1
|
Okada R, Asakage T. Near-infrared photoimmunotherapy: basics and clinical application. Jpn J Clin Oncol 2025:hyaf069. [PMID: 40319478 DOI: 10.1093/jjco/hyaf069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Accepted: 04/14/2025] [Indexed: 05/07/2025] Open
Abstract
Use of antibody-drug conjugates (ADCs) is rapidly increasing in the field of oncology. While ADCs exhibit strong and cell-selective cytotoxicity, they do not show spatial selectivity. Near-infrared photoimmunotherapy (NIR-PIT, Alluminox™) utilizes photoactivatable ADCs, that is, antibody-photoabsorber conjugates (APCs). The photoabsorber used in NIR-PIT, IRDye700DX (IR700), is activated by light of ~690 nm wavelength. APCs, usually administered by intravenous injection, bind to the target cell surface, and subsequent excitation-light illumination dramatically changes the status of IR700 from hydrophilic to hydrophobic, inducing aggregation of the APC-target molecule complex and cell burst. Dying cells release neoantigens as well as damage-associated molecular patterns, resulting in immunogenic cell death (ICD). Based on the favorable results of clinical trials, epidermal growth factor-targeted NIR-PIT has been performed in Japan since 2021 for patients with unresectable head and neck cancers (HNCs). Since pain and local edema are frequent adverse events (AEs), various measures have been taken against these AEs. Because NIR-PIT induces ICD, combining NIR-PIT with immune checkpoint inhibitor (ICI) therapy is thought to be a rather effective strategy. NIR-PIT could also locally destroy immune suppressor cells, such as regulatory T cells, in the tumor microenvironment. Currently, numerous clinical trials are under way to evaluate the efficacy of NIR-PIT as well as of combined NIR-PIT plus ICI therapy. In this review article, we describe the basics of NIT-PIT, results of translational experiments, current clinical application of NIT-PIT in HNCs, and relevant ongoing clinical trials.
Collapse
Affiliation(s)
- Ryuhei Okada
- Department of Head and Neck Surgery, Institute of Science Tokyo, Tokyo, Japan
| | - Takahiro Asakage
- Department of Head and Neck Surgery, Institute of Science Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Liu L, Pan Y, Ye L, Liang C, Mou X, Dong X, Cai Y. Optical functional nanomaterials for cancer photoimmunotherapy. Coord Chem Rev 2024; 517:216006. [DOI: 10.1016/j.ccr.2024.216006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
Xu X, Ding Y, Dong Y, Yuan H, Xia P, Qu C, Ma J, Wang H, Zhang X, Zhao L, Li Z, Liang Z, Wang J. Nanobody-Engineered Biohybrid Bacteria Targeting Gastrointestinal Cancers Induce Robust STING-Mediated Anti-Tumor Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401905. [PMID: 38888519 PMCID: PMC11336900 DOI: 10.1002/advs.202401905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/22/2024] [Indexed: 06/20/2024]
Abstract
Bacteria can be utilized for cancer therapy owing to their preferential colonization at tumor sites. However, unmodified non-pathogenic bacteria carry potential risks due to their non-specific targeting effects, and their anti-tumor activity is limited when used as monotherapy. In this study, a biohybrid-engineered bacterial system comprising non-pathogenic MG1655 bacteria modified with CDH17 nanobodies on their surface and conjugated with photosensitizer croconium (CR) molecules is developed. The resultant biohybrid bacteria can efficiently home to CDH17-positive tumors, including gastric, pancreatic, and colorectal cancers, and significantly suppress tumor growth upon irradiation. More importantly, biohybrid bacteria-mediated photothermal therapy (PTT) induced abundant macrophage infiltration in a syngeneic murine colorectal model. Further, that the STING pathway is activated in tumor macrophages by the released bacterial nucleic acid after PTT is revealed, leading to the production of type I interferons. The addition of CD47 nanobody but not PD-1 antibody to the PTT regimen can eradicate the tumors and extend survival. This results indicate that bacteria endowed with tumor-specific selectivity and coupled with photothermal payloads can serve as an innovative strategy for low-immunogenicity cancers. This strategy can potentially reprogram the tumor microenvironment by inducing macrophage infiltration and enhancing the efficacy of immunotherapy targeting macrophages.
