizers are discussed. Prior manufacturing, careful consideration and a meticulous risk-benefit analysis are highly recommended in terms of polysorbate qualities, buffers, storage conditions, as well as mitigation strategies.
Collapse
Affiliation(s)
- Johanna Weber
- Martin-Luther-University Halle-Wittenberg, Institute of Pharmacy, Faculty of Biosciences, Wolfgang-Langenbeck-Strasse 4, Halle (Saale) 06120, Germany
| | - Julia Buske
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, TIP, Birkendorfer Straße 65, Biberach an der Riss 88397, Germany
| | - Karsten Mäder
- Martin-Luther-University Halle-Wittenberg, Institute of Pharmacy, Faculty of Biosciences, Wolfgang-Langenbeck-Strasse 4, Halle (Saale) 06120, Germany
| | - Patrick Garidel
- Martin-Luther-University Halle-Wittenberg, Institute of Pharmacy, Faculty of Biosciences, Wolfgang-Langenbeck-Strasse 4, Halle (Saale) 06120, Germany
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, TIP, Birkendorfer Straße 65, Biberach an der Riss 88397, Germany
| | - Tim Diederichs
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, TIP, Birkendorfer Straße 65, Biberach an der Riss 88397, Germany
| |
Collapse
|
10
|
Zhang Y, Ballesteros ME, Schöneich C. Photo-induced site-specific oxidative fragmentation of IgG1 mediated by iron(III)-containing histidine buffer: Mechanistic studies and excipient effects. Eur J Pharm Biopharm 2023; 190:121-130. [PMID: 37482364 DOI: 10.1016/j.ejpb.2023.07.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 07/25/2023]
Abstract
Fragmentation may compromise the clinical efficacy and safety profile of monoclonal antibodies (mAbs). We recently reported that Fe(III)-containing histidine (His) buffer mediates site-specific mAb fragmentation within the Fc domain when exposed to visible light (Y. Zhang and C. Schöneich, Mol. Pharm. 2023, 20, 650-662). Here, we show that this fragmentation proceeds even more efficiently under near-UV light. Several formulation strategies were applied in an attempt to reduce the photo-induced fragmentation. In solution formulations, the fragmentation can be mitigated by reducing the concentration of His buffer, adding Fe(III)-chelating agents, and replacing His with other amino acids. Fragmentation can be almost completely inhibited by formulating the protein in the lyophilized state. Mechanistically, His plays a critical role in the fragmentation process, likely due to its affinity for Fe(II), driving a photo-redox reaction towards product formation.
Collapse
Affiliation(s)
- Yilue Zhang
- Department of Pharmaceutical Chemistry, University of Kansas, 2093 Constant Avenue, Lawrence, KS 66047, USA
| | | | - Christian Schöneich
- Department of Pharmaceutical Chemistry, University of Kansas, 2093 Constant Avenue, Lawrence, KS 66047, USA.
| |
Collapse
|
11
|
Zhang Y, Schöneich C. Near UV light photo-degradation of histidine buffer: Mechanisms and role of Fe(III). Eur J Pharm Biopharm 2023; 190:231-241. [PMID: 37543156 DOI: 10.1016/j.ejpb.2023.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/01/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
Pharmaceutical formulations are sensitive to light-induced degradation. Recent studies have attributed some of the light sensitivity to the presence of Fe(III), the most prevalent metal leachable from pharmaceutical containers. Histidine (His) can promote Fe(III) leaching from stainless steel, especially at elevated storage temperatures. Since there is the chance that combinations of His and Fe(III) are present in pharmaceutical formulations, we investigated the photo-degradation mechanisms of Fe(III)-containing His buffer during expsoure to near UV light. Our results indicate the formation of carbon dioxide radical anion (•CO2-), a powerful reductant, and other photoproducts such as aldehydes and His-derived radicals. The generation of •CO2- can be promoted by increasing concentrations of Fe(III) and inhibited by the addition of the Fe(III) chelator EDTA. Mechanistically, product formation can be rationalized by photo-induced ligand-to-metal-charge-transfer (LMCT), followed by a series of radical transformations of reaction intermediates.
Collapse
Affiliation(s)
- Yilue Zhang
- Department of Pharmaceutical Chemistry, University of Kansas, 2093 Constant Avenue, Lawrence, KS 66047, USA
| | - Christian Schöneich
- Department of Pharmaceutical Chemistry, University of Kansas, 2093 Constant Avenue, Lawrence, KS 66047, USA.
| |
Collapse
|
12
|
Schöneich C. Primary Processes of Free Radical Formation in Pharmaceutical Formulations of Therapeutic Proteins. Biomolecules 2023; 13:1142. [PMID: 37509177 PMCID: PMC10376966 DOI: 10.3390/biom13071142] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Oxidation represents a major pathway for the chemical degradation of pharmaceutical formulations. Few specific details are available on the mechanisms that trigger oxidation reactions in these formulations, specifically with respect to the formation of free radicals. Hence, these mechanisms must be formulated based on information on impurities and stress factors resulting from manufacturing, transportation and storage. In more detail, this article focusses on autoxidation, metal-catalyzed oxidation, photo-degradation and radicals generated from cavitation as a result of mechanical stress. Emphasis is placed on probable rather than theoretically possible pathways.