Collapse
Affiliation(s)
- Xiaolong Xu
- Department of Geriatrics and Shenzhen Clinical Research Centre for Geriatrics, Department of UrologyShenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and TechnologyThe Second Clinical Medical CollegeJinan University)ShenzhenGuangdong518020China
- Integrated Chinese and Western Medicine Postdoctoral Research StationJinan UniversityGuangzhou510632China
| | - Youbin Ding
- Department of Geriatrics and Shenzhen Clinical Research Centre for Geriatrics, Department of UrologyShenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and TechnologyThe Second Clinical Medical CollegeJinan University)ShenzhenGuangdong518020China
- Department of Medical ImagingThe Third Affiliated HospitalSouthern Medical University (Academy of Orthopedics Guangdong Province)Guangzhou510515China
| | - Yafang Dong
- Department of Geriatrics and Shenzhen Clinical Research Centre for Geriatrics, Department of UrologyShenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and TechnologyThe Second Clinical Medical CollegeJinan University)ShenzhenGuangdong518020China
- Department of Medical ImagingThe Third Affiliated HospitalSouthern Medical University (Academy of Orthopedics Guangdong Province)Guangzhou510515China
| | - Haitao Yuan
- Department of Geriatrics and Shenzhen Clinical Research Centre for Geriatrics, Department of UrologyShenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and TechnologyThe Second Clinical Medical CollegeJinan University)ShenzhenGuangdong518020China
| | - Peng Xia
- Department of Hepatobiliary & Pancreatic SurgeryZhongnan Hospital of Wuhan UniversityWuhanHubei430071China
| | - Chengming Qu
- Department of Hepatobiliary & Pancreatic SurgeryZhongnan Hospital of Wuhan UniversityWuhanHubei430071China
| | - Jingbo Ma
- Department of Geriatrics and Shenzhen Clinical Research Centre for Geriatrics, Department of UrologyShenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and TechnologyThe Second Clinical Medical CollegeJinan University)ShenzhenGuangdong518020China
| | - Huifang Wang
- Department of Geriatrics and Shenzhen Clinical Research Centre for Geriatrics, Department of UrologyShenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and TechnologyThe Second Clinical Medical CollegeJinan University)ShenzhenGuangdong518020China
| | - Xiaodong Zhang
- Department of Medical ImagingThe Third Affiliated HospitalSouthern Medical University (Academy of Orthopedics Guangdong Province)Guangzhou510515China
| | - Liang Zhao
- Department of PathologyShunde Hospital, Southern Medical University (The First People's Hospital of Shunde)Foshan528308China
- Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Zhijie Li
- Department of Geriatrics and Shenzhen Clinical Research Centre for Geriatrics, Department of UrologyShenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and TechnologyThe Second Clinical Medical CollegeJinan University)ShenzhenGuangdong518020China
| | - Zhen Liang
- Department of Geriatrics and Shenzhen Clinical Research Centre for Geriatrics, Department of UrologyShenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and TechnologyThe Second Clinical Medical CollegeJinan University)ShenzhenGuangdong518020China
| | - Jigang Wang
- Department of Geriatrics and Shenzhen Clinical Research Centre for Geriatrics, Department of UrologyShenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and TechnologyThe Second Clinical Medical CollegeJinan University)ShenzhenGuangdong518020China
- Department of OncologyThe Affiliated Hospital of Southwest Medical UniversityLuzhouSichuan646000China
- Department of Traditional Chinese Medicine and School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, Artemisinin Research Center, and Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijing100700China
- State Key Laboratory of Antiviral DrugsSchool of PharmacyHenan UniversityKaifeng475004China
| |
Collapse
|
4
|
Delaney S, Keinänen O, Lam D, Wolfe AL, Hamakubo T, Zeglis BM. Cadherin-17 as a target for the immunoPET of adenocarcinoma. Eur J Nucl Med Mol Imaging 2024; 51:2547-2557. [PMID: 38625402 PMCID: PMC11223962 DOI: 10.1007/s00259-024-06709-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/28/2024] [Indexed: 04/17/2024]
Abstract
PURPOSE Cadherin-17 (CDH17) is a calcium-dependent cell adhesion protein that is overexpressed in several adenocarcinomas, including gastric, colorectal, and pancreatic adenocarcinoma. High levels of CDH17 have been linked to metastatic disease and poor prognoses in patients with these malignancies, fueling interest in the protein as a target for diagnostics and therapeutics. Herein, we report the synthesis, in vitro validation, and in vivo evaluation of a CDH17-targeted 89Zr-labeled immunoPET probe. METHODS The CDH17-targeting mAb D2101 was modified with an isothiocyanate-bearing derivative of desferrioxamine (DFO) to produce a chelator-bearing immunoconjugate - DFO-D2101 - and flow cytometry and surface plasmon resonance (SPR) were used to interrogate its antigen-binding properties. The immunoconjugate was then radiolabeled with zirconium-89 (t1/2 ~ 3.3 days), and the serum stability and immunoreactive fraction of [89Zr]Zr-DFO-D2101 were determined. Finally, [89Zr]Zr-DFO-D2101's performance was evaluated in a trio of murine models of pancreatic ductal adenocarcinoma (PDAC): subcutaneous, orthotopic, and patient-derived xenografts (PDX). PET images were acquired over the course of 5 days, and terminal biodistribution data were collected after the final imaging time point. RESULTS DFO-D2101 was produced with a degree of labeling of ~ 1.1 DFO/mAb. Flow cytometry with CDH17-expressing AsPC-1 cells demonstrated that the immunoconjugate binds to its target in a manner similar to its parent mAb, while SPR with recombinant CDH17 revealed that D2101 and DFO-D2101 exhibit nearly identical KD values: 8.2 × 10-9 and 6.7 × 10-9 M, respectively. [89Zr]Zr-DFO-D2101 was produced with a specific activity of 185 MBq/mg (5.0 mCi/mg), remained >80% stable in human serum over the course of 5 days, and boasted an immunoreactive fraction of >0.85. In all three murine models of PDAC, the radioimmunoconjugate yielded high contrast images, with high activity concentrations in tumor tissue and low uptake in non-target organs. Tumoral activity concentrations reached as high as >60 %ID/g in two of the cohorts bearing PDXs. CONCLUSION Taken together, these data underscore that [89Zr]Zr-DFO-D2101 is a highly promising probe for the non-invasive visualization of CDH17 expression in PDAC. We contend that this radioimmunoconjugate could have a significant impact on the clinical management of patients with both PDAC and gastrointestinal adenocarcinoma, most likely as a theranostic imaging tool in support of CDH17-targeted therapies.
Collapse
Affiliation(s)
- Samantha Delaney
- Department of Chemistry, Hunter College of the City University of New York, 413 East 69th Street, New York, NY, 10021, USA
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Outi Keinänen
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Dennis Lam
- Department of Biological Sciences, Hunter College of the City University of New York, New York, NY, USA
| | - Andrew L Wolfe
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY, USA
- Department of Biological Sciences, Hunter College of the City University of New York, New York, NY, USA
- Ph.D. Program in Biology (Molecular, Cellular, and Developmental Biology Sub-Program), The Graduate Center of the City University of New York, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA
| | | | - Brian M Zeglis
- Department of Chemistry, Hunter College of the City University of New York, 413 East 69th Street, New York, NY, 10021, USA.
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY, USA.
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
5
|
Nguyen A, Bhandari C, Keown M, Malkoochi A, Quaye M, Mahmoud D, Shah N, Alzhanova D, Cameron CG, Ferruzzi J, McFarland SA, Shafirstein G, Brekken R, Obaid G. Increasing the Dye Payload of Cetuximab-IRDye800CW Enables Photodynamic Therapy. Mol Pharm 2024; 21:3296-3309. [PMID: 38861020 PMCID: PMC11216862 DOI: 10.1021/acs.molpharmaceut.4c00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Cetuximab (Cet)-IRDye800CW, among other antibody-IRDye800CW conjugates, is a potentially effective tool for delineating tumor margins during fluorescence image-guided surgery (IGS). However, residual disease often leads to recurrence. Photodynamic therapy (PDT) following IGS is proposed as an approach to eliminate residual disease but suffers from a lack of molecular specificity for cancer cells. Antibody-targeted PDT offers a potential solution for this specificity problem. In this study, we show, for the first time, that Cet-IRDye800CW is capable of antibody-targeted PDT in vitro when the payload of dye molecules is increased from 2 (clinical version) to 11 per antibody. Cet-IRDye800CW (1:11) produces singlet oxygen, hydroxyl radicals, and peroxynitrite upon activation with 810 nm light. In vitro assays on FaDu head and neck cancer cells confirm that Cet-IRDye800CW (1:11) maintains cancer cell binding specificity and is capable of inducing up to ∼90% phototoxicity in FaDu cancer cells. The phototoxicity of Cet-IRDye800CW conjugates using 810 nm light follows a dye payload-dependent trend. Cet-IRDye800CW (1:11) is also found to be more phototoxic to FaDu cancer cells and less toxic in the dark than the approved chromophore indocyanine green, which can also act as a PDT agent. We propose that antibody-targeted PDT using high-payload Cet-IRDye800CW (1:11) could hold potential for eliminating residual disease postoperatively when using sustained illumination devices, such as fiber optic patches and implantable surgical bed balloon applicators. This approach could also potentially be applicable to a wide variety of resectable cancers that are amenable to IGS-PDT, using their respective approved full-length antibodies as a template for high-payload IRDye800CW conjugation.
Collapse
Affiliation(s)
- Austin Nguyen
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, United States
| | - Chanda Bhandari
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, United States
| | - Micah Keown
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, United States
| | - Ashritha Malkoochi
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, United States
| | - Maxwell Quaye
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, United States
| | - Doha Mahmoud
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, United States
| | - Nimit Shah
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, United States
| | - Dina Alzhanova
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Colin G. Cameron
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, United States
| | - Jacopo Ferruzzi
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, United States
| | - Sherri A. McFarland
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, United States
| | - Gal Shafirstein
- Department of Cell Stress Biology, Photodynamic Therapy Center, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Rolf Brekken
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Surgery, Department of Pharmacology, Cancer Biology Graduate Program; University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Girgis Obaid
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, United States
| |
Collapse
|
6
|
Jacobsen F, Pushpadevan R, Viehweger F, Freytag M, Schlichter R, Gorbokon N, Büscheck F, Luebke AM, Putri D, Kluth M, Hube-Magg C, Hinsch A, Höflmayer D, Fraune C, Bernreuther C, Lebok P, Sauter G, Minner S, Steurer S, Simon R, Burandt E, Dum D, Lutz F, Marx AH, Krech T, Clauditz TS. Cadherin-17 (CDH17) expression in human cancer: A tissue microarray study on 18,131 tumors. Pathol Res Pract 2024; 256:155175. [PMID: 38452580 DOI: 10.1016/j.prp.2024.155175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 03/09/2024]
Abstract
Cadherin-17 (CDH17) is a membranous cell adhesion protein predominantly expressed in intestinal epithelial cells. CDH17 is therefore considered a possible diagnostic and therapeutic target. This study was to comprehensively determine the expression of CDH17 in cancer and to further assess the diagnostic utility of CDH17 immunohistochemistry (IHC). A tissue microarray containing 14,948 interpretable samples from 150 different tumor types and subtypes as well as 76 different normal tissue types was analyzed by IHC. In normal tissues, a membranous CDH17 staining was predominantly seen in the epithelium of the intestine and pancreatic excretory ducts. In tumors, 53 of 150 analyzed categories showed CDH17 positivity including 26 categories with at least one strongly positive case. CDH17 positivity was most common in epithelial and neuroendocrine colorectal neoplasms (50.0%-100%), other gastrointestinal adenocarcinomas (42.7%-61.6%), mucinous ovarian cancer (61.1%), pancreatic acinar cell carcinoma (28.6%), cervical adenocarcinoma (52.6%), bilio-pancreatic adenocarcinomas (40.5-69.8%), and other neuroendocrine neoplasms (5.6%-100%). OnIy 9.9% of 182 pulmonary adenocarcinomas were CDH17 positive. In colorectal adenocarcinomas, reduced CDH17 staining was linked to high pT (p = 0.0147), nodal metastasis (p = 0.0041), V1 (p = 0.0025), L1 (p = 0.0054), location in the right colon (p = 0.0033), and microsatellite instability (p < 0.0001). The CDH17 expression level was unrelated to tumor phenotype in gastric and pancreatic cancer. In summary, our comprehensive overview on CDH17 expression in human tumors identified various tumor entities that might often benefit from anti-CDH17 therapies and suggest utility of CDH17 IHC for the distinction of metastatic gastrointestinal or bilio-pancreatic adenocarcinomas (often positive) from primary pulmonary adenocarcinomas (mostly negative).