Collapse
Affiliation(s)
- Christian Schöneich
- Department of Pharmaceutical Chemistry, University of Kansas, 2093 Constant Avenue, Lawrence, KS 66047, USA
| |
Collapse
|
13
|
Designing Formulation Strategies for Enhanced Stability of Therapeutic Peptides in Aqueous Solutions: A Review. Pharmaceutics 2023; 15:pharmaceutics15030935. [PMID: 36986796 PMCID: PMC10056213 DOI: 10.3390/pharmaceutics15030935] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/04/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023] Open
Abstract
Over the past few decades, there has been a tremendous increase in the utilization of therapeutic peptides. Therapeutic peptides are usually administered via the parenteral route, requiring an aqueous formulation. Unfortunately, peptides are often unstable in aqueous solutions, affecting stability and bioactivity. Although a stable and dry formulation for reconstitution might be designed, from a pharmaco-economic and practical convenience point of view, a peptide formulation in an aqueous liquid form is preferred. Designing formulation strategies that optimize peptide stability may improve bioavailability and increase therapeutic efficacy. This literature review provides an overview of various degradation pathways and formulation strategies to stabilize therapeutic peptides in aqueous solutions. First, we introduce the major peptide stability issues in liquid formulations and the degradation mechanisms. Then, we present a variety of known strategies to inhibit or slow down peptide degradation. Overall, the most practical approaches to peptide stabilization are pH optimization and selecting the appropriate type of buffer. Other practical strategies to reduce peptide degradation rates in solution are the application of co-solvency, air exclusion, viscosity enhancement, PEGylation, and using polyol excipients.
Collapse
|
14
|
Zhang Y, Schöneich C. Visible Light Induces Site-Specific Oxidative Heavy Chain Fragmentation of a Monoclonal Antibody (IgG1) Mediated by an Iron(III)-Containing Histidine Buffer. Mol Pharm 2023; 20:650-662. [PMID: 36538763 DOI: 10.1021/acs.molpharmaceut.2c00840] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fragmentation of therapeutic monoclonal antibodies represents a critical quality attribute. Here, we report a novel visible light-induced heavy chain fragmentation of IgG1 mediated by an Fe(III)-containing histidine (His) buffer. Based on non-reducing sodium dodecylsulfate-polyacrylamide gel electrophoresis and mass spectrometry analysis, IgG1 fragments with apparent molecular weights of ∼130, ∼110, and ∼22 kDa were detected in photo-irradiated samples and were mechanistically rationalized with an oxidative cleavage at Thr259. Specifically, the reactions are proposed to involve the generation of an intermediary alkoxyl radical, which undergoes β-cleavage to yield a glycyl radical. The latter either converts into Gly or adds oxygen and follows a peroxyl radical chemistry. The cleavage process requires the presence of His, while only negligible yields of cleavage products are formed when His is replaced by acetate, succinate, or phosphate buffer. Importantly, the fragmentation can be prevented by ethylenediaminetetraacetic acid (EDTA) only when the EDTA concentrations are in significant excess over the concentrations of Fe(III) and proteins, suggesting a strong binding between Fe(III) and IgG1.
Collapse
Affiliation(s)
- Yilue Zhang
- Department of Pharmaceutical Chemistry, University of Kansas, 2093 Constant Avenue, Lawrence, Kansas66047, United States
| | - Christian Schöneich
- Department of Pharmaceutical Chemistry, University of Kansas, 2093 Constant Avenue, Lawrence, Kansas66047, United States
| |
Collapse
|
15
|
Hipper E, Lehmann F, Kaiser W, Hübner G, Buske J, Blech M, Hinderberger D, Garidel P. Protein photodegradation in the visible range? Insights into protein photooxidation with respect to protein concentration. Int J Pharm X 2022; 5:100155. [PMID: 36798831 PMCID: PMC9926095 DOI: 10.1016/j.ijpx.2022.100155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022] Open
Abstract
Visible light (400-800 nm) can lead to photooxidation of protein formulations, which might impair protein integrity. However, the relevant mechanism of photooxidation upon visible light exposure is still unclear for therapeutic proteins, since proteinogenic structures do not absorb light in the visible range. Here, we show that exposure of monoclonal antibody formulations to visible light, lead to the formation of reactive oxygen species (ROS), which subsequently induce specific protein degradations. The formation of ROS and singlet oxygen upon visible light exposure is investigated using electron paramagnetic resonance (EPR) spectroscopy. We describe the initial formation of ROS, most likely after direct reaction of molecular oxygen with a triplet state photosensitizer, generated from intersystem crossing of the excited singlet state. Since these radicals affect the oxygen content in the headspace of the vial, we monitored photooxidation of these mAb formulations. With increasing protein concentrations, we found (i) a decreasing headspace oxygen content in the sample, (ii) a higher relative number of radicals in solution and (iii) a higher protein degradation. Thus, the protein concentration dependence indicates the presence of higher concentration of a currently unknown photosensitizer.