Collapse
Affiliation(s)
- Frank Jacobsen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ramesh Pushpadevan
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Florian Viehweger
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Morton Freytag
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ria Schlichter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Natalia Gorbokon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franziska Büscheck
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas M Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Devita Putri
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andrea Hinsch
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Doris Höflmayer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Bernreuther
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - David Dum
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Florian Lutz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas H Marx
- Department of Pathology, Academic Hospital Fuerth, Fuerth, Germany
| | - Till Krech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - Till S Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
7
|
Dong Y, Xia P, Xu X, Shen J, Ding Y, Jiang Y, Wang H, Xie X, Zhang X, Li W, Li Z, Wang J, Zhao SC. Targeted delivery of organic small-molecule photothermal materials with engineered extracellular vesicles for imaging-guided tumor photothermal therapy. J Nanobiotechnology 2023; 21:442. [PMID: 37993888 PMCID: PMC10666357 DOI: 10.1186/s12951-023-02133-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/28/2023] [Indexed: 11/24/2023] Open
Abstract
Imaging-guided photothermal therapy (PTT) for cancers recently gathered increasing focus thanks to its precise diagnosis and potent therapeutic effectiveness. Croconaine (CR) dyes demonstrate potential in expanding utility for near infrared (NIR) dyes in bio-imaging/theranostics. However, reports on CR dyes for PTT are scarce most likely due to the short of the efficacious delivery strategies to achieve specific accumulation in diseased tissues to induce PTT. Extracellular vesicles (EVs) are multifunctional nanoparticle systems that function as safe platform for disease theragnostics, which provide potential benefits in extensive biomedical applications. Here, we developed a novel delivery system for photothermal molecules based on a CR dye that exerts photothermal activity through CDH17 nanobody-engineered EVs. The formed CR@E8-EVs showed strong NIR absorption, excellent photothermal performance, good biological compatibility and superb active tumor-targeting capability. The CR@E8-EVs can not only visualize and feature the tumors through CR intrinsic property as a photoacoustic imaging (PAI) agent, but also effectively retard the tumor growth under laser irradiation to perform PTT. It is expected that the engineered EVs will become a novel delivery vehicle of small organic photothermal agents (SOPTAs) in future clinical PTT applications.
Collapse
Affiliation(s)
- Yafang Dong
- Department of Urology, the Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 510500, P. R. China
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, P. R. China
| | - Peng Xia
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, P. R. China
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Xiaolong Xu
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, P. R. China
| | - Jing Shen
- Department of Oncology, Department of Infectious Disease, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, P. R. China
| | - Youbin Ding
- Department of Medical Imaging, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 510630, P. R. China
| | - Yuke Jiang
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, P. R. China
| | - Huifang Wang
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, P. R. China
| | - Xin Xie
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, P. R. China
| | - Xiaodong Zhang
- Department of Medical Imaging, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 510630, P. R. China
| | - Weihua Li
- Medical imaging department, Shenzhen Second People's Hospital/the First Affiliated Hospital, Shenzhen University Health Science Center, Shenzhen, Guangdong, 518035, P. R. China.
| | - Zhijie Li
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, P. R. China.
| | - Jigang Wang
- Department of Urology, the Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 510500, P. R. China.
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, P. R. China.
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, P. R. China.
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, P. R. China.
| | - Shan-Chao Zhao
- Department of Urology, the Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 510500, P. R. China.
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China.
| |
Collapse
|
8
|
Wong KK. Integrated transcriptomics and proteomics data analysis identifies CDH17 as a key cell surface target in colorectal cancer. Comput Biol Chem 2023; 105:107897. [PMID: 37247573 DOI: 10.1016/j.compbiolchem.2023.107897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/28/2023] [Accepted: 05/20/2023] [Indexed: 05/31/2023]
Abstract
Immunotherapy development against colorectal cancer (CRC) is hindered by the lack of cell surface target highly expressed in cancer cells but with restricted presence in normal tissues to minimize off-tumor toxicities. In this in silico analysis, a longlist of genes (n = 13,488) expressed in CRCs according to the Human Protein Atlas (HPA) database were evaluated to shortlist for potential surface targets based on the following prerequisites: (i) Absent from the brain and lung tissues to minimize the likelihood of neurologic and pulmonary toxicities; (ii) Restricted expression profile in other normal human tissues; (iii) Genes that potentially encode cell surface proteins and; (iv) At least moderately expressed in CRC cases. Fifteen potential targets were shortlisted and subsequently ranked according to the combination of their transcript and protein expression levels in CRCs derived from multiple datasets (i.e. DepMap, TCGA, CPTAC-2, and HPA CRCs). The top-ranked target with the highest and homogenous expression in CRCs was cadherin 17 (CDH17). Downstream analysis of CRC transcriptomics and proteomics datasets showed that CDH17 was significantly correlated with carcinoembryonic antigen expression. Moreover, CDH17 expression was significantly lower in CRC cases with high microsatellite instability, as well as negatively associated with immune response gene sets and the expression of MHC class I and II molecules. CDH17 represents an optimal target for therapeutic development against CRCs, and this study provides a novel framework to identify key cell surface targets for therapeutic development against other malignancies.
Collapse
Affiliation(s)
- Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kelantan, Malaysia.
| |
Collapse
|
9
|
Inagaki FF, Wakiyama H, Furusawa A, Okada R, Kato T, Fujimura D, Okuyama S, Fukushima H, Takao S, Choyke PL, Kobayashi H. Near-infrared photoimmunotherapy (NIR-PIT) of bone metastases. Biomed Pharmacother 2023; 160:114390. [PMID: 36791566 PMCID: PMC10024949 DOI: 10.1016/j.biopha.2023.114390] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
The bones are a common site for metastasis arising from solid tumors such as breast and prostate cancer. Chemotherapy, including immunotherapy, is rarely curative. Radiotherapy with pain palliation can temporize bone metastases but is generally considered a short-term solution and retreatment is difficult. Surgery is often necessary, yet recovery times might exceed life expectancy. Therefore, there is a need to develop new approaches to bone metastases that are effective but minimally invasive. Near-infrared photoimmunotherapy (NIR-PIT) uses antibodies labeled with IRDye700DX (IR700) which is activated by NIR light, resulting in rapid cell membrane damage and immunogenic cell death. NIR-PIT using an anti-epidermal growth factor receptor (EGFR) antibody-IR700 conjugate in patients with recurrent head and neck cancer received qualified approval in Japan in 2020 and is now widely used there. However, no bone metastases have yet been treated. In this study, the efficacy of NIR-PIT for bone metastases was investigated using a bone metastases mouse model successfully established by caudal artery injection of a human triple-negative breast cancer cell line, MDAMB468-GFP/luc. The bone metastatic lesions were treated with NIR-PIT using the anti-EGFR antibody, panitumumab-IR700 conjugate. Bioluminescence imaging and histological evaluation showed that EGFR-targeted NIR-PIT has a therapeutic effect on bone metastatic lesions in mice. In addition, micro-CT showed that repeated NIR-PIT led to repair of metastasis-induced bone destruction and restored bone cortex continuity consistent with healing. These data suggest that NIR-PIT has the potential for clinical application in the treatment of bone metastases.
Collapse
Affiliation(s)
- Fuyuki F Inagaki
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hiroaki Wakiyama
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aki Furusawa
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ryuhei Okada
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Takuya Kato
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daiki Fujimura
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shuhei Okuyama
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hiroshi Fukushima
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Seiichiro Takao
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter L Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
10
|
Mohiuddin TM, Zhang C, Sheng W, Al-Rawe M, Zeppernick F, Meinhold-Heerlein I, Hussain AF. Near Infrared Photoimmunotherapy: A Review of Recent Progress and Their Target Molecules for Cancer Therapy. Int J Mol Sci 2023; 24:2655. [PMID: 36768976 PMCID: PMC9916513 DOI: 10.3390/ijms24032655] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/01/2023] Open
Abstract
Near infrared photoimmunotherapy (NIR-PIT) is a newly developed molecular targeted cancer treatment, which selectively kills cancer cells or immune-regulatory cells and induces therapeutic host immune responses by administrating a cancer targeting moiety conjugated with IRdye700. The local exposure to near-infrared (NIR) light causes a photo-induced ligand release reaction, which causes damage to the target cell, resulting in immunogenic cell death (ICD) with little or no side effect to the surrounding normal cells. Moreover, NIR-PIT can generate an immune response in distant metastases and inhibit further cancer attack by combing cancer cells targeting NIR-PIT and immune regulatory cells targeting NIR-PIT or other cancer treatment modalities. Several recent improvements in NIR-PIT have been explored such as catheter-driven NIR light delivery, real-time monitoring of cancer, and the development of new target molecule, leading to NIR-PIT being considered as a promising cancer therapy. In this review, we discuss the progress of NIR-PIT, their mechanism and design strategies for cancer treatment. Furthermore, the overall possible targeting molecules for NIR-PIT with their application for cancer treatment are briefly summarised.
Collapse
|
11
|
Ma J, Xu X, Fu C, Xia P, Tian M, Zheng L, Chen K, Liu X, Li Y, Yu L, Zhu Q, Yu Y, Fan R, Jiang H, Li Z, Yang C, Xu C, Long Y, Wang J, Li Z. CDH17 nanobodies facilitate rapid imaging of gastric cancer and efficient delivery of immunotoxin. Biomater Res 2022; 26:64. [PMID: 36435809 PMCID: PMC9701387 DOI: 10.1186/s40824-022-00312-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/27/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND It is highly desirable to develop new therapeutic strategies for gastric cancer given the low survival rate despite improvement in the past decades. Cadherin 17 (CDH17) is a membrane protein highly expressed in cancers of digestive system. Nanobody represents a novel antibody format for cancer targeted imaging and drug delivery. Nanobody targeting CHD17 as an imaging probe and a delivery vehicle of toxin remains to be explored for its theragnostic potential in gastric cancer. METHODS Naïve nanobody phage library was screened against CDH17 Domain 1-3 and identified nanobodies were extensively characterized with various assays. Nanobodies labeled with imaging probe were tested in vitro and in vivo for gastric cancer detection. A CDH17 Nanobody fused with toxin PE38 was evaluated for gastric cancer inhibition in vitro and in vivo. RESULTS Two nanobodies (A1 and E8) against human CDH17 with high affinity and high specificity were successfully obtained. These nanobodies could specifically bind to CDH17 protein and CDH17-positive gastric cancer cells. E8 nanobody as a lead was extensively determined for tumor imaging and drug delivery. It could efficiently co-localize with CDH17-positive gastric cancer cells in zebrafish embryos and rapidly visualize the tumor mass in mice within 3 h when conjugated with imaging dyes. E8 nanobody fused with toxin PE38 showed excellent anti-tumor effect and remarkably improved the mice survival in cell-derived (CDX) and patient-derived xenograft (PDX) models. The immunotoxin also enhanced the anti-tumor effect of clinical drug 5-Fluorouracil. CONCLUSIONS The study presents a novel imaging and drug delivery strategy by targeting CDH17. CDH17 nanobody-based immunotoxin is potentially a promising therapeutic modality for clinical translation against gastric cancer.