Collapse
Affiliation(s)
- Elena Hipper
- Institute of Chemistry, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 4, 06120 Halle, Germany
| | - Florian Lehmann
- Institute of Chemistry, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 4, 06120 Halle, Germany
| | - Wolfgang Kaiser
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB-TIP, Birkendorfer Strasse 65, 88397 Biberach an der Riss, Germany
| | - Göran Hübner
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, ADB, Birkendorfer Strasse 65, 88397 Biberach an der Riss, Germany
| | - Julia Buske
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB-TIP, Birkendorfer Strasse 65, 88397 Biberach an der Riss, Germany
| | - Michaela Blech
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB-TIP, Birkendorfer Strasse 65, 88397 Biberach an der Riss, Germany
| | - Dariush Hinderberger
- Institute of Chemistry, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 4, 06120 Halle, Germany
| | - Patrick Garidel
- Institute of Chemistry, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 4, 06120 Halle, Germany,Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB-TIP, Birkendorfer Strasse 65, 88397 Biberach an der Riss, Germany,Corresponding author at: Institute of Chemistry, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 4, 06120 Halle, Germany; Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB-TIP, Birkendorfer Strasse 65, 88397 Biberach an der Riss, Germany.
| |
Collapse
|
16
|
Zhang Y, Richards DS, Grotemeyer EN, Jackson TA, Schöneich C. Near-UV and Visible Light Degradation of Iron (III)-Containing Citrate Buffer: Formation of Carbon Dioxide Radical Anion via Fragmentation of a Sterically Hindered Alkoxyl Radical. Mol Pharm 2022; 19:4026-4042. [PMID: 36074094 DOI: 10.1021/acs.molpharmaceut.2c00501] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Citrate is a commonly used buffer in pharmaceutical formulations which forms complexes with adventitious metals such as Fe3+. Fe3+-citrate complexes can act as potent photosensitizers under near-UV and visible light exposure, and recent studies reported evidence for the photo-production of a powerful reductant, carbon dioxide radical anion (•CO2-), from Fe3+-citrate complexes (Subelzu, N.; Schöneich, N., Mol. Pharm. 2020, 17, 4163-4179). The mechanisms of •CO2- formation are currently unknown but must be established to devise strategies against •CO2- formation in pharmaceutical formulations which rely on the use of citrate buffer. In this study, we first established complementary evidence for the photolytic generation of •CO2- from Fe3+-citrate through spin trapping and electron paramagnetic resonance (EPR) spectroscopy, and subsequently used spin trapping in conjunction with tandem mass spectrometry (MS/MS) for mechanistic studies on the pathways of •CO2- formation. Experiments with stable isotope-labeled citrate suggest that the central carboxylate group of citrate is the major source of •CO2-. Competition studies with various inhibitors (alcohols and dimethyl sulfoxide) reveal two mechanisms of •CO2- formation, where one pathway involves β-cleavage of a sterically hindered alkoxyl radical generated from the hydroxyl group of citrate.
Collapse
Affiliation(s)
- Yilue Zhang
- Department of Pharmaceutical Chemistry, University of Kansas, 2093 Constant Avenue, Lawrence, Kansas 66047, United States
| | - David S Richards
- Department of Pharmaceutical Chemistry, University of Kansas, 2093 Constant Avenue, Lawrence, Kansas 66047, United States
| | - Elizabeth N Grotemeyer
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Timothy A Jackson
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Christian Schöneich
- Department of Pharmaceutical Chemistry, University of Kansas, 2093 Constant Avenue, Lawrence, Kansas 66047, United States
| |
Collapse
|
17
|
Schöneich C. Advanced Oxidation Processes in Pharmaceutical Formulations: Photo-Fenton Degradation of Peptides and Proteins. Int J Mol Sci 2022; 23:ijms23158262. [PMID: 35897838 PMCID: PMC9332834 DOI: 10.3390/ijms23158262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
Formulations of therapeutic proteins are sensitive to photo-degradation by near UV and visible light. Mechanistically, especially the processes leading to protein modification under visible light exposure are not understood. Potentially, these processes may be triggered by a ligand to metal charge transfer in excipient-metal complexes. This article summarizes recent analytical and mechanistic work on such reactions under experimental conditions relevant to pharmaceutical formulations.