Collapse
Affiliation(s)
- Jingbo Ma
- Department of Hyperbaric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, P. R. China.,College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, P. R. China
| | - Xiaolong Xu
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, P. R. China
| | - Chunjin Fu
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, P. R. China
| | - Peng Xia
- Department of Hyperbaric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, P. R. China.,Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Ming Tian
- Department of Hyperbaric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, P. R. China.,Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Liuhai Zheng
- Department of Hyperbaric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, P. R. China
| | - Kun Chen
- Department of Hyperbaric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, P. R. China
| | - Xiaolian Liu
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, P. R. China
| | - Yilei Li
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, P. R. China
| | - Le Yu
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, P. R. China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, P.R. China
| | - Qinchang Zhu
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, P.R. China
| | - Yangyang Yu
- Health Science Center, Shenzhen University, Shenzhen, 518055, Guangdong, P. R. China
| | - Rongrong Fan
- Deapartment of Biosciences and Nutrition, Karolinska Institute, 14157, Stockholm, Sweden
| | - Haibo Jiang
- Department of Chemistry, The University of Hong Kong, Pok Fu Lam, Hong Kong, P. R. China
| | - Zhifen Li
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Xing Yun Street, Pingcheng District, Datong, 037009, Shanxi, P. R. China
| | - Chuanbin Yang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, P. R. China
| | - Chengchao Xu
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, P. R. China
| | - Ying Long
- Department of Hyperbaric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, P. R. China.
| | - Jigang Wang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, P. R. China. .,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, P.R. China. .,Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, P. R. China.
| | - Zhijie Li
- Department of Hyperbaric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, P. R. China. .,Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, P. R. China.
| |
Collapse
|
12
|
Inagaki FF, Kato T, Furusawa A, Okada R, Wakiyama H, Furumoto H, Okuyama S, Choyke PL, Kobayashi H. Disialoganglioside GD2-Targeted Near-Infrared Photoimmunotherapy (NIR-PIT) in Tumors of Neuroectodermal Origin. Pharmaceutics 2022; 14:2037. [PMID: 36297471 PMCID: PMC9612122 DOI: 10.3390/pharmaceutics14102037] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/18/2022] [Accepted: 09/22/2022] [Indexed: 10/21/2023] Open
Abstract
Disialoganglioside (GD2) is a subtype of glycolipids that is highly expressed in tumors of neuroectodermal origins, such as neuroblastoma and osteosarcoma. Its limited expression in normal tissues makes GD2 a potential target for precision therapy. Several anti-GD2 monoclonal antibodies are currently in clinical use and have had moderate success. Near-infrared photoimmunotherapy (NIR-PIT) is a cancer therapy that arms antibodies with IRDye700DX (IR700) and then exposes this antibody-dye conjugate (ADC) to NIR light at a wavelength of 690 nm. NIR light irradiation induces a profound photochemical response in IR700, resulting in protein aggregates that lead to cell membrane damage and death. In this study, we examined the feasibility of GD2-targeted NIR-PIT. Although GD2, like other glycolipids, is only located in the outer leaflet of the cell membrane, the aggregates formation exerted sufficient physical force to disrupt the cell membrane and kill target cells in vitro. In in vivo studies, tumor growth was significantly inhibited after GD2-targeted NIR-PIT, resulting in prolonged survival. Following GD2-targeted NIR-PIT, activation of host immunity was observed. In conclusion, GD2-targeted NIR-PIT was similarly effective to the conventional protein-targeted NIR-PIT. This study demonstrates that membrane glycolipid can be a new target of NIR-PIT.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
13
|
Furumoto H, Kato T, Wakiyama H, Furusawa A, Choyke PL, Kobayashi H. Endoscopic Applications of Near-Infrared Photoimmunotherapy (NIR-PIT) in Cancers of the Digestive and Respiratory Tracts. Biomedicines 2022; 10:846. [PMID: 35453596 PMCID: PMC9027987 DOI: 10.3390/biomedicines10040846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 12/11/2022] Open
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a newly developed and promising therapy that specifically destroys target cells by irradiating antibody-photo-absorber conjugates (APCs) with NIR light. APCs bind to target molecules on the cell surface, and when exposed to NIR light, cause disruption of the cell membrane due to the ligand release reaction and dye aggregation. This leads to rapid cell swelling, blebbing, and rupture, which leads to immunogenic cell death (ICD). ICD activates host antitumor immunity, which assists in killing still viable cancer cells in the treated lesion but is also capable of producing responses in untreated lesions. In September 2020, an APC and laser system were conditionally approved for clinical use in unresectable advanced head and neck cancer in Japan, and are now routine in appropriate patients. However, most tumors have been relatively accessible in the oral cavity or neck. Endoscopes offer the opportunity to deliver light deeper within hollow organs of the body. In recent years, the application of endoscopic therapy as an alternative to surgery for the treatment of cancer has expanded, providing significant benefits to inoperable patients. In this review, we will discuss the potential applications of endoscopic NIR-PIT, especially in thoracic and gastrointestinal cancers.
Collapse
Affiliation(s)
| | | | | | | | | | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (H.F.); (T.K.); (H.W.); (A.F.); (P.L.C.)
| |
Collapse
|
14
|
Matsuoka K, Sato M, Sato K. Hurdles for the wide implementation of photoimmunotherapy. Immunotherapy 2021; 13:1427-1438. [PMID: 34693721 DOI: 10.2217/imt-2021-0241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Near infrared photoimmunotherapy (NIR-PIT) is a molecularly targeted treatment for cancers achieved by injecting a conjugate of IRDye700DX® (IR700), a water-soluble silicon phthalocyanine derivative in the near infrared, and a monoclonal antibody that targets cancer cell antigens. NIR-PIT is a highly specific treatment with few side effects that results in rapid immunogenic cell death. Despite it being a very effective and innovative therapy, there are a few challenges preventing full implementation in clinical practice. These include the limits of near infrared light penetration, selection of targets, concerns about tumor lysis syndrome and drug costs. However, NIR-PIT has been approved by the regulatory authorities in Japan, allowing for exploration of how to mitigate challenges while maximizing the benefits of this treatment modality.
Collapse
Affiliation(s)
- Kohei Matsuoka
- Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, 461-8673, Japan
| | - Mitsuo Sato
- Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, 461-8673, Japan
| | - Kazuhide Sato
- Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, 464-0814, Japan.,Nagoya University Institute for Advanced Research, Advanced Analytical & Diagnostic Imaging Center (AADIC)/Medical Engineering Unit (MEU), B3 Unit, Nagoya, Japan.,FOREST-Souhatsu, CREST, JST, Tokyo, 102-8666, Japan.,Nagoya University Institute for Advanced Research, S-YLC, Nagoya, 464-8601, Japan
| |
Collapse
|
15
|
Simultaneous exposure to intracellular and extracellular photosensitizers for the treatment of Staphylococcus aureus infections. Antimicrob Agents Chemother 2021; 65:e0091921. [PMID: 34516248 DOI: 10.1128/aac.00919-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus is a serious threat to public health due to the rise of antibiotic resistance in this organism, which can prolong or exacerbate skin and soft tissue infections (SSTIs). Methicillin-resistant S. aureus is a Gram-positive bacterium and a leading cause of SSTIs. As such, many efforts are underway to develop therapies that target essential biological processes in S. aureus. Antimicrobial photodynamic therapy is effective alternative to antibiotics, therefore we developed an approach to simultaneously expose S. aureus to intracellular and extracellular photoactivators. A near infrared photosensitizer was conjugated to human monoclonal antibodies (mAbs) that target the S. aureus Isd heme acquisition proteins. Additionally, the compound VU0038882 was developed to increase photoactivatable porphyrins within the cell. Combinatorial PDT treatment of drug-resistant S. aureus exposed to VU0038882 and conjugated anti-Isd mAbs proved to be an effective antibacterial strategy in vitro and in a murine model of SSTIs.
Collapse
|
16
|
Wakiyama H, Kato T, Furusawa A, Choyke PL, Kobayashi H. Near infrared photoimmunotherapy of cancer; possible clinical applications. NANOPHOTONICS 2021; 10:3135-3151. [PMID: 36405499 PMCID: PMC9646249 DOI: 10.1515/nanoph-2021-0119] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 04/15/2021] [Indexed: 05/07/2023]
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a new cancer treatment that uses an antibody-photo-absorber conjugate (APC) composed of a targeting monoclonal antibody conjugated with a photoactivatable phthalocyanine-derivative dye, IRDye700DX (IR700). APCs injected into the body can bind to cancer cells where they are activated by local exposure to NIR light typically delivered by a NIR laser. NIR light alters the APC chemical conformation inducing damage to cancer cell membranes, resulting in necrotic cell death within minutes of light exposure. NIR-PIT selectivity kills cancer cells by immunogenic cell death (ICD) with minimal damage to adjacent normal cells thus, leading to rapid recovery by the patient. Moreover, since NIR-PIT induces ICD only on cancer cells, NIR-PIT initiates and activates antitumor host immunity that could be further enhanced when combined with immune checkpoint inhibition. NIR-PIT induces dramatic changes in the tumor vascularity causing the super-enhanced permeability and retention (SUPR) effect that dramatically enhances nanodrug delivery to the tumor bed. Currently, a worldwide Phase 3 study of NIR-PIT for recurrent or inoperable head and neck cancer patients is underway. In September 2020, the first APC and accompanying laser system were conditionally approved for clinical use in Japan. In this review, we introduce NIR-PIT and the SUPR effect and summarize possible applications of NIR-PIT in a variety of cancers.