Collapse
Affiliation(s)
- Christian Schöneich
- Simons Research Laboratories, Department of Pharmaceutical Chemistry, The University of Kansas, 2093 Constant Avenue, Lawrence, KS 66047, USA
| |
Collapse
|
18
|
Reinhard BM. Plasmonic Enhancement Strategies for Light-Driven Microbe Inactivation. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:2325-2335. [PMID: 36313122 PMCID: PMC9611023 DOI: 10.1021/acs.jpcc.1c09951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Light can be an effective antimicrobial. UV-C light, in particular, is now commonly used to sterilize inanimate surfaces, water, and even air. Highly energetic light can, however, also lead to unwanted photodamage and be hazardous. Consequently, conventional light-mediated microbe inactivation is not suitable for all applications. Plasmonic nanostructures can enhance electromagnetic fields in the visible range of the electromagnetic spectrum and show unique light-induced responses that can drive strong antimicrobial effects even for wavelengths that without plasmonic enhancement have little to no antimicrobial impact. Plasmonic nanostructures offer thus a potential strategy to expand the antimicrobial effect of light to wavelength and intensity ranges in which light-associated collateral damages are lower. This Perspective examines selected plasmon-enhanced antimicrobial strategies, elucidates the underlying physico-chemical mechanisms, and discusses applications.
Collapse
Affiliation(s)
- Björn M. Reinhard
- Department of Chemistry, Boston University, Boston, MA 02215, United States
- The Photonics Center, Boston University, Boston, MA 02215, United States
| |
Collapse
|
19
|
Near UV and visible light photo-degradation mechanisms in citrate buffer: one-electron reduction of peptide and protein disulfides promotes oxidation and cis/trans isomerization of unsaturated fatty acids of polysorbate 80. J Pharm Sci 2022; 111:991-1003. [DOI: 10.1016/j.xphs.2022.01.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 12/13/2022]
|
20
|
Hipper E, Blech M, Hinderberger D, Garidel P, Kaiser W. Photo-Oxidation of Therapeutic Protein Formulations: From Radical Formation to Analytical Techniques. Pharmaceutics 2021; 14:72. [PMID: 35056968 PMCID: PMC8779573 DOI: 10.3390/pharmaceutics14010072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 12/25/2022] Open
Abstract
UV and ambient light-induced modifications and related degradation of therapeutic proteins are observed during manufacturing and storage. Therefore, to ensure product quality, protein formulations need to be analyzed with respect to photo-degradation processes and eventually protected from light exposure. This task usually demands the application and combination of various analytical methods. This review addresses analytical aspects of investigating photo-oxidation products and related mediators such as reactive oxygen species generated via UV and ambient light with well-established and novel techniques.
Collapse
Affiliation(s)
- Elena Hipper
- Institute of Chemistry, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany; (E.H.); (D.H.)
| | - Michaela Blech
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Strasse 65, 88397 Biberach an der Riss, Germany;
| | - Dariush Hinderberger
- Institute of Chemistry, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany; (E.H.); (D.H.)
| | - Patrick Garidel
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Strasse 65, 88397 Biberach an der Riss, Germany;
| | - Wolfgang Kaiser
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Strasse 65, 88397 Biberach an der Riss, Germany;
| |
Collapse
|
21
|
Pharmaceutical Excipients Enhance Iron-Dependent Photo-Degradation in Pharmaceutical Buffers by near UV and Visible Light: Tyrosine Modification by Reactions of the Antioxidant Methionine in Citrate Buffer. Pharm Res 2021; 38:915-930. [PMID: 33881737 DOI: 10.1007/s11095-021-03042-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/05/2021] [Indexed: 12/15/2022]
Abstract
PURPOSE To evaluate the effect of excipients, including sugars and amino acids, on photo-degradation reactions in pharmaceutical buffers induced by near UV and visible light. METHODS Solutions of citrate or acetate buffers, containing 1 or 50 μM Fe3+, the model peptides methionine enkephalin (MEn), leucine enkephalin (LEn) or proctolin peptide (ProP), in the presence of commonly used amino acids or sugars, were photo-irradiated with near UV or visible light. The oxidation products were analyzed by reverse-phase HPLC and HPLC-MS/MS. RESULTS The sugars mannitol, sucrose and trehalose, and the amino acids Arg, Lys, and His significantly promote the oxidation of peptide Met to peptide Met sulfoxide. These excipients do not increase the yields of hydrogen peroxide, suggesting that other oxidants such as peroxyl radicals are responsible for the oxidation of peptide Met. The addition of free Met reduces the oxidation of peptide Met, but, in citrate buffer, causes the addition of Met oxidation products to Tyr residues of the target peptides. CONCLUSIONS Commonly used excipients enhance the light-induced oxidation of amino acids in model peptides.
Collapse
|