Collapse
Affiliation(s)
- Hiroaki Wakiyama
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Takuya Kato
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Aki Furusawa
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Peter L. Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| |
Collapse
|
17
|
Kato T, Wakiyama H, Furusawa A, Choyke PL, Kobayashi H. Near Infrared Photoimmunotherapy; A Review of Targets for Cancer Therapy. Cancers (Basel) 2021; 13:cancers13112535. [PMID: 34064074 PMCID: PMC8196790 DOI: 10.3390/cancers13112535] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/12/2021] [Accepted: 05/18/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Near-infrared photoimmunotherapy (NIR-PIT) is a newly developed cancer treatment that uses an antibody-photoabsorber (IRDye700DX) conjugate (APC) that is activated by NIR light irradiation. A major benefit of NIR-PIT is that only APC-bound cancer cells that are exposed to NIR light are killed by NIR-PIT; thus, minimal damage occurs in adjacent normal cells. NIR-PIT has now been applied to many cancers expressing various cell-surface target proteins using monoclonal antibodies designed to bind to them. Moreover, NIR-PIT is not limited to tumor antigens but can also be used to kill specific host cells that create immune-permissive environments in which tumors grow. Moreover, multiple targets can be treated simultaneously with NIR-PIT using a cocktail of APCs. NIR-PIT has great potential to treat a wide variety of cancers by targeting appropriate tumor cells, immune cells, or both, and can be augmented by other immunotherapies. Abstract Near-infrared photoimmunotherapy (NIR-PIT) is a newly developed cancer treatment that uses an antibody-photoabsorber (IRDye700DX) conjugate (APC) that is activated by NIR light irradiation. In September 2020, the first APC and laser system were conditionally approved for clinical use in Japan. A major benefit of NIR-PIT is that only APC-bound cancer cells that are exposed to NIR light are killed by NIR-PIT; thus, minimal damage occurs in adjacent normal cells. These early trials have demonstrated that in addition to direct cell killing, there is a significant therapeutic host immune response that greatly contributes to the success of the therapy. Although the first clinical use of NIR-PIT targeted epidermal growth factor receptor (EGFR), many other targets are suitable for NIR-PIT. NIR-PIT has now been applied to many cancers expressing various cell-surface target proteins using monoclonal antibodies designed to bind to them. Moreover, NIR-PIT is not limited to tumor antigens but can also be used to kill specific host cells that create immune-permissive environments in which tumors grow. Moreover, multiple targets can be treated simultaneously with NIR-PIT using a cocktail of APCs. NIR-PIT can be used in combination with other therapies, such as immune checkpoint inhibitors, to enhance the therapeutic effect. Thus, NIR-PIT has great potential to treat a wide variety of cancers by targeting appropriate tumor cells, immune cells, or both, and can be augmented by other immunotherapies.
Collapse
|
18
|
Inagaki FF, Fujimura D, Furusawa A, Okada R, Wakiyama H, Kato T, Choyke PL, Kobayashi H. Diagnostic imaging in near-infrared photoimmunotherapy using a commercially available camera for indocyanine green. Cancer Sci 2021; 112:1326-1330. [PMID: 33543819 PMCID: PMC7935778 DOI: 10.1111/cas.14809] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 02/06/2023] Open
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a new type of cancer treatment, which was recently approved in Japan for patients with inoperable head and neck cancer. NIR-PIT utilizes antibody-IRDye700DX (IR700) conjugates and NIR light at a wavelength of 690 nm. NIR light exposure leads to physicochemical changes in the antibody-IR700 conjugate cell receptor complex, inducing rapid necrotic cell death. Just as fluorescence guided surgery is useful for surgeons to resect tumors completely, real-time information of tumor locations would help clinicians irradiate NIR light more precisely. IR700 is a fluorescence dye that emits at 702 nm; however, there is no clinically available device optimized for detecting this fluorescence. On the other hand, many indocyanine green (ICG) fluorescence imaging devices have been approved for clinical use. Therefore, we investigated whether LIGHTVISION, one of the clinically available ICG cameras, could be employed for tumor detection. We hypothesized that irradiation with even low-power 690-nm laser light, attenuated by 99% with a neutral-density filter, could be detected with LIGHTVISION without fluorescence decay or therapeutic effect because of the long emission tail of IR700 beyond 800 nm (within the detection range of LIGHTVISION). We demonstrated that the LIGHTVISION camera, originally designed for ICG detection, can detect the tail of IR700 fluorescence in real time, thus enabling the visualization of target tumors.
Collapse
Affiliation(s)
- Fuyuki F Inagaki
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Daiki Fujimura
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Aki Furusawa
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ryuhei Okada
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Hiroaki Wakiyama
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Takuya Kato
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Peter L Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
19
|
Inagaki FF, Fujimura D, Furusawa A, Okada R, Wakiyama H, Kato T, Choyke PL, Kobayashi H. Fluorescence Imaging of Tumor-Accumulating Antibody-IR700 Conjugates Prior to Near-Infrared Photoimmunotherapy (NIR-PIT) Using a Commercially Available Camera Designed for Indocyanine Green. Mol Pharm 2021; 18:1238-1246. [PMID: 33502869 DOI: 10.1021/acs.molpharmaceut.0c01107] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a newly developed cancer treatment that uses antibody-IRDye700DX (IR700) conjugates and was recently approved in Japan for patients with inoperable head and neck cancer. Exposure of the tumor with NIR light at a wavelength of 690 nm leads to physicochemical changes in the antibody-IR700 conjugate-cell receptor complex, resulting in increased hydrophobicity and damage to the integrity of the cell membrane. However, it is important that the tumor be completely exposed to light during NIR-PIT, and thus, a method to provide real-time information on tumor location would help clinicians direct light more accurately. IR700 is a fluorophore that emits at 702 nm; however, there is no clinically available device optimized for detecting this fluorescence. On the other hand, many indocyanine green (ICG) fluorescence imaging devices have been approved for clinical use in operating rooms. Therefore, we investigated whether LIGHTVISION, one of the clinically available ICG cameras, could be employed for NIR-PIT target tumor detection. Due to the limited benefits of adding IR700 molecules, the additional conjugation of IRDye800CW (IR800) or ICG-EG4-Sulfo-OSu (ICG-EG4), which has an overlapping spectrum with ICG, to trastuzumab-IR700 conjugates was performed. Conjugation of second NIR dyes did not interfere the efficacy of NIR-PIT. The dual conjugation of IR800 and IR700 to trastuzumab clearly visualized target tumors with LIGHTVISION by detecting emission light of IR800. We demonstrated that the conjugation of second NIR dyes enables us to provide a real-time feedback of tumor locations prior to NIR-PIT.
Collapse
Affiliation(s)
- Fuyuki F Inagaki
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Daiki Fujimura
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Aki Furusawa
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Ryuhei Okada
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Hiroaki Wakiyama
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Takuya Kato
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Peter L Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